
The Big-O Notation

Assume the order of time of an algorithm is a **quadratic** time as displayed in the graph. Our job is to find an **upper bond** for this function T(n). Consider a function $c_1n^2 \leftarrow$ never over take T(n)

 C_2n^2 such that its greater than T(n) for $n>n_0$. In this case we say that C_2n^2 is an upper bond of T(n)

But we can come up with many functions satisfy this condition. We need to be precise.

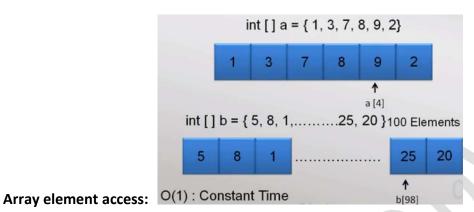
Big Oh $O(n^2)$: f(n): there exist positive constants c and n_0 such that $0 \le f(n) \le cn^2$ for all $n \ge n_0$. In general

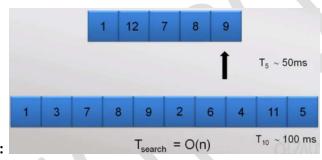
O(g(n)): f(n): there exist positive constants c and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$

Example 1:

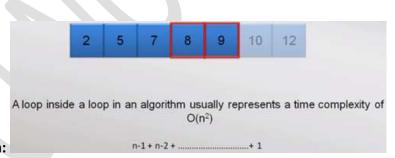
$$5n^2 + 6$$
 ∈ $O(n^2)$???
Find cn^2 → $c=6$ and $c=3$
 → $c=5.1$ $c=6$

Example 2:


$$5n+6 ∈ O(n^2)$$
 ??? ✓
Find cn^2 → c=11 and $n_0=1$


Example 3:

$$n^3 + 2n^2 + 4n + 8 \in O(n^2)$$
 ??? ×
Find $cn^2 \ge n^3 + 2n^2 + 4n + 8$??? ×


$$a_m n^m + a_{m-1} n^{m-1} - - - - - + a_0 \in O(n^m)$$

 $logn \le \sqrt{n} \le n \le n logn \le n^2 \le n^3 \le 2^n \le n!$

What does it mean?

Array element search:

Bubble sort algorithm: