Training HMMs

Outline

- Parameter estimation
- Maximum Likelihood (ML) parameter estimation
- ML for Gaussian PDFs
- ML for HMMs the Baum-Welch algorithm
- HMM adaptation:
 - MAP estimation
 - MLLR

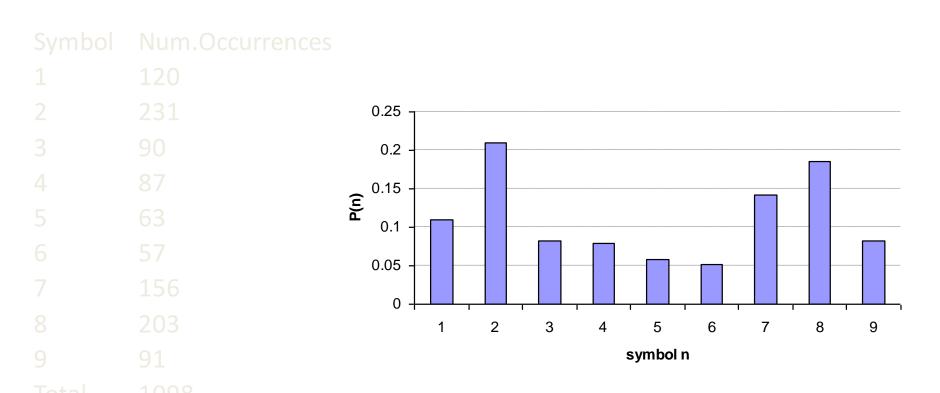
Discrete variables

- Suppose that Y is a random variable which can take any value in a discrete set X={x₁, x₂,...,x_M}
- Suppose that y₁, y₂,..., y_N are samples of the random variable Y
- If c_m is the number of times that the $y_n = x_m$ then an estimate of the probability that y_n takes the value x_m is given by:

$$P(x_m) = P(y_n = x_m) \approx \frac{c_m}{N}$$

STUDENTS-HUB.com

Discrete Probability Mass Function



STUDENTS-HUB.com

Continuous Random Variables

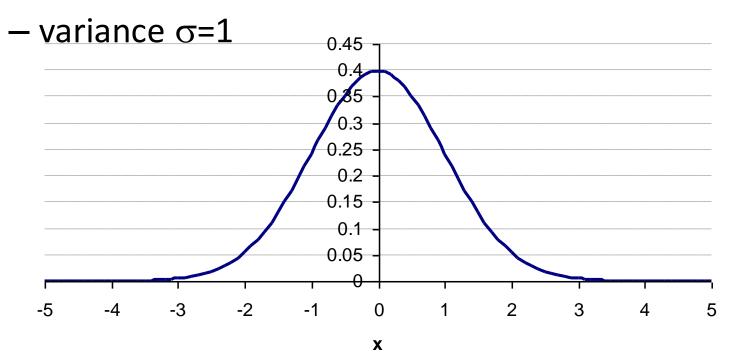
- In most practical applications the data are not restricted to a finite set of values – they can take any value in N-dimensional space
- Simply counting the number of occurrences of each value is no longer a viable way of estimating probabilities...
- ...but there are generalisations of this approach which are applicable to continuous variables – these are referred to as <u>non-parametric methods</u>

Continuous Random Variables

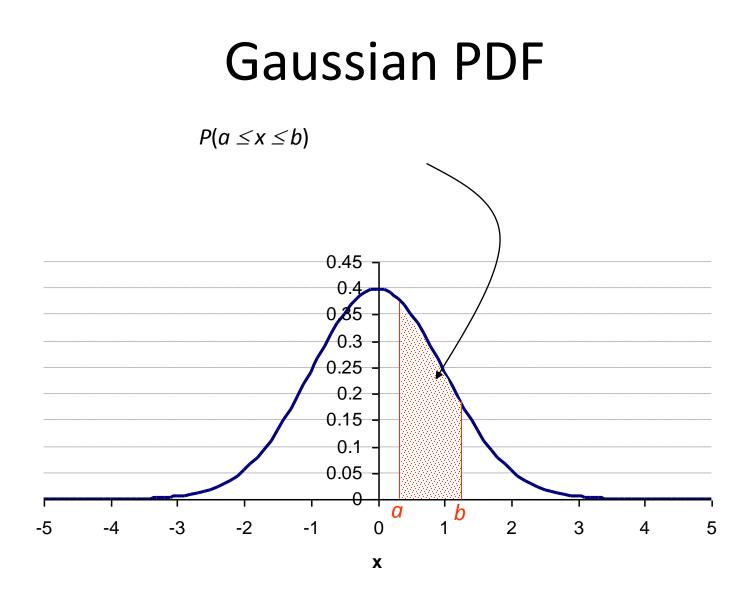
- An alternative is to use a <u>parametric</u> model
- In a parametric model, probabilities are defined by a small set of parameters
- Simplest example is a <u>normal</u>, or <u>Gaussian</u> model
- A Gaussian probability density function (PDF) is defined by two parameters
 - its mean μ , and
 - -<u>variance</u> σ

Gaussian PDF

- 'Standard' 1-dimensional Guassian PDF:
 - mean μ =0



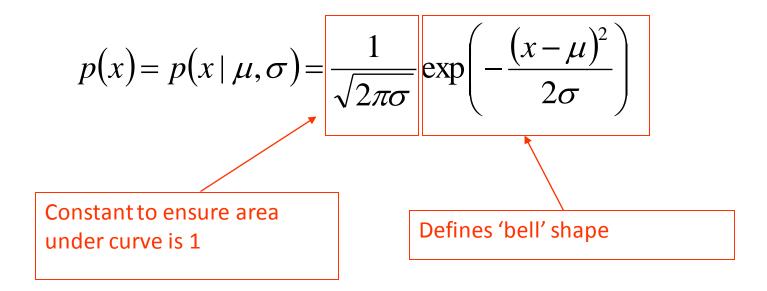
STUDENTS-HUB.com



STUDENTS-HUB.com

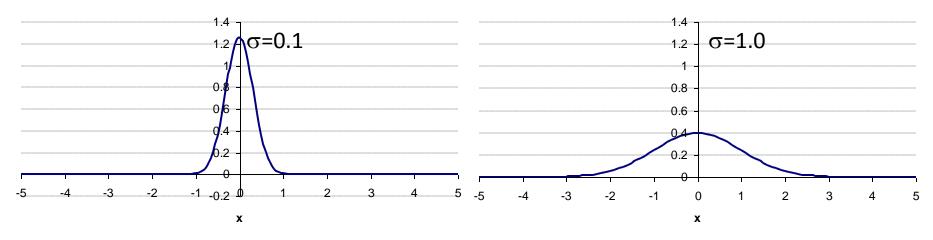
Gaussian PDF

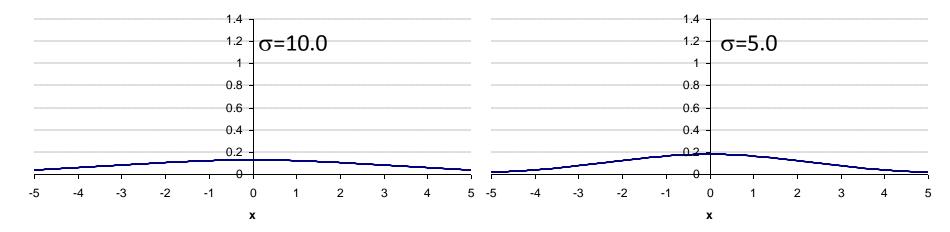
• For a 1-dimensional Gaussian PDF p with mean μ and variance σ :



STUDENTS-HUB.com

More examples





STUDENTS-HUB.com

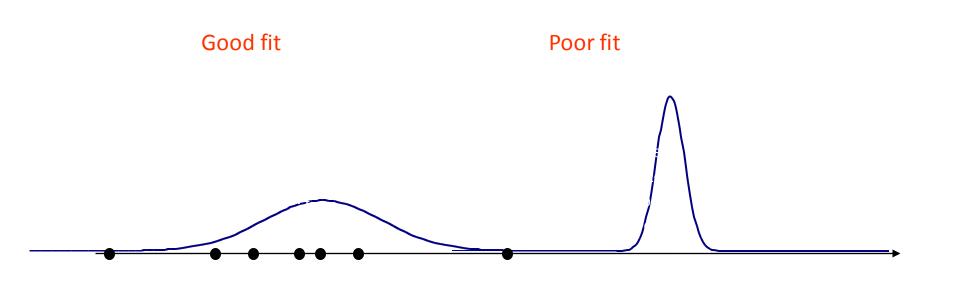
Fitting a Gaussian PDF to Data

- Suppose y = y₁,...,y_n,...,y_T is a sequence of T data values
- Given a Gaussian PDF p with mean μ and variance σ , define:

$$p(y \mid \mu, \sigma) = \prod_{t=1}^{T} p(y_t \mid \mu, \sigma)$$

- How do we choose μ and σ to maximise this probability?

Fitting a Gaussian PDF to Data



STUDENTS-HUB.com

Maximum Likelihood Estimation

- <u>Define</u> the best fitting Gaussian to be the one such that $p(y | \mu, \sigma)$ is maximised.
- Terminology:
 - $-p(y | \mu, \sigma)$ as a function of y is the probability (density) of y
 - $-p(y | \mu, \sigma)$ as a function of μ, σ is the <u>likelihood</u> of μ, σ
- Maximising $p(y|\mu,\sigma)$ with respect to μ,σ is called Maximum Likelihood (ML) estimation of μ,σ

ML estimation of μ,σ

- Intuitively:
 - The maximum likelihood estimate of μ should be the average value of y_1, \dots, y_T , (the <u>sample mean</u>)
 - The maximum likelihood estimate of σ should be the variance of y_1, \dots, y_T (the <u>sample variance</u>)
- This turns out to be true: $p(y \mid \mu, \sigma)$ is maximised by setting: $\mu = \frac{1}{T} \sum_{t=1}^{T} y_t, \quad \sigma = \frac{1}{T} \sum_{t=1}^{T} (y_t - \mu)^2$

Proof

First note that maximising p(y) is the same as maximising log(p(y))

$$\log p(y \mid \mu, \sigma) = \log \prod_{t=1}^{T} p(y_t \mid \mu, \sigma) = \sum_{t=1}^{T} \log p(y_t \mid \mu, \sigma)$$
Also
$$\log p(y_t \mid \mu, \sigma) = -\frac{1}{2} \log(2\pi\sigma) - \frac{(\mu - y_t)^2}{\sigma}$$

At a maximum:

$$0 = \frac{\partial}{\partial \mu} \log p(y \mid \mu, \sigma) = \sum_{t=1}^{T} \frac{\partial}{\partial \mu} \log p(y_t \mid \mu, \sigma) = \sum_{t=1}^{T} \frac{-2(\mu - y_t)(-1)}{\sigma}$$

So, $T\mu = \sum_{t=1}^{T} y_t, \mu = \frac{1}{T} \sum_{t=1}^{T} y_t$

STUDENTS-HUB.com

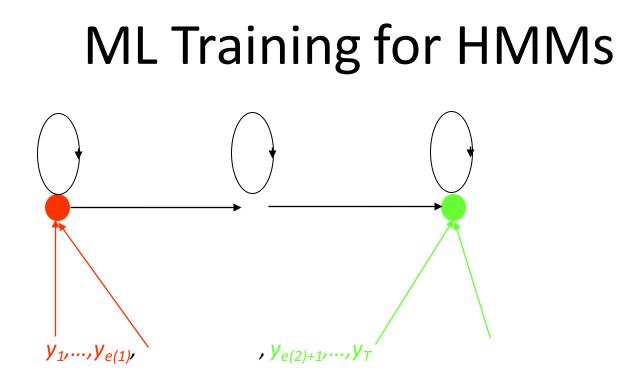
ML training for HMMs

- Now consider
 - An N state HMM M, each of whose states is associated with a <u>Gaussian</u> PDF
 - A training sequence y_1, \dots, y_T
- For simplicity assume that each y_t is 1dimensional

ML training for HMMs

- If we knew that:
 - $-y_1, \dots, y_{e(1)}$ correspond to state 1
 - $-y_{e(1)+1},...,y_{e(2)}$ correspond to state 2
 - y_{e(n-1)+1},...,y_{e(n)} correspond to state n
 :
- Then we could set the mean of state *n* to the average value of $y_{e(n-1)+1}, ..., y_{e(n)}$

— :

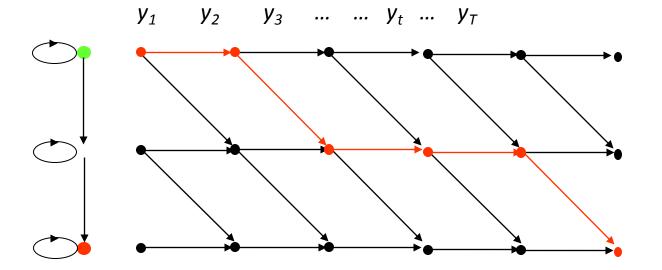


Unfortunately we <u>don't</u> know that $y_{e(n-1)+1}, \dots, y_{e(n)}$ correspond to state *n*...

STUDENTS-HUB.com

Solution

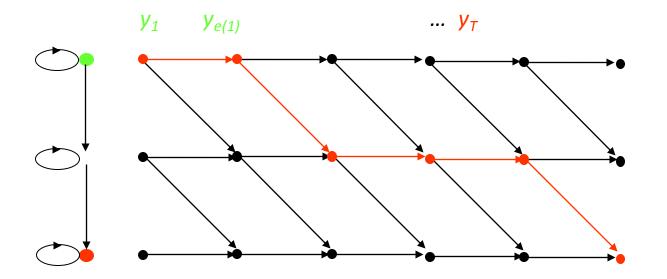
- 1. Define an initial HMM M_o
- 2. Use the Viterbi algorithm to compute the optimal state sequence between M_0 and y_1, \dots, y_T



STUDENTS-HUB.com

Solution (continued)

• Use optimal state sequence to segment y



Reestimate parameters to get a new model M₁

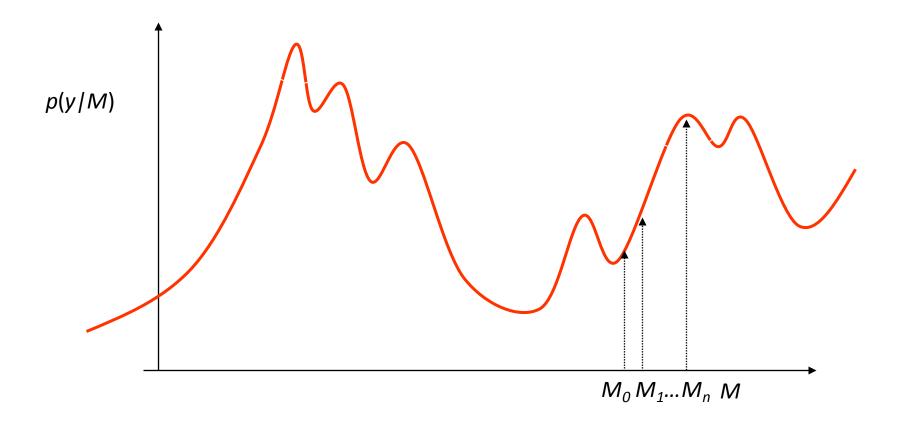
Solution (continued)

- Now repeat whole process using M₁ instead of M₀, to get a new model M₂
- Then repeat again using M₂ to get a new model M₃
- •

 $p(y \mid M_0) \le p(y \mid M_1) \le p(y \mid M_2) \le \le p(y \mid M_n)$

STUDENTS-HUB.com

Local optimization



STUDENTS-HUB.com

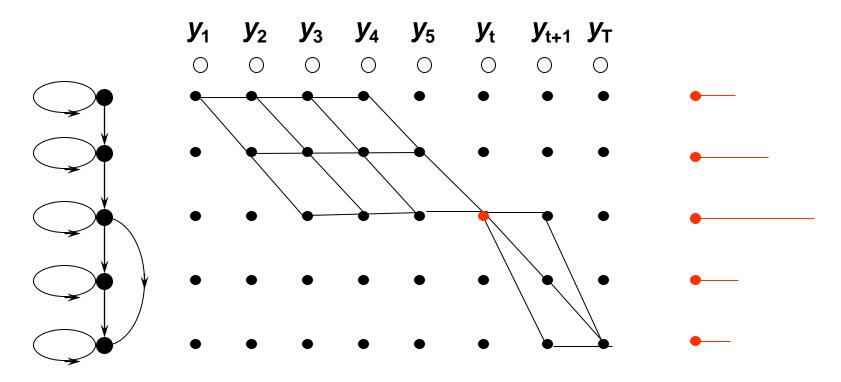
Baum-Welch optimization

- The algorithm just described is often called <u>Viterbi training</u> or <u>Viterbi reestimation</u>
- It is often used to train large sets of HMMs
- An alternative method is called <u>Baum-Welch</u> reestimation

$$\mu(i) = \frac{\sum_{t=1}^{T} \sum_{X \in S_{i,t}} P(Y, X \mid M_0) y_t}{\sum_{t=1}^{T} \sum_{X \in S_{i,t}} P(Y, X \mid M_0)} = \sum_{t=1}^{T} \gamma_t(i) y_t$$

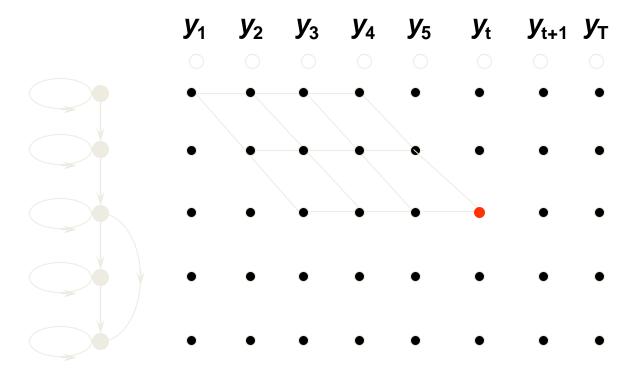
Baum-Welch Reestimation

 $P(s_i \mid y_t) = \gamma_t(i)$



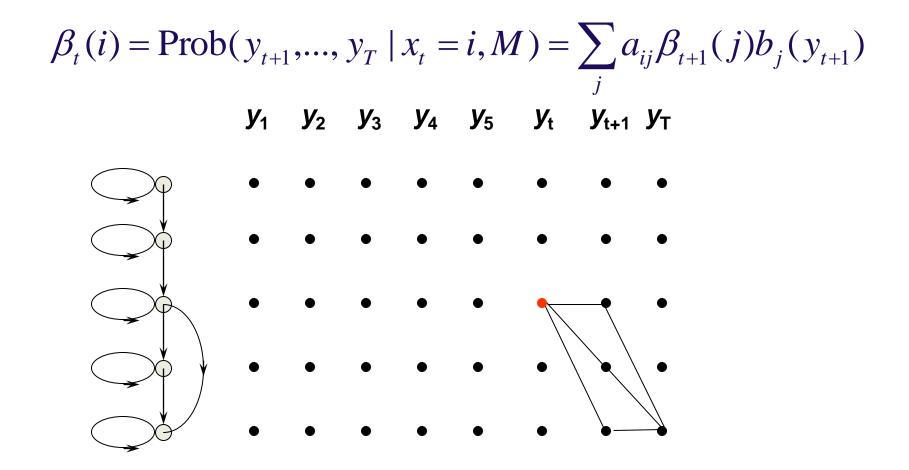
'Forward' Probabilities

$$\alpha_t(i) = \operatorname{Prob}(y_1, ..., y_t \text{ and } x_t = i | M) = \sum_j \alpha_{t-1}(j) \alpha_{ji} b_i(y_t)$$



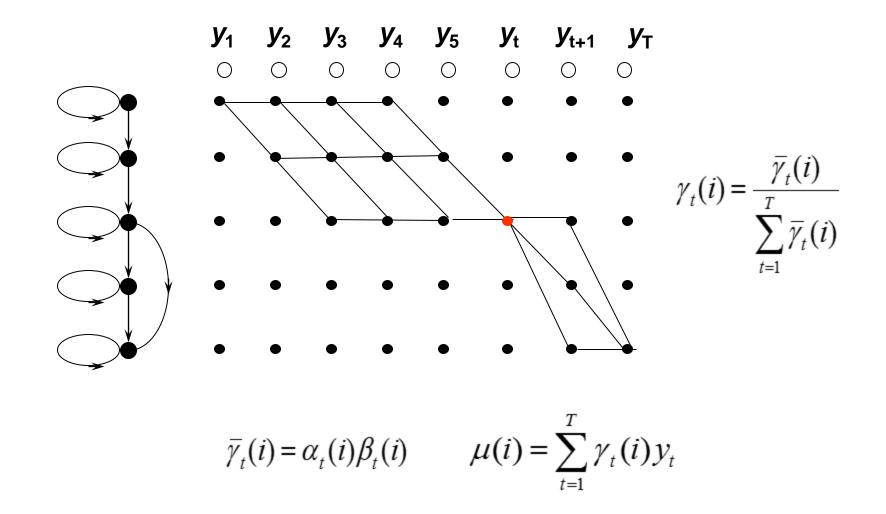
STUDENTS-HUB.com

'Backward' Probabilities



STUDENTS-HUB.com

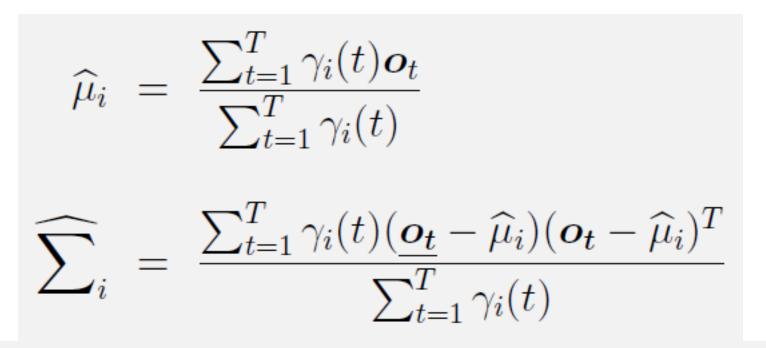
'Forward-Backward' Algorithm



STUDENTS-HUB.com

'Forward-Backward' Algorithm

$$\gamma_t(i) = \frac{\alpha_t(i) \ \beta_t(i)}{P(O|\lambda)} = \frac{\alpha_t(i) \ \beta_t(i)}{\sum_{i=1}^N \alpha_t(i) \ \beta_t(i)}$$



These are weighted averages \Rightarrow weighted by Prob. of being in state j at t STUDENTS-HUB.com

Re-estimate Transition Probabilites

$$\xi_t(i, j) = \frac{\alpha_t(i) a_{ij} b_j(O_{t+1}) \beta_{t+1}(j)}{P(O|\lambda)}$$

$$= \frac{\alpha_t(i) \ a_{ij} b_j(O_{t+1}) \ \beta_{t+1}(j)}{\sum_{i=1}^N \sum_{j=1}^N \alpha_t(i) \ a_{ij} b_j(O_{t+1}) \ \beta_{t+1}(j)}$$

 $\overline{\pi}_i$ = expected frequency (number of times) in state S_i at time $(t = 1) = \gamma_1(i)$

 $\overline{a}_{ij} = \frac{\text{expected number of transitions from state } S_i \text{ to state } S_j}{\text{expected number of transitions from state } S_i}$

$$= \frac{\sum_{t=1}^{T-1} \xi_t(i, j)}{T-1}$$
STUDEN E Hype dom

Adaptation

- A modern large-vocabulary continuous speech recognition system has <u>many thousands of</u> <u>parameters</u>
- Many hours of speech data used to train the system (e.g. 200+ hours!)
- Speech data comes from many speakers
- Hence recogniser is 'speaker independent'
- But performance for an individual would be better if the system were <u>speaker dependent</u>

Adaptation

- For a single speaker, only a small amount of training data is available
- Viterbi reestimation or Baum-Welch reestimation <u>will not work</u>
- Adaptation:
 - the problem of robustly adapting a <u>large</u> number of model parameters using a <u>small</u> amount of training data

Number of parameters

STUDENTS-HUB.com

Adaptation

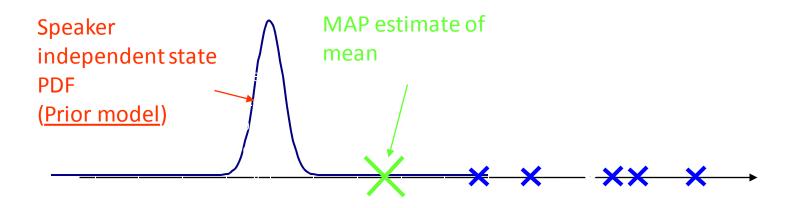
- Two common approaches to adaptation (with small amounts of training data)
 - <u>Bayesian adaptation</u> (also known as MAP adaptation (MAP = Maximum a Posteriori))
 - <u>Transform-based adaptation</u> (also known as MLLR (MLLR = Maximum Likelihood Linear Regression))

Bayesian (MAP) adaptation

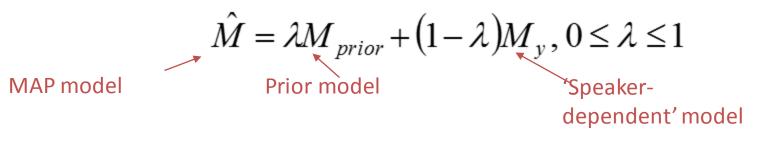
- MAP estimation maximises the <u>posterior</u> probability of M given the data y, i.e., P(M | y)
- From Bayes' Theorem: $P(M | y) = \frac{p(y | M)P(M)}{p(y)}$
- *P*(*M*) is the prior probability of *M*
- p(y | M) is the likelihood of the adaptation data on M

Bayesian (MAP) adaptation

- Uses well-trained, 'speaker-independent' HMM as a prior P(M) for the estimate of the parameters of the speaker dependent HMM
- E.G:



Bayesian (MAP) adaptation



- Intuitively, if the adaptation data set y is big, then the MAP adapted model will be biased towards y, so λ will be small
- Conversely, if there is very little adaptation data, the MAP model will be biased towards the prior, so λ will be big