ENCS3340 - Artificial Intelligence

Unsupervised Learning

STUDENTS-HUB.com

Unsupervised Learning

1 - Clustering

STUDENTS-HUB.com

Unsupervised Learning: Clustering Introduction

- Cluster: A collection/group of data objects/ points such that:
 - **similar** (related) to one another in same group
 - dissimilar (unrelated) to the objects in other groups
- Cluster Analysis
 - find *similarities* between data according to characteristics underlying the data and grouping similar data objects into clusters

Unsupervised Learning: Clustering

- Clustering Analysis: Unsupervised learning
 - No predefined classes for a training data set
 - Two general tasks:
 - identify the "natural" clusters number and
 - properly grouping objects into "sensible" clusters
- Typical applications
 - as a stand-alone tool to gain an insight into data distribution
 - as a preprocessing step of other algorithms in intelligent systems

• Illustrative Example 1: how many clusters?

STUDENTS-HUB.com

Uploaded By: Jibreel⁵Bornat

• Illustrative Example 1: how many clusters?

STUDENTS-HUB.com

Uploaded By: Jibreel⁶Bornat

• Illustrative Example 1: how many clusters?

STUDENTS-HUB.com

Introduction (Cont.)

• Illustrative Example 2: are they in the same cluster? Which Features are important?

Uploaded By: Jibreel Bornat

Introduction (Cont.)

Real Applications: <u>Google News</u>

STUDENTS-HUB.com

Introduction (Cont.)

- Real world tasks:
 - Bank/Internet Security: fraud/spam pattern discovery
 - Biology: taxonomy of living things such as kingdom, phylum, class, order, family, genus and species
 - City-planning: Identifying groups of houses according to their house type, value, and geographical location
 - Climate change: understanding earth climate, find patterns of atmospheric and ocean
 - Finance: stock clustering analysis to uncover correlation underlying shares
 - Image Compression/segmentation: coherent pixels grouped
 - Information retrieval/organisation: Google search, topic-based news
 - Land use: Identification of areas of similar land use in an earth observation database
 - Marketing: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs

 Social network mining: special interest group automatic discovery Uploaded By: Jibreel Bornat

- A clustering algorithm
 - Partitional clustering
 - Hierarchical clustering

• ..

- A distance (similarity, or dissimilarity) function
- Clustering quality
 - Inter-clusters distance ⇒ maximized
 - Intra-clusters distance \Rightarrow minimized
- Clustering Quality depends on algorithm, distance function, and application.

• Discrete vs. Continuous

- Discrete Feature
 - Has only a finite set of value e.g., zip codes, rank, or the set of words in a collection of documents
 - Sometimes, represented as integer variable
- Continuous Feature
 - Real numbers as feature values e.g. temperature, height, or weight, location: practically measured and represented using a finite number of digits
 - Typically represented as floating-point variables

Data Types and Representations

- Data representations
 - Data matrix (object-by-feature structure)

$$\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix}$$

n data points (objects) with *p* dimensions (features) **Two modes:** row and column represent different entities
E.g. Document/word matrix

Distance/dissimilarity matrix: object-by-object structure

$$\begin{bmatrix} 0 & & & \\ d(2,1) & 0 & & \\ d(3,1) & d(3,2) & 0 & \\ \vdots & \vdots & \vdots & \\ d(n,1) & d(n,2) & \dots & 0 \end{bmatrix}$$
STUDENTS-HUB.com

Data Types and Representations

• Examples

point	X	У
p1	0	2
p2	2	0
р3	3	1
p4	5	1

Data Matrix

	p1	p2	p3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
p3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Distance Matrix (i.e., Dissimilarity Matrix) for Euclidean Distance

STUDENTS-HUB.com

• <u>Minkowski Distance</u> (http://en.wikipedia.org/wiki/Minkowski_distance) For $\mathbf{x} = (x_1 x_2 \cdots x_n)$ and $\mathbf{y} = (y_1 y_2 \cdots y_n)$

$$d(\mathbf{x}, \mathbf{y}) = \left(|x_1 - y_1|^p + |x_2 - y_2|^p \dots + |x_n - y_n|^p \right)^{\frac{1}{p}}, \quad p > 0$$

• p = 1: Manhattan (city block) distance $d(\mathbf{x}, \mathbf{y}) = |x_1 - y_1| + |x_2 - y_2| \dots + |x_n - y_n|$

• *p* = 2: Euclidean distance

$$d(\mathbf{x},\mathbf{y}) = \sqrt{|x_1 - y_1|^2 + |x_2 - y_2|^2 + |x_n - y_n|^2}$$

• Do not confuse *p* with *n*, i.e., all these distances are defined based on all numbers of features (dimensions).

Uploaded By: Jibreel Bornat

• A generic measure: use appropriate *p* in different applications

Distance Measures

• Example: Manhatten and Euclidean distances

L1	p1	p2	p3	p4
p1	0	4	4	6
p2	4	0	2	4
p3	4	2	0	2
p4	6	4	2	0

Distance Matrix for Manhattan Distance

point	X	у
p1	0	2
p2	2	0
р3	3	1
p4	5	1

L2	p1	p2	p3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
p3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Data Matrix

Distance Matrix for Euclidean Distance

• Cosine Measure (Similarity vs. Distance) For $\mathbf{x} = (x_1 x_2 \cdots x_n)$ and $\mathbf{y} = (y_1 y_2 \cdots y_n)$

$$\cos(\mathbf{x}, \mathbf{y}) = \frac{x_1 y_1 + \dots + x_n y_n}{\sqrt{x_1^2 + \dots + x_n^2} \sqrt{y_1^2 + \dots + y_n^2}}$$
$$d(\mathbf{x}, \mathbf{y}) = 1 - \cos(\mathbf{x}, \mathbf{y})$$
$$0 \le d(\mathbf{x}, \mathbf{y}) \le 2$$

- x=(1,0,1), y=(0,1,1): cos(x,y)=1/2
- Property:
 - Nonmetric vector objects: keywords in documents, gene

features in micro-arrays, ... STUDENTS-HUB.com Uploaded By: Jibreel Bornat • Example: Cosine measure

$$\mathbf{x}_1 = (3, 2, 0, 5, 2, 0, 0), \mathbf{x}_2 = (1, 0, 0, 0, 1, 0, 2)$$

$$3 \times 1 + 2 \times 0 + 0 \times 0 + 5 \times 0 + 2 \times 1 + 0 \times 0 + 0 \times 2 = 5$$

$$\sqrt{3^2 + 2^2 + 0^2 + 5^2 + 2^2 + 0^2 + 0^2} = \sqrt{42} \approx 6.48$$

$$\sqrt{1^2 + 0^2 + 0^2 + 0^2 + 1^2 + 0^2 + 2^2} = \sqrt{6} \approx 2.45$$

$$\cos(\mathbf{x}_1, \mathbf{x}_2) = \frac{5}{6.48 \times 2.45} \approx 0.32$$

$$d(\mathbf{x}_1, \mathbf{x}_2) = 1 - \cos(\mathbf{x}_1, \mathbf{x}_2) = 1 - 0.32 = 0.68$$

STUDENTS-HUB.com

Unsupervised Learning

2 - K-means Clustering

STUDENTS-HUB.com

- Partitioning Clustering Approach
 - a typical clustering analysis approach via iteratively partitioning training data set to learn a partition of the given data space
 - learning a partition on a data set to produce several non-empty clusters (usually, the number of clusters given in advance)
 - in principle, optimal partition achieved via minimising the sum of squared distance to its "representative object", or centroid, in each cluster

$$E = \sum_{k=1}^{K} \sum_{\mathbf{x} \in C_k} d^2(\mathbf{x}, \mathbf{m}_k)$$

e.g., Euclidean distance
$$d^2(\mathbf{x}, \mathbf{m}_k) = \sum_{n=1}^{N} (x_n - m_{kn})^2$$

Uploaded By: Jibreel Bornat

- The *K*-means algorithm: a heuristic method
 - K-means algorithm (MacQueen'67): each cluster is represented by the center of the cluster and the algorithm converges to stable centroids of clusters.
 - K-means algorithm is the simplest partitioning method for clustering analysis: widely used in data mining applications.

• Given the cluster number *K*, the *K*-means algorithm works as follows:

0) Initialisation: set initial **K** seed points –centroids- (randomly)

- 1) Assign each object to the cluster of the nearest **seed** point using the specific **distance metric**
- 2) Compute the new seed points as the centroids of the clusters of the current partition (the centroid is the center, or *mean point*, of the cluster after additions)
- 3) Stop when no more new assignment (i.e., membership in each cluster no longer changes) else Go back to Step

An example

(A). Random selection of k centers

Iteration 1: (B). Cluster assignment

(C). Re-compute centroids

STUDENTS-HUB.com

An example (cont ...)

Iteration 2: (D). Cluster assignment

Iteration 3: (F). Cluster assignment

(E). Re-compute centroids

(G). Re-compute centroids

Uploaded By: Jibreel Bornat

- 1.no (or minimum) re-assignments of data points to different clusters,
- 2.no (or minimum) change of centroids, or
- 3.minimum decrease in the **sum of squared error** (SSE) over all clusters,

$$SSE = \sum_{j=1}^{k} \sum_{\mathbf{x} \in C_j} dist(\mathbf{x}, \mathbf{m}_j)^2 \quad (1)$$

a. C_i is the *jth* cluster, \mathbf{m}_j is the centroid of cluster C_j (the mean vector of all the data points in C_j), and $dist(\mathbf{x}, \mathbf{m}_j)$ is the distance between data point \mathbf{x} and centroid \mathbf{m}_j .

Problem

 Suppose we have 4 types of medicines and each has two attributes (pH and weight index). Our goal is to group these objects into K=2 group of medicine.

• Step 1: Use initial seed points for partitioning

$$c_{1} = A, c_{2} = B$$

$$D^{0} = \begin{bmatrix} 0 & 1 & 3.61 & 5 \\ 1 & 0 & 2.83 & 4.24 \end{bmatrix}, c_{1} = (1,1) \text{ group } -1$$

$$c_{2} = (2,1) \text{ group } -2$$

$$A = B = C = D$$

$$\begin{bmatrix} 1 & 2 & 4 & 5 \\ 1 & 1 & 3 & 4 \end{bmatrix}, X \text{ Euclidean distance}$$

$$d(D, c_{1}) = \sqrt{(5-1)^{2} + (4-1)^{2}} = 5$$

$$d(D, c_{2}) = \sqrt{(5-2)^{2} + (4-1)^{2}} = 4.24$$

Assign each object to the cluster with the nearest seed point

• Step 2: Compute new centroids of the current partition

Knowing the members of each cluster, now we compute the new centroid of each group based on these new memberships.

$$c_1 = (1, 1)$$

Uploaded By: Jibreel Bornat

Step 2: Renew membership based on new centroids

Compute the distance of all objects to the new centroids

$$\mathbf{D}^{1} = \begin{bmatrix} 0 & 1 & 3.61 & 5 \\ 3.14 & 2.36 & 0.47 & 1.89 \end{bmatrix} \begin{array}{c} \mathbf{c}_{1} = (1,1) & group - 1 \\ \mathbf{c}_{2} = (\frac{11}{3}, \frac{8}{3}) & group - 2 \\ A & B & C & D \\ \begin{bmatrix} 1 & 2 & 4 & 5 \\ 1 & 1 & 3 & 4 \end{bmatrix} \begin{array}{c} X \\ Y \end{array}$$

Assign the membership to objects

• Step 3: Repeat the first two steps until its

Knowing the members of each cluster, now we compute the new centroid of each group based on these new memberships.

$$c_{1} = \left(\frac{1+2}{2}, \frac{1+1}{2}\right) = \left(1\frac{1}{2}, 1\right)$$
$$c_{2} = \left(\frac{4+5}{2}, \frac{3+4}{2}\right) = \left(4\frac{1}{2}, 3\frac{1}{2}\right)$$

Uploaded By: Jibreel Bornat

• Step 3: Repeat the first two steps until its

Compute the distance of all objects to the new centroids

\mathbf{D}^2 –	0.5	0.5	3.20	4.61	$c_1 = (1\frac{1}{2}, 1)$ group -1
= ע	4.30	3.54	0.71	0.71	$\mathbf{c}_2 = (4\frac{1}{2}, 3\frac{1}{2}) group - 2$
	Α	В	C	D	
	[1	2	4	5]	X
	1	1	3	4	Y

Stop due to **no new assignment** Membership in each cluster no longer change Use K-means with the Manhattan distance metric for clustering analysis by setting K=2 and initial seeds C1 = A and C2 = C.

Answer three questions as follows:

- 1. How many steps are required for convergence?
- 2. What are memberships of two clusters after convergence?
- 3. What are centroids of two clusters after convergence?

Medicine	Weight	pH- Index	4.5 4 I 3.5
А	1	1	d: 3 ξ 25 ε
В	2	1	en 2 15 A B
С	4	3	5. 0.
D	5	4	attribute 1 (X): weight index

Individual	Variable 1	Variable 2
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

<u>Step 1:</u>

<u>Initialization</u>: Randomly we choose following two centroids m1[#1]=(1.0,1.0) and m2[#4]=(5.0,7.0).

Individual	Variable 1	Variable 2
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

	Individual	Mean Vector	—
Group 1	1	(1.0, 1.0)	_
Group 2	4	(5.0, 7.0)	Liplaaded By: libreel Borna

Another example	Individual	Centrold 1	Centrold 2
·	1	0	7.21
Step 2: From the distances:	2 (1.5, 2.0)	- 1.12	6.10
 we obtain two clusters: 	3	3.61	3.61
{1,2,3} and {4,5,6,7}.	4	7.21	0
 Their new centroids are: 	5	4.72	2.5
$m_1 = (\frac{1}{3}(1.0 + 1.5 + 3.0), \frac{1}{3}(1.0 + 2.0 + 4.0)) = (1.83, 2.33)$	6	5.31	2.06
$m = (\frac{1}{(50+35+45+35)}, \frac{1}{(70+50+50+45)})$	7	4.30	2.92
= (4.12,5.38)	$(m_1, 2) = \sqrt{ 1.0 }$	-1.5 2 +1.0	$-2.0 ^2 = 1.12$

$$d(m_2, 2) = \sqrt{|5.0 - 1.5|^2 + |7.0 - 2.0|^2} = 6.10$$

Uploaded By: Jibreel Bornat

<u>Step 3:</u>

- Now using these **new** centroids we compute the Euclidean distance of each object, as in next table.
- m₁=(1.83,2.33), m₂=(4.12,5.33)
- The new clusters are: {1,2} and {3,4,5,6,7}
- Next centroids are: m1=(1.25,1.5) and m2 = (3.9,5.1) (WHY?)

Individual	Centroid 1	Centroid 2
1	1.57	5.38
2	- 0.47	4.28
3	2.04	1.78
4	5.64	1.84
5	3.15	0.73
6	3.78	0.54
7	2.74	1.08

• <u>Step 4</u>:

Now using the new centroids we compute the Euclidean distance of each object, as in next table.

The clusters obtained are:

{1,2} and {3,4,5,6,7}

- There is no change in the cluster structure.
- Thus, the algorithm stops here and final result consist of 2 clusters

{1,2} and {3,4,5,6,7}.

Individual	Centroid 1	Centroid 2
1	0.56	5.02
2	0.56	3.92
3	3.05	1.42
4	6.66	2.20
5	4.16	0.41
6	4.78	0.61
7	3.75	0.72

Another example

• PLOT

STUDENTS-HUB.com

• (with K=3)

Individual	m ₁ = 1	m ₂ = 2	m ₃ = 3	cluster		
1	0	1.11	3.61	1		
2	1.12	0	2.5	2		
3	3.61	2.5	0	3		
4	7.21	6.10	3.61	3		
5	4.72	3.61	1.12	3	}	C3
6	5.31	4.24	1.80	3		
7	4.30	3.20	0.71	3		

Individual	m ₁ (1.0, 1.0)	m ₂ (1.5, 2.0)	m ₃ (3.9,5.1)	cluster
1	0	1.11	5.02	1
2	1.12	0	3.92	2
3	3.61	2.5	1.42	3
4	7.21	6.10	2.20	3
5	4.72	3.61	0.41	3
6	5.31	4.24	0.61	3
7	4.30	3.20	0.72	3

clustering with initial centroids (1, 2, 3)

STUDENTS-HUESTED 1

Another example

• PLOT

STUDENTS-HUB.com

- Strengths:
 - Simple: easy to understand and to implement
 - Efficient: Time complexity: O(tkn), where *n* is the number of data points,
 - k is the number of clusters, and
 - *t* is the number of *iterations* (conversion can be slow!).
 - Since both *k* and *t* are usually small. *k*-means is considered a linear algorithm.
- K-means: most popular clustering algorithm.
- Note that: it terminates at a local optimum if SSE (Sum of Squared Errors) is used. The global optimum is hard to find due to complexity.

STUDENTS-HUB.com

- The algorithm is only applicable if the mean is defined.
 - For categorical data, k-mode the centroid is represented by most frequent values.
- The user needs to specify *k*.
- The algorithm is sensitive to **outliers**
 - Outliers: data points very far away from other data points.
 - Outliers could be errors in data recording or special data points with very different values.

Weaknesses of k-means: Problems with outliers

(A): Undesirable clusters

(B): Ideal clusters

STUDENTS-HUB.com

- Remove some data points in the clustering process that are much further away from the centroids than other data points.
 - To be safe, we may want to monitor these possible outliers over a few iterations and then decide to remove them.
- Or perform random sampling. Since in sampling we only choose a small subset of the data points, the chance of selecting an outlier is very small (*larger data sets*).
 - Assign the rest of the data points to the clusters by distance or similarity comparison, or classification

Weaknesses of k-means (cont.)

• The algorithm is sensitive to initial seeds.

(A). Random selection of seeds (centroids)

Weaknesses of k-means (cont.)

• If we use different seeds: good results

There are some methods to help choose good seeds

(A). Random selection of k seeds (centroids)

(B). Iteration 1

STUDENTS-HUB.com

(C). Iteration 2

Weaknesses of k-means (cont.)

 The k-means algorithm is not suitable for discovering clusters that are not hyper-ellipsoids (or hyper-spheres).

(A): Two natural clusters

(B): k-means clusters

Uploaded By: Jibreel Bornat

Cluster Evaluation: hard problem

- The quality of clustering is very hard to evaluate because
 - We do not know the correct clusters
- Some methods, however, are used:
 - User inspection
 - Study centroids, and spreads
 - Rules from a decision tree.
 - For text documents, one can read some documents in clusters.

Cluster evaluation: ground truth

- We use some labeled data (for classification)
- Assumption: Each class is a cluster.
- After clustering, a confusion matrix is constructed. From the matrix, we compute various measurements, entropy, purity, precision, recall and F-score.
 - Let the classes in the data D be C = (c₁, c₂, ..., c_k). The clustering method produces k clusters, which divides D into k disjoint subsets, D₁, D₂, ..., D_k.

Internal criterion: A good clustering will produce high quality clusters in which:

- the intra-class (intra-cluster) similarity is high

Uploaded By: Jibreel Bornat

- the inter-class similarity is low

How would you evaluate clustering?