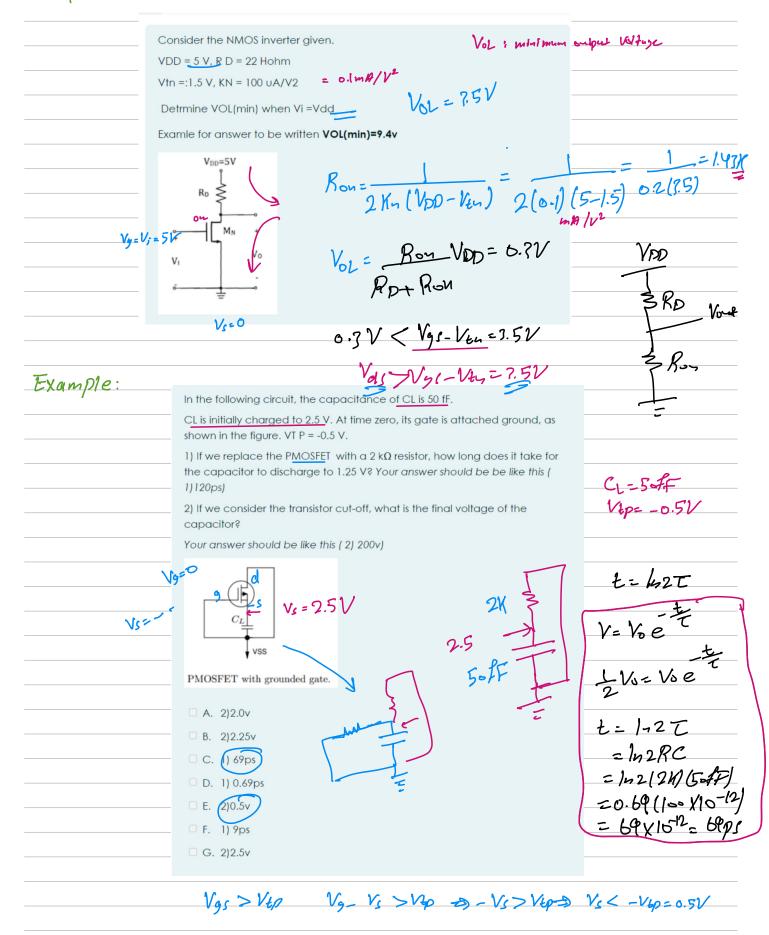
# IC NOTES

References:

- 1. Digital Integrated Circuits
- 2. CMOS VLSI Design

Prepared By: Ghazi Haj Qassem

Up

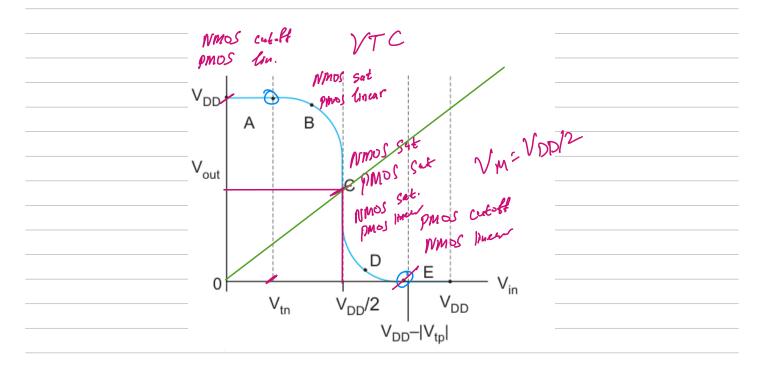

r <mark>Jibreel Bo</mark>rn

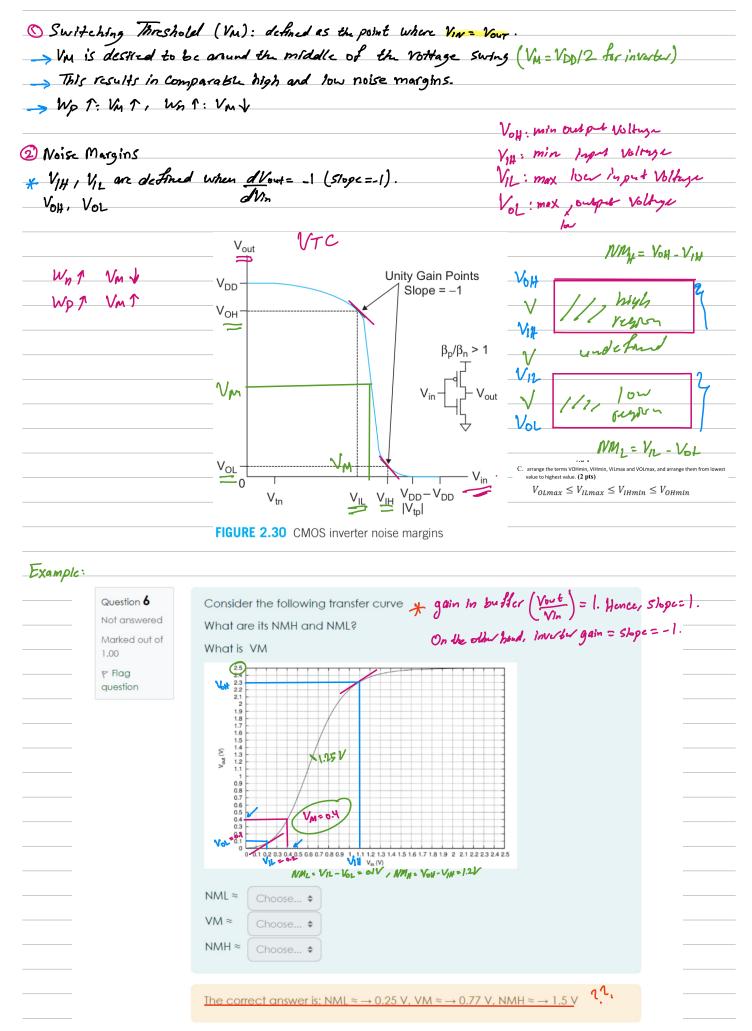


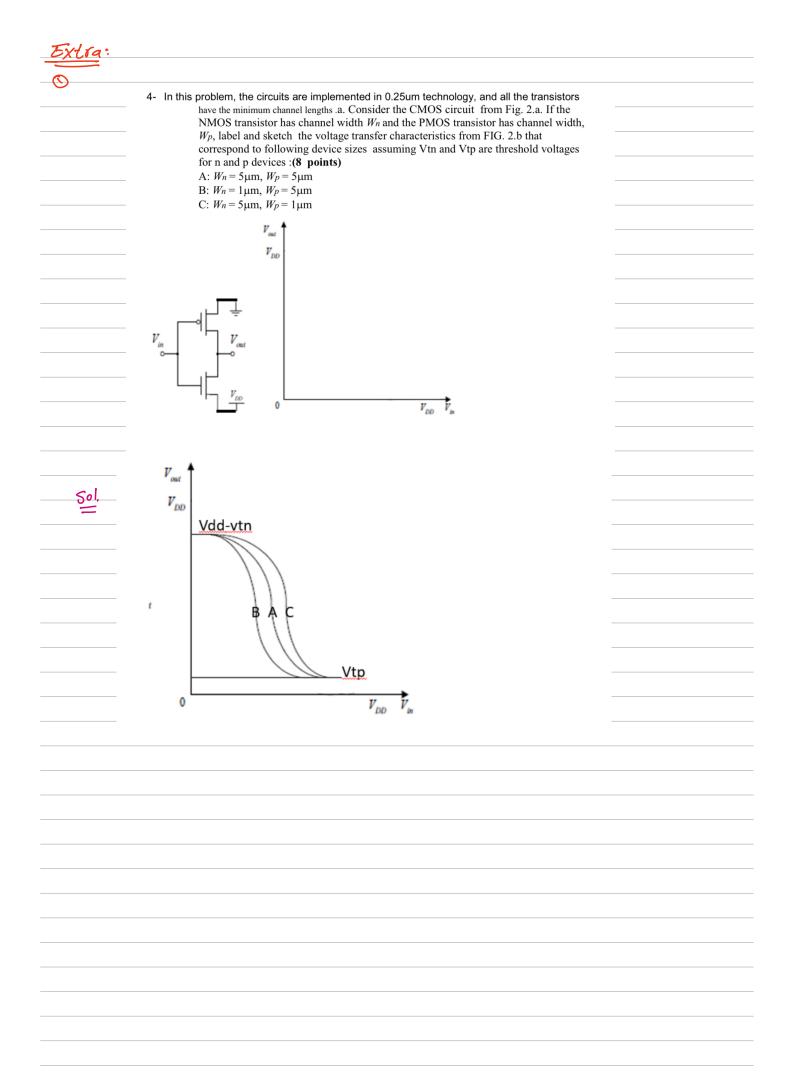
MOS Transistor Theory PMOS NMOS but Vin high on Vin: low: on Vin low: off Vin: high: off

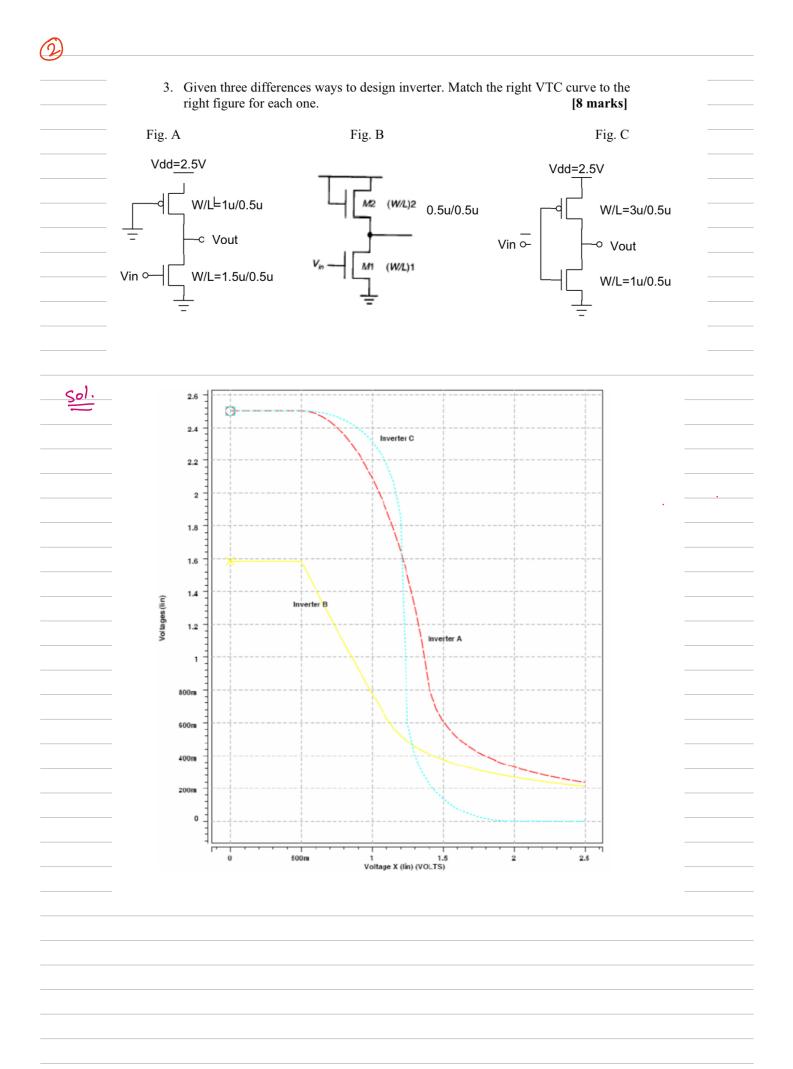
, Vas L Vin 7 off (culoff) Ips= ΄ Ο B (Vgs-Vin-Vds/2) Vds, Vgs >Vin, Vds 2 Vgs-Vin 4 strung B (Vgs-Vtn)<sup>2</sup>, Vgs>Vtn, Vals>Vgs-Vtn - Scher B= Mn Cox W Senter NMOS poly Siondrain C2 Ett Cys, Cgg Cgb= E wh 0.3 per proces 2 n bull Cob= El (from) Cep (/ 1 mm2) Cdb (prm) C= Cdb W C=CgbWL WIL CSB (/4m) Cz CSB W

Example:

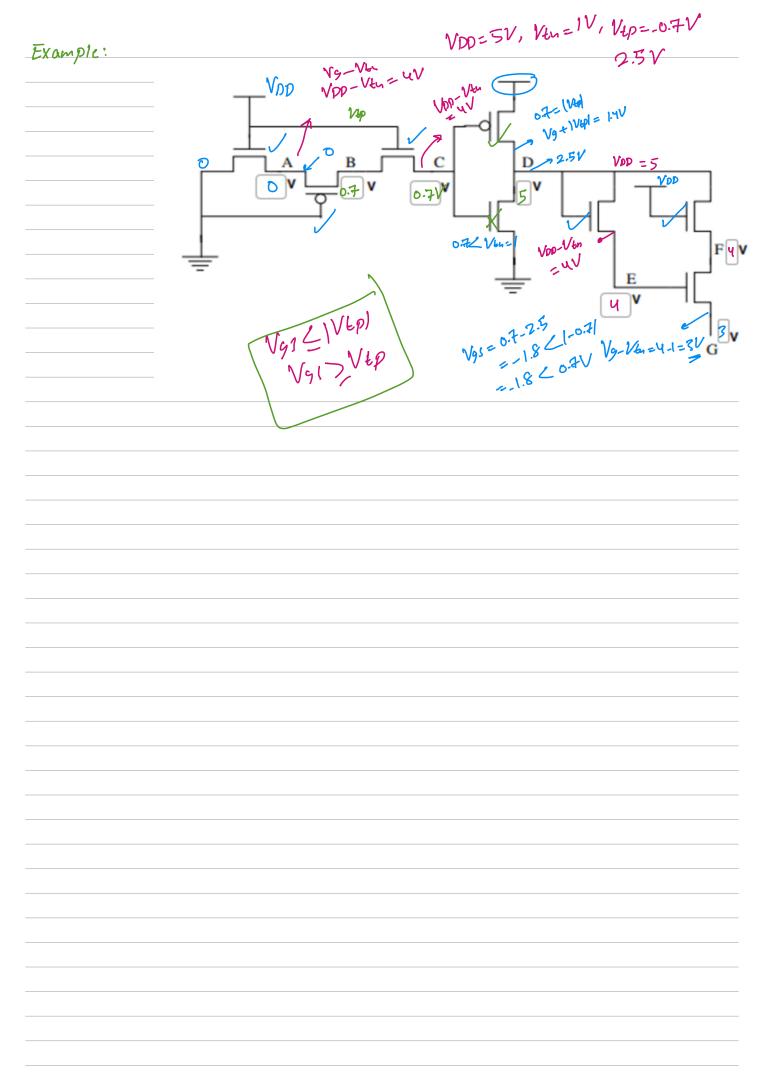




## CMOS Inverter Operation


|      | Cutoff                         | Linear                                                                                                            | Saturated                           |         | -      |
|------|--------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------|--------|
| nMOS | $V_{gsn} < V_{tn}$             | $V_{gsn} \ge V_{tn}$                                                                                              | $V_{gsn} > V_{tn}$                  | <b></b> |        |
|      | $V_{\rm in} < V_{tn}$          | $V_{\rm in} > V_{tn}$                                                                                             | $V_{\rm in} > V_{tn}$               |         | 1.0    |
|      |                                | $V_{dsn} < V_{gsn} - V_{tn}$                                                                                      | $V_{dsn} > V_{gsn} - V_{tn}$        | Vin L   | Vout   |
|      |                                | $V_{\rm out} < V_{\rm in} - V_{tn}$                                                                               | $V_{\rm out} > V_{\rm in} - V_{tn}$ |         |        |
| pMOS | $V_{gsp} > V_{tp}$             | Vgsp < Vtp Vg-Vs 2 Vip                                                                                            | $V_{gsp} < V_{tp}$                  | ┣_┥}    |        |
|      | $V_{\rm in} > V_{tp} + V_{DD}$ | $\frac{V_{gsp} \leq V_{tp}  V_{gsp} < V_{tp}}{V_{in} < V_{tp} + V_{DD}} \frac{V_{gsp} < V_{tp}}{V_{ln} < V_{tp}}$ | $V_{tp} < V_{tp} + V_{DD}$          | 'L      |        |
|      | Vg-Vs >Vbp                     | $V_{dsp} > V_{gsp} - V_{tp}$                                                                                      | $V_{dsp} < V_{gsp} - V_{tp}$        |         |        |
|      | $V_g > V_{4p} + V_s$           | $V_{\rm out} > V_{\rm in} - V_{tp}$                                                                               | $V_{\rm out} < V_{\rm in} - V_{tp}$ | -       |        |
|      | VIA > VIP+VDD                  |                                                                                                                   |                                     | U2-2    | book   |
| VTC  | of CMOS !                      | nverter                                                                                                           |                                     | VDP "1" | GMD "  |
|      |                                |                                                                                                                   | _                                   | GND "ou | Vap "" |

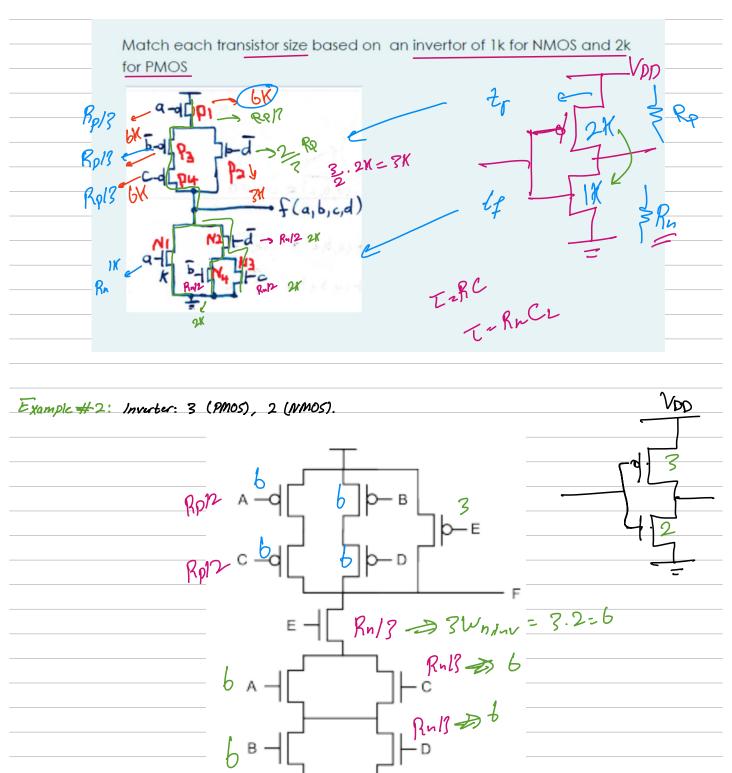

 TABLE 2.3
 Summary of CMOS inverter operation

| Region | Condition                                                | p-device  | n-device  | Output                      |
|--------|----------------------------------------------------------|-----------|-----------|-----------------------------|
| А      | $0 \le V_{\rm in} < V_{tn}$                              | linear    | cutoff    | $V_{\rm out} = V_{DD}$      |
| В      | $V_{tn} \le V_{\rm in} < V_{DD}/2$                       | linear    | saturated | $V_{\rm out} > V_{DD}/2$    |
| C      | $V_{\rm in} = V_{DD}/2$                                  | saturated | saturated | $V_{\rm out}$ drops sharply |
| D      | $V_{DD}/2 < V_{\rm in} \le V_{DD} - \left V_{tp}\right $ | saturated | linear    | $V_{\rm out} < V_{DD}/2$    |
| Е      | $V_{\rm in} > V_{DD} -  V_{tp} $                         | cutoff    | linear    | $V_{\rm out} = 0$           |







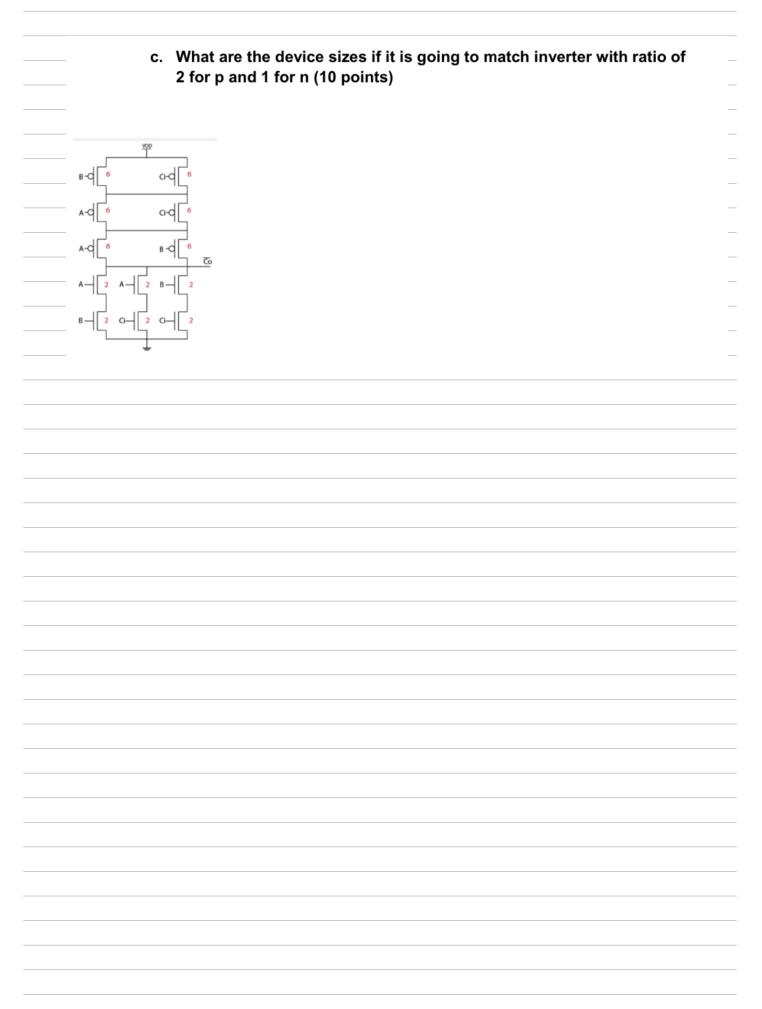




#### Pass Transistor DC Characteristics (Strong & Wealt Signals) \* PMOS passes strong "1" (VDD), and weak "0"= 1Vepl. \* NMDS passes strong "O" (GND), and weak "1" = VOD - Vin IVER = - Vbp VOD 6) a VDD VOD-Vin Recall: ¥ NMOS ON: Vgs >Ven⇒ Vg-Vs>Ven 120 100 (ے d) Vs < Vg-Vin Voo ¥ PMOS ON: Vpp-Vb-Vgs < Vip => Vg-Vs < Vip Vpp-Vtr Vs > Vg-Vep or Vs>Vg+1Vap VOD-VE Vm -21 VOD \* Note that the drain Voltage is irrelevant to the output voltage $N_{s} <$ 2.20 Give an expression for the output voltage for the pass transistor networks shown in Figure 2.35. Neglect the body effect. V5 > Vg+ (V2p) = 21Vtp1 (a) (b) (b) FIGURE 2.35 Pass transistor networks VDD=1.2V, VE=0.4V 2.21 Suppose $V_{DD} = 1.2$ V and $V_t = 0.4$ V. Determine $V_{out}$ in Figure 2.36 for the following. Neglect the body effect. Vin \_\_\_\_ Vout a) $V_{\rm in} = 0 \, \mathrm{V} \implies \mathbf{V}_{\rm o} = \mathbf{O}$ b) $V_{\rm in} = 0.6 \,\mathrm{V} \implies \mathrm{V_{0}} = 0.6 \,\mathrm{V}$ **FIGURE 2.36** Single pass transistor c) $V_{\rm in} = 0.9 \, \text{V} \implies \text{V}_{\rm S} = 0.8 \, \text{V}_{\rm S}$ Vg-Vz=0.8V d) $V_{\rm in} = 1.2 \text{ V}.$ So $V_{07} \otimes V$





### Example #1:




STUDENTS-HUB.com

Uploaded By: Jibreel Bornat

9/

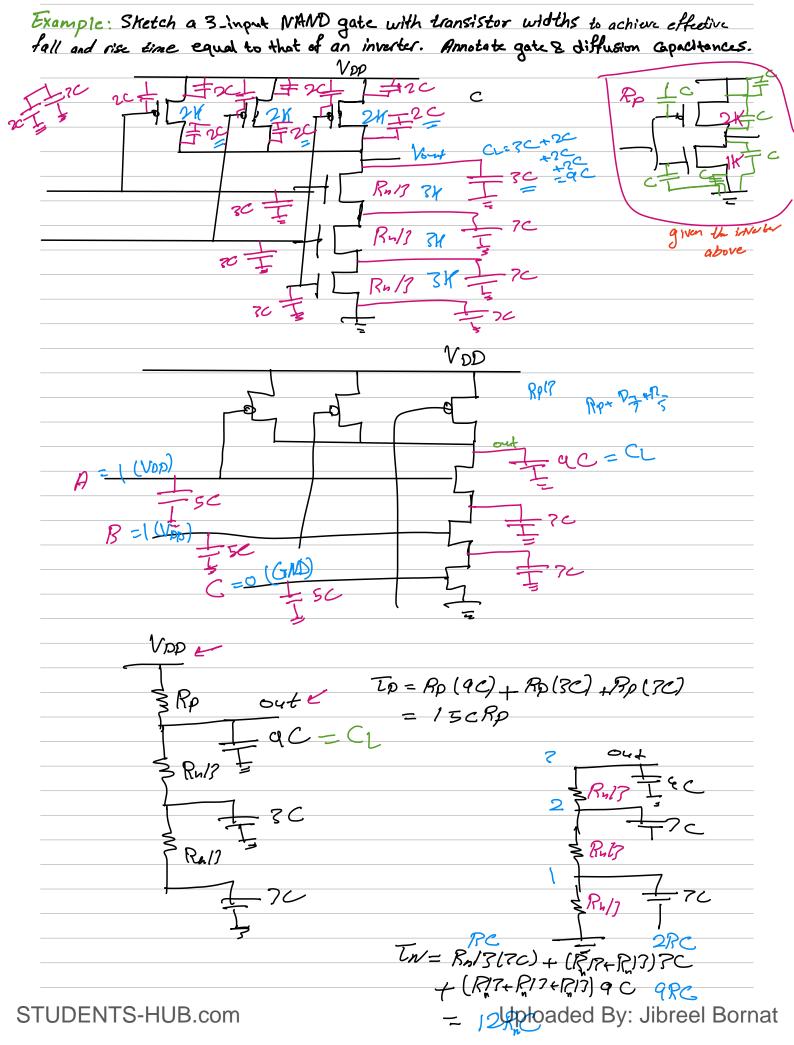




Elmore Dela.  $R_{iK} = \sum R_j^2$ ,  $R_j^2 \in [path(s \rightarrow i) \cap path(s \rightarrow K]]$  (path resistance) N TDi = ZiCKRiH i N Zoputh resistance XCi 1 Example: compute the Elmore delay for node i.  $\frac{p \cdot dc \, I}{Lp = R_1 C_1 + R_1 C_2 + (R_1 + R_2) C_3 + (R_1 + R_2) C_4 + (R_1 + R_2 + R_1) C_1}$ Example: Compute the Elmore delay for node N.  $- \bigvee_{C_N}^{R_N} \bigvee_{V_N}^{N} V_N$  $\begin{array}{c} R_{i-1} & i-1 & R_i & i \\ & & & \\ & & & \\ C_{i-1} \end{array} \end{array} \begin{array}{c} C_i \end{array}$ Figure 4.13 RC chain.  $\tau_{DN} = \sum_{i=1}^{N} C_i \sum_{i=1}^{i} R_i = \sum_{i=1}^{N} C_i R_{ii}$ ID= R, C, + (R,+R) C2+-- + (R+-- Rn) CN

Example: Find the dolary of a wire of length L, resistance r, capacitance C, partitioned into N identical segments.

in Mi I T


W. W. (r+r)cq... Tp= L L  $+ \frac{L}{N} \frac{L}{N} (N_r) c$  $+2 + - N) \sigma C = \left(\frac{1}{N}\right)^{2} \frac{N(N+1)}{2} \sigma C = \frac{1^{2}}{N} \frac{(N+1) \sigma C}{2}$ 

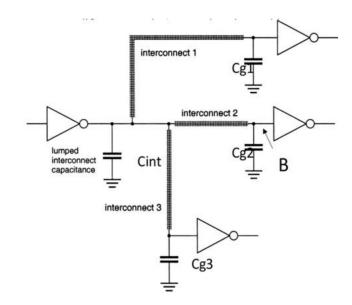
 $\frac{\tau_{D^2} r_{c} L^2}{2} \cdot \frac{N+1}{N+1} = \frac{r_{c} L^2}{2}$  $T_p = rcl^2$ 

of if the length of the win is doubled, it's delay will be great apend-

|             | Question 10<br>Not answered<br>Marked out of<br>1.00<br>Tr Flag<br>question | Determine the Elmore delay from Node a to Node b in the following circuit<br>$ \begin{array}{c}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |
|-------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|             |                                                                             | <ul> <li>A. delay = (R1 +R2+R3+R4)(C4 +C5)</li> <li>B. delay = R1(C1 +C2 +C3) +R2(C2 +C3 +C4) +R4(C4 +C5)</li> <li>C. delay = R1(C1 +C2 +C3 +C4) +R2(C2 +C3 +C4) +R4(C4 +C5)</li> <li>D. delay = R1(C1 +C2 +C3 +C4 +C5) +R2(C2 +C3 +C4 +C5) +R4(C4 +C5)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
|             |                                                                             | +C5) +R4(C4+C5)<br>C21C3 in parallel at node 2 3 add thum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |
| dlay        | - /// -/ + (                                                                | (1,1,1) = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
| dday :<br>= | $B_{1}(C_{1}+C_{2})$                                                        | hde 2 node 3 node 4<br>(R, +R2)C2+(R, +R2)C3+(R, +R2+R4)C4+(R,<br>+C3+C4+C5)+R2(C2+C3+C4+C5)+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | By (Cy + C5) |
| =           | $\mathcal{B}_{i}(C_{i}+C_{2})$                                              | $+C_{3+}C_{4+}C_{5}) + R_2(C_{2+}C_{3+}C_{4+}C_{5})_{+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ry (Cy + C5) |
|             | Question 11<br>Not answered<br>Marked out of<br>1.00<br>P Flag<br>question  | Derive an expression for the time constant when driving node <b>d</b> . Vs cha<br>from 0 V to 2.5 V at time zero. ( delay from s to d)<br>$\int_{C_{2}}^{C_{1}} \int_{C_{1}}^{C_{1}} \int_{C_{1}}^$ |              |
|             | Question 11<br>Not answered<br>Marked out of<br>1.00<br>P Flag              | Derive an expression for the time constant when driving node <b>d</b> . Vs cha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
|             | Question 11<br>Not answered<br>Marked out of<br>1.00<br>P Flag              | Derive an expression for the time constant when driving node <b>d</b> . Vs char<br>from 0 V to 2.5 V at time zero. ( delay from s to d)<br>$\boxed{\begin{array}{c} \hline \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |

Propagation Delay




Example: Estimate tody for the previous 3-input NAND gate loaded with hidentical NAND gates. Cg=5C 90

VDD 🛓 Rp 19+5h) Ruti 3 C Rall IN= R.13(70) + (RIR+R17) 70 -70 + (R17+R17+R17) 9C 9RC-= 12RC tr= Rp (9+56)C + Rp (3C) + Rp (3C) = (15+56)RS  $t_{f} = \frac{R_{n}}{3} \left( \frac{3C}{2} \right) + \left( \frac{R_{n}}{7} + \frac{R_{n}}{7} \right) \left( \frac{3C}{7} \right) + \left( \frac{R_{n}}{7} + \frac{R_{n}}{7} + \frac{R_{n}}{7} \right) \left( \frac{9+5N}{2} \right) C$ = RnC+ 2RnC+ (9+52)RnC = (12+52)RnC

Similar Example:

B) Compute the worst-case rising and falling RC time constants at point B of the circuit below using the Elmore delay method. Assume all transistors are unit sized and wire capacitance is lumped. (7 pts)

Assume Rchn = 2000 ohms. Rchp = 8604 ohms, Cg(n+p) = 20 ff, Cd(n+p) = 20 ff, and Cint = 10 ff. Rint for interconnect1 is 10 ohms, interconnect2 is 5 ohms, and interconnect3 is 7 ohms. Hint: Note that interconnect capacitance is lumped at the beginning, so we don't need to consider it separately for the 3 wires

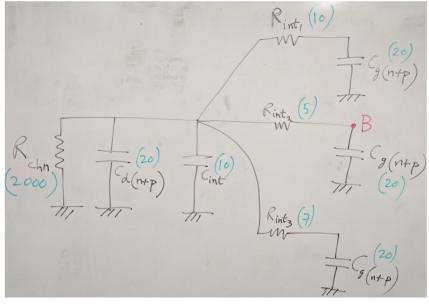


Recall that channel resistance is inversely proportional to beta. So:

$$\frac{R_{chp}}{R_{chn}} = \frac{\beta_n}{\beta_p}$$

Note that interconnect **capacitance is lumped at the beginning**, so we don't need to consider it separately for the 3 wires.

Following is the circuit for falling delay at B:


Falling Elmore delay at B =  $2000 \times 20 + 10 + 20 + 20 + 20 + 5 \times 20 = 0$ . **1801** *ns* 

For rising delay at B, the circuit is the same except that Rchn is replaced with Rchp and the leftmost Gnd

symbol is replaced with Vdd.

 $_{\rm Page}6$ 

Rising Elmore delay at B =  $8604 \times 20 + 10 + 20 + 20 + 20 + 5 \times 20 = 0$ . 77446 *ns* 



CMOS Manufacturing Process

Simpufred Process Sequence: Define active regions Etch & Jul trenche Implant well region Protoversist Coating DOSNY 8 Dattern cintacts Implant source substrate () Create contact & vig windows, Deposit and pottern metal layer 0 0-5-2 Rhotolithography \* Technique to selectively mask out a certain and on the chip to apply 2 cortain processing step: exidation etching metal & polysilicon deposition ion implantation 5:02 photo lithe graphic proces pulation O oxidation Stepper Photoresist Types: W spin, winse, dry O Negative Photoresist: \* ion implantion of () Vor originally soluble, but drain/source/well insoluble after exposure process steps > photoresist removal (ashing \* metal deposition 1 Detan unt to UV light and etching 2 Positive Photorsist Example: Process steps for patterning SiOn (Using photolithagraphy) originally insoluble, but chemical or plasma etch Solubic after exposure 1 1 4 to UV light a Hardeneel vestsz StO2 Si-Subtrate St- Substight \* Negative photoresist is 4 + 5 resist durlopment & assumed in the example. Photoresist acid etching +71 plasma /chemical etch SI-sastrate e) 502 11+21: Oxidation 2 St-Subtrate sist coating climical/olasm 1192t Doles SIOD result 1.20 St-Sybtrate Si-Subgrate 3: Stepper exposure 81: photoresist remain

### Q) List the steps required for creating a PMOS transistor. Draw a cross-section of the PMOS transistor, labelling each layer / feature in the order fabricated.

|                                                                                 | quired for creating a PMOS transistor, and draw a cross-<br>MOS transistor, labeling each layer/feature in the order |   |
|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---|
| fabricated. (5 pt                                                               | ts)                                                                                                                  |   |
|                                                                                 | p-type substrate and positive photoresist is used.                                                                   |   |
| 1. Expose the substrate to oxyge dioxide                                        | en (and hydrogen) at very high temperatures to form silicon                                                          |   |
| (SiO <sub>2</sub> ) layer. This is thick oxide.                                 |                                                                                                                      |   |
| 2. Deposit photoresist.                                                         |                                                                                                                      | _ |
| <ol> <li>Cover the photoresist with a r</li> <li>Expose to UV light.</li> </ol> | mask which exposes those areas where n-well is to be created.                                                        |   |
| 5. Remove the exposed photore                                                   |                                                                                                                      | _ |
| 7. Strip off remaining photoresis                                               |                                                                                                                      |   |
| •                                                                               | m n-wells in the areas without SiO <sub>2</sub> .                                                                    | _ |
| 9. Cover the whole surface with                                                 | e thin oxide and polysilicon.<br>Ie and poly from everywhere except for transistor gates.                            | _ |
|                                                                                 | form sources and drains of PMOS transistors.                                                                         | _ |
| 12. Use $n+$ ion implantation to for                                            |                                                                                                                      | _ |
| 13. Cover the whole surface with                                                |                                                                                                                      |   |
|                                                                                 | hick oxide from the source, drain and body (n-tap). This forms                                                       |   |
| contact cuts.                                                                   |                                                                                                                      |   |
|                                                                                 |                                                                                                                      | _ |
|                                                                                 |                                                                                                                      | _ |
|                                                                                 |                                                                                                                      |   |
|                                                                                 | 6) Contact 3) Thin oxide                                                                                             | _ |
|                                                                                 |                                                                                                                      |   |
| 5) Thick oxide                                                                  |                                                                                                                      |   |
| 3) THICK OXIGE                                                                  |                                                                                                                      |   |
|                                                                                 | 4) p+ 4) p+ 4) n+                                                                                                    |   |
|                                                                                 |                                                                                                                      |   |
|                                                                                 |                                                                                                                      |   |
|                                                                                 | 2) n-well                                                                                                            |   |
|                                                                                 |                                                                                                                      |   |
|                                                                                 |                                                                                                                      |   |
|                                                                                 | 1) p-substrate                                                                                                       | _ |

|               |          | ch metal • Expose photor                                                         | esist using mo | teps in chronologi<br>isk. • R <u>emove all p</u> | nhotoresist .  |     |  |
|---------------|----------|----------------------------------------------------------------------------------|----------------|---------------------------------------------------|----------------|-----|--|
| Mark 0.20 out |          | oosit photoresist. • Deposit                                                     | metal everyw   | /here.                                            | photoresist. • |     |  |
| <br>011.00    | <u> </u> |                                                                                  |                | $\overline{\mathbb{O}}$                           |                | -   |  |
|               | 5)       | Deposit photoresist.                                                             | \$             |                                                   |                | _   |  |
|               | 3)       | Remove all photoresist.                                                          | \$             |                                                   |                | _   |  |
|               | 1)       | Expose photoresist using m                                                       | ask. 🗢         |                                                   |                | _   |  |
|               | 4)       | Etch metal                                                                       | \$             |                                                   |                |     |  |
|               | 2)       | Deposit metal everywhere                                                         | \$             |                                                   |                |     |  |
|               | -,       | Deposit merdi everywnere                                                         | ¥              |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
|               |          | correct answer is: 5) $\rightarrow$ Rei<br>g mask., 1) $\rightarrow$ Deposit met |                |                                                   |                | t — |  |
|               |          | toresist.                                                                        |                |                                                   | , 27 · Doposii |     |  |
|               |          |                                                                                  |                |                                                   |                | _   |  |
| <br>          |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
| <br>          |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |
|               |          |                                                                                  |                |                                                   |                |     |  |