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Creating Logic Gates in CMOS 

• All standard Boolean logic functions (INV, NAND, OR, etc.) can be 

produced in CMOS push-pull circuits.

• Rules for constructing logic gates using CMOS 
• use a complementary nMOS/pMOS pair for each input

• connect the output to VDD through pMOS txs 

• connect the output to ground through nMOS txs

• ensure the output is always either high or low 

• CMOS produces “inverting” logic
• CMOS gates are based on the inverter 

• outputs are always inverted logic functions e.g., NOR, NAND rather than OR, AND
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CMOS Inverter 
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nMOS Logic Gates 
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Abstraction Level

Schematics

Physical Design (Layout)
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DIGITAL GATES 

Fundamental Parameters

• Functionality

• Reliability, Robustness

• Area

• Performance

• Speed (delay)

• Power Consumption

• Energy
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DC Operation: 

Voltage Transfer Characteristic
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The CMOS Inverter: 

A First Glance
VDD

Vin Vout

CL
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Switch Model of CMOS Transistor

Ron
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|VGS| > |VT|
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Uploaded By: anonymousSTUDENTS-HUB.com



CMOS Inverter: Steady State Response

VDD VDD

Vout

Vout

Vin = VDD Vin = 0

Ron

Ron

VOH = VDD

VOL= 0

VM = Ronp) f(Ronn,

Uploaded By: anonymousSTUDENTS-HUB.com



CMOS Inverter: Transient Response
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DC inverter Characteristics
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Mapping between analog and digital signals
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Definition of Noise Margins
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Noise Margin
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The Ideal Gate

Vin
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The Regenerative Property

(a) A chain of inverters.

v0, v2, ...

v1, v3, ... v1, v3, ...

v0, v2, ...

(b) Regenerative gate

f(v)

finv(v)

finv(v)

f(v)

(c) Non-regenerative gate

v0 v1 v2 v3 v4 v5 v6

...
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Fan-in and Fan-out
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VTC of Real Inverter
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Delay Definitions
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Ring Oscillator

v0
v1 v2 v3 v4 v5

v0 v1 v5

T = 2  tp  N
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Power Dissipation

Uploaded By: anonymousSTUDENTS-HUB.com



CMOS Properties

• Full rail-to-rail swing

• Symmetrical VTC

• Propagation delay function of load capacitance 

and resistance of transistors

• No static power dissipation

• Direct path current during switching
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Voltage Transfer

Characteristic

Uploaded By: anonymousSTUDENTS-HUB.com



CMOS Inverter Load Characteristics
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Simulated VTC
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Gate Switching Threshold
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CMOS Inverter VTC
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MOS Transistor Small Signal Model
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Determining VIH and VIL
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Propagation Delay
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CMOS Inverter: Transient Response
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CMOS Inverter Propagation Delay
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Computing the Capacitances
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CMOS Inverters
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The Miller Effect
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“A capacitor experiencing identical but opposite voltage swings 
at both its terminals can be replaced by a capacitor to ground, 
whose value is two times the original value.”
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Impact of Rise Time on Delay
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Delay as a function of VDD
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Where Does Power Go in CMOS?

• Dynamic Power Consumption

• Short Circuit Currents

• Leakage

Charging and Discharging Capacitors

Short Circuit Path between Supply Rails during Switching

Leaking diodes and transistors
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Dynamic Power Dissipation

Energy/transition = CL * Vdd
2

Power = Energy/transition * f = CL * Vdd
2 * f

Need to reduce CL, Vdd, and f to reduce power.

Vin Vout

CL

Vdd

Not a function of transistor sizes!
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Power Dissipation 

54

•  Energy from power supply needed to charge up the capacitor:

•  Energy stored in capacitor:

•  Energy lost in p-channel MOSFET during charging: 

•  During discharge the n-channel MOSFET dissipates an identical amount of 

energy. •If the charge/discharge cycle is repeated f times/second, where f is 

the clock frequency, the dynamic power dissipation is:

In practice many gates do not change state every clock cycle which lowers the 

power dissipation. 
Uploaded By: anonymousSTUDENTS-HUB.com



Impact of

Technology Scaling
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Technology Evolution
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Technology Scaling (1)

Minimum Feature Size
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Technology Scaling (2) 

Number of components per chip
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Propagation Delay Scaling 
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Technology Scaling Models 

• Full Scaling (Constant Electrical Field)

• Fixed Voltage Scaling

• General Scaling

ideal model — dimensions and voltage scale

together by the same factor S

most common model until recently —

only dimensions scale, voltages remain constant

most realistic for todays situation —
voltages and dimensions scale with different factors
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Delay as a function of VDD
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Device Sizing
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NMOS/PMOS ratio
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Inverter Chain/Sizing 
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If CL is given: - How many stages are needed to minimize the delay?

How to size the inverters?

May need some additional constraints.

• Minimum length devices, L=0.25µm

• Assume that for WP = 2WN =2W

• same pull-up and pull-down currents 

• approx. equal resistances RN = RP

• approx. equal rise tpLH and fall tpHL 

delays 

• Analyze as an RC network

Load for the next stage:
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Inverter Chain/Sizing 
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k is a constant, equal to 0.69

Assumptions: no load -> zero delay
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nFET vs. pFET
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