

Viruses and Other Acellular Infectious Agents

Acellular Agents

- Viruses protein and nucleic acid
- Viroids only RNA
- Satellites only nucleic acids
- Prions proteins only

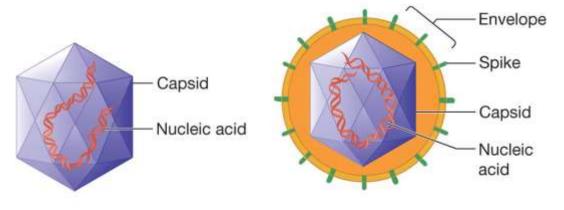
Viruses

- Major cause of disease
 - also importance as a new source of therapy
 - new viruses are emerging(مستجدة)
- Important members of aquatic world
 - move organic matter from particulate to dissolved
- Important in evolution
 - transfer genes between bacteria, others
- Important model systems in molecular biology

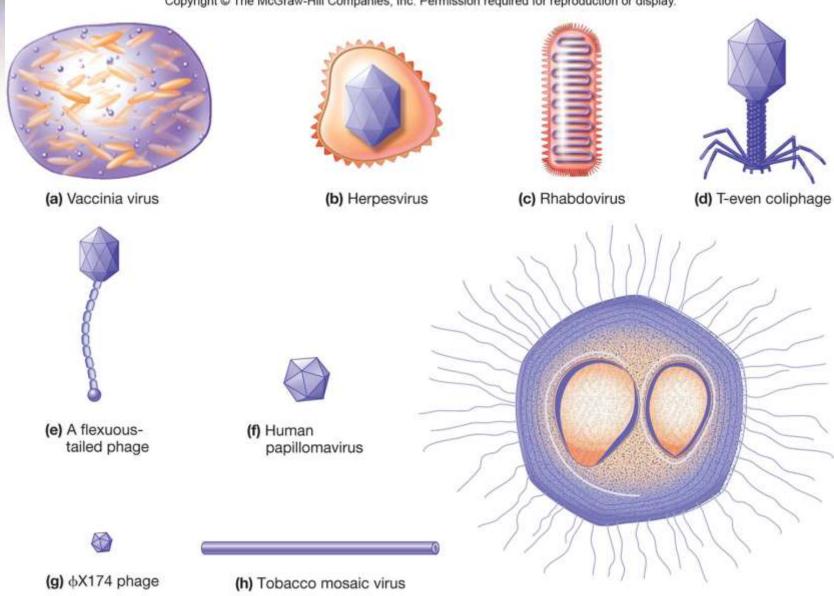
General Properties of Viruses

- Virion
 - complete virus particle
 - consists of ≥1 molecule of DNA or RNA enclosed in coat of protein
 - may have additional layers
 - cannot reproduce independent of living cells nor carry out cell division
 - but can exist extracellularly

Virions Infect All Cell Types

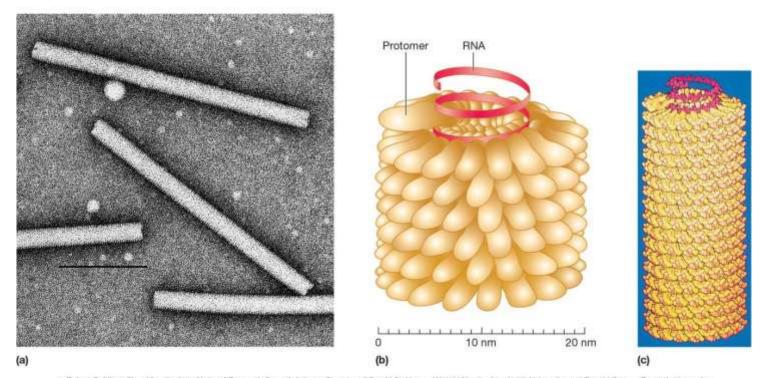

- Bacterial viruses called bacteriophages (phages)
- Few archaeal viruses
- Most are eukaryotic viruses
 - plants, animals, protists, and fungi
- Classified into families based on
 - genome structure,
 - life cycle,
 - morphology,
 - genetic relatedness

The Structure of Viruses

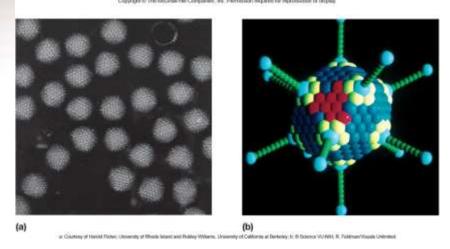

- Virion size range is ~10–400 nm in diameter and most viruses must be viewed with an electron microscope
- All virions contain a nucleocapsid which is composed of nucleic acid (DNA or RNA) and a protein coat (capsid)
 - some viruses consist only of a nucleocapsid, others have additional components

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Envelopes


Capsids

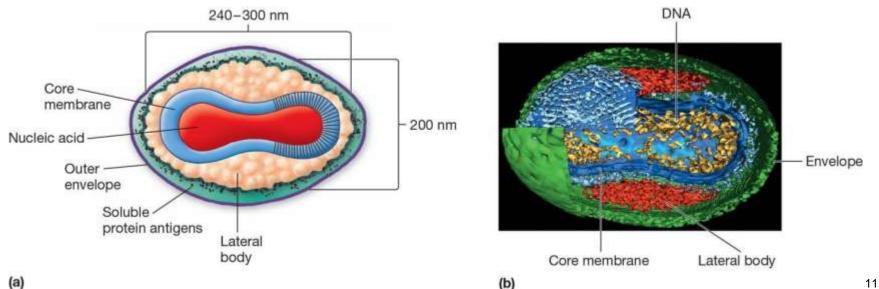
- Large macromolecular structures which serve as protein coat of virus
- Protect viral genetic material and aids in its transfer between host cells
- Made of protein subunits called protomers
- Capsids are helical,
- icosahedral,
- or complex


Helical Capsids

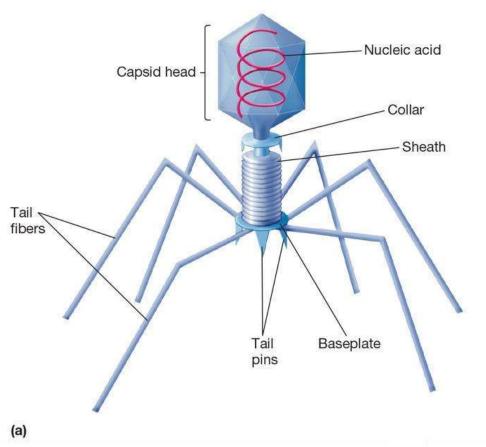
- Shaped like hollow tubes with protein walls
- Protomers self assemble
- Size of capsid is a function of nucleic acid

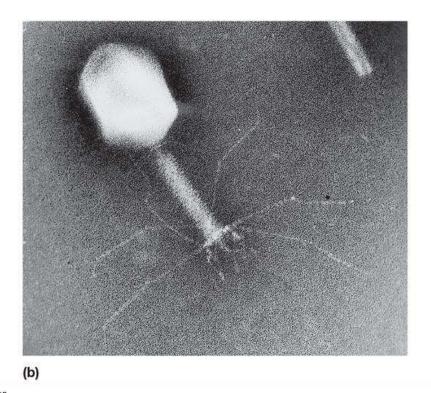
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Icosahedral Capsids

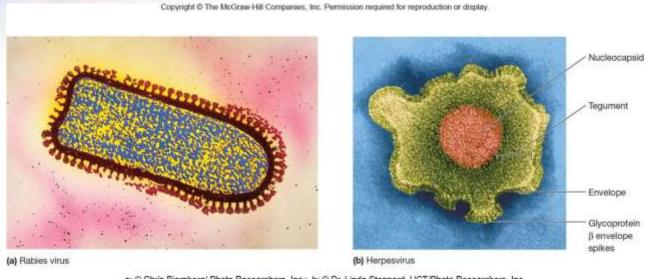


- An icosahedron is a regular polyhedron with 20 equilateral faces(رأس) and 12 vertices(رأس)
- Capsomers
 - ring or knob-shaped units made of 5 or 6 protomers
 - pentamers (pentons) 5 subunit capsomers
 - hexamers (hexons) 6 subunit capsomers


Capsids of Complex Symmetry


- Some viruses do not fit into the category of having helical or icosahedral capsids
 - poxviruses largest animal virus
 - large bacteriophages binal symmetry
 - head resembles icosahedral, tail is helical

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

© Harold Fisher

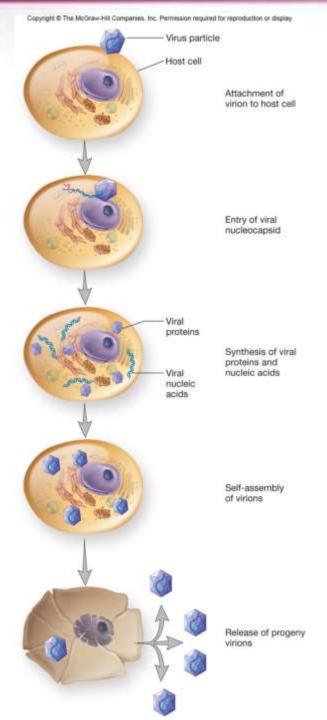
Viral Envelopes and Enzymes

- a: @ Chris Bjornberg/ Photo Researchers, Inc.; b: @ Dr. Linda Stannard, UCT/Photo Researchers, Inc.
- Many viruses are bound by an outer, flexible, membranous layer called the envelope
- Animal virus envelopes (lipids and carbohydrates) usually arise from host cell plasma or nuclear membranes

Viral Envelope Proteins

- Envelope proteins, which are viral encoded, may project from the envelope surface as spikes or peplomers - glycoprotein spike-
 - involved in viral attachment to host cell
 - e.g., hemagglutinin of influenza virus
 - used for identification of virus
 - may have enzymatic or other activity
 - e.g., neuraminidase of influenza virus
 - may play a role in nucleic acid replication

Virion Enzymes

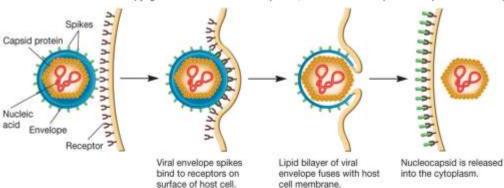

- It was first erroneously thought that all virions lacked enzymes
- Now accepted that a variety of virions have enzymes
 - some are associated with the envelope or capsid but most are within the capsid

Viral Genome

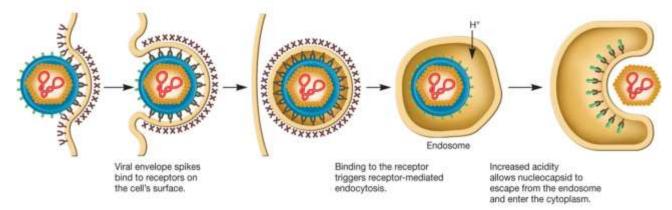
- Diverse nature of genomes
- A virus may have single or double stranded DNA or RNA
- The length of the nucleic acid also varies from virus to virus
- Genomes can be segmented or circular

Viral Multiplication

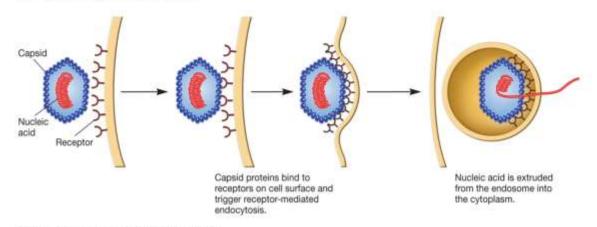
- Mechanism used depends on viral structure and genome
- Steps are similar
 - attachment to host cell
 - entry
 - uncoating of genome
 - synthesis
 - assembly
 - release


(امتصاص کیمیائی) Attachment (Adsorption

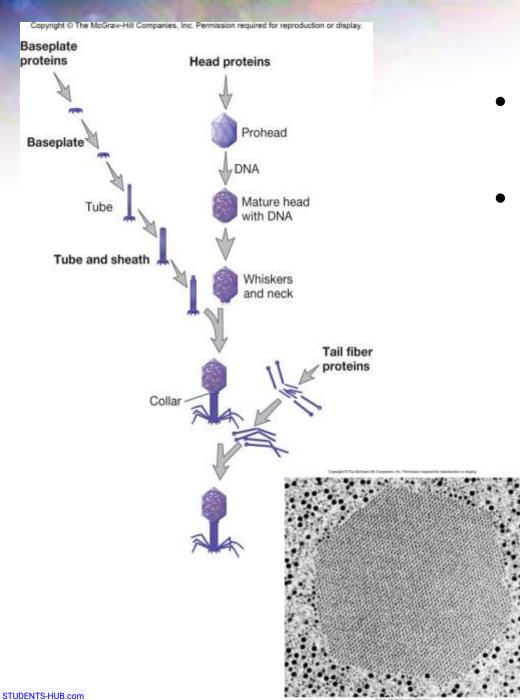
- Specific receptor attachment
- Receptor determines host preference
 - may be specific tissue (tropism(مع الاجسام))
 - may be more than one host
 - may be more than one receptor
 - may be in lipid rafts providing entry of virus


Viral Entry and Uncoating

- Entire genome or nucleocapsid
- Varies between naked or enveloped virus
- Three methods used
 - fusion of the viral envelope with host membrane; nucleocapsid enters
 - Endocytosis(يدخل من الخارج للداخل) in vesicle;
 endosome(ينقل المواد) aids in viral uncoating
 - injection of nucleic acid


Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

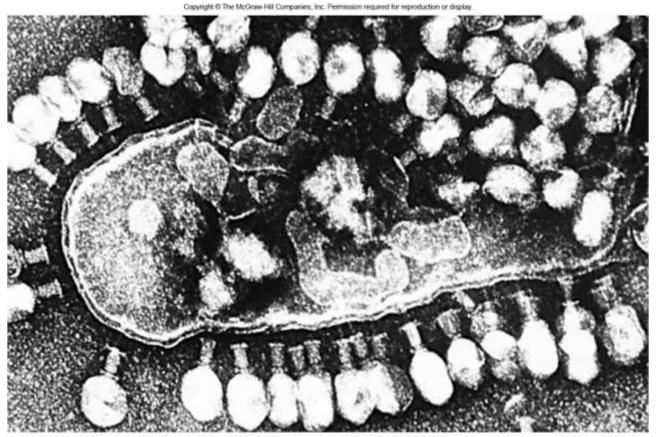
(a) Entry of enveloped virus by fusing with plasma membrane



(b) Entry of enveloped virus by endocytosis

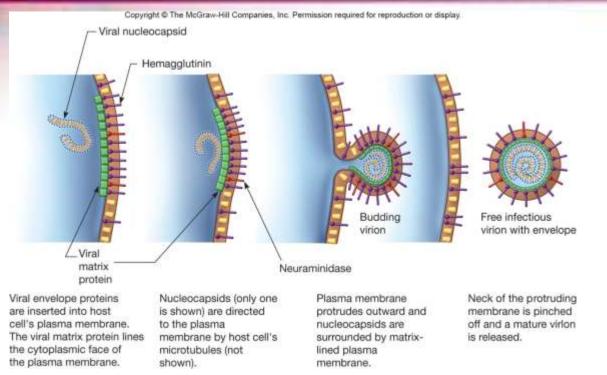
Synthesis Stage

- Genome dictates(پملي/پأمر) the events
- ds DNA typical flow
- RNA viruses
 - virus must carry in or synthesize the proteins necessary to complete synthesis
- Stages may occur, e.g., early and late



Assembly

- Late proteins are important in assembly
- Assembly is complicated but varies
 - bacteriophages stages
 - some are assembled in nucleus
 - some are assembled in cytoplasm
 - may be seen as paracrystalline structures in cell

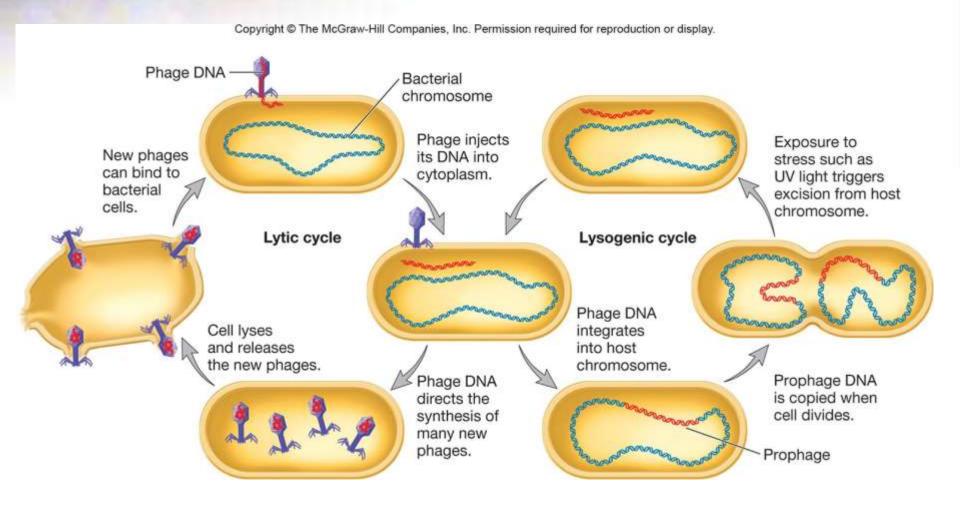

Virion Release

- Nonenveloped viruses lyse(تحلل) the host cell
 - viral proteins may attack peptidoglycan or membrane

© Lee D. Simon/Photo Researchers, Inc.

- Enveloped viruses use budding
 - viral proteins are placed into host membrane
 - nucleocapsid may bind to viral proteins
 - envelope derived from host cell membrane, but may be Golgi, ER, or other
 - virus may use host actin tails to propel through host membrane

6.4 Types of viral infections

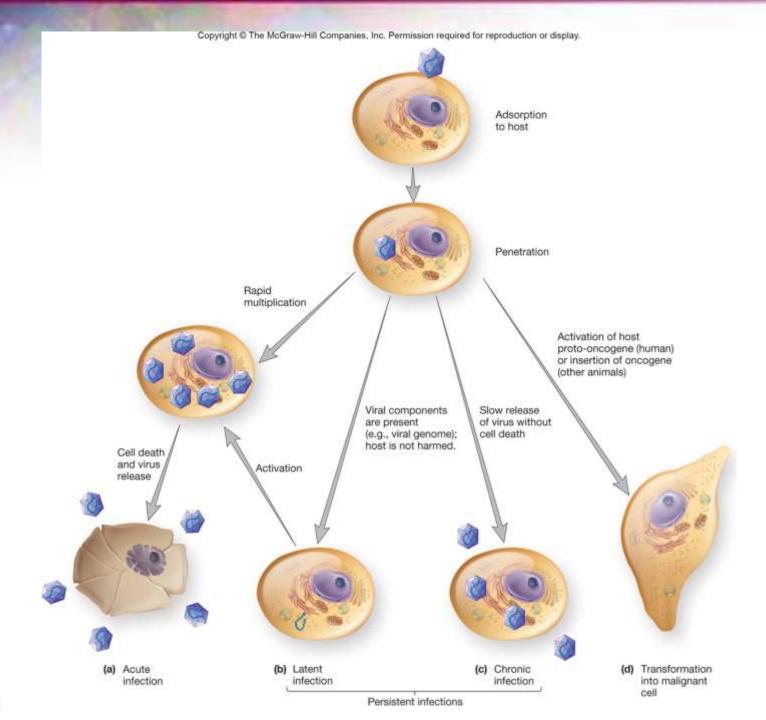

- Compare and contrast the major steps of the life cycles of virulent phages and temperate phages.
- 2. List examples of lysogenic conversion.
- Differentiate among the types of viral infections of eukaryotic cells.
- 4. Summarize the current understanding of how oncoviruses cause cancer.

Types of Viral Infections

- Infections in Bacteria and Archaea
- Infections in eukaryotic cells
- Viruses and cancer

Bacterial and Archaeal Viral Infections

- Virulent phage one reproductive choice
 - multiplies immediately upon entry
 - lyses bacterial host cell
- Temperate phages have two reproductive options
 - reproduce lytically as virulent phages do
 - remain within host cell without destroying it
 - many temperate phages <u>integrate</u>(تدمج) their genome into host genome (becoming a 'prophage' in a 'lysogenic bacterium') in a relationship called lysogeny



Lysogenic Conversion

- Temperate phage changes phenotype of its host
 - bacteria become immune to superinfection
 - phage may express pathogenic toxin or enzyme
- Two advantages to lysogeny for virus
 - phage remains viable but may not replicate
 - multiplicity of infection ensures survival of host cell
- Under appropriate conditions infected bacteria will lyse and release phage particles
 - occurs when conditions in the cell cause the prophage to initiate synthesis of new phage particles, a process called induction(تتغير الطروف (الحث)
 التكون ملائمة للفايروس ويتكاثر

Infection in Eukaryotic Cells

- Cytocidal infection results in cell death through lysis
- Persistent infections (الاصابات المستمرة) may last years
- Cytopathic effects (CPEs)
 - degenerative changes
 - abnormalities
- Transformation to malignant cell(خلية خبيثة)

Carcinogenesis

- Complex, multistep process
- Often involves oncogenes (مسرطنة)
 - cancer causing genes
 - may come from the virus OR may be transformed host proto-oncogenes (involved in normal regulation of cell growth/differentiation)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 6.1	Some Viruses Associated	ed with Human Cancers		
Virus		Genome Type	Cancer	
Human herpesvirus 8 (HHV8)		Double-stranded (ds) DNA	Several, including Kaposi's sarcoma	
Epstein-Barr virus (EBV)		dsDNA	Several, including Burkitt's lymphoma and nasopharyngeal carcinoma	
Hepatitis B virus		dsDNA	Hepatocellular carcinoma	
Hepatitis C virus		Single-stranded (ss) RNA	Liver cancer	
Human papillomaviruses (HPV) strains 6, 11, 16, and 18		dsDNA	Cervical cancer	
Human T-cell lymphotropic virus1 (HTLV-1) JDENTS-HUB.com		ssRNA (retrovirus)	T-cell leukemia	

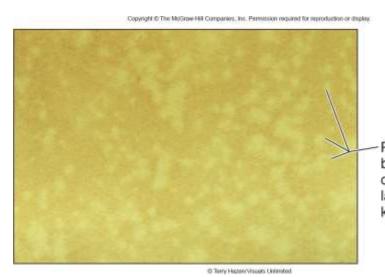
Oncogene المورثة الورمية أو الجين الورمي ويعتقد أنه مسبب بروتين يقوم بتشفير صناعة جين هو تنشأ هذه الجينات من جينات تعرف بطلائع الجينات السرطان المرطان (Proto-Oncogene

وتمايزها بدورة حياة الخلية وظيفتها الأساسية التحكم في هذه الجينات يؤدي إلى خلل في التحكم طفرات وراثية حدوث بنمو الخلية وبالتالى تحولها لخلية سرطانية

Possible Mechanisms by Which Viruses Cause Cancer

- Viral proteins bind host cell tumor suppressor proteins
- Carry oncogene into cell and insert it into host genome
- Altered cell regulation (تغيير تنظيم الخلية)
- Insertion of promoter or enhancer next to cellular oncogene

(زراعة الفيروسات)The Cultivation of Viruses

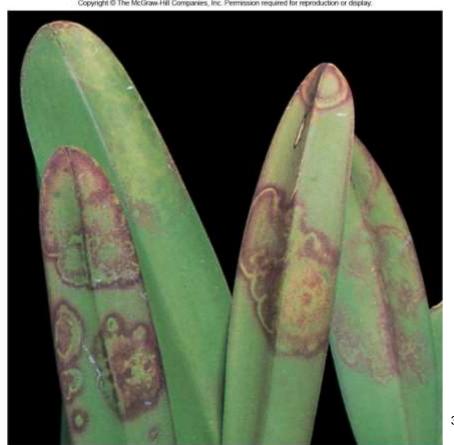

Requires inoculation of appropriate living host

Hosts for Bacterial and Archael Viruses

- Usually cultivated in broth or agar cultures of suitable, young, actively growing bacteria
- Broth cultures lose turbidity(اکثر وضوحاً/اقل عکر) as viruses reproduce
- Plaques(صفائح) observed on agar cultures

Hosts for Animal Viruses

- Tissue (cell) cultures
 - cells are infected with virus (phage)
 - viral plaques
 - localized area of cellular destruction and lysis that enlarge as the virus replicates
- Cytopathic effects (CPEs)
 - microscopic or macroscopic
 - degenerative changes or abnormalities in host cells and tissues
- Embryonated eggs

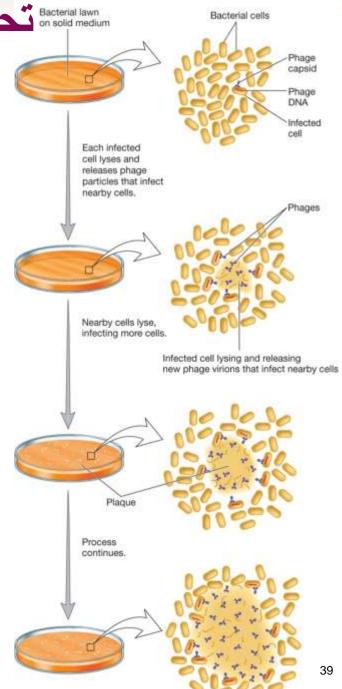


Plaques formed by multiplication of a poliovirus in lawn of monkey kidney cells

Hosts for Plant Viruses

- Plant tissue cultures
- Plant protoplast cultures
- Suitable whole plants

 may cause localized
 necrotic lesions or
 generalized symptoms
 of infection

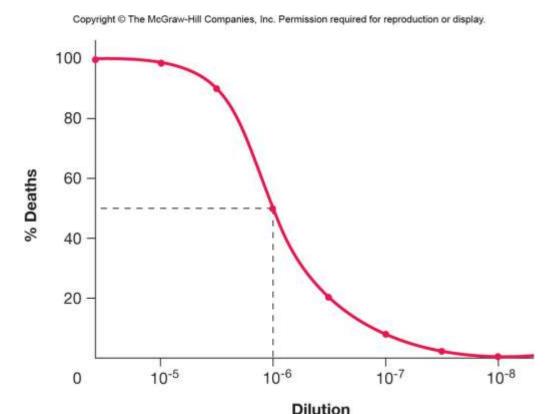


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or di

حدید)Quantification of Virus

(كمية الفيروسات

- Direct counting count viral particles
- Indirect counting by an observable of the virus
 - hemagglutination <u>assay</u>(فحص)
 - plaque assays

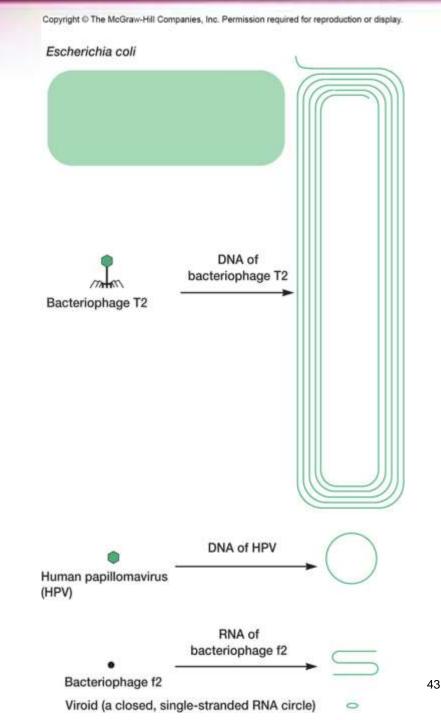


Measuring Concentration of Infectious Units

- Plaque assays
 - dilutions of virus preparation made and plated
 on lawn(العشب) of host cells
 - number of plaques counted
 - results expressed as plaque-forming units
 (PFU) plaque forming units (PFU)
 - PFU/ml = number of plaques/sample dilution

Measuring Biological Effects

- Infectious dose and lethal dose assays
 - determine smallest amount of virus needed to cause infection (ID) or death (LD) of 50% of exposed host cells or organisms (ID₅₀ or LD₅₀)


6.6 Viroids and satellites

- 1. Describe the structure of a viroid and discuss the practical importance of viroids.
- 2. Distinguish satellite viruses from satellite nucleic acids.

Viroids

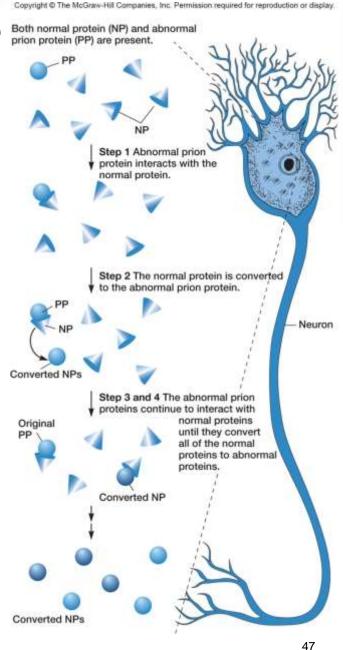
- infectious agents composed of closed, circular ssRNAs
- do not encode gene products
- requires host cell DNA-dependent RNA polymerase to replicate
- cause plant diseases

Left Pathogenicity Central conserved Variable Right terminal domain region domain terminal domain (P) (CCR) (V) domain (T_B)

Satellites

- Infectious nucleic acids (DNA or RNA)
 - Satellite viruses encode their own capsid proteins when helped by a helper virus
 - Satellite RNAs/DNAs do NOT encode their own capsid proteins
- Encode one or more gene products
- Require a helper virus for replication
 - human hepatitis(التهاب الكبد البشري) D virus is satellite
 - requires human hepatitis B virus

6.7 Prions


- 1. Describe prion structure and how prions are thought to replicate.
- List characteristics common to all animal diseases caused by prions.
- 3. Name at least two human diseases caused by prions.
- 4. Describe the mechanisms by which a prion protein might first appear in a brain cell.

Prions – Proteinaceous Infectious Particle

- Cause a variety of degenerative diseases in humans and animals
 - scrapie in sheep
 - bovine spongiform encephalopathy (BSE) or mad cow disease(جنون البقر)
 - Creutzfeldt-Jakob disease (CJD) and variant CJD (vCJD) in humans
 - kuru in humans

Current Model of Disease Production by Prions

- PrP^C (prion protein) is present in "normal" form (abnormal form of prion protein is PrP^{Sc})
- PrP^{Sc} causes PrP^C protein to change its conformation to abnormal form
- newly produced PrPsc molecules convert more normal molecules to the abnormal form through unknown mechanism

(فقدان الخلايا العصبية) Neural Loss

- Evidence suggests that PrP^c must be present for neural degeneration(انحطاط/فساد/انحلال) to occur
- Interaction of PrPsc with PrPc may cause PrPc to crosslink and trigger apoptosis(تحفيزموت الخلايا المبرمج)
- PrP^C conversion causes neuron loss, PrP^{Sc} is the infectious agent
- All prion caused diseases
 - have no effective treatment
 - result in <u>progressive degeneration</u>(فساد/انحلال تدریجي) of the brain and eventual death