Clutches and Brakes

Clutches and brakes depend on friction in order to function. 

Design objectives of brake and clutch design:

· Maximize friction

· Keep it uniform over a wide range of operation

· Minimize wear.

Clutch:

The function of a clutch is to permits smooth, gradual connection and disconnection of two members with common axis of rotation.

Brake:

Acts the same as the clutch but one member is fixed.

Types of clutches and brakes:

1- Friction type

2- Magnetic

3- Eddy current

4- Hydrodynamic (fluid coupling)

In this course, we will consider only friction type brakes and clutch

Friction Type Clutches and Brakes:

These types of brakes must satisfy the following requirement

1- The friction torque must be produced by acceptable force.

2- The energy produced must be dissipated without producing high temperature.

3- Reduce friction wear to give acceptable life.

Drum Brakes

Drum brakes are of two types:

1- External Shoe that contracts to bear against an outer drum surface.

2- Internal Shoe that expands to contact the inner drum surface.

Short- Shoe Drum Brake:

The shoe contact only a small segment of drum periphery 

( Short-Shoe Analysis: assume that the friction and normal force act at the center of contact.

A Free- Body diagram for clockwise drum rotation:
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Taking moment about pivot A for the shoe and lever:
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Taking moment about O of the drum:
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Solving  (1) for N and substituting in (2):
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T = friction torque[ Inertial or load torque required for equilibrium]

Self-Energizing and Self-de-Energizing Brakes:

A brake is considered self- energizing if the moment friction force (fNa) assists the applied force (F) in applying the brake (reduce the force F).

Self-energizing is produced for cw rotation of the drum.

Self-de-energizing brake: if the moment of friction force opposes the application of the brake (increase the force F required for brakeing). 

Self-de-energizing is produced for ccw rotation of the drum.
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Self Locking Brake: 
For cw rotation:
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If :                   (b-fa)( 0    (  no torque required to produce the brake (self-locking)

Self -Locking brake       (       b( fa

For example: For cw rotation if  f= 0.3 

Self locking   (    b (  0.3a        

(  Self locking:      F =0 (no force is required to produce the brake)

Long Shoe Drum Brake:

Long –Shoe:       contact arc  ( ( 45(.

· Internal Shoe

· External Shoe

Internal Shoe Drum Brake:

It is normally used for automotive rear wheel .

Function:
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Both shoes pivot about pin and are forced against the inner surface of the drum by a hydraulic piston at the ends. The spring is used to retract the shoes to the original position
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(b)

To determine the pressure p of lining on the drum caused by applying the force F on the left shoe which is deformed (as shown by dashed line)

( = Radial deflection
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( Good design: max thickness of friction material at point of max. pressure.

[image: image15.emf]
[image: image16.emf]
It is required to find the friction torque and the reactions at the hinge of the shoe.

Drum rotating cw:

Taking an infinitesimal area (dA)then integrating over the whole contact area
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where:  b = face width of friction material
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From (1):
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Substituting (3)  in (1):
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To find the actuating force F:

1- Frictional moment about A:
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2- Normal force Moment about A:
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3- Summing moment about A
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   ( (Self-locking)   No actuating force is required .

In Automotive application, brake must be strongly self – energizing while staying away from self-locking.
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Frictional Torque:
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Reaction at hinge A:
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Drum rotating ccw:

[image: image171.emf]The friction force is opposite to the direction of rotation
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where:
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Note: the reference is always in the center of the drum. The positive x-axis is taken through the hinge. The positive y-axis is always in the direction of the shoe.

Internal Shoe Drum Brake:

· Normally used in automotive rear wheel

· Energizing and de-energizing characteristics are determined by:

1- Noting the direction of friction force acting upon the shoe surface

2- Determining if this force tends to bring the shoe into or out of contact of the drum

For the left figure shown below:

Left shoe:
self – energizing

Right shoe:
self-de-energizing

In automotive brakes  (   self-energizing is desired    (  decrease pedal force

But                                     self-locking must be avoided

Improved Design:

The shoes are inverted and each one is actuated by a separate cylinder. 

This arrangement will increase the self- energizing action

( Both shoes are self-energizing in forward car motion.  

( This arrangement is used in automotive front wheels.
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Long Shoe Drum Brake with External Shoe:

Consider the external brake shown in the figure. We have proved in previous sections that:
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1- Drum rotating cw:

Summing moment about A:
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(Self-de-energizing)

Large force is required to balance these moments (friction moment does not assist the force to produce the brake).

Where MN is the moment of normal force:
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Moment of friction force:


[image: image42.wmf]ò

ò

-

=

-

=

2

1

max

max

 

)

cos

(

sin

sin

)

cos

(

q

q

q

q

q

q

q

q

d

a

r

fbrp

d

a

r

fdN

M

f


Substituting the relation: 
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Friction Torque:
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Reaction forces at hinge A:

Reaction forces is obtained summing forces in horizontal and vertical direction:
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where:
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2. Drum Rotating ccw:

Summing moment about A:
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(Self-energizing)

For ccw less force is desired to obtain the brake, the friction moment assists the force to produce the brake.

If    
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   (  self-energizing brake is self-locking

It is often desired to make brake self-energizing, while staying away from self-locking.

( In brake design: 
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Hinge Reactions:
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Symmetrical External Shoe Drum Brake:

If the pivot P is located at the intersection of the resultant normal force (N) and frictional force (fN) (  the shoe will not rotate around P.

This is desirable to equalize wear.

In practice pivot P will move closer to the drum as wear occurs

( increase the tendency of the shoe to pivot around P.

[image: image56.png]Pivot P





Integrating over the symmetrical shoe surface, the intersection point of the normal and friction forces rf :
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where:

rf  : is measured from the drum center. Note that  
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( = total shoe angle.

With the pivot placed at this point, the moment about P is zero. The reactions at P are:
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Friction Torque:

The friction torque, which is equal to the brakeing torque is:
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, because the resulting frictional force acting on any symmetrical shoe is located above the drum surface.

Example:

Double shoe drum brake with spring force F applied at distance c= 500 mm to both shoes. The brake is released by a solenoid. If  f = 0.3 and Pmax = 446 kPa, b=50 mm.

Determine an appropriate  value of spring force, and the resulting brake torque and power absorption for 300 rpm drum rotation in either directions.
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Solution:

1- Right shoe:

(= tan –1(200/150)= 53.13(  ( (1 = 8.13( and (2 =98.13( .

2- 
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6- Brake Torque 
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 (self-energizing)

· Fs= spring force = 1448 N

7- For left shoe, the spring force will produce the brake pressure. Since, left shoe is self-de-energizing,  Pmax will be less than that for right shoe.
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pmax= 0.392 MPa

8- Total braking torque
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Disk Clutch

Disk clutch operates dry or wet

1- Dry clutch: Automotive clutch with manual transmission

2- Wet clutch: multi disk clutches used in automotive automatic transmission. The oil serves as a coolant, multiple disks compensate for reduced coefficient of friction.

[image: image75.emf]
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Estimating the axial clamping force and torque capacity is based on the two basic assumptions:

(a) Uniform pressure:

This assumption is valid for new, accurately manufactured clutches, with rigid outer disks.
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The normal force acting on differential ring of radius r is
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Axial Clamping Force:
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(1)
Friction Torque:
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f : is assumed to be constant

Total torque:
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           (for one driving interface)

Multiple Clutch interfaces:

For N friction interfaces transmitting torque in parallel  ( Total torque capacity:
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(2)

From eq. (1):
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(4)

Substituting (4) in (2):
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(5)

(b) Uniform Wear:

Wear rate   (   Friction Work rate

Friction Work = Friction Force ( Rubbing velocity

For constant f   (  Wear  (  pressure ( Sliding velocity     (  Wear  ( p( ve
For disk clutch:

(       ve   ( r                   (                 Wear    (   p ( r

(    Uniform Wear results from uniform rate of friction work  (  
[image: image85.wmf]C

pv

e

=


· 
[image: image86.wmf]C

pr

=


(   pmax   at  rmin
For disk clutch with:  ro = outside radius, ri = inside radius

(     pmax   at    r = ri
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Assumption of uniform wear gives lower clutch capacity than uniform pressure.

Clutch Design: Clutches are designed for uniform wear.

From eq. (6): Max. torque for a given outside radius is:
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Recommended Range: 
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Disk Brake:

A brake is similar to clutch except that one of the shafts is replaced by a fixed member.

This type of brakes is unsatisfactory because of inadequate cooling.

For this reason, caliper disk brakes are commonly used.

Drum brake can be designed for self-energizing this has an advantage and disadvantage:

Advantage: reduced braking effort

Disadvantage: slight change of friction coefficient (as a result of temperature rise or moisture) will cause a large change in pedal force required for braking.

Disk brakes has no self-energization, hence is not sensitive to changes in friction coefficient.

Caliper disk brake have replaced front drum brakes due to:

· Greater cooling capacity

· High resistance to fade

· Drum brake tends to distort more with heat and large forces than disk brakes.

Cone Clutch and Brakes:

Cone clutch and brake can be considered as the general case of which disk brake is a special case, the cone angle (= 90(. 

Cone clutch normally has one friction face (  N=1

The effect of the cone angle is to reduce the clamping force.

For the cone clutch shown on the figure:
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Normal force on dA: 
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Axial Clamping force:
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Friction Torque:
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(a) Uniform pressure:
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(b) uniform Wear:
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Note:
The smaller (  (  the lower the clamping force ( the higher the friction torque.

If  ( < 8(   ( the clutch tend to grab and become difficult to disengage.

(   8(<(< 15( 

Optimum value: (=12(.

Band Brakes:

The band is made of steel, lined with a woven friction material
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Free-body diagram of Drum:
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Free-body diagram of Lever:
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Forces acing on an element of the band:

For small angle d(
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Substituting (2) in (1):
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Band force varies [P1-P2] between band contact angle ( =[0 - (]
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But:
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, where:     p = pressure between drum and band.
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For cw rotation: Self-energizing 
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           ,   where     P2 < P1      [friction force increases P1 and decreases P2]

For ccw rotation: Self-de-energizing
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, where          P1 < P2     [friction force increases P2 and decreases P1]

Differential Band Brake:

To increase the self-energizing action the differential 
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  ,  where P1 < P2  due to friction force

For self energizing: s < a   (to insure that the lever will tighten the band at distance a more than at distance s).
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Energy Consideration in Brakes and Clutches:
[image: image125.png]



The hoist shown in the figure is required to lower a mass (m)

Assume that the brake is applied at time = t1
At  t1 
( = (1

, V= V1

, h = h1
At  t2    the values are reduced

( = (2

, V= V2

, h = h2
during time (t2 – t1)

Work done by brake = wkB
Rolling friction, Bearing friction, air resistance = wkR
Motor work = wkM

wkM  = Work done by the machine in driving energy consuming device.

If the motor drives the machine during braking period ( wkM = -ve

Total work done = Change in Energy
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the summation is made for different masses at their corresponding speeds and positions.

wkB = mechanical energy transferred into heat at the brake .
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( = angular displacement of the drum

For constant torque:

If 
T= const.  (  linear deceleration = a= const.

· Angular deceleration = ( = const.

Velocity displacement relation:
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and angular velocity and displacement:
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Clutch Work Energy Relationship:

In the clutching of two masses initially rotated in the same direction with different speeds, the higher speed mass supplies energy to lower speed mass.

In general: the work done by friction equal the net change in energy of the system.

Consider two masses with I and I(, rotating in the same direction with initial velocities (> ((
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Assuming that clutch torque , T= const. during engagement

At time,  t1=0

(> ((
Left Shaft: 


[image: image133.wmf]dt

d

I

T

w

-

=


Right Shaft
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Integrating both equations:
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(1)

A t=t2 , relative motion ends (both shaft rotate at the same speed)

( (2 = ((2
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(  the time required for engagement is proportional to velocity difference 

t2 = time required for clutch engagement

Subst. t2 in eq. (1)

(    Common velocity:
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Displacement after time t2:
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The work done by the clutch after time t:

Work = Clutch Torque( Relative displacement
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Clutch work at completion of engagement, t = t2
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wkc = energy dissipated by the clutch or brake.

( energy dissipated is proportional to velocity difference squared.

S. I. units:

wkc = E = Joule

U. S. units:

wkc = E = lb.in., wkc = E = (lb.in./9336)= Btu.

Energy Absorption and Cooling:

Heat transfer equation of clutch or brake:
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H = time rate of heat dissipation (Watt or hp)

C = overall heat transfer coefficient per unit area (W/m2 (C, hp/in.2 (F)

A = exposed heat –dissipating area (m2 , in2)

Ts = average temperature of heat-dissipating surfaces ((C, (F)

Ta = Air temperature

Or
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E = heat dissipation ( Joule or lb.in)

C = specific heat (J/m2 (C, lb.in/in.2 (F)

m = mass of brake or clutch (lbm, Kg), (Btu = 9336 lb.in)

For steel and Cast Iron: C = 0.12 Btu/(lbm. (F) = 500 J/(Kg. (C)

The rate of heat generation per unit area of friction interface is equal to the product of Clamping pressure, coefficient of friction and rubbing velocity

H= f pV

An emperical values for pV is obtained by brake manufacturer and is given below:

	Operating Conditions
	PV

	
	(psi) (ft/min)
	(KPa)(m/s)

	Continuous poor heat dissp.
	30,000
	1050

	Occasional, poor heat dissp.
	60,000
	2100

	Continuous good heat dissp.
	85,000
	3000


The ability of brake and clutch to absorb energy without reaching destructive temperatures can be increased by:

a- Increasing exposed surface area

b- Increasing air flow by minimizing air flow restrictions, and maximizing air pumping action of rotating parts.

c- Increasing the mass and specific heat of contact parts.

Example:

An inertial load is to bring to rest in 10 sec. by a braking torque 2800 lb.in. The initial speed is 1600 rpm, and the heat dissipating surface weight 40 lb. Find the temperature rise.

Solution:
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=2.35(106)  lb.in.
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Friction Material:

One of the mating material is normally metal (cast iron or steel) it must have:

1- Good friction characteristics ( which is relatively stable over temp. range)

2- Good thermal conductivity 

3- Good resistance to wear and thermal fatigue

4- mooth surface finish to minimize wear of the mating friction material.

The friction material must have the following requirements:

1- High dynamic coefficient of friction that is relatively stable over a usable temp range and not sensitive to moisture, dirt and oil

2- Static coefficient of friction exceeds the dynamic value by as little as possible to avoid slip-stick chatter and noise.

3- High resistance to abrasive and adhesive wear

4- Good thermal conductivity 

5- Good temperature stability or resistance to fade (reduction in friction coefficient at elevated temp.)

Types of friction material:

1- Molded: most common and least costly. Used for heavy duty application and drum brakes. Molded asbestos contains asbestos fiber and friction modifiers

2- Woven: more flexible (suitable for band brake) 

Asbestos lining is used for heavy machinery, perform better when contaminants as mud, grease, and dirt presents.

3- Sintered: made of mixture of copper and iron particles with friction modifiers. Used in clutch and brakes for heavy duty applications.

Tables (16-1,2) list properties of typical friction materials 

Example:

The figure shows a band brake used with a punch press. The brake is to be engaged when the crank is 120( past bottom dead center and bring the crank to rest at top dead center. The crank assembly has I= 12 N.m s2 and rotating at 40 rpm when the brake is engaged. Max. allowed pressure p= 0.18 MPa, f = 0.35.

(a) Determine the required band width.

(b) Determine the required force, F
(c) Would any combination of direction of rotation or coefficient of friction make brake self-locking.

Solution:

(a) Work done by the brake = Change in K.E. of the system
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Brake done by brake = Torque (angular displacement
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Top dead center
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Free body of the drum:





bottom dead center
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But:
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(2)

From (1) and (2):

P1 = 218.41 N,  P2 = 1056.16 N
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(b) Free body of the lever
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