Asymptotic Analysis

Asymptotic (مقارب) analysis measures the efficiency of an algorithm as the input size becomes large.

It is actually an **estimation** technique. However, asymptotic analysis has proved useful to computer scientists who must determine if a particular algorithm is worth considering for implementation.

- The critical resource for a program is -most often- running time.
- The **growth rate** for an algorithm is the rate at which the cost of the algorithm grows as the size of its input grows.
 - o cn (for c any positive constant) \rightarrow linear growth rate or running time.
 - o $n^2 \rightarrow$ quadratic growth rate
 - o $2^n \rightarrow$ exponential growth rate.

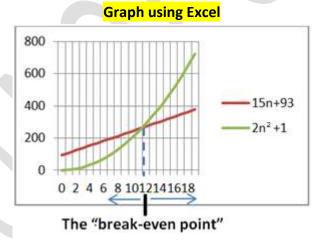
Worst case? The advantage to analyzing the worst case is that you know for certain that the algorithm must perform at least that well.

Example:

Assume: Algorithm A: time = 15n + 93

Algorithm B: time = $2n^2 + 1$

which is faster?



We are interested for large **n**

Upper bound for the growth of the algorithm's running time. It indicates the upper or highest growth rate that the algorithm can have. → **big-O notation**.

^{*} For sufficiently large n, algorithm A is faster

^{*} In the long run constants do not mater.

Data Structure: Lectures Note

For T(n) a non-negatively valued function, T(n) is in set O(f(n)) if there exist two positive constants c and n_0 such that $T(n) \le cf(n)$ for all $n > n_0$.

Prove that **15n + 93** is **O(n)**

```
We must show +ve c and n_0 such that 15n + 93 \le c(n) for n \ge n_0
So for c=16 and n_0 = 93 \rightarrow // proved
                      Graph using Excel
```

Prove that $2n^2+1 = O(n^2)$

```
Must show +ve c, n_0 such that 2n^2+1 \le c(n^2) for n \ge n_0
2n<sup>2</sup>+1 provided n=1>
2n^2+1 \leq 3n^2
So, c=3, n_0=1 // proved
```

Graph using Excel

The **lower bound** for an algorithm is denoted by the symbol Ω , pronounced "big-Omega" or just "Omega."

For T(n) a non-negatively valued function, T(n) is in set $\Omega(g(n))$ if there exist two positive constants c and n_0 such that $T(n) \ge cg(n)$ for all $n > n_0$.

Prove that 15n+93 is $\Omega(n)$

```
We must show +ve c and n_0 such that 15n+93 \ge c(n) for n \ge n_0
<br/>
ext{because 93 is +ve} ≥ c(n)
                                 \rightarrow cprovided c=15> \leftarrow so any n_0 > 0 will do
So c=15, n_0=1 // proved
```

Graph using Excel

Prove that $2n^2+1$ is $\Omega(n^2)$

```
Must show +ve c and n_0 such that 2n^2+1 \ge cn^2 for n \ge n_0
<br/>
<br/>
decause 1 is +ve>
So c=2, n_0=1 // proved
```

Graph using Excel

When the **upper** and **lower bounds** are the same within a constant factor, we indicate this by using **O** (big-Theta) notation.

$$T(n) = \Theta(g(n))$$
 iff $T(n) = O(g(n))$ and $T(n) = \Omega(g(n))$

Example: Because the **sequential search algorithm** is both in O(n) and in $\Omega(n)$ in the average case, we say it is O(n) in the average case.

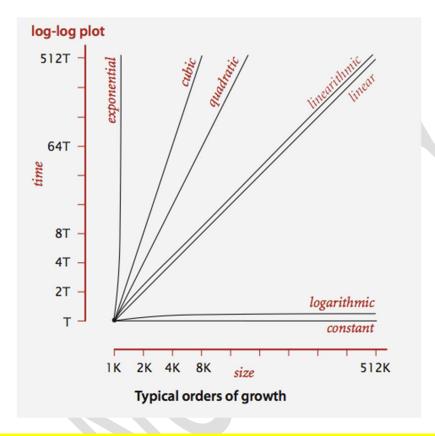
Simplifying Rules

- 1. If f(n) is in O(g(n)) and g(n) is in O(h(n)), then f(n) is in O(h(n)).
- 2. If f(n) is in O(kg(n)) for any constant k > 0, then f(n) is in O(g(n)).
- 3. If $f_1(n)$ is in $O(g_1(n))$ and $f_2(n)$ is in $O(g_2(n))$, then $f_1(n) + f_2(n)$ is in $O(\max(g_1(n), g_2(n)))$.
- **4.** If $f_1(n)$ is in $O(g_1(n))$ and $f_2(n)$ is in $O(g_2(n))$, then $f_1(n)f_2(n)$ is in $O(g_1(n)g_2(n))$.
- Rule (2) is that you can ignore any multiplicative constants.
- Rule (3) says that given two parts of a program run in sequence, you need to consider only the more expensive part.
- Rule (4) is used to analyze simple loops in programs.

Taking the first three rules collectively, you can ignore all constants and all lower-order terms to determine the asymptotic growth rate for any cost function.

Order of growth of some common functions:

$O(1) \le O(\log_2 n) \le O(n) \le O(n \log_2 n) \le O(n^2) \le O(n^3) \le O(2^n)$



If the problem size is always small, you can probably ignore an algorithm's efficiency

Limitations of big-O analysis:

- Overestimate.
- Analysis assumes infinite memory.
- Not appropriate for small amounts of input.
- The constant implied by the Big-Oh may be too large to be ignored (2N log N vs. 1000N)