
 Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

21

Asymptotic Analysis
Asymptotic (مقارب) analysis measures the efficiency of an algorithm as the input size becomes large.

It is actually an estimation technique. However, asymptotic analysis has proved useful to computer
scientists who must determine if a particular algorithm is worth considering for implementation.

 The critical resource for a program is -most often- running time.

 The growth rate for an algorithm is the rate at which the cost of the algorithm grows as the size of its
input grows.

o cn (for c any positive constant)  linear growth rate or running time.

o n2  quadratic growth rate

o 2n  exponential growth rate.

Worst case? The advantage to analyzing the worst case is that you know for certain that the
algorithm must perform at least that well.

Example:
Assume: Algorithm A: time = 15n + 93
 Algorithm B: time = 2n2 + 1 which is faster?

Graph using Excel

We are interested for large n

* For sufficiently large n, algorithm A is faster
* In the long run constants do not mater.

Upper bound for the growth of the algorithm’s running time. It indicates the upper or

highest growth rate that the algorithm can have.  big-O notation.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

22

For T(n) a non-negatively valued function, T(n) is in set O(f(n)) if there exist
two positive constants c and n0 such that T(n) ≤ cf(n) for all n > n0.

 Prove that 15n + 93 is O(n)
We must show +ve c and n0 such that 15n + 93 ≤ c(n) for n ≥ n0
<provided n= 93>  15n+n  16n ≤ cn  <provided c = 16>
So for c=16 and n0 = 93  // proved

Graph using Excel

 Prove that 2n2+1 = O(n2)
Must show +ve c, n0 such that 2n2+1 ≤ c(n2) for n ≥ n0
2n2+1 <provided n=1>
2n2+ n2  3n2 <provided c=3>
2n2+1 ≤ 3n2
So, c=3 , n0=1 // proved

Graph using Excel

The lower bound for an algorithm is denoted by the symbol Ω, pronounced “big-
Omega” or just “Omega.”

For T(n) a non-negatively valued function, T(n) is in set Ω(g(n)) if there exist
two positive constants c and n0 such that T(n) ≥ cg(n) for all n > n0.

 Prove that 15n+93 is Ω(n)
We must show +ve c and n0 such that 15n+93 ≥ c(n) for n ≥ n0
<because 93 is +ve> ≥ c(n)  <provided c=15>  so any n0 > 0 will do
So c=15, n0=1 // proved

Graph using Excel

 Prove that 2n2+1 is Ω(n2)
Must show +ve c and n0 such that 2n2+1 ≥ cn2 for n ≥ n0
<because 1 is +ve>
So c=2, n0=1 // proved

Graph using Excel

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

23

When the upper and lower bounds are the same within a constant factor, we

indicate this by using Θ (big-Theta) notation.

T(n) = Θ(g(n)) iff T(n) = O(g(n)) and T(n) = Ω (g(n))

Example: Because the sequential search algorithm is both in O(n) and in Ω(n) in the average case,
we say it is Θ(n) in the average case.

Simplifying Rules

 Rule (2) is that you can ignore any multiplicative constants.
 Rule (3) says that given two parts of a program run in sequence, you need to consider only the

more expensive part.
 Rule (4) is used to analyze simple loops in programs.

Taking the first three rules collectively, you can ignore all constants and all lower-order
terms to determine the asymptotic growth rate for any cost function.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

24

Order of growth of some common functions:

O(1) ≤ O(log2n) ≤ O(n) ≤ O(n log2n) ≤ O(n2) ≤ O(n3) ≤ O(2n)

If the problem size is always small, you can probably ignore an algorithm’s efficiency

Limitations of big-O analysis:

 Overestimate.
 Analysis assumes infinite memory.
 Not appropriate for small amounts of input.
 The constant implied by the Big-Oh may be too large to be ignored (2N log N vs. 1000N)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

