E Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah
Asymptotic Analysis

Asymptotic («%«) analysis measures the efficiency of an algorithm as the input size becomes large.

It is actually an estimation technique. However, asymptotic analysis has proved useful to computer
scientists who must determine if a particular algorithm is worth considering for implementation.

e The critical resource for a program is -most often- running time.

e The growth rate for an algorithm is the rate at which the cost of the algorithm grows as the size of its
input grows.

o ¢n (for c any positive constant) = linear growth rate or running time.
o n* < quadratic growth rate

o 2" => exponential growth rate.

Worst case? The advantage to analyzing the worst case is that you know for certain that the
algorithm must perform at least that well.

Example:
Assume: Algorithm A: time =15n +93
Algorithm B: time =2n%+1 which is faster?
Graph using Excel
200
600 4Lt elannrrl yd
400 ¥4 15n+93
200 /r—/’ 2n*+1
1
ﬂ ! o ¢ IBHRRER
0246 81012141618
<] >

The “break-even point”

We are interested for large n

* For sufficiently large n, algorithm A is faster
* In the long run constants do not mater.

Upper bound for the growth of the algorithm’s running time. It indicates the upper or
highest growth rate that the algorithm can have. = big-O notation.

21

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

For T(n) a non-negatively valued function, T(n) is in set O(f(n)) if there exist

two positive constants ¢ and ng such that T(n) < ¢f(n) for all n > no.

e Prove that 15n + 93 is O(n)
We must show +ve ¢ and ng such that 15n + 93 < ¢(n) for n2ng
<provided n=93> =» 15n+n=>» 16n<cn > <provided c=16>
Soforc=16 andno=93 =>» //proved
Graph using Excel

e Prove that 2n?+1 = O(n?)
Must show +ve ¢, ng such that 2n?+1 < ¢(n?) for n 2 ng
2n%+1 <provided n=1>
2n2+n? =2 3n? <provided c=3>
2n%+1 < 3n?
So, ¢=3, no=1 // proved
Graph using Excel

The lower bound for an algorithm is denoted by the symbol Q, pronounced “big-
Omega” or just “Omega.”

For T(n) a non-negatively valued function, T(n) is in set Q(g(n)) if there exist
two positive constants ¢ and ng such that T(n) 2 cg(n) for all n > no.

e Prove that 15n+93 is Q(n)
We must show +ve ¢ and ng such that 15n+93 2 ¢(n) for n 2 ng
<because 93 is +ve>> ¢(n) =» <provided c=15> € so any no >0 will do
So ¢=15, ng=1 // proved

Graph using Excel

e Prove that 2n%+1 is Q(n?)
Must show +ve ¢ and ng such that 2n?+1 = cn? for n2no
<because 1 is +ve>
So c=2, np=1 // proved

Graph using Excel

22

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah
When the upper and lower bounds are the same within a constant factor, we

indicate this by using © (big-Theta) notation.
T(n) = ©(g(n)) iff T(n)=0O(g(n)) and T(n)=0(g(n))

Example: Because the sequential search algorithm is both in O(n) and in Q(n) in the average case,
we say it is @(n) in the average case.

Simplifying Rules
1. If f(n)isin O(g(n)) and g(n) is in O(h(n)). then f(n) is in O(h(n)).
2. If f(n)is in O(kg(n)) for any constant k > (), then f(n) is in O(g(n)).
3. 0If fi(n) is in O(g;(n)) and fa(n) is in O(gz(n)), then fi(n) + fa(n) is in

O(max(g1(n), ga(n)))-
4. Ifflffr]l is in O(gy1(n)) and fa(n) is in O(ga(n)), then fi(n)fa(n) is in

g1(n)gz(n)).

e Rule (2) is that you can ignore any multiplicative constants.

e Rule (3) says that given two parts of a program run in sequence, you need to consider only the
more expensive part.

e Rule (4) is used to analyze simple loops in programs.

Taking the first three rules collectively, you can ignore all constants and all lower-order
terms to determine the asymptotic growth rate for any cost function.

23

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

Order of growth of some common functions:
0(1) £ O(logzn) < O(n) < O(n logzn) £ 0(n?) < 0O(n3) < 0(2")

log-log plot
S22l

exponential

64T |

time
]

8T

2= L
logarithmic

constant

I I | I | I I I I I

1K 2K 4K 8K g 512K

Typical orders of growth

If the problem size is always small, you can probably ignore an algorithm’s efficiency

Limitations of big-O analysis:

e Overestimate.

e Analysis assumes infinite memory.

e Not appropriate for small amounts of input.

e The constant implied by the Big-Oh may be too large to be ignored (2Nlog N vs. 1000N)

24

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

