| Slab Type | Definition | Behavior | Characteristics | Advantages | Limitations | Additional
Notes | |----------------------------|--|---|--|---|---|---| | One-Way
Slab | A plate with uniform thickness supported by parallel beams or walls. | Load is
transferred
in one
direction to
the
supports. | Suitable for spans 2–5.5 m under light to moderate loads. | Simple construction; economical for short spans. | Limited to
short spans
and light
loads. | Requires
beam or wall
support for
effective load
transfer. | | Two-Way
Slab | A solid slab supported on beams or walls on all four sides. | Load is
transferred
in both
orthogonal
directions. | Most efficient for square or nearly square bays with spans 4.5–9 m. | Better load
distribution,
suitable for
heavier
loads. | Not as economical as other two-way systems; requires strong seismic force resistance in some cases. | More reinforcement required in both directions. | | Flat Plate | Two-way slab supported directly on columns without beams. | Load is
transferred
directly to
columns. | Economical for
spans 4.5–8 m
under
moderate
loads; slab
thickness 15–
25 cm. | Simple construction, flat ceiling, reduced story height. | Not suitable
for high
seismic
areas; limited
span
capacity. | Requires careful design for punching shear resistance. | | Flat Slab | Similar to flat plate but with thickened areas around columns. | Divided into column strips (beams) and middle strips (slabs). | Economical for spans 6–9 m; requires column capitals or drop panels. | Better resistance to punching shear, supports heavier loads. | Higher initial cost due to additional formwork. | Suitable for
seismic zones
with
modifications | | Waffle
Slab | Two-way ribbed slab with thin concrete plates over ribs in two directions. | Light structure with effective load transfer; ribs act like beams. | Spans 8–13 m,
up to 20 m for
longer spans. | Longer
spans,
aesthetic
flexibility,
reduced
dead weight. | Complex
formwork,
high initial
cost, not
efficient for
cantilevers. | Often used
for decorative
purposes due
to its ribbed
pattern. | | Voided
Slab | Slab with
hollow voids
created by
rigid formers
to reduce
dead weight. | Efficient
load
transfer in
both
directions. | Suitable for medium to long spans 7– 12 m with moderate live loads. | Larger open
areas, lower
floor-to-
floor height,
better
earthquake
performance. | Complex production and installation. | Reduces
concrete
usage by up
to 35%. | | Post-
Tensioned
Slab | Combination of conventional reinforcement and high- strength steel tendons tensioned after curing. | Achieves
thinner
slabs with
longer
spans. | Suitable for
long spans
and column-
free spaces;
requires high
expertise. | Thinner slabs, reduced material usage, column-free interiors. | High cost,
complex
construction,
cannot be
modified
after casting. | Effective for modern architectural designs needing open spaces. | | Ribbed
Slab | One-way joist
system with
evenly spaced
ribs and thin
top slab. | Ribs act as
beams;
slabs
transfer
load in one
direction. | Commonly spans 6–9 m; uses lightweight or normal concrete blocks between ribs. | Reduced weight, thermal and acoustic insulation, simple construction. | Questionable integrity under lateral loads. | Widely used in local construction for flexibility. | | Folded
Plate | Series of thin,
deep plates
joined along
their edges
for structural
rigidity. | Combines transverse and longitudinal beam action for load | Suitable for
long spans;
rigid, load-
efficient
structure. | High load-
carrying
capacity,
economical
for long
spans. | Requires
more
material
compared to
curved
shells. | Requires
stiffeners to
prevent
transverse
splaying. | STUDENTS-HUB.com transfer. Uploaded By: anonymous