

Numbering Systems

Computer Science Department

STUDENTS-HUB.com

Outline

- Numbering Systems (NS)
 - Decimal, Binary, Octal & Hexadecimal Systems.
- Converting between NS.
- Binary Arithmetic (two's complement)
- Data Representation
 - Integer, Float, and ASCII chars (7 bits+ parity bit)

STUDENTS-HUB.com

A. Numbering Systems (NS)

STUDENTS-HUB.com

Uploaded By: anon³ymous

Most People Use decimal representation to count.

 In decimal there are 10 digits 0,1,2,3,4,5,6,7,8,9
 The base is 10
 We can Represent any value for these digits Ex: 754 , 123, 889, 345

STUDENTS-HUB.com

Uploaded By: anon⁴ymous

Decimal System

Ex: 754

123 ???

STUDENTS-HUB.com

Example: 7654.23

STUDENTS-HUB.com

2. Binary System

Computer is not smart as a human .

Easy to make an electronic machine with two states: on and off, or 1 and 0.

In Binary there are 2 digits 0,1

The base is 2

STUDENTS-HUB.com

Binary System

Each digit in binary number called BIT.
1010,4 digits, How many bits?
answer:4 bits

4 bits form a NIBBLE.
8 bits form a BYTE.
1 0 1 0 0 0 1 1, How many Bits, Nibbles and Bytes?

Answer :8 bits ,2 Nibbles and 1 byte

STUDENTS-HUB.com

Binary System

Two bytes form a WORD and two words form a DOUBLE WORD.

EX: 0000 1111 1010 1010 : 16 bits , WORD

STUDENTS-HUB.com

3. Octal System

✤Uses 8 digits 0,1,2,3,4,5,6,7

The base is 8

◆EX (123)₈ , (156)₈

STUDENTS-HUB.com

4. Hexadecimal System

Uses 16 digits 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

The base is 16

*****EX: 123h , 456h 0E120h

STUDENTS-HUB.com

Numbering Systems Conversion Table

Decimal	Binary	Octal	Hexadecimal
Base-10	Base-2	Base-8	Base-16
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

STUDENTS-HUB.com

LAB:

Complete Previous Table to 32

16	10000	20	10
17	10001	21	11
18	10010	22	12
19	10011	23	13
20	10100	24	14
21	10101	25	15
22	10110	26	16
23	10111	27	17
24	11000	30	18
25	11001	31	19
26	11010	32	1A
27	11011	33	1B
28	11100	34	1C
29	11101	35	1D
30	11110	36	1E
31	11111	37	1F
32	100000	40	20

STUDENTS-HUB.com

Suppose we need to develop new system with base 5,7 or 3?

Base 5 : 0,1,2,3,4 Base 7 : 0,1,2,3,4,5,6 Base 3: 0,1,2

STUDENTS-HUB.com

B. Converting between Numbering Systems

STUDENTS-HUB.com

1. Binary -- to-- Decimal Conversion

The Process : Weighted Multiplication

- a) Multiply each bit of the *Binary Number* by it corresponding *bit-weighting factor* (i.e. Bit- $0 \rightarrow 2^0=1$; Bit- $1 \rightarrow 2^1=2$; Bit- $2 \rightarrow 2^2=4$; etc).
- **b)** Sum up all the products in step (a) to get the *Decimal Number*.

Example:

Convert the decimal number 0110_2 into its decimal equivalent.

STUDENTS-HUB.com

Examples: Binary to Decimal

✤ 10110b $1^{24}+0^{23}+1^{22}+1^{21}+0^{20}=$ $16+0+4+2=(22)_{10}$ 1010b =?? , 0010b = ?? , 101b=?? **Answer:** 1010b=(10)₁₀ **0010b=(2)**₁₀

101b=(5)₁₀

STUDENTS-HUB.com

Example with fractions: (1101.01)₂ to Decimal

$$(1101.01)_{2} = 1 \times 2^{0} + 0 \times 2^{1} + 1 \times 2^{2} + 1 \times 2^{3} + 0 \times 2^{-1} + 1 \times 2^{-2}$$

= 1 \times 1 + 0 \times 2 + 1 \times 4 + 1 \times 8 + 0 \times 1/2 + 1 \times 1/4
= 1 + 0 + 4 + 8 + 0 + 0.25
= (13.25)_{10}

2. Decimal -- to-- Binary Conversion

The Process : Successive Division

- a) Divide the *Decimal Number* by 2; the remainder is the LSB of *Binary Number*.
- b) If the **quotation** is zero, the conversion is complete; else repeat step (a) using the quotation as the Decimal Number. The new remainder is the next most significant bit of the *Binary Number*.

Example:

Convert the decimal number 6_{10} into its binary equivalent.

STUDENTS-HUB.com

Dec \rightarrow Binary Example 1 (22) 10

(22) $_{10} = ()_2$		
Input	Result	Remainder
22/2	11	0
11/2	5	1
5/2	2	1
2/2	1	0
1/2	0	1
	(22) ₁₀ = (10110	2

STUDENTS-HUB.com

$Dec \rightarrow Binary Example 2$

Example:

Convert the decimal number 26_{10} into its binary equivalent.

Solution:

$$2 \int \frac{13}{26} \quad r = 0 \leftarrow LSB$$

$$2 \int \frac{6}{13} \quad r = 1$$

$$2 \int \frac{3}{6} \quad r = 0$$

$$2 \int \frac{1}{3} \quad r = 1$$

$$2 \int \frac{1}{3} \quad r = 1$$

$$r = 1 \leftarrow MSB$$

STUDENTS-HUB.com

$Dec \rightarrow Binary Example 3$

Example:

Convert the decimal number 41_{10} into its binary equivalent.

Solution:

STUDENTS-HU

 $2\overline{)}$ 41 r = 1 \leftarrow LSB $2 \overline{) 20} r = 0$ $\frac{5}{2 \cdot 10}$ r = 0 $\therefore 41_{10} = 101001_2$ 2)5 r = 1 $2\overline{)2}$ r=0 $2\overline{)1}$ r=1 \leftarrow MSB

Dec \rightarrow Binary : More Examples (LAB)

a)
$$13_{10} = ?$$

b) $22_{10} = ?$
c) $43_{10} = ?$
d) $158_{10} = ?$

STUDENTS-HUB.com

$Dec \rightarrow Binary : More Examples (LAB)$

a)
$$13_{10} = ?$$
 1 1 0 1 ₂

b) $22_{10} = ?$ 10110₂

c) $43_{10} = ?$ 101011₂

d) $158_{10} = ?$ 10011110₂

STUDENTS-HUB.com

3. Binary -to- Octal Conversion

 $100101010b = ()_8$

100 101 010 = $(452)_8$

 $111000111b = ()_8$

111 000 111 = (707)_8

STUDENTS-HUB.com

Uploaded By: ano²⁵ymous

Binary to Octal (LAB)

* $100101011b = (453)_8$ * $10110101b = ()_8$ H.W * $100101001b = ()_8$ H.W

4. Binary -- to-- Hexadecimal Conversion

 $10010101b = ()_{h}$

1001 0101 =(95h)

11100011b = (E3h)

STUDENTS-HUB.com

5. Decimal -- to-- Hexadecimal Conversion

Let's convert the value (39) 10 to Hexadecimal

(39) ₁₀ = (27h)

STUDENTS-HUB.com

(LAB Work)

Covert the following numbers to decimal

(72)₈, (72)₁₆, (DE1)₁₆

a.
$$(72)_8 = (58)_{10}$$

b. $(72)_{16} = (114)_{10}$
c. $(DE1)_{16} = (3553)_{10}$

STUDENTS-HUB.com

Using pen and paper , solve the following questions :

- a. (AB) ₁₆ =()₂
- b. (23)₄=()₈
- C. (35)₇=()₈
- d. (72E) ₁₆ =()₈

STUDENTS-HUB.com

Binary Addition

H.W Solve Question 7 , lab 1 , page 9

STUDENTS-HUB.com

Fractions & Conversions

STUDENTS-HUB.com

Fractions

• Decimal to decimal (just for fun)

$$3.14 \implies 4 \times 10^{-2} = 0.04 \\ 1 \times 10^{-1} = 0.1 \\ 3 \times 10^{0} = 3 \\ 3.14$$

STUDENTS-HUB.com

Uploaded By: ano³³ymous

1. Fractions: Binary to Decimal Conversion

Example

10.1011 =>

$$1 \times 2^{-4} = 0.0625$$

$$1 \times 2^{-3} = 0.125$$

$$0 \times 2^{-2} = 0.0$$

$$1 \times 2^{-1} = 0.5$$

$$0 \times 2^{0} = 0.0$$

$$1 \times 2^{1} = 2.0$$

$$2.6875$$

STUDENTS-HUB.com

2. Fractions: Decimal to Binary Conversion

- Multiply the decimal number by 2 repeatedly.
- Use the integer part as the next digit each time, and then discard the integer
- When the fraction part is zero, we have an exact conversion
- Add trailing zeros to obtain the desired size
- Example: Convert 0.625 to binary

.625*2 = 1.25	.1
.25*2 = 0.50	.10
.5*2 = 1.00	.101

Uploaded By: ano³⁵ymous

Fractions: 3.14579

<u>Note</u>: some decimal fractions don't have an exact representation in binary. 0.375 does have! $(0.375 \rightarrow 0.75 \rightarrow 0.5 \rightarrow 0)$

STUDENTS-HUB.con 0.3 does not have an exact representation !

3. Fractions: Decimal to Hexadecimal Conversion

Example: Convert to Hex. $:(394.36)_{10}$

STUDENTS-HUB.com

Exercise – (LAB)

Decimal	Binary	Octal	Hexa- decimal
29.8	11101.110011	35.63	1D.CC
5.8125	101.1101	5.64	5.D
3.109375	11.000111	3.07	3.1C
12.5078125	1100.10000010	14.404	C.82

STUDENTS-HUB.com

Uploaded By: ano³⁸ymous