
26/05/2025

1

UNDERSTANDING API SECURITY

Ahmad Hamo
17-5-2025

STUDENTS-HUB.com

https://students-hub.com

26/05/2025

2

Introduction to API Security

• What is APIs Security?

• APIs Security Mechanisms

• Authentication

– Authentication Methods

• Authorization

– OAuth 2.0

– Access Control Types

• API Security Best Practices

• Open Web Application Security Project (OWASP)

– OWASP Top 10 API Security Risks

What is API Security?
• API Security refers to methods that prevent malicious attacks

on application program interfaces (API).

• API security lies at the intersection of three security areas:

– Information security,

– Network security, and

– Application security.

STUDENTS-HUB.com

https://students-hub.com

26/05/2025

3

Aligning API Security with Compliance
Requirements

• In today's digital environment, APIs are subject to various
regulatory and compliance standards that dictate how data
should be handled and protected. These standards include
the GDPR, HIPAA, FedRAMP, and other frameworks.

• Compliance is not just a legal necessity; it's a crucial aspect of
building trust and credibility with users and stakeholders.
Compliance means ensuring that all data exchanges, storage,
and processing meet the specified standards for APIs

API Security with Compliance Requirements

• Security-First Design: Security begins at the code level, and poor security
practices at the beginning of the process cannot be solved on the backend
by security band-aids.

• Data Protection and Privacy: Implementing measures to safeguard
personal and sensitive data, as laws like GDPR require. This includes data
encryption, secure data transfer, and ensuring data is processed for
legitimate purposes.

• Access Control: Ensuring that only authorized individuals or systems can
access or manipulate data. This is particularly relevant for APIs dealing with
health-related information, where HIPAA compliance requires strict access
controls.

• Audit Trails and Record-Keeping: Maintaining comprehensive logs of data
access and transfers through APIs, a requirement under various compliance
frameworks. This aids in auditability and transparency.

STUDENTS-HUB.com

https://students-hub.com

26/05/2025

4

APIs Security Mechanisms

Encryption via HTTPS protocol

Prevents DoS attacks

Security Mechanisms

• Encryption ensures that data can’t be read by unauthorized parties,
either when it is being transmitted from the API to a client or at rest in
a database or filesystem.

• Authentication is the process of ensuring that your users and clients
are who they say they are.

• Access control (also known as authorization) is the process of ensuring
that every request made to your API is appropriately authorized.

• Audit logging is used to ensure that all operations are recorded to allow
accountability and proper monitoring of the API.

• Rate-limiting is used to prevent any one user (or group of users) using
all of the resources and preventing access for legitimate users.

STUDENTS-HUB.com

https://students-hub.com

26/05/2025

5

Authentication vs. authorization
Authentication Authorization

Determines whether users are who they claim to be Determines what users can and cannot access

Challenge the user to validate credentials (for

example, through passwords, answers to security

questions, or facial recognition)

Verifies whether access is allowed through policies
and rules

Happen before authorization Happen after successful authentication

Generally, transmits info through an ID Token. Generally, transmits information through an Access

ID tokens are used in token-based authentication to Token
cache user profile information and provide it to a

client application,

Generally governed by the OpenlD Connect (OIDC) Generally governed by the OAuth 2.0 framework
protocol

Example: Employees in a company are required to

authenticate through the network before accessing

their company email

Example: After an employee successfully

authenticates, the system determines what
information the employees are allowed to access

What is Authentication?

• Definition: Who are you?
• Authentication is something you know, something you have, or

something you are.
• Modern Extensions:

– Somewhere You Are (Location Factor)
– Something You Do (Behavioural Biometrics)

• Example: Logging in with username/password.
• Without authentication:

– Anyone can access anything.
– High risk of abuse and data manipulation.

STUDENTS-HUB.com

https://students-hub.com

26/05/2025

6

Why Use Authentication?

• Prevent unauthorized access.

• Track user behavior.

• Enable personalized experiences.

• Required for secure public APIs.

• Helps in:

– User analytics

– Secure transactions

– Role-based permissions

Authentication Methods Overview

• HTTP Basic Auth: user needs to provide user ID and password.

• API Key: user needs to provide a unique identifier configured
for each API

• Token: generated by an Identity Provider (IdP)

• Session Cookies

• OpenID Connect

STUDENTS-HUB.com

https://students-hub.com

26/05/2025

7

Basic Auth – The Double-Edged Sword

- Base64-encoded username:password in headers.

- Example:
Authorization: Basic dXNlcjpwQHNzdzByZA==

Problems:
-❌ Credentials exposed if intercepted.
-❌ No encryption without HTTPS.

-❌ You have to send username: password by each request.

- Use Case: Legacy systems/internal tools (with HTTPS).

Introduction to Basic Authentication

• Definition:
– Basic: Simple.
– Authentication: Proving identity (e.g., username/password).
– Combined: A simple way to verify identity for API access.

• How It Works:
– APIs require identity verification before granting access.
– Basic Auth sends a username and password over HTTPS (encrypted).
– Insecure Aspect: Repeatedly transmitting credentials increases interception

risk.

• Historical Context:
– Introduced in 1999.
– Still used today but often replaced by more secure methods (e.g., OAuth).

STUDENTS-HUB.com

https://students-hub.com

26/05/2025

8

Using Basic Auth in Practice

• Demo with Postman:
1. Access an API (e.g., Postman Echo) without credentials → “Unauthorized” error.

2. Add username (postman) and password (password) → “Authenticated: true”
response.

• Technical Details:
– Credentials are sent in the Authorization header as a base64-encoded

string.
• Example: Authorization: Basic b3N0bWFuOnBhc3N3b3Jk (decodes to

postman:password).

• Security Limitation:
– Base64 is not encryption—credentials can be decoded easily.

– Always use HTTPS to prevent interception.

Demo – postman – without cred.

STUDENTS-HUB.com

https://students-hub.com

26/05/2025

9

Demo – Postman with auth.

Why not use HTTP Basic Authentication?

Repeatedly sending username
and password.

→Functional, but Risky

STUDENTS-HUB.com

https://students-hub.com

26/05/2025

10

API Keys – Convenience at a Cost

How They’re Used:
- Query strings: ?api_key=123 (❌ Risky).

- Headers: X-API-Key: 9038-20380-9398 (✅ Better).

Security Flaws:
-🔓 Keys leak in logs/URLs.
-🔓 No built-in expiration.

Mitigation: (1)Rotate keys frequently; (2)use IP whitelisting.

API Keys vs. HTTP Basic Authentication

Feature API Key HTTP Basic Authentication

Authentication Method A static, predefined key sent in headers/URL.
A username & password encoded in
Base64.

How It's Sent
Usually in headers (x-api-key: abc123) or URLs
(?api_key=value).

In the Authorization header (Basic
base64(username:password)).

Security Level Low (if leaked, full access is granted).
Very low (Base64 is easily decoded;
should always use HTTPS).

Usage
Common for machine-to-machine APIs (e.g.,
weather APIs, payment gateways).

Rarely used today; replaced by tokens
(OAuth, JWT) for user auth.

Example Request
http GET /data HTTP/1.1 Host:
api.example.com x-api-key: abc123

http GET /data HTTP/1.1 Host:
api.example.com Authorization: Basic
dXNlcjoxMjM=

Best For
Server-to-server communication where
simplicity is key.

Legacy systems; rarely recommended
for modern APIs.

STUDENTS-HUB.com

https://students-hub.com

26/05/2025

11

Bearer Tokens – The Modern Standard

- Stateless JWT sent in headers:
Authorization: Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9...

Advantages:
-✅ Scalable (no server-side sessions).
-✅ Fine-grained expiration/scopes.

Introduction to Bearer Tokens
• Definition:

– A bearer token is a credential that grants access to an API.

– Split into two parts:

• Bearer: The holder of the token (e.g., “I am a bearer of a pen”).

• Token: A tool to gain access (e.g., casino chips or subway tokens).

• Key Characteristics:

– Originated in 2012 as part of OAuth 2.0 (RFC 6750).

– No authentication or identification—anyone with the token can use it.

– Must be protected from unauthorized access (use HTTPS for encryption).

• Example:

– Sending a bearer token to an API grants access, regardless of user identity.

STUDENTS-HUB.com

https://students-hub.com

26/05/2025

12

How Bearer Tokens Work

• Usage in APIs:

– Sent in the Authorization header with the format: Bearer <token_value>.

– Example: Authorization: Bearer shy%^bgfdd.

• Demo with httpbin.org:

1. Call /bearer without a token → Unauthorized.

2. Add token in Postman (e.g., “somepassword”) → Access granted.

• RFC 6749 Specification:

– Mandates the Bearer prefix in the header.

– Tokens must be protected in storage and transport to prevent misuse.

• Access Token vs. Bearer Token:

– Access tokens have an expiration; bearer tokens do not (unless revoked).

Bearer - Demo

STUDENTS-HUB.com

https://students-hub.com

26/05/2025

13

Token-Based Authentication

1. Client makes request to a
dedicated login endpoint with
the user’s credentials.

2. In response, the login
endpoint returns a time-
limited token.

3. The client then sends that
token on requests to other API
endpoints that use it to
authenticate the user.

4. API endpoints can validate the
token by looking it up in the
token database.

Web- and Token Storage

• Web Storage for
storing tokens on the
client.

• The Bearer
authentication
scheme provides a
standard way to
communicate tokens
from the client to the
API, and

• a Token Store can be
manually
implemented on the
backend.

STUDENTS-HUB.com

https://students-hub.com

26/05/2025

14

API Keys vs. Tokens

Feature API Key Token (e.g., JWT, OAuth)

Purpose
Simple authentication, often used for API
access.

Authentication & authorization
(may include user permissions).

Structure
Usually a long, random string (e.g., x-api-key:
abc123...).

Can be structured (e.g., JSON Web
Token—JWT) with encoded data.

Security
Less secure—sent as-is; if leaked, it grants
full access.

More secure—can expire, be
scoped, or include signatures.

Usage
Typically added in headers or URLs (e.g.,
?api_key=xyz).

Sent in headers (e.g., Authorization:
Bearer <token>).

Lifespan Often long-lived or manually rotated.
Can be short-lived (e.g., expiring in
hours) or refreshable.

Example x-api-key: 123abc... Authorization: Bearer eyJhbGciOi...

Session Cookie Authentication
1. User logs in
2. Server sends a Set-

Cookie header on the
response with a
session token.

3. On subsequent
requests to the same
server, the browser
will send the session
token back in a
Cookie header,

4. which the server can
then look up in the
token store to access
the session state.

STUDENTS-HUB.com

https://students-hub.com

26/05/2025

15

Authentication using Session Management
• OG Method (Old Generation)

• Sessions are Stateful

• Cons.: scalability problems

with large number of users

JWT is preferred by modern apps

, because it scales better.

OpenID Connect – Identity + OAuth

• OpenID Connect is an identity layer built on top of OAuth 2.0
that enables secure user authentication and single sign-on
(SSO).

• It allows applications to verify a user's identity using an Identity
Provider (IdP) (e.g., Google, Microsoft, Facebook, ..)

• Features:
– Authentication (Not Just Authorization)

– Standardized Identity Data (ID Token + additional user details)

– Single Sign-On (SSO)

– Users log in once with an IdP (e.g., Google) and access multiple apps
without re-entering credentials.

STUDENTS-HUB.com

https://students-hub.com

26/05/2025

16

OpenID Connect – Identity + OAuth

What It Adds:
- Standardized ID Token (JWT) with user claims:
{ "name": "Jane Doe", "email": "jane@example.com" }

- Discovery Endpoint:
/.well-known/openid-configuration for metadata.
Use Case: Single Sign-On (SSO) across applications.

What is Authorization?

• Definition: What do you want to do?

• Determines what actions a user can perform.

• Example:

– Read-only users vs. Admins

• Often follows authentication.

STUDENTS-HUB.com

https://students-hub.com

26/05/2025

17

Example Authorization

Introducing OAuth2.0
• Open standard for authorization.

• Allows third-party services to access resources on behalf of a
user.

• OAuth 2.0 defines multiple grant types (flows) for different use
cases.

• Each flow determines how an application obtains an access
token:
– Authorization Code : for Web apps with a backend

– Implicit: Old SPAs (avoid)

– Password: Trusted first-party apps.

– Client Credentials: Server-to-server APIs (no user).

STUDENTS-HUB.com

https://students-hub.com

26/05/2025

18

OAuth 2.0 – The Gold Standard

Core Components:
1. Access Token: Short-lived (minutes/hours).
2. Refresh Token: Long-lived (days/months).

Why It’s Secure:
-🔑 Tokens are scope-limited (e.g., read:contacts).
-⏳ Tokens expire, reducing breach impact.

OAuth flow: (User → Auth Server → Client).

Authentication using OAuth2

STUDENTS-HUB.com

https://students-hub.com

26/05/2025

19

Role Based Access Control - RBAC

• Away for Defining Authorization

• Assigning Roles and Actions:

– Define Roles (admin, editor, guest, …)

– Define Permissions to each Role (CRUD, …)

– Assign Roles to the users

– A user can have one or more roles

– Example

Attribute Based Access Control - ABAC

• Away for granular defining Authorization

• Flexible: Access based on Attributes of the user, resource or
environment

• User Attributes:

• Resource Attributes:

• Environmental Attributes:

• Example:

STUDENTS-HUB.com

https://students-hub.com

26/05/2025

20

Steps for Individual Auth

1. Collect username/password via form or header.

2. Hash password using bcrypt.

3. Compare hash with stored value in DB.

4. If match → create JWT token.

5. Return token to client.

6. Client uses token in future requests.

Encryption & Hashing

• Encryption scrambles data that can be decoded with a key. The

intent is to pass the information to another party, and the recipient will

use keys to decipher the data.

• The main example of this is HTTPS with TLS, where a certificate is

used and installed on a server to allow a client and the server to

generate a symmetric keypair for communication.

• Hashing also scrambles data, but the intent is to prove its

authenticity. Administrators can run a check on hashed data to

determine the contents haven't been touched or altered while in

storage. No deciphering key exists.

STUDENTS-HUB.com

https://www.youtube.com/watch?v=86cQJ0MMses
https://students-hub.com

26/05/2025

21

API Security Best Practices
(1) Use Encryption

Organisations using APIs which routinely exchange sensitive data (such as login credentials,
credit card, social security, banking information, health information), TLS encryption should
be considered essential.

(2) Use Strong Authentication and Authorisation

Poor authentication or non-existent authorisation are major issues with many publicly
available APIs. They provide an entry point to an organisation’s databases, it’s critical that
the organisation strictly controls access to them.

(3) Prioritise API Security

• One of the key battles with API security is that it is sometimes considered
when it is too late.

• Another issue is that API security is someone else’s issue.

(4) Be Aware of all APIs

Whether an organisation has one or hundreds of publicly available APIs,
building an inventory of all the APIs so that they can be secured and managed
using perimeter scans, along with insight from developers, to create an
inventory of all APIs is the best place to begin.

STUDENTS-HUB.com

https://students-hub.com

26/05/2025

22

(5) Practice the Principle of Least Privilege

• It is a security principle that effectively holds that the
subjects/entities (users, processes, programs, systems, devices) are
only ever granted the minimum necessary access rights to complete
a required function.

• This is something that applies more broadly to all IT systems, and it
should be applied equally to APIs.

(6) Don’t Expose More than is Necessary

One of the biggest issues with APIs is that they are designed to allow
for the exchange of data. In short, APIs can reveal more information
than necessary.

(7) Always Validate Input

• All input data must be validated, and anything that is too big
or doesn’t comply with required checks must be rejected.

• Ensure injection exploits are prevented.

(8) Ensure all OWASP Vulnerabilities are Secured

• The OWASP (Open Web Application Security Project) Top 10 is
a list of the ten worst vulnerabilities.

• It should be ensured that systems have been secured for
these vulnerabilities.

STUDENTS-HUB.com

https://students-hub.com

26/05/2025

23

(9) Implement an API Management Solution

Good API management solution will help make sense of API
data, and establish secure API practices.

(10) Get Help from Security Experts

The world of cybersecurity is enormously challenging and
continuously evolving with new threats appearing daily.
Partnering with experienced cybersecurity experts who know
exactly what’s needed to secure enterprise level API based
systems, is often the best API security solution.

OWASP Overview

Open Web Application Security Project (OWASP)
- Non-profit organization
- Vision: “No more insecure software”
- Mission: Promote secure software through education and
collaboration
- Known for Top 10 lists (Web & API security risks)

STUDENTS-HUB.com

https://students-hub.com

26/05/2025

24

What is OWASP?

• Community-led open source project

• 250+ local chapters globally

• Provides standards, tools, and documentation

• Resources available at owasp.org

Unsafe Consumption of APIs

Risk #10
- Developers trust 3rd-party API data without validation

Attack Vector: Compromised 3rd-party APIs

Weakness: 3rd-party APIs are trusted and not verified

Impact:
- Sensitive data exposure
- Injection attacks
- Data leakage

STUDENTS-HUB.com

https://owasp.org/
https://students-hub.com

26/05/2025

25

Vulnerabilities (Unsafe Consumption)

• Unencrypted API interactions

• No data validation/sanitization

• Blindly following API redirects

• No timeouts for 3rd-party service interactions

Mitigation Strategies

• Use encryption (SSL/TLS)

• Validate & sanitize all data

• Implement allow lists for input validation

• Use strict data type constraints

• Deploy API gateways for filtering/monitoring

STUDENTS-HUB.com

https://students-hub.com

26/05/2025

26

Improper Inventory Management

Risk #9
- Poor tracking of API versions/endpoints

Attack Vector: Old/deprecated APIs with weak security

Impact:
- Sensitive data exposure
- Remote server takeover

Vulnerabilities (Inventory)

Documentation Blind Spots:
- Missing environment details
- Outdated documentation
- No retirement strategy

Data Flow Blind Spots:
- Unjustified 3rd-party data sharing
- No visibility into data flows

STUDENTS-HUB.com

https://students-hub.com

26/05/2025

27

Mitigation Strategies

• Maintain up-to-date API inventory

• Document all API aspects comprehensively

• Limit access to documentation

• Decommission unused APIs

• Avoid production data in non-production environments

Security Misconfiguration
Risk #8 APIs not securely configured

Attack Vector: Unpatched flaws, unsecured endpoints

Impact:
- Sensitive data exposure
- Full system compromise

Vulnerabilities (Misconfiguration):
– Missing security hardening

– Outdated security patches

– No TLS/CORS policies

– Overly verbose error messages

STUDENTS-HUB.com

https://students-hub.com

26/05/2025

28

Mitigation Strategies

• Secure APIs early in development

• Review/update security configurations

• Use automated tools for detection/remediation

Server-Side Request Forgery (SSRF)
Risk #7 Attacker manipulates server-side requests

Attack Vector: API that accesses client-provided URIs

Impact:
- Sensitive data exposure
- Remote code execution

Vulnerabilities (SSRF):

– No validation of user-supplied URLs

– Common in modern features (webhooks, URL previews)

– Difficult to limit outbound traffic

STUDENTS-HUB.com

https://students-hub.com

26/05/2025

29

Mitigation Strategies

• Isolate resource fetching

• Use allow lists for URLs

• Disable HTTP redirections

• Validate/sanitize all inputs

• Never send raw responses

Unrestricted Access to Sensitive Business Flows

Risk #6 APIs expose critical business processes
Attack Vector: Exploiting business model APIs
Impact: Business harm (e.g., inventory hoarding)

Vulnerabilities (Business Flows): Examples:-
- Product purchasing flows
- Comment/post creation
- Reservation systems

STUDENTS-HUB.com

https://students-hub.com

26/05/2025

30

Mitigation Strategies

• Identify abusable business flows

• Implement protection mechanisms:

– Device fingerprinting

– CAPTCHA/biometrics

– Least privilege principle

Broken Function Level Authorization

Risk #5 Users access privileged functions
Attack Vector: Non-privileged user accessing admin endpoints
Impact:

- Data loss/corruption
- Service disruption

Vulnerabilities (Authorization):

– Access to admin API endpoints

– Unauthorized CRUD operations

STUDENTS-HUB.com

https://students-hub.com

26/05/2025

31

Unrestricted Resource Consumption
Risk #4 - API resource starvation
Attack Vector: DDoS attacks
Impact:
- Service disruption
- Increased cloud costs

Vulnerabilities (Resource): Missing limits on:-

– Execution time

– Memory allocation

– File descriptors

– Upload sizes

Denial of Service

• DoS: (Denial of Service)
• A single source (e.g., one attacker)

• Easier to execute but simpler to block

• DDoS: (Distributed Denial of Service)
• Attacks from many sources simultaneously, often via a botnet

• Very difficult to stop and extremely damaging

STUDENTS-HUB.com

https://students-hub.com

26/05/2025

32

Mitigation Strategies

• Set resource limits (CPU/memory)

• Implement rate limiting

• Use server-side validation

• Set cloud spending limits

• Implement caching

Broken Object Property Level Authorization
Risk #3 Unauthorized access to object properties
Attack Vector: Inspecting API responses
Impact:
- Data disclosure
- Account takeover

Vulnerabilities (Object Property):

– Excessive data exposure

– Unauthorized CRUD on sensitive properties

GET /api/users/123
Authorization: Bearer <valid_token>

{
"userId": 123,
"name": "Alice",
"email": "alice@example.com",
"accountBalance": 1000 // Only admins

should see this!
}

GET /api/users/456
Authorization: Bearer <valid_token>

{
"userId": 456,
"name": "Alice",
"email": "alice@example.com",
"accountBalance": 5000 // Only admins

should see this!
}

STUDENTS-HUB.com

https://students-hub.com

26/05/2025

33

Mitigation Strategies

• Implement property-level access checks

• Validate user permissions

• Cherry-pick returned properties: selectively extracting specific
fields or attributes from an object, API response, or dataset while
ignoring the rest.

• Use Attribute-Based Access Control (ABAC): grants or denies
access to resources based on attributes of the user, resource,
action, and environment.

Broken Authentication
Risk #2 Weak authentication mechanisms
Attack Vector: Brute force attacks
Impact:
- Full account compromise
- Private data access

Vulnerabilities (Authentication):

– No CAPTCHA/account lockouts

– Weak passwords/JWT tokens

– Sensitive data in URLs

– No token validation

STUDENTS-HUB.com

https://students-hub.com

26/05/2025

34

Mitigation Strategies

• Strong password policies

• Secure password storage (Bcrypt/Argon2)

• Multi-Factor Authentication (MFA)

• Anti-brute force mechanisms

Broken Object-Level Authorization

Risk #1 (BOLA) - Access to other users’ data
Attack Vector: Manipulating object IDs
Impact:

- Data disclosure/manipulation

Vulnerabilities (BOLA):

– Missing object-level authorization checks

– Insecure coding practices

STUDENTS-HUB.com

https://students-hub.com

26/05/2025

35

Mitigation Strategies

• Implement strong authorization

• Use UUIDs instead of sequential IDs

• Adopt zero trust security

• Test authorization mechanisms

Other API Security Best Practices …

1. Rate limiting/throttling

2. API gateways

3. Versioning

STUDENTS-HUB.com

https://students-hub.com

26/05/2025

36

Security Design Principles (1/3)

• Least Privilege: An entity should only have the required set of permissions to
perform the actions for which they are authorized, and no more. Permissions
can be added as needed and should be revoked when no longer in use.

• Fail-Safe Defaults: A user’s default access level to any resource in the system
should be “denied” unless they’ve been granted a “permit” explicitly. Base
access decisions on permission rather than exclusion.

• The economy of Mechanism: The design should be as simple as possible. All
the component interfaces and the interactions between them should be
simple enough to understand. Keep the design as simple and small as
possible

REST Security Design Principles (2/3)

• Complete Mediation: A system should validate access rights to all its
resources to ensure that they’re allowed and should not rely on the
cached permission matrix. If the access level to a given resource is being
revoked, but that isn’t reflected in the permission matrix, it would violate
the security.

• Open Design: The Principle of Open Design says that “your system security
shouldn’t rely on the secrecy of your implementation”. This is a
particularly important principle for security concepts like cryptographic
implementations. Well-designed cryptography implementations are
published publicly. The design should not be secret.

STUDENTS-HUB.com

https://students-hub.com

26/05/2025

37

REST Security Design Principles (3/3)

• Separation of Privilege: Granting permissions to an entity should not be purely
based on a single condition, a combination of conditions based on the type of
resource is a better idea. Such as Separating system functions like read, edit,
write, execute, etc.

• Least Common Mechanism: It concerns the risk of sharing state among
different components. If one can corrupt the shared state, it can then corrupt
all the other components that depend on it.
- we don’t reuse passwords from service accounts and other subjects.

• Psychological Acceptability: It states that security mechanisms should not
make the resource more difficult to access than if the security mechanisms
were not present. In short, security should not make worse the user
experience.

PCI Compliance for APIs

Core Principles:
1. Secure network/systems
2. Protect cardholder data
3. Vulnerability management
4. Strong access controls
5. Regular monitoring
6. Security policies

STUDENTS-HUB.com

https://students-hub.com

