STUDENTS-HUB.com

UNDERSTANDING API SECURITY

Ahmad Hamo
17-5-2025

fed] |

ENCRYPTION

26/05/2025

https://students-hub.com

STUDENTS-HUB.com

Introduction to API Security

* What is APIs Security?
* APIs Security Mechanisms
* Authentication
— Authentication Methods
* Authorization
— OAuth 2.0
— Access Control Types
* API Security Best Practices
* Open Web Application Security Project (OWASP)
— OWASP Top 10 API Security Risks

What is APl Security?

API Security refers to methods that prevent malicious attacks
on application program interfaces (API).

APl security lies at the intersection of three security areas:
API security

— Information security,
— Network security, and

— Application security. Application

security

security

Information
security

26/05/2025

https://students-hub.com

STUDENTS-HUB.com

Aligning API Security with Compliance
Requirements

In today's digital environment, APIs are subject to various
regulatory and compliance standards that dictate how data
should be handled and protected. These standards include
the GDPR, HIPAA, FedRAMP, and other frameworks.

Compliance is not just a legal necessity; it's a crucial aspect of
building trust and credibility with users and stakeholders.
Compliance means ensuring that all data exchanges, storage,
and processing meet the specified standards for APIs

APl Security with Compliance Requirements

Security-First Design: Security begins at the code level, and poor security
practices at the beginning of the process cannot be solved on the backend
by security band-aids.

Data Protection and Privacy: Implementing measures to safeguard
personal and sensitive data, as laws like GDPR require. This includes data
encryption, secure data transfer, and ensuring data is processed for

legitimate purposes.

Access Control: Ensuring that only authorized individuals or systems can
access or manipulate data. This is particularly relevant for APIs dealing with
health-related information, where HIPAA compliance requires strict access
controls.

Audit Trails and Record-Keeping: Maintaining comprehensive logs of data
access and transfers through APIs, a requirement under various compliance
frameworks. This aids in auditability and transparency.

26/05/2025

https://students-hub.com

Encryption

Encryption prevents data
being stolen or modified in

transit or at rest. — i “
\ \ / e Your API
User : '

Clients”

26/05/2025

APIs Security Mechanisms

Prevents DoS attacks

Rate-limiting rejects
requests when the
API is overloaded. An audit log records

via HTTPS protocol \ Authentication ensures who did what and when.
users are who they f

say they are.

Web browser « E,’ E g);v
A=Y a
/' HTTpg = 3 >]
g_: g 5, § Application
35 = - - i
Mobl\e app Q = g S logic
e
" x /
/ / / \ N\ 74 :
(\ \ /
\ \ \\-. | /o
\ — |‘ -
Rejected ~— "~ - / - Access control decides
requests Security controls whether a request is

STUDENTS-HUB.com

allowed or denied.

Security Mechanisms

Encryption ensures that data can’t be read by unauthorized parties,
either when it is being transmitted from the API to a client or at rest in

a database or filesystem.

Authentication is the process of ensuring that your users and clients
are who they say they are.

Access control (also known as authorization) is the process of ensuring
that every request made to your APl is appropriately authorized.

Audit logging is used to ensure that all operations are recorded to allow
accountability and proper monitoring of the API.

Rate-limiting is used to prevent any one user (or group of users) using
all of the resources and preventing access for legitimate users.

https://students-hub.com

26/05/2025

Authentication vs. authorization

Authentication Authorization

Determines whether users are who they claim to be Determines what users can and cannot access

Challenge the user to validate credentials (for Verifies whether access is allowed through policies
example, through passwords, answers to security ~ and rules
guestions, or facial recognition)

Happen before authorization Happen after successful authentication
Generally, transmits info through an ID Token. Generally, transmits information through an Access

ID tokens are used in token-based authentication to Token
cache user profile information and provide it to a

client application,

Generally governed by the OpenID Connect (OIDC) Generally governed by the OAuth 2.0 framework
protocol

Example: Employees in a company are required to ~ Example: After an employee successfully
authenticate through the network before accessing authenticates, the system determines what
their company email information the employees are allowed to access

What is Authentication?

* Definition: Who are you?
* Authentication is something you know, something you have, or
something you are.

* Modern Extensions:
— Somewhere You Are (Location Factor)
— Something You Do (Behavioural Biometrics)

* Example: Logging in with username/password.
* Without authentication:

— Anyone can access anything.
— High risk of abuse and data manipulation.

STUDENTS-HUB.com 5

https://students-hub.com

26/05/2025

Why Use Authentication?

* Prevent unauthorized access.
* Track user behavior.
* Enable personalized experiences.
* Required for secure public APIs.
* Helpsin:
— User analytics

— Secure transactions
— Role-based permissions

Authentication Methods Overview

e HTTP Basic Auth: user needs to provide user ID and password.

* API Key: user needs to provide a unique identifier configured
for each API

* Token: generated by an Identity Provider (IdP)
* Session Cookies
* OpenlD Connect

STUDENTS-HUB.com 6

https://students-hub.com

Basic Auth — The Double-Edged Sword

- Baseb4-encoded username:password in headers.

- Example:
Authorization: Basic dXNlcjpwQHNzdzByZA==

Problems:
- X Credentials exposed if intercepted.
- X No encryption without HTTPS.

- X You have to send username: password by each request.

STUDENTS-HUB.com

Use Case: Legacy systems/internal tools (with HTTPS).

Introduction to Basic Authentication

Definition:

— Basic: Simple.

— Authentication: Proving identity (e.g., username/password).

— Combined: A simple way to verify identity for APl access.

How It Works:

— APIs require identity verification before granting access.

— Basic Auth sends a username and password over HTTPS (encrypted).

- Ipskecure Aspect: Repeatedly transmitting credentials increases interception
risk.

Historical Context:

— Introduced in 1999.

— Still used today but often replaced by more secure methods (e.g., OAuth).

26/05/2025

https://students-hub.com

STUDENTS-HUB.com

26/05/2025

Using Basic Auth in Practice

Demo with Postman:

1. Access an API (e.g., Postman Echo) without credentials > “Unauthorized” error.

2. Add username (postman) and password (password) = “Authenticated: true”
response.

Technical Details:

— Credentials are sent in the Authorization header as a base64-encoded
string.
* Example: Authorization: Basic b3NObWFuOnBhc3N3b3Jk (decodes to

postman:password).

Security Limitation:
— Baseb64 is not encryption—credentials can be decoded easily.
— Always use HTTPS to prevent interception.

Demo — postman — without cred.

GET w https:/{postman-echo.com/basic-auth
Params Authorization Headers (8) Body Seripts Settings
Auth Type
) Username
Basic Auth ~
Password

he authorization head

automatically generate

the request. Learn more about

Body Cookies (1) Headers (6) Test Results Q-:I 401 Unauthorized 831 ms

Raw ~ [> Preview {Q Visualize -~

1 Unauthorized

https://students-hub.com

26/05/2025

POSTMAN ECHO
GET Basic Auth

, Demo — Postman with auth.

GET ~ https://postman-eche.com/basic-auth
Params Autherization e Headers (8) Body Scripts Settings
a1t OAU1.0 vertfy sigracure) —
Auth Type
Username [
Basic Auth postman
Password . i
The autharization header will be password
automatically generated when you send
the request. Learn maore about
Body Cookies (1) Headers (7) TestResults 0 2000K 698 ms

{}JSON v > Preview 3 Visualize ~

1 i
2 | "authenticated”: true
s
Params Authorization » Headers (8) Body Scripts Settings
Key Value
Authorization (@) Basic cG9zdG1hbjpwYXNzd29yZA==

Why not use HTTP Basic Authentication?

Username
Password

e[|][

10 minutes later.. Repeatedly sending username
and password.
—>Functional, but Risky

Username
Password

e[|][

STUDENTS-HUB.com 9

https://students-hub.com

26/05/2025

APl Keys — Convenience at a Cost

How They’re Used:
- Query strings: ?api_key=123 (X Risky).

- Headers: X-API-Key: 9038-20380-9398 (Better).

Security Flaws:

- ™ Keys leak in logs/URLs.
- No built-in expiration.

Mitigation: (1)Rotate keys frequently; (2)use IP whitelisting.

API Keys vs. HTTP Basic Authentication

Feature

Authentication Method

How It's Sent

Security Level

Usage

Example Request

Best For

STUDENTS-HUB.com

API Key
A static, predefined key sent in headers/URL.

Usually in headers (x-api-key: abc123) or URLs
(?api_key=value).

Low (if leaked, full access is granted).

Common for machine-to-machine APlIs (e.g.,
weather APls, payment gateways).

http GET /data HTTP/1.1 Host:
api.example.com x-api-key: abc123

Server-to-server communication where
simplicity is key.

HTTP Basic Authentication

A username & password encoded in
Base64.

In the Authorization header (Basic
base64(username:password)).

Very low (Base64 is easily decoded;
should always use HTTPS).

Rarely used today; replaced by tokens
(OAuth, JWT) for user auth.

http GET /data HTTP/1.1 Host:
api.example.com Authorization: Basic
dXNlIcjoxMjM=

Legacy systems; rarely recommended
for modern APIs.

10

https://students-hub.com

Bearer Tokens — The Modern Standard

- Stateless JWT sent in headers:
Authorization: Bearer eyJhbGciOiJIUzI1INiIsInR5cCI6IkpXVC3J9...

Advantages:
- Scalable (no server-side sessions).
- Fine-grained expiration/scopes.

Introduction to Bearer Tokens

* Definition:
— Abearer token is a credential that grants access to an API.
— Split into two parts:
* Bearer: The holder of the token (e.g., “l am a bearer of a pen”).
* Token: A tool to gain access (e.g., casino chips or subway tokens).
* Key Characteristics:
— Originated in 2012 as part of OAuth 2.0 (RFC 6750).
— No authentication or identification—anyone with the token can use it.
— Must be protected from unauthorized access (use HTTPS for encryption).

* Example:

— Sending a bearer token to an API grants access, regardless of user identity.

STUDENTS-HUB.com

26/05/2025

11

https://students-hub.com

26/05/2025

How Bearer Tokens Work

* Usagein APIs:
— Sentinthe Authorization header with the format: Bearer <token value>.
— Example: Authorization: Bearer shy$%"bgfdd.

* Demo with httpbin.org:
1. Call /bearer without a token - Unauthorized.
2. Add token in Postman (e.g., “somepassword”) > Access granted.
* RFC 6749 Specification:
— Mandates the Bearer prefix in the header.
— Tokens must be protected in storage and transport to prevent misuse.
* Access Token vs. Bearer Token:
— Access tokens have an expiration; bearer tokens do not (unless revoked).

Bearer - Demo

GET ~ https:/(httpbin.org/bearer
Params Authorization e Headers (7) Body Scripts Settings
Auth Type
Token WebService2025
Bearer Token v Webs 2025
The authorization header will be

Body Cookies Headers (7) Test Results m 200 OK 286 ms

{} JSON ~ > Preview 1@ Visualize -~
"authenticated”: txue,

"toksn": "WebService2e25"

T A

STUDENTS-HUB.com 12

https://students-hub.com

26/05/2025

Token-Based Authentication

The client calls a dedicated
login endpoint rather than

1. Client makes request to a (emy request.
dedicated login endpoint with \
the user’s credentials. Logip (usemame, password)

sending credentials on

2. In response, the login Client API server

endpoint returns a time- foken

limited token. I / —
3. The client then sends that The login endpoint returnsa — ... and stores the token — Token store

time-limited token to the client . . .
token on requests to other API

endpoints that use it to
authenticate the user. 3] T°';e"

4. APl endpoints can validate the J
token by looking it up in the
token database.

Client

The client includes the token
on subsequent requests.

Web- and Token Storage

* Web Storage for
storing tokens on the
client.

* The Bearer
authentication
scheme provides a
standard way to
communicate tokens

Authorization: Bearer
Request

Web browser client

. \Web Response
from the client to the SoN

API) and WWW-Authenticate
° d TOken Store can be Tokens can be stored

in Web St instead

.rnanua”y ::br;1:oec:bkies‘:wage e

implemented on the

backend.

STUDENTS-HUB.com

L

in a database.

API server \/
The API server can look up the

token in the database to check
if the client is authenticated.

The Bearer authentication

scheme can be used to send
tokens and prompt for a token.

API| server Token store

Token state can be
manually stored in a
backend database or cache.

13

https://students-hub.com

26/05/2025

API Keys vs. Tokens

Feature APl Key

Simple authentication, often used for API

Purpose
access.

Structure Usually a long, random string (e.g., x-api-key:
abcl123...).

. Less secure—sent as-is; if leaked, it grants

Security
full access.

Usage Typl'cally added in headers or URLs (e.g.,
?api_key=xyz).

Lifespan Often long-lived or manually rotated.

Example x-api-key: 123abc...

Token (e.g., JWT, OAuth)

Authentication & authorization
(may include user permissions).

Can be structured (e.g., JSON Web
Token—JWT) with encoded data.

More secure—can expire, be
scoped, or include signatures.

Sent in headers (e.g., Authorization:
Bearer <token>).

Can be short-lived (e.g., expiring in
hours) or refreshable.

Authorization: Bearer eyJhbGciOi...

Session Cookie Authentication

1. Userlogsin

2. Server sends a Set-
Cookie header on the
response with a

session token.

3. Onsubsequent
requests to the same

Web browser
client

When the user logs in,
the server responds with
a Set-Cookie header.

Login

/

f
f
/

server, the browser
will send the session
token backin a

Cookie header,
4. which the server can

then look up in the
token store to access
the session state.

STUDENTS-HUB.com

Web browser
client

/

¥

Set-Cookie: SESSID=XyZ...

POST /spaces/.

Web server Token
store

Web server Token

Cookie: SESSID=XyZ... store
4

On subsequent requests,
the browser sends the session
token as a Cookie header.

14

https://students-hub.com

26/05/2025

Authentication using Session Management

* 0OG Method (Old Generation)
e Sessions are Stateful

Client (Browser) Server SessionStore

* Cons.: scalability problems

with large number of users

Sends credentials

Creates session and stores session ID

\ 4

Sends session ID in cookie

-
-+

Sends cookie with request
—b

Checks if session is valid

\

JWT is preferred by modern apps Returns session validity

<

, because it scales better. i

Rejects if invalid

&
&—

OpenlD Connect — Identity + OAuth

* OpenlD Connect is an identity layer built on top of OAuth 2.0
that enables secure user authentication and single sign-on
(SSO).

It allows applications to verify a user's identity using an Identity
Provider (IdP) (e.g., Google, Microsoft, Facebook, ..)

Features:

STUDENTS-HUB.com

Authentication (Not Just Authorization)

Standardized Identity Data (ID Token + additional user details)

Single Sign-On (SSO)

Users log in once with an IdP (e.g., Google) and access multiple apps
without re-entering credentials.

15

https://students-hub.com

26/05/2025

OpenlD Connect — Identity + OAuth

What It Adds:
- Standardized ID Token (JWT) with user claims:
{ "name": "Jane Doe", "email": "jane@example.com" }

- Discovery Endpoint:
/.well-known/openid-configuration for metadata.
Use Case: Single Sign-On (SSO) across applications.

What is Authorization?

* Definition: What do you want to do?
* Determines what actions a user can perform.
* Example:

— Read-only users vs. Admins

* Often follows authentication.

STUDENTS-HUB.com 16

https://students-hub.com

STUDENTS-HUB.com

26/05/2025

Example Authorization

Customer Admin SupportStaff App

Browses products

\ 4

Adds items to cart

v

Makes a purchase

v

Adds/Edits/Deletes products

—9

Views all orders
—

Views customer orders

&
»

Provides support

—

Introducing OAuth2.0

Open standard for authorization.

Allows third-party services to access resources on behalf of a
user.

OAuth 2.0 defines multiple grant types (flows) for different use
cases.

Each flow determines how an application obtains an access
token:

— Authorization Code : for Web apps with a backend

— Implicit: Old SPAs (avoid)

— Password: Trusted first-party apps.

— Client Credentials: Server-to-server APIs (no user).

17

https://students-hub.com

OAuth 2.0 — The Gold Standard

Core Components:
1. Access Token: Short-lived (minutes/hours).
2. Refresh Token: Long-lived (days/months).

Why It’s Secure:
- Q.E Tokens are scope-limited (e.g., read:contacts).
- X Tokens expire, reducing breach impact.

OAuth flow: (User = Auth Server - Client).

Authentication using OAuth2

User ClientApp AuthProvider ResourceServer

Logs in using third-party
B

>

Requests authentication

v

Asks for credentials

4

Provides credentials

v

Sends access token

4

Uses access token to request resources

v

Sends requested resources

'

STUDENTS-HUB.com

26/05/2025

18

https://students-hub.com

STUDENTS-HUB.com

Role Based Access Control - RBAC

Away for Defining Authorization

Assigning Roles and Actions:

— Define Roles (admin, editor, guest, ...)

— Define Permissions to each Role (CRUD, ...)
— Assign Roles to the users

— A user can have one or more roles

— Example
Admin Editor User Guest
Create, read, update, Create, update own Read, update own .
. : g Read articles
delete articles articles articles

Attribute Based Access Control - ABAC

Away for granular defining Authorization

Flexible: Access based on Attributes of the user, resource or
environment

U S e r Att ri b u te s . User’s department Location Job title
Resource Attributes:

Type of file File’s owner File’s sensitivity
Environmental Attributes:
Time of the day IP address Used device
. Manager HR Remote User
Example:
Edit own documents Edit pending documents Allow access via VPN

26/05/2025

19

https://students-hub.com

o vk wnN e

STUDENTS-HUB.com

26/05/2025

Steps for Individual Auth

Collect username/password via form or header.
Hash password using bcrypt.

Compare hash with stored value in DB.

If match = create JWT token.

Return token to client.

Client uses token in future requests.

Encryption & Hashing

Encryption scrambles data that can be decoded with a key. The
intent is to pass the information to another party, and the recipient will
use keys to decipher the data.

The main example of this is HTTPS with TLS, where a certificate is
used and installed on a server to allow a client and the server to
generate a symmetric keypair for communication.

Hashing also scrambles data, but the intent is to prove its
authenticity. Administrators can run a check on hashed data to
determine the contents haven't been touched or altered while in
storage. No deciphering key exists.

20

https://www.youtube.com/watch?v=86cQJ0MMses
https://students-hub.com

26/05/2025

API Security Best Practices

(1) Use Encryption

Organisations using APIs which routinely exchange sensitive data (such as login credentials,
credit card, social security, banking information, health information), TLS encryption should
be considered essential.

(2) Use Strong Authentication and Authorisation

Poor authentication or non-existent authorisation are major issues with many publicly
available APIs. They provide an entry point to an organisation’s databases, it’s critical that
the organisation strictly controls access to them.

(3) Prioritise API Security

* One of the key battles with API security is that it is sometimes considered
when it is too late.

* Another issue is that APl security is someone else’s issue.

(4) Be Aware of all APIs

Whether an organisation has one or hundreds of publicly available APls,
building an inventory of all the APIs so that they can be secured and managed
using perimeter scans, along with insight from developers, to create an
inventory of all APIs is the best place to begin.

STUDENTS-HUB.com 21

https://students-hub.com

26/05/2025

(5) Practice the Principle of Least Privilege

* |tis a security principle that effectively holds that the
subjects/entities (users, processes, programs, systems, devices) are
only ever granted the minimum necessary access rights to complete
a required function.

* This is something that applies more broadly to all IT systems, and it
should be applied equally to APIs.

(6) Don’t Expose More than is Necessary

One of the biggest issues with APIs is that they are designed to allow
for the exchange of data. In short, APIs can reveal more information
than necessary.

(7) Always Validate Input

* Allinput data must be validated, and anything that is too big
or doesn’t comply with required checks must be rejected.

* Ensure injection exploits are prevented.

(8) Ensure all OWASP Vulnerabilities are Secured

* The OWASP (Open Web Application Security Project) Top 10 is
a list of the ten worst vulnerabilities.

* |t should be ensured that systems have been secured for
these vulnerabilities.

STUDENTS-HUB.com 22

https://students-hub.com

26/05/2025

(9) Implement an APl Management Solution

Good APl management solution will help make sense of API
data, and establish secure API practices.

(10) Get Help from Security Experts

The world of cybersecurity is enormously challenging and
continuously evolving with new threats appearing daily.
Partnering with experienced cybersecurity experts who know
exactly what’s needed to secure enterprise level APl based
systems, is often the best APl security solution.

OWASP Overview

Open Web Application Security Project (OWASP)

- Non-profit organization

- Vision: “No more insecure software”

- Mission: Promote secure software through education and
collaboration

- Known for Top 10 lists (Web & API security risks)

STUDENTS-HUB.com 23

https://students-hub.com

26/05/2025

What is OWASP?

* Community-led open source project
e 250+ local chapters globally
* Provides standards, tools, and documentation

* Resources available at owasp.org

Unsafe Consumption of APIs

Risk #10
- Developers trust 3rd-party API data without validation

Attack Vector: Compromised 3rd-party APIs

Weakness: 3rd-party APIs are trusted and not verified

Impact:

- Sensitive data exposure
- Injection attacks

- Data leakage

STUDENTS-HUB.com 24

https://owasp.org/
https://students-hub.com

STUDENTS-HUB.com

26/05/2025

Vulnerabilities (Unsafe Consumption)

Unencrypted APl interactions
No data validation/sanitization
Blindly following API redirects

No timeouts for 3rd-party service interactions

Mitigation Strategies
Use encryption (SSL/TLS)
Validate & sanitize all data
Implement allow lists for input validation
Use strict data type constraints

Deploy API gateways for filtering/monitoring

25

https://students-hub.com

Improper Inventory Management

Risk #9
- Poor tracking of API versions/endpoints

Attack Vector: Old/deprecated APIs with weak security

Impact:
- Sensitive data exposure
- Remote server takeover

Vulnerabilities (Inventory)

Documentation Blind Spots:
- Missing environment details
- Outdated documentation

- No retirement strategy

Data Flow Blind Spots:
- Unjustified 3rd-party data sharing
- No visibility into data flows

STUDENTS-HUB.com

26/05/2025

26

https://students-hub.com

26/05/2025

Mitigation Strategies
* Maintain up-to-date APl inventory
* Document all APl aspects comprehensively
* Limit access to documentation
* Decommission unused APIs

* Avoid production data in non-production environments

Security Misconfiguration
Risk #8 APIs not securely configured

Attack Vector: Unpatched flaws, unsecured endpoints

Impact:

- Sensitive data exposure

- Full system compromise
Vulnerabilities (Misconfiguration):

— Missing security hardening

— Outdated security patches

— No TLS/CORS policies

— Overly verbose error messages

STUDENTS-HUB.com 27

https://students-hub.com

Mitigation Strategies

* Secure APIs early in development
» Review/update security configurations

* Use automated tools for detection/remediation

Server-Side Request Forgery (SSRF)

Risk #7 Attacker manipulates server-side requests

Attack Vector: API that accesses client-provided URIs

26/05/2025

POST {{url}) /workshop/api/merchant/contact_mechanic
ImpaCt' Params Authorizatior Headers (14 Body Scripts ® Tests ®
- SenSItlve data exposure none form-data x-www-form-urlencoded O raw binary Grapl
- Remote code execution e v =
i"mechanic_code":"TRAC_JHN",
T . 2 “problem ’
Vulnerabilities (SSRF): *vin®: “1EFEZSAEPTYL73794
"mechanic_api®:" ri} /woxkshop!aui/mechanic/zeccive,:epozt”l'

— No validation of user-supplied URLs
— Common in modern features (webhooks, URL previews)
— Difficult to limit outbound traffic

STUDENTS-HUB.com

28

https://students-hub.com

26/05/2025

Mitigation Strategies
* |solate resource fetching
* Use allow lists for URLs
* Disable HTTP redirections
* Validate/sanitize all inputs

* Never send raw responses

Unrestricted Access to Sensitive Business Flows

Risk #6 APIs expose critical business processes
Attack Vector: Exploiting business model APIs
Impact: Business harm (e.g., inventory hoarding)

Vulnerabilities (Business Flows): Examples:-
- Product purchasing flows
- Comment/post creation
- Reservation systems

STUDENTS-HUB.com 29

https://students-hub.com

26/05/2025

Mitigation Strategies

* |dentify abusable business flows

* Implement protection mechanisms:

— Device fingerprinting
— CAPTCHA/biometrics

— Least privilege principle

Broken Function Level Authorization

POST ~ {url}}/workshop/api/shop/orders

Risk #5 Users access privileged functions
Attack Vector: Non-privileged user accessing admin endpoints

|mpact: {"product_id":1, “quantity": 3}
- Data loss/corruption 3
. . . "id®: 7, I
- SerV|Ce d|srupt|0n "message”: "Order sent successfully.”,
Vulnerabilities (Authorization): T e
— Access to admin APl endpoints
— Unauthorized CRUD operations oo R e TR
.{
"id": 9,
"message”: "Order sent successfully."®,
"credit": 200.0

STUDENTS-HUB.com 30

https://students-hub.com

Unrestricted Resource Consumption

Risk #4 - API resource starvation
Attack Vector: DDoS attacks
Impact:
- Service disruption
- Increased cloud costs
Vulnerabilities (Resource): Missing limits on:-
— Execution time
— Memory allocation
— File descriptors
— Upload sizes

Denial of Service

* DoS: (Denial of Service)
* Asingle source (e.g., one attacker)
* Easier to execute but simpler to block

* DDoS: (Distributed Denial of Service)
* Attacks from many sources simultaneously, often via a botnet
* Very difficult to stop and extremely damaging

STUDENTS-HUB.com

26/05/2025

31

https://students-hub.com

26/05/2025

Mitigation Strategies

» Set resource limits (CPU/memory)

* Implement rate limiting

e Use server-side validation
* Set cloud spending limits

* Implement caching

Broken Object Property Level Authorization

Risk #3 Unauthorized access to object properties

GET /api/users/123
Authorization: Bearer <valid_token>

{

Attack Vector: Inspecting APl responses
Impact:

- Data disclosure

- Account takeover

Vulnerabilities (Object Property):

— Excessive data exposure

"userId": 123,

"name": "Alice",

"email": "alice@example.com",
"accountBalance": 1000 // Only admins

should see this!

}

— Unauthorized CRUD on sensitive properties

GET /api/users/456
Authorization: Bearer <valid_token>

STUDENTS-HUB.com

{

"userId": 456,

"name": "Alice",

"email": "alice@example.com",
"accountBalance": 5000 // Only admins

should see this!

}

32

https://students-hub.com

Mitigation Strategies

Implement property-level access checks

if user.role == dmin” and requested_property == "em

grant_access()

Validate user permissions

Cherry-pick returned properties: selectively extracting specific
fields or attributes from an object, APl response, or dataset while
ignoring the rest.

Use Attribute-Based Access Control (ABAC): grants or denies
access to resources based on attributes of the user, resource,
action, and environment.

Broken Authentication

Risk #2 Weak authentication mechanisms
Attack Vector: Brute force attacks
Impact:

- Full account compromise

- Private data access

Vulnerabilities (Authentication):

STUDENTS-HUB.com

— No CAPTCHA/account lockouts
— Weak passwords/JWT tokens
— Sensitive data in URLs

— No token validation

26/05/2025

33

https://students-hub.com

26/05/2025

Mitigation Strategies

e Strong password policies
» Secure password storage (Bcrypt/Argon2)
* Multi-Factor Authentication (MFA)

e Anti-brute force mechanisms

Broken Object-Level Authorization

Risk #1 (BOLA) - Access to other users’ data

Attack Vector: Manipulating Object IDs http:/flocalhost:8888/identityfapi/v2/vehicle/¢093f2c0-c142-
4da8-b40a-8b463110b939/location

Impact:
- Data disclosure/mani ulation . "carId": "4093f2c0-c142-4da8-b40a-8b463110b939",
P
I "vehicleLogation": {
Vulnerabilities (BOLA): “id": s,
"latitude": "37.406769",
— Missing object-level authorization checks HIRRgLINERT: T
. . "fullName": "Martina Kraus",
— Insecure codlng practlces
GET . http://localhost:8888/identity/api/v2fvehicle/4bae9968-ec7f-4de3-a3al-balb2abSe5e5 location

4de3-a3af-balb2abSe5e5”,

STUDENTS-HUB.com 34

https://students-hub.com

STUDENTS-HUB.com

Mitigation Strategies

Implement strong authorization
Use UUIDs instead of sequential IDs
Adopt zero trust security

Test authorization mechanisms

Other API Security Best Practices ...

1. Rate limiting/throttling

2. APl gateways

3. Versioning

26/05/2025

35

https://students-hub.com

STUDENTS-HUB.com

26/05/2025

Security Design Principles (1/3)

Least Privilege: An entity should only have the required set of permissions to
perform the actions for which they are authorized, and no more. Permissions
can be added as needed and should be revoked when no longer in use.

Fail-Safe Defaults: A user’s default access level to any resource in the system
should be “denied” unless they’ve been granted a “permit” explicitly. Base
access decisions on permission rather than exclusion.

The economy of Mechanism: The design should be as simple as possible. All
the component interfaces and the interactions between them should be
simple enough to understand. Keep the design as simple and small as
possible

REST Security Design Principles (2/3)

Complete Mediation: A system should validate access rights to all its
resources to ensure that they’re allowed and should not rely on the
cached permission matrix. If the access level to a given resource is being
revoked, but that isn’t reflected in the permission matrix, it would violate
the security.

Open Design: The Principle of Open Design says that “your system security
shouldn’t rely on the secrecy of your implementation”. This is a
particularly important principle for security concepts like cryptographic
implementations. Well-designed cryptography implementations are
published publicly. The design should not be secret.

36

https://students-hub.com

26/05/2025

REST Security Design Principles (3/3)

Separation of Privilege: Granting permissions to an entity should not be purely
based on a single condition, a combination of conditions based on the type of
resource is a better idea. Such as Separating system functions like read, edit,
write, execute, etc.

Least Common Mechanism: It concerns the risk of sharing state among
different components. If one can corrupt the shared state, it can then corrupt
all the other components that depend on it.

- we don’t reuse passwords from service accounts and other subjects.

Psychological Acceptability: It states that security mechanisms should not
make the resource more difficult to access than if the security mechanisms
were not present. In short, security should not make worse the user
experience.

PCI Compliance for APIs

Core Principles:

1. Secure network/systems
2. Protect cardholder data

3. Vulnerability management
4. Strong access controls

5. Regular monitoring

6. Security policies

STUDENTS-HUB.com

37

https://students-hub.com

