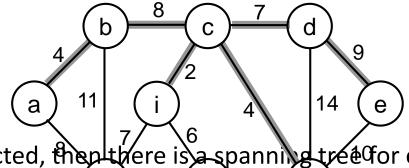


Minimum Spanning Trees (MST)

Minimum Spanning Trees

- Spanning Tree
 - A tree (i.e., connected, acyclic graph) which contains all the vertices of the graph
- Minimum Spanning Tree
 - Spanning tree with the minimum sum of weights

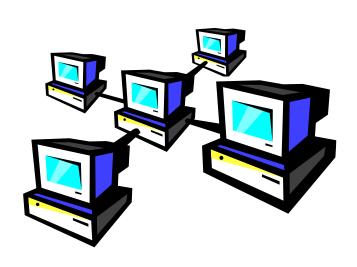


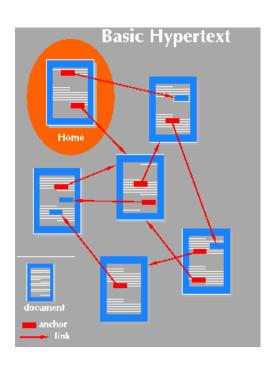
Spanning forest

If a graph is not connected, then there is a spanning tree for each connected component of the graph

Applications of MST

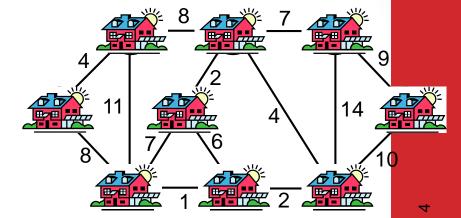
 Find the least expensive way to connect a set of cities, terminals, computers, etc.





Problem

- A town has a set of houses and a set of roads
- A road connects 2 and only 2 houses



 A road connecting houses u and v has a repair cost w(u, v)

Goal: Repair enough (and no more) roads such that:

- Everyone stays connected

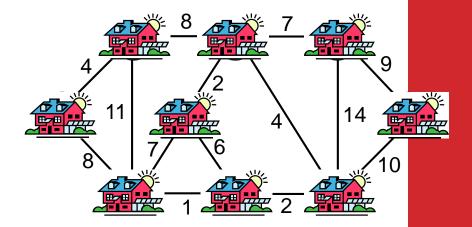
 i.e., can reach every house from all other houses
- 2. Total repair cost is minimum

Minimum Spanning Trees

- A connected, undirected graph:
 - Vertices = houses, Edges = roads
- A weight w(u, v) on each edge $(u, v) \in E$

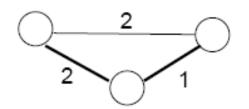
Find $T \subseteq E$ such that:

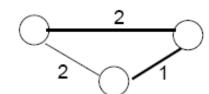
- 1. T connects all vertices
- 2. $w(T) = \sum_{(u,v) \in T} w(u, v)$ is minimized



Properties of Minimum Spanning Trees

Minimum spanning tree is **not** unique





- MST ł
 - We can take out an edge of a cycle, and still have the vertices connected while reducing the cost
- # of edges in a MST:
 - |V| 1

ဖ

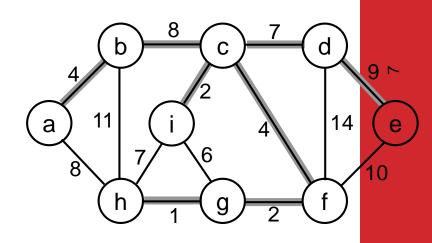
Growing a MST – Generic Approach

- Grow a set A of edges (initially empty)
- Incrementally add edges to A such that they would belong

to a MST

Idea: add only "safe" edges

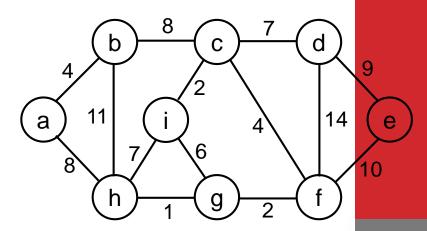
An edge (u, v) is safe for A if and only if A ∪ {(u, v)} is also a subset of some MST



Generic MST algorithm

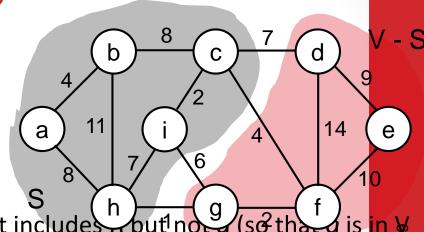
- 1. $A \leftarrow \emptyset$
- 2. while A is not a spanning tree
- 3. do find an edge (u, v) that is safe for A
- 4. $A \leftarrow A \cup \{(u, v)\}$
- 5. return A

How do we find safe edges?



Finding Safe Edges

- Let's look at edge (h, g)
 - Is it safe for A initially?
- Later on:
 - Let $S \subset V$ be any set of vertices that includes but now (so that is in V S)
 - In any MST, there has to be one edge (at least) that connects S with V S
 - Why not choose the edge with minimum weight (h,q)?

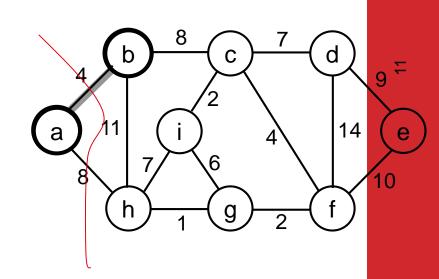


MST

- Prim's Algorithm
- Kruskal Algorithm

Prim's Algorithm

- The edges in set A always form a single tree
- Starts from an arbitrary "root": V_A = {a}
- At each step:
 - Find a light edge crossing (V_A, V V_A)
 - Add this edge to A
 - Repeat until the tree spans all vertices



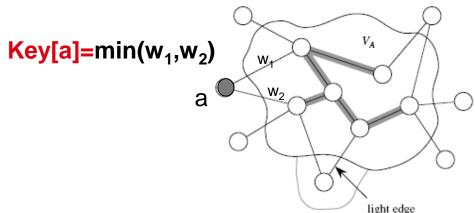
How to Find Light Edges Quickly?

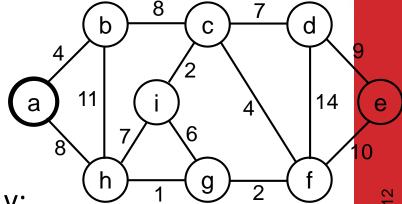
Use a priority queue Q:

• Contains vertices not yet included in the tree, i.e., $(V - V_A)$

V_A = {a}, Q = {b, c, d, e, f, g, h, i}

key[v] = minimum weight of any edge (u, v) connecting v to V_A



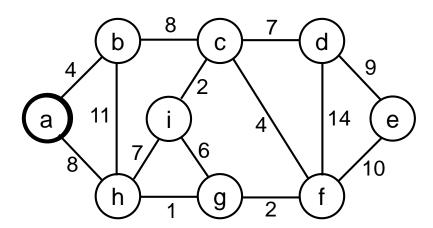


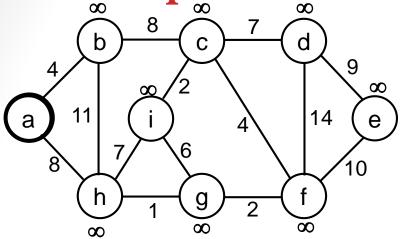
How to Find Light Edges Quickly? (cont.)

• After adding a new node to V_A we update the weights of all the nodes <u>adjacent to it</u>

e.g., after adding a to the tree, k[b]=4 and k[h]=8

Key of v is ∞ if v is not adjacent to any vertices in V_A



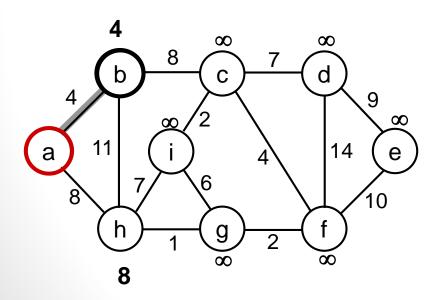


$$0 \infty \infty \infty \infty \infty \infty \infty$$

$$Q = \{a, b, c, d, e, f, g, h, i\}$$

$$V_{\Delta} = \emptyset$$

Extract-MIN(Q) \Rightarrow a

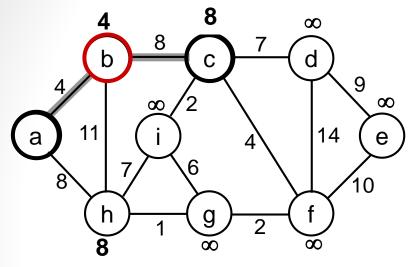


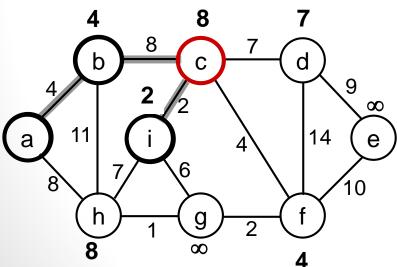
key [b] = 4
$$\pi$$
 [b] = a
key [h] = 8 π [h] = a

$$4 \infty \infty \infty \infty \infty \times 8 \infty$$

Q = {b, c, d, e, f, g, h, i}
$$V_A = \{a\}$$

Extract-MIN(Q) \Rightarrow b





Q = {c, d, e, f, g, h, i}
$$V_A = \{a, b\}$$

Extract-MIN(Q) \Rightarrow c

$$key [d] = 7 \qquad \pi [d] = c$$

$$key [f] = 4 \qquad \pi [f] = c$$

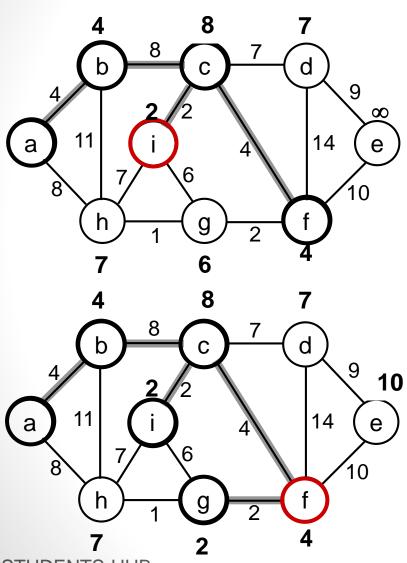
$$key [i] = 2 \qquad \pi [i] = c$$

$$7 \infty 4 \infty 8 2$$

$$Q = \{d, e, f, g, h, i\} \ V_A = \{a, b, c\}$$

$$Extract-MIN(Q) \Rightarrow i$$

...

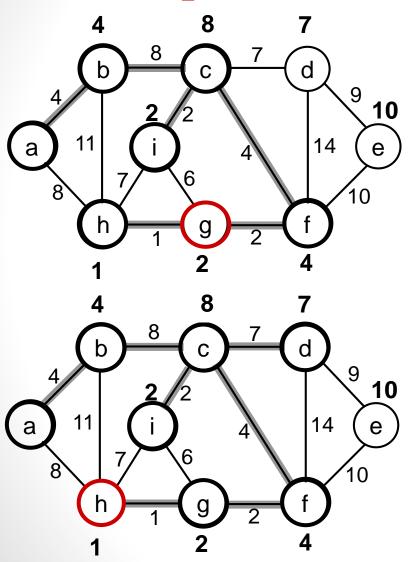


key [h] = 7
$$\pi$$
 [h] = i
key [g] = 6 π [g] = i
 $7 \infty 467$
Q = {d, e, f, g, h} V_A = {a, b, c, i}
Extract-MIN(Q) \Rightarrow f

key
$$[g] = 2$$
 $\pi [g] = f$
key $[d] = 7$ $\pi [d] = c$ unchanged
key $[e] = 10$ $\pi [e] = f$
7 10 2 7

Q = {d, e, g, h}
$$V_A$$
 = {a, b, c, i, f}
Extract-MIN(Q) \Rightarrow g

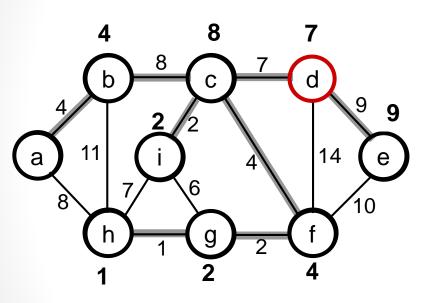
7



key [h] = 1
$$\pi$$
 [h] = g **7 10 1**

Q = {d, e, h}
$$V_A$$
 = {a, b, c, i, f, g}
Extract-MIN(Q) \Rightarrow h

Q = {d, e}
$$V_A$$
 = {a, b, c, i, f, g, h}
Extract-MIN(Q) \Rightarrow d



key [e] = 9
$$\pi$$
 [e] = f

Q = {e}
$$V_A$$
 = {a, b, c, i, f, g, h, d}
Extract-MIN(Q) \Rightarrow e

$$Q = \emptyset V_A = \{a, b, c, i, f, g, h, d, e\}$$

 ∞

PRIM(V, E, w, r)

```
Total time: O(VlqV + ElqV) = O(ElqV)
      for each u \in V
                                         O(V) if Q is implemented
         do key[u] \leftarrow \infty
3.
                                         as a min-heap
            \pi[u] \leftarrow NIL
             INSERT(Q, u)
5.
                                                                         O(lqV)
      DECREASE-KEY(Q, r, 0)
                                      \blacktriangleright key[r] \leftarrow 0
6.
                                                                         Min-heap
      while Q \neq \emptyset
                                       Executed |V| times
                                                                         operations:
            do u \leftarrow EXTRACT-MIN(Q) \leftarrow Takes O(IqV)
                                                                         O(VlgV)
8.
                                             ← Executed O(E) times total
               for each v \in Adj[u]
9.
                   do if v \in Q and w(u, v) < key[v]
                                                             ← Constant
10.
11.
                         then \pi[v] \leftarrow u
                                                                   Takes O(IgV)
```

DECREASE-KEY(Q, v, w(u, v))

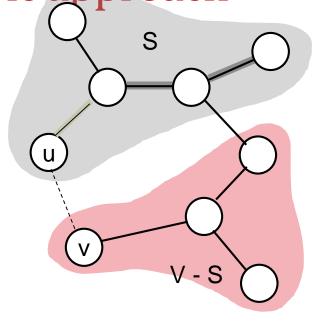
12.

Prim's Algorithm

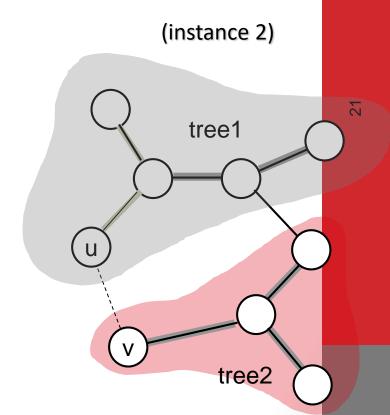
- Prim's algorithm is a "greedy" algorithm
 - Greedy algorithms find solutions based on a sequence of choices which are "locally" optimal at each step.
- Nevertheless, Prim's greedy strategy produces a globally optimum solution!

A different instance of the generic approach

(instance 1)

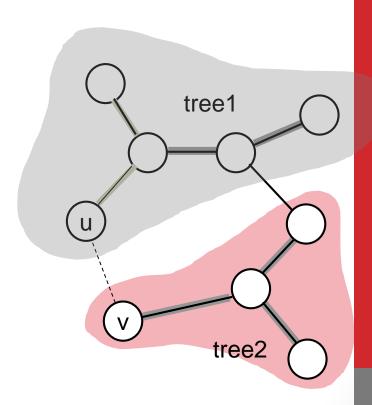


- A is a forest containing connected components
 - Initially, each component is a single vertex
- Any safe edge merges two of these components into one



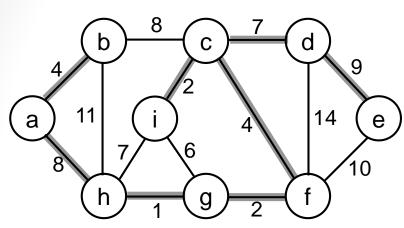
Kruskal's Algorithm

- How is it different from Prim's algorithm?
 - Prim's algorithm grows one tree all the time
 - Kruskal's algorithm grows multiple trees (i.e., a forest) at the same time.
 - Trees are merged together using safe edges
 - Since an MST has exactly |V| 1
 edges, after |V| 1 merges,
 we would have only one component



Kruskal's Algorithm

- Start with each vertex being its own component
- Repeatedly merge two components into one by choosing the light edge that connects them
- Which components to consider at each iteration?
 - Scan the set of edges in increasing order by weight



- 1: (h, g) 8: (a, h), (b, c)
- 2: (c, i), (g, f) 9: (d, e)
- 4: (a, b), (c, f) 10: (e, f)
- 6: (i, g) 11: (b, h)
- 7: (c, d), (i, h) 14: (d, f)
- {a}, {b}, {c}, {d}, {e}, {f}, {g}, {h}, {i}

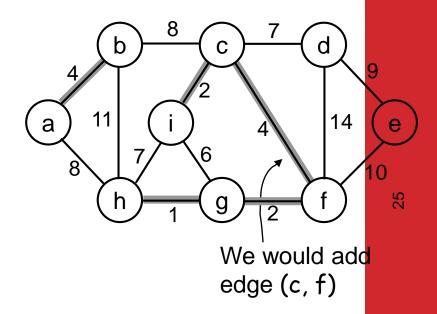
- 1. Add (h, g)
- 2. Add (c, i)
- 3. Add (g, f)
- 4. Add (a, b)
- 5. Add (c, f)
- 6. Ignore (i, g)
- 7. Add (c, d)
- 8. Ignore (i, h)
- 9. Add (a, h)
- 10. Ignore (b, c)
- 11. Add (d, e)
- 12. Ignore (e, f)
- 13. Ignore (b, h)
- 14. Ignore (d, f)

- {g, h}, {a}, {b}, {c}, {d}, {e}, {f}, {i}
- {g, h}, {c, i}, {a}, {b}, {d}, {e}, {f}
- {g, h, f}, {c, i}, {a}, {b}, {d}, {e}
- {g, h, f}, {c, i}, {a, b}, {d}, {e}
- {g, h, f, c, i}, {a, b}, {d}, {e}
- {g, h, f, c, i}, {a, b}, {d}, {e}
- {g, h, f, c, i, d}, {a, b}, {e}
- {g, h, f, c, i, d}, {a, b}, {e}
- {g, h, f, c, i, d, a, b}, {e}
- {g, h, f, c, i, d, a, b}, {e}
- {g, h, f, c, i, d, a, b, e}
- {g, h, f, c, i, d, a, b, e}
- {g, h, f, c, i, d, a, b, e}
- {g, h, f, c, i, d, a, b, e}

7

Implementation of Kruskal's Algorithm

Uses a disjoint-set data structure (see Chapter
 21) to determine whether an edge connects vertices in different components



Operations on Disjoint Data

Sets SET(u) – creates a new set whose only member is u

- FIND-SET(u) returns a representative element from the set that contains u
 - Any of the elements of the set that has a particular property
 - \mathcal{E}_{u} : $S_{u} = \{r, s, t, u\}$, the property is that the element be the first one alphabetically

$$FIND-SET(u) = r$$
 $FIND-SET(s) = r$

FIND-SET has to return the same value for a given set

Operations on Disjoint Data

Sets (u, v) – unites the dynamic sets that contain u and v, say S_u and S_v

- E.g.: $S_u = \{r, s, t, u\}, S_v = \{v, x, y\}$ UNION $(u, v) = \{r, s, t, u, v, x, y\}$
- Running time for FIND-SET and UNION depends on implementation.
- Can be shown to be $\alpha(n)=O(\lg n)$ where $\alpha()$ is a very slowly growing function (see Chapter 21)

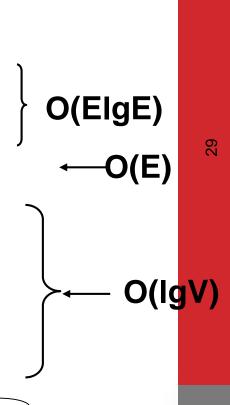
KRUSKAL(V, E, w)

- $A \leftarrow \emptyset$
- **for** each vertex $v \in V$
- do MAKE-SET(v) 3.
- sort E into non-decreasing order by w
- for each (u, v) taken from the sorted list
- do if FIND-SET(u) \neq FIND-SET(v) 6.
- then $A \leftarrow A \cup \{(u, v)\}$
- UNION(u, v) 8.
- 9. return A

Running time: O(V+ElgE+ElgV)=O(ElgE) – dependent on the implementation of the disjoint-set data structure

KRUSKAL(V, E, w) (cont.)

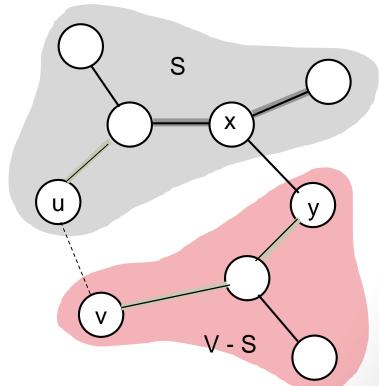
- 1. $A \leftarrow \emptyset$
- 2. **for** each vertex $v \in V$
- **do** MAKE-SET(v)
- 4. sort E into non-decreasing order by w
- 5. for each (u, v) taken from the sorted list
- 6. do if FIND-SET(u) \neq FIND-SET(v)
- 7. then $A \leftarrow A \cup \{(u, v)\}$
- 8. UNION(u, v)
- 9. return A
- Running time: O(V+ElgE+ElgV)=O(ElgE)
- Since E=O(V²), we have IgE=O(2IgV)=O(IgV)



O(ElgV)

Kruskal's Algorithm

- Kruskal's algorithm is a "greedy" algorithm
- Kruskal's greedy strategy produces a globally optimum solution
- Proof for generic approach applies to Kruskal's algorithm too



Problem 1

 (Exercise 23.2-3, page 573) Compare Prim's algorithm with and Kruskal's algorithm assuming:

(a) sparse graphs:

In this case, E=O(V)

Kruskal:

O(ElgE)=O(VlgV)

Prim:

- binary heap: O(ElgV)=O(VlgV)

- Fibonacci heap: O(VlgV+E)=O(VlgV)

Problem 1 (cont.)

(b) dense graphs
In this case, E=O(V²)

Kruskal:

 $O(ElgE)=O(V^2lgV^2)=O(2V^2lgV)=O(V^2lgV)$

Prim:

- binary heap: O(ElgV)=O(V²lgV)
- Fibonacci heap: O(VlgV+E)=O(VlgV+V²)=O(V²)

Problem 2

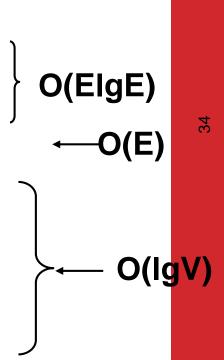
(Exercise 23.2-4, page 574): Analyze the running time of Kruskal's algorithm when weights are in the range [1 ... V]

٣.

Problem 2 (cont.)

```
A \leftarrow \emptyset
```

- **for** each vertex $v \in V$
- do MAKE-SET(v)
- sort E into non-decreasing order by w
- for each (u, v) taken from the sorted list
- do if FIND-SET(u) \neq FIND-SET(v) 6.
- then $A \leftarrow A \cup \{(u, v)\}$
- UNION(u, v) 8.
- 9. return A



- Sorting can be done in O(E) time (e.g., using counting sort)
- However, overall running time will not change, i.e, O(ElgV) TUDերի հերերի թարանին անուրդ արան comp2421 կիչի գրերի թայ anonymous

STUDEN ARTHUR AGOMAINA

Problem 3

- Suppose that some of the weights in a connected graph G are negative. Will Prim's algorithm still work? What about Kruskal's algorithm? Justify your answers.
 - Yes, both algorithms will work with negative weights. Review the proof of the generic approach; there is no assumption in the proof about the weights being positive.

Problem 4

- (Exercise 23.2-2, page 573) Analyze Prim's algorithm assuming:
- (a) an adjacency-list representation of G O(ElgV)
- (b) an adjacency-matrix representation of G O(ElgV+V²)

PRIM(V, E, w, r)

```
Q \leftarrow \emptyset
                                               Total time: O(VlqV + ElqV) = O(ElqV)
      for each u \in V
                                          O(V) if Q is implemented
          do key[u] \leftarrow \infty
3.
                                          as a min-heap
             \pi[u] \leftarrow NIL
             INSERT(Q, u)
5.
                                                                            O(lqV)
      DECREASE-KEY(Q, r, 0)
                                       \blacktriangleright key[r] \leftarrow 0
6.
                                                                            Min-heap
                                        Executed |V| times
      while \mathbf{Q} \neq \emptyset
                                                                            operations:
             do u \leftarrow EXTRACT-MIN(Q) \leftarrow Takes O(IqV)
                                                                            O(VlqV)
8.
                for each v \in Adj[u]
                                                 ← Executed O(E) times
9.
                    do if v \in Q and w(u, v) < key[v]
                                                                ← Constant
10.
11.
                          then \pi[v] \leftarrow u
                                                                      Takes O(lqV)
```

DECREASE-KEY(Q, v, w(u, v))

12.

PRIM(V, E, w, r)

- $Q \leftarrow \emptyset$
- for each $u \in V$
- do key[u] $\leftarrow \infty$ 3.
- $\pi[u] \leftarrow NIL$
- INSERT(Q, u)5.
- DECREASE-KEY(Q, r, 0) 6.
- while $\mathbf{Q} \neq \emptyset$
- 8.
- **for** (j=0; j<|V|; j++) 9.
- if (A[u][j]=1) 10.
- 11.
- 12.
- 13.

Total time: $O(V | qV + E | qV + V^2) = O(E | qV + V^2)$

O(V) if Q is implemented as a min-heap

- \blacktriangleright key[r] \leftarrow 0
- Executed |V| times
- $do u \leftarrow EXTRACT-MIN(Q) \leftarrow Takes O(IqV)$
 - ← Executed O(V²) times total
 - Constant
 - if $v \in Q$ and w(u, v) < key[v]
 - then $\pi[v] \leftarrow u$
 - DECREASE-KEY(Q, v, w(u, v))
- - Takes O(lgV)

O(lqV)

Min-heap

O(VlqV)

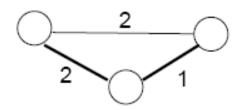
operations:

Problem 5

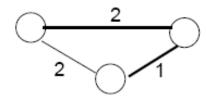
- Find an algorithm for the "maximum" spanning tree. That is, given an undirected weighted graph G, find a spanning tree of G of maximum cost. Prove the correctness of your algorithm.
 - Consider choosing the "heaviest" edge (i.e., the edge associated with the largest weight) in a cut. The generic proof can be modified easily to show that this approach will work.
 - Alternatively, multiply the weights by -1 and apply either Prim's or Kruskal's algorithms without any modification at all!

Problem 6

• (Exercise 23.1-8, page 567) Let T be a MST of a graph G, and let L be the sorted list of the edge weights of T. Show that for any other MST T' of G, the list L is also the sorted list of the edge weights of T'



$$T, L=\{1,2\}$$



$$T', L=\{1,2\}$$

• Special thanks to Dr. George Bebis, University of Nevada Reno