
 Data Structure: Lectures Note 2016/2017 Prepared by: Dr. Mamoun Nawahdah

28

Linked List

Algorithm - abstract way to perform computation tasks

Data Structure - abstract way to organize information

Linked List:

Node:

Data

Next  null

Node code:

public class Node<T> {
 private T data;
 private Node<T> next;

 public Node(T data) { this.data = data; }

 public void setData(T data) { this.data = data; }
 public T getData() { return data; }

 public Node<T> getNext() { return next; }
 public void setNext(Node<T> next) { this.next = next; }
}

Linked List Code:

public class LinkedList<T> {
 private Node<T> head;
}

Inserting a new node:

Inserting a Node into a Specified Position of a Linked List:
Three steps to insert a new node into a linked list
– Determine the point of insertion
– Create a new node and store the new data in it
– Connect the new node to the linked list by changing references

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016/2017 Prepared by: Dr. Mamoun Nawahdah

29

Case 1: To insert a node at the beginning of a linked list: (curr == head)
newNode.next = head;
head = newNode;

What’s the time complexity of inserting an item to the head??  O(1)

Case 2: To insert a node between two nodes:
newNode.next = curr;
prev.next = newNode;

Case 3: Inserting at the end of a linked list is a special case if curr is null:
newNode.next = curr;
prev.next = newNode;

Time Complexity  O(n)

H.W.  implement insert into a sorted linked list

Determining curr and prev
Determining the point of insertion or deletion for a sorted linked list of objects

for (prev = null , curr = head;
 (curr != null) && (newValue.compareTo(curr.item) > 0);

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016/2017 Prepared by: Dr. Mamoun Nawahdah

30

 prev = curr , curr = curr.next) ; // end for

Create a driver class to test linked list classes.

Override the toString methods first
Node toString:

@Override
public String toString() { return data.toString(); }

LinkedList toString:
@Override
public String toString() {
 String res = "";
 Node<T> curr = head;
 while (curr != null) {
 res += curr + " ";
 curr = curr.next;
 }
 return res + “NULL”;
}

Length of Linked List?

Case 1: If it’s empty:
Case 2: If not: Make a pointer and move over all the nodes and maintain a counter

Length code: Time Complexity  O(n)
public int length() {
 int length = 0;
 Node<T> curr = head;
 while (curr != null) {
 length++;
 curr = curr.next;
 }
 return length;
}

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016/2017 Prepared by: Dr. Mamoun Nawahdah

31

Deleting Nodes:
Case 1: Deleting the head node:

Simply move the head to the head.next: head = head.next;

Now first Node has no reference to it  Garbage

Time Complexity  O(1)

Delete at head code: // make sure linked list is not empty
public Node<T> deleteAtStart() {
 Node<T> toDel =head;
 head = head.next;
 return toDel;
}

Case 2: Delete node N which curr references:

Set next in the node that precedes N to reference the node that follows N
 prev.next = curr.next; // prev.next = prev.next.next;

Searching for an Item in a Linked List:

Time Complexity: linear growth  O(n)

Find code:

public Node<T> find(T data) {
 Node<T> curr = head;
 while (curr != null) {
 if (curr.getData() == data) // if (curr.getData().equals(data))
 return curr;
 curr = curr.next;
 }
 return null;
}

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016/2017 Prepared by: Dr. Mamoun Nawahdah

32

Variations of the Linked List:
1- Tail References (Doubly Ended Linked List)
– Remembers where the end of the linked list is.
– Therefore, we can add and delete at both ends.
– To add a node to the end of a linked list

tail.next = new Node(request, null);

public class DoubleEndedList<T> extends LinkedList<T> {
 private Node<T> tail;
 public Node<T> getTail() { return tail; }

 public void addAtEnd(T data) {
 Node<T> newNode = new Node<T>(data);
 if (head == null) { // empty
 head = newNode;
 tail = newNode;
 }

 else {
 tail.setNext(newNode);
 tail = newNode;
 }
 }
}

Make sure to override addAtStart to set the tail pointer correctly:
@Override
public void addAtStart(T data) {
 Node<T> newNode = new Node<T>(data);
 if (head == null) { // empty
 head = newNode;
 tail = newNode;
 }
 else{
 newNode.setNext(head);
 head = newNode;
 }
}

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016/2017 Prepared by: Dr. Mamoun Nawahdah

33

2- Circular Linked List
– Last node references the first node
– Every node has a successor

3- Dummy Head Nodes
– Always present, even when the linked list is empty
– Insertion and deletion algorithms initialize prev to reference the dummy head node, rather

than null

Processing Linked Lists Recursively:
• Traversal

– Recursive strategy to display a list
 Write the first node of the list
 Write the list minus its first node

public static void traversList(Node curr) {
 if(curr == null)
 System.out.println("NULL");
 else {
 System.out.print("[" + curr + "]-->");
 traversList(curr.next);
 }
}

– Recursive strategies to display a list backward
• writeListBackward strategy

 Write the last node of the list
 Write the list minus its last node backward

public static void traversListBackward(Node curr) {
 if(curr == null)
 System.out.print("NULL");
 else {
 traversListBackward(curr.next);
 System.out.print("<--[" + curr + "]");
 }
}

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016/2017 Prepared by: Dr. Mamoun Nawahdah

34

Doubly Linked List
Node:

Date

Next  null
null Prev

Doubly Linked List: Each node references both its predecessor and its successor:

Doubly Node Code:
public class DNode <T extends Comparable<T>>{
 T data;
 DNode next;
 DNode prev;

 public DNode(T data) { this.data = data; }
 public T getData() { return data; }
 public DNode getNext () { return next; }
 public DNode getPrev () { return prev; }

 public void setNext(DNode next) { this.next = next; }
 public void setPrev(DNode prev) { this.prev = prev; }
 public String toString() { return this.data.toString(); }
}

Doubly Linked List code:

public class DLinkedList <T extends Comparable<T>>{
 DNode head;
}

Override toString method code:
public String toString() {
 String res = "Head-->";
 DNode<T> curr = this.head;
 while (curr != null) {
 res += "["+curr + "]";
 curr = curr.getNext();
 if(curr!=null)
 res +="<=>";
 }
 return res + "-->NULL";
}

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016/2017 Prepared by: Dr. Mamoun Nawahdah

35

Insert a new node (not sorted)
Case 1: Insert at head:

public void insertAtHead(T data) {
 DNode<T> newNode = new DNode(data);
 if(head==null) // empty linkedlist
 head = newNode;
 else {
 newNode.setNext(this.head);
 head.setPrev(newNode);
 head = newNode;
 }
}

Case 2: Insert at end:
Student Activity: insert at last

public void insertAtEnd(T data) {
 DNode<T> newNode = new DNode(data);
 if (head == null) // empty linkedlist
 head = newNode;
 else { // find last node
 DNode<T> last = head;
 while(last.getNext() != null)
 last = last.getNext();
 last.setNext(newNode);
 newNode.setPrev(last);
 }
}

Length of a doubly linked list code:
public int length() {
 int length = 0;
 DNode<T> curr = this.head;
 while (curr != null) {
 length++;
 curr = curr.getNext();
 }
 return length;
}

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016/2017 Prepared by: Dr. Mamoun Nawahdah

36

Delete a node:

• To delete the node that curr pointer references

curr.prev.next = curr.next;

curr.next.prev = curr.prev;

Insert a new Node (Sorted):
• To insert a new node that newNode references before the node referenced by curr

newNode.next = curr; // 1

newNode.prev = curr.prev; // 2

curr.prev = newNode; // 3

newNode.prev.next = newNode; // 4

Circular doubly linked list with dummy head:

– Preceding reference of the dummy head node references the last node.

– next reference of the last node references the dummy head node.

– Eliminates special cases for insertions and deletions.

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016/2017 Prepared by: Dr. Mamoun Nawahdah

37

Case Study: Insertion Sort using doubly linked list (Using NO extra space):

Review insertion sort logic and point to problem of insertion and time needed to shift the items
Worst case if the array is reverse sorted

Example: assume we need to sort the following doubly linked list:

Assumption: 1st node is sorted. We start from the 2nd element:

Here:

 The black pointer points to the current node to be sorted.

 The red pointer points to previous node of current node to be sorted.

 The green pointer points to next node of current node to be sorted.

Step 1: The red pointer keeps move backward until it reaches a node which has a value smaller than

the current node or reach NULL.

Step 2: the current item will be inserted after red pointer as follow:
Make sure you maintain references correctly.

To do so draw the expected outcome and follow the steps to change the pointers:

Initial state:

Final state:

Case 1: insert to head

Step 2.0: make new green pointer = black.next

Step 2.1:  black.prev.next = green

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016/2017 Prepared by: Dr. Mamoun Nawahdah

38

Step 2.2: 

if (green != null) green.prev = black.prev

Step 2.3:  black.prev = red

Step 2.4: 
if(red==null) black.next = black.next.prev
else black.next = red.next

Step 2.5: 
If (red == null) black.next.prev = black
else red.next.prev = black

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016/2017 Prepared by: Dr. Mamoun Nawahdah

39

Step 2.6:
if (red == NULL) head = black

else red.next = black;

Step 2.7: black = green

Case 2: insert 4 in the middle
Practice yourself

Case 3: insert last element

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016/2017 Prepared by: Dr. Mamoun Nawahdah

40

Insertion Sort Code:

// Insertion Sort of a Doubly Linked List
public void sort() {
 DNode black = head.next;
 while (black != null) {
 DNode red = black.prev;
 while (red != null && (red.data.compareTo(black.data) > 0)) // step 1.0
 red = red.prev;

 DNode green = black.next; // step 2.0
 if (red != null || (head != black)) {
 black.prev.next = green; // step 2.1
 if (green!= null) {
 green.prev = black.prev; // step 2.2
 }
 black.prev = red; // step 2.3
 }
 if (red == null) { // set the black as head
 if (head != black) {
 black.next = head; // step 2.4
 black.next.prev = black; // step 2.5
 head = black; // step 2.6
 }
 } else { // red is not null
 black.next = red.next; // step 2.4
 red.next.prev = black; // step 2.5
 red.next = black; // step 2.6
 }
 black = green; // step 2.7
 }
}

Uploaded By: anonymousSTUDENTS-HUB.com

