
Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 08

Strings

Loading…

Chapter Objectives:
1. Understand how a string constant is stored in an array of characters.

2. Learn about the placeholder %s and how it is used in printf and scanf operations.

3. Learn some of the operations that can be performed on strings. (1)

4. Understand how C compares two strings to determine their relative order.

5. Learn some of the operations that can be performed on individual characters using

functions from the library ctype.

6. How to write your own functions that perform some of the basic operations of a text

editor program

● A string: is a grouping of characters, a data structure.

● C implements the string data structure using arrays of type char (1)

● Strings are important in computer science (2)

● Strings play an important role in science as well (3)

● We need strings as the vehicle for communication between the computer system
and the human user.

STRING
S

Loading…

• We have already used string constants in our earlier work with printf and scanf (1)

● The first argument is the string constant "Average = %.2f", a string of 14 characters

● Notice that the blanks in the string are characters.

● A string constant can be associated with a symbolic name using the #define directive
(2)

8.1 STRING BASICS

printf("Average = %.2f", avg);

#define ERROR "*****Error - "

#define STD_NAME "Student Name"

➢ A string in C is implemented as an array, so declaring a string variable is
the same as declaring an array of type char .

➢ The variable string_var will hold strings from 0 to 29 characters long (1)

➢ C permits initialization of string variables using a string constant

DECLARING AND INITIALIZING STRING VARIABLES

char string_var[30];

char str[20] = "Initial value";

➢ str in memory after this declaration with initialization.

➢ str[13] contains the character ‘\0' , the null character that marks the end of

a string. (1)

DECLARING AND INITIALIZING STRING VARIABLES

char str[20] = "Initial value";

char str[20] = “Numbers and strings"; (2)

● Because one string is an array of characters, an array of strings is a two-dimensional
array of characters in which each row is one string.

● We can initialize an array of strings at declaration in the following manner:

ARRAYS OF
STRINGS

#define NUM_PEOPLE 30

#define NAME_LEN 25

. . .

char names[NUM_PEOPLE][NAME_LEN]; (1)

char month[12][10] = {"January", "February", "March", "April",

"May", "June", "July", "August", "September", "October", "November",

"December"};

● Use the placeholder %s in the format string with printf and scanf to handle string
argument.

● The printf function, depends on finding a null character in the character array to mark the
end of the string. (1)

● When we write our own string-building functions, we must be sure that a null character is

inserted at the end of every string. (2)

● This inclusion of the null character is automatic for constant strings.

● The %s placeholder in a printf format string can be used with a minimum field width (3)

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("Topic: %s\n", string_var);

printf ("%8s%3s***\n", "Short", "Strings");

➢ Placing a minus sign prefix on a placeholder’s field width causes left justification of
the value displayed.

● Scanf Function:

● Remember: when we call scanf with a string variable as an argument, we must

remember that array output arguments are always passed to functions by sending the
address of the initial array element. (2)

● Figure 8.2 p. 457

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("%-20s\n", “Name”); (1)

Loading…

 Figure 8.3

➢ scanf skips leading whitespace characters such as blanks, newlines, and tabs.(1)

➢ Starting with the first nonwhitespace character, scanf copies the characters it encounters into

successive memory cells of its character array argument.

➢ When it comes across a whitespace character, scanning stops, scanf places the null character at

the end of the string in its array argument.

INPUT/OUTPUT WITH PRINTF AND
SCANF

• For example, the data could have been entered one value per line with extra whitespace.

• or two values per line:

● But: (1)

●

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH

 1270

 TR

 1800

> MATH 1270

 TR 1800

> MATH1270 TR 1800 (2)

➢ => 17 characters

Figure 8.4

● EXAMPLE 8.1 p.459

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH,1270,TR,1800 (1)

➢ Using the assignment symbol in a declaration of a string variable with initialization,
is the only one in which the operator means to copy the string that is the right operand
into the variable that is the left operand.

➢ Array address is constant and cannot be changed through assignment (1)

➢

➢ a compiler error

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

one_str = "Test string"; /* Does not work */

Invalid target of assignment :

char one_str[20] = "Test String");

● C Library Functions:

➢ Along with assignment functions, the library string.h provides functions for
substring, concatenation, string length, string comparison, and whole line input
operations [See Table 8.1 p.461]

➢ The data type of the value returned by each string-building function is the pointer

type char * .

➢ Reminder: An array is being represented by the address of its initial value.

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

● String Assignment:

➢ Function strcpy copies the string that is its second argument into its first argument

➢ Like a call to scanf with a %s placeholder, a call to strcpy can easily overflow the
space allocated for the destination variable (2)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

strcpy(one_str, "Test String"); (1)

strcpy(one_str, "A very long test string"); (3)

● strncpy that takes an argument specifying the number of characters to copy (call this
number n). (1)

● The effect is the same as the call

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, "Test string", 20); (2)

strcpy(one_str, "Test string"); (3)

● when the source string is longer than n characters, only the first n characters are
copied.

● In general,

● Both strcpy and strncpy mimic the assignment operator in that the value they return
is the string assigned. (3)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, “A very long test string”, 20); (1)

strncpy(dest, source, dest_len - 1); (2)

dest[dest_len - 1] = '\0';

➢ For example, we might want to examine
 the “133" in the string “Comp133"
 or the "Jan" in the string "Jan. 30, 1996”.

➢ Assuming that the prototype of strncpy is (1)

SUBSTRING
S

char *strncpy(char *dest, const char *source, size_t n);

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0';

➢ Figure 8.5

SUBSTRING
S

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0'; (1)

➢ If we wish to use strncpy to extract a middle substring, we must call the function
with the address of the first character to copy.

 Fig. 8.6

SUBSTRING
S

strncpy(result, &s1[5], 2);

result[2] = '\0'; (1)

strcpy(result, &s1[9]); (2)

➢ EXAMPLE 8.2 (1)
➢ 1st Solution (2)

➢ 2nd Solution: (3)

SUBSTRING
S

char *last, *first, *middle;

char pres[20] = "Adams, John Quincy";

char pres_copy[20];

strcpy(pres_copy, pres);

last = strtok(pres_copy, ", ");

first = strtok(NULL, ", ");

middle = strtok(NULL, ", ");

➢ EXAMPLE 8.3, Figure 8.7

 used to display the last
 component.

➢ Instead of: (1)
 Since strcpy returns as its value the
starting address
 of the string it has just stored in elem

➢ The use of CMP_LEN and strlen(compound): the declared size of the array is no
longer the effective size once data have been stored in the array (2)

SUBSTRING
S

printf("%s\n", strcpy(elem, &compound[first]));

strcpy(elem, &compound[first]);

printf("%s\n", elem);

● Concatenation: String library functions strcat and strncat modify their first string
argument by adding all or part of their second string argument at the end of the first
argument.

● Both functions assume that sufficient space is allocated for the first argument to allow

addition of the extra characters.

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 15 EXAMPLE 8.4

char f1[STRSIZ] = "John ", f2[STRSIZ] = "Jacqueline ",

last[STRSIZ] = "Kennedy";

strcat(f1, last); => “John Kennedy” 12 characters + “\0”

strcat(f2, last);=> “Jacqueline Kennedy” 18 characters + “\0” /* invalid overflow of f2 */

//As an alternative to the second call to strcat (2)

strncat(f2, last, 3); /*Jacqueline Ken*/

● Concatenation:
● Take note that the call to strcat modifies the value of s1 even when embedded in other function

calls:

● Both strcat and strncat return as the function value the modified first argument.

● If s1 and s2 are both character strings
declared to hold STRSIZ characters (1)

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

if (strlen(s1) + strlen(s2) < STRSIZ) {

strcat(s1, s2);

} else {

strncat(s1, s2, STRSIZ - strlen(s1) - 1);

s1[STRSIZ - 1] = '\0';

}

printf("%s\n", strncat(f2, last, 3));

● String Length: function strlen returns the length of the value of its string argument, not counting
the '\0' character.

● For example: this code fragment displays the numbers 8 and 18 followed by the phrase Birzeit
University .

● Notice that the blank at the end of the initial value of s1 is counted in s1’s length.
● Two critical questions that must always be in the mind when working with strcpy, strncpy , strcat

, and strncat:
1. Is there enough space in the output parameter for the entire string being created?
2. Does the created string end in '\0' ?

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 20

char s1[STRSIZ] = “Birzeit ",

s2[STRSIZ] = “University";

printf("%d %d\n", strlen(s1), strlen(strcat(s1, s2)));

printf("%s\n", s1);

➢ A type char value is not a valid argument for a function with a corresponding
parameter of type char * (1)

➢ Note the difference internally between the representations of the character 'Q' and the

string "Q" .

● View the string as an array and use assignment to subscripted elements for access. (2)

● Be sure to include the null character at the end of the string.

DISTINCTION BETWEEN CHARACTERS AND
STRINGS

● Although blanks are natural separators to place between numeric data values, viewing
them as delimiters (1) when processing strings may not make sense (2)

➢ The stdio library provides the function gets for interactive input of one complete line

of data

 (3)

SCANNING A FULL LINE

char line[80];

printf("Type in a line of data.\n> ");

gets(line);

Type in a line of data.

> Here is a short sentence.

Loading…

● The \n character representing the <return> or <enter> key pressed at the end of the
sentence is not stored.

● Like scanf , gets can overflow its string argument if the user enters a longer data line
than will fit.

● Function fgets takes three arguments: (1)

1. The output parameter string,
2. A maximum number of characters to store (n) (2)
3. And the file pointer to the data source

● The next to last character may or may not be '\n' :
4. If fgets has room to store the entire line of data it will include '\n' before '\0' .
5. If the line is truncated, no '\n' is stored.

SCANNING A FULL LINE

● fgets stores the string created in its first argument and returns this string argument (i.e.,
its address) as its value (1)

● When a call to fgets encounters the end of file, the value returned is the address 0,

which is considered the null pointer.

● FIGURE 8.8 (2)

SCANNING A FULL LINE

➢ We studied the fact that characters are represented by numeric codes, and we used
relational and equality operators to compare characters.

➢ Unfortunately, these operators cannot be used for comparison of strings. (1)

➢ if str1 and str2 are string variables, the condition
is not checking whether str1 precedes str2 alphabetically (2)

● The standard string library provides the int function strcmp for comparison of two
strings that we will refer to as str1 and str2.

8.4 STRING COMPARISON

letter == 'C' ch1 < ch2

str1 < str2

➢ Function strcmp separates its argument pairs into three categories:

➢ str1[n] < str2[n] if:

8.4 STRING COMPARISON

OR

➢ The string library also provides an analogous function strncmp that bases its
comparison on only the first n characters of the two strings, where n is the third
argument.

➢ if str1 is “cabinet" and str2 is “cable " , the function calls

strncmp(str1, str2, 1) = 0
strncmp(str1, str2, 2) = 0
strncmp(str1, str2, 3) = 0 (1)

➢ strncmp(str1, str2, 4) would return a negative integer (2)

8.4 STRING COMPARISON

➢ EXAMPLE 8.5

➢ EXAMPLE 8.6, FIGURE 8.10

8.4 STRING COMPARISON

Figure 8.12

8.5 ARRAYS OF POINTERS

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to

8.5 ARRAYS OF POINTERS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 08

Strings

Loading…

Chapter Objectives:
1. Understand how a string constant is stored in an array of characters.

2. Learn about the placeholder %s and how it is used in printf and scanf operations.

3. Learn some of the operations that can be performed on strings. (1)

4. Understand how C compares two strings to determine their relative order.

5. Learn some of the operations that can be performed on individual characters using

functions from the library ctype.

6. How to write your own functions that perform some of the basic operations of a text

editor program

● A string: is a grouping of characters, a data structure.

● C implements the string data structure using arrays of type char (1)

● Strings are important in computer science (2)

● Strings play an important role in science as well (3)

● We need strings as the vehicle for communication between the computer system
and the human user.

STRING
S

Loading…

• We have already used string constants in our earlier work with printf and scanf (1)

● The first argument is the string constant "Average = %.2f", a string of 14 characters

● Notice that the blanks in the string are characters.

● A string constant can be associated with a symbolic name using the #define directive
(2)

8.1 STRING BASICS

printf("Average = %.2f", avg);

#define ERROR "*****Error - "

#define STD_NAME "Student Name"

➢ A string in C is implemented as an array, so declaring a string variable is
the same as declaring an array of type char .

➢ The variable string_var will hold strings from 0 to 29 characters long (1)

➢ C permits initialization of string variables using a string constant

DECLARING AND INITIALIZING STRING VARIABLES

char string_var[30];

char str[20] = "Initial value";

➢ str in memory after this declaration with initialization.

➢ str[13] contains the character ‘\0' , the null character that marks the end of

a string. (1)

DECLARING AND INITIALIZING STRING VARIABLES

char str[20] = "Initial value";

char str[20] = “Numbers and strings"; (2)

● Because one string is an array of characters, an array of strings is a two-dimensional
array of characters in which each row is one string.

● We can initialize an array of strings at declaration in the following manner:

ARRAYS OF
STRINGS

#define NUM_PEOPLE 30

#define NAME_LEN 25

. . .

char names[NUM_PEOPLE][NAME_LEN]; (1)

char month[12][10] = {"January", "February", "March", "April",

"May", "June", "July", "August", "September", "October", "November",

"December"};

● Use the placeholder %s in the format string with printf and scanf to handle string
argument.

● The printf function, depends on finding a null character in the character array to mark the
end of the string. (1)

● When we write our own string-building functions, we must be sure that a null character is

inserted at the end of every string. (2)

● This inclusion of the null character is automatic for constant strings.

● The %s placeholder in a printf format string can be used with a minimum field width (3)

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("Topic: %s\n", string_var);

printf ("%8s%3s***\n", "Short", "Strings");

➢ Placing a minus sign prefix on a placeholder’s field width causes left justification of
the value displayed.

● Scanf Function:

● Remember: when we call scanf with a string variable as an argument, we must

remember that array output arguments are always passed to functions by sending the
address of the initial array element. (2)

● Figure 8.2 p. 457

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("%-20s\n", “Name”); (1)

Loading…

 Figure 8.3

➢ scanf skips leading whitespace characters such as blanks, newlines, and tabs.(1)

➢ Starting with the first nonwhitespace character, scanf copies the characters it encounters into

successive memory cells of its character array argument.

➢ When it comes across a whitespace character, scanning stops, scanf places the null character at

the end of the string in its array argument.

INPUT/OUTPUT WITH PRINTF AND
SCANF

• For example, the data could have been entered one value per line with extra whitespace.

• or two values per line:

● But: (1)

●

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH

 1270

 TR

 1800

> MATH 1270

 TR 1800

> MATH1270 TR 1800 (2)

➢ => 17 characters

Figure 8.4

● EXAMPLE 8.1 p.459

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH,1270,TR,1800 (1)

➢ Using the assignment symbol in a declaration of a string variable with initialization,
is the only one in which the operator means to copy the string that is the right operand
into the variable that is the left operand.

➢ Array address is constant and cannot be changed through assignment (1)

➢

➢ a compiler error

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

one_str = "Test string"; /* Does not work */

Invalid target of assignment :

char one_str[20] = "Test String");

● C Library Functions:

➢ Along with assignment functions, the library string.h provides functions for
substring, concatenation, string length, string comparison, and whole line input
operations [See Table 8.1 p.461]

➢ The data type of the value returned by each string-building function is the pointer

type char * .

➢ Reminder: An array is being represented by the address of its initial value.

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

● String Assignment:

➢ Function strcpy copies the string that is its second argument into its first argument

➢ Like a call to scanf with a %s placeholder, a call to strcpy can easily overflow the
space allocated for the destination variable (2)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

strcpy(one_str, "Test String"); (1)

strcpy(one_str, "A very long test string"); (3)

● strncpy that takes an argument specifying the number of characters to copy (call this
number n). (1)

● The effect is the same as the call

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, "Test string", 20); (2)

strcpy(one_str, "Test string"); (3)

● when the source string is longer than n characters, only the first n characters are
copied.

● In general,

● Both strcpy and strncpy mimic the assignment operator in that the value they return
is the string assigned. (3)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, “A very long test string”, 20); (1)

strncpy(dest, source, dest_len - 1); (2)

dest[dest_len - 1] = '\0';

➢ For example, we might want to examine
 the “133" in the string “Comp133"
 or the "Jan" in the string "Jan. 30, 1996”.

➢ Assuming that the prototype of strncpy is (1)

SUBSTRING
S

char *strncpy(char *dest, const char *source, size_t n);

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0';

➢ Figure 8.5

SUBSTRING
S

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0'; (1)

➢ If we wish to use strncpy to extract a middle substring, we must call the function
with the address of the first character to copy.

 Fig. 8.6

SUBSTRING
S

strncpy(result, &s1[5], 2);

result[2] = '\0'; (1)

strcpy(result, &s1[9]); (2)

➢ EXAMPLE 8.2 (1)
➢ 1st Solution (2)

➢ 2nd Solution: (3)

SUBSTRING
S

char *last, *first, *middle;

char pres[20] = "Adams, John Quincy";

char pres_copy[20];

strcpy(pres_copy, pres);

last = strtok(pres_copy, ", ");

first = strtok(NULL, ", ");

middle = strtok(NULL, ", ");

➢ EXAMPLE 8.3, Figure 8.7

 used to display the last
 component.

➢ Instead of: (1)
 Since strcpy returns as its value the
starting address
 of the string it has just stored in elem

➢ The use of CMP_LEN and strlen(compound): the declared size of the array is no
longer the effective size once data have been stored in the array (2)

SUBSTRING
S

printf("%s\n", strcpy(elem, &compound[first]));

strcpy(elem, &compound[first]);

printf("%s\n", elem);

● Concatenation: String library functions strcat and strncat modify their first string
argument by adding all or part of their second string argument at the end of the first
argument.

● Both functions assume that sufficient space is allocated for the first argument to allow

addition of the extra characters.

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 15 EXAMPLE 8.4

char f1[STRSIZ] = "John ", f2[STRSIZ] = "Jacqueline ",

last[STRSIZ] = "Kennedy";

strcat(f1, last); => “John Kennedy” 12 characters + “\0”

strcat(f2, last);=> “Jacqueline Kennedy” 18 characters + “\0” /* invalid overflow of f2 */

//As an alternative to the second call to strcat (2)

strncat(f2, last, 3); /*Jacqueline Ken*/

● Concatenation:
● Take note that the call to strcat modifies the value of s1 even when embedded in other function

calls:

● Both strcat and strncat return as the function value the modified first argument.

● If s1 and s2 are both character strings
declared to hold STRSIZ characters (1)

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

if (strlen(s1) + strlen(s2) < STRSIZ) {

strcat(s1, s2);

} else {

strncat(s1, s2, STRSIZ - strlen(s1) - 1);

s1[STRSIZ - 1] = '\0';

}

printf("%s\n", strncat(f2, last, 3));

● String Length: function strlen returns the length of the value of its string argument, not counting
the '\0' character.

● For example: this code fragment displays the numbers 8 and 18 followed by the phrase Birzeit
University .

● Notice that the blank at the end of the initial value of s1 is counted in s1’s length.
● Two critical questions that must always be in the mind when working with strcpy, strncpy , strcat

, and strncat:
1. Is there enough space in the output parameter for the entire string being created?
2. Does the created string end in '\0' ?

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 20

char s1[STRSIZ] = “Birzeit ",

s2[STRSIZ] = “University";

printf("%d %d\n", strlen(s1), strlen(strcat(s1, s2)));

printf("%s\n", s1);

➢ A type char value is not a valid argument for a function with a corresponding
parameter of type char * (1)

➢ Note the difference internally between the representations of the character 'Q' and the

string "Q" .

● View the string as an array and use assignment to subscripted elements for access. (2)

● Be sure to include the null character at the end of the string.

DISTINCTION BETWEEN CHARACTERS AND
STRINGS

● Although blanks are natural separators to place between numeric data values, viewing
them as delimiters (1) when processing strings may not make sense (2)

➢ The stdio library provides the function gets for interactive input of one complete line

of data

 (3)

SCANNING A FULL LINE

char line[80];

printf("Type in a line of data.\n> ");

gets(line);

Type in a line of data.

> Here is a short sentence.

Loading…

● The \n character representing the <return> or <enter> key pressed at the end of the
sentence is not stored.

● Like scanf , gets can overflow its string argument if the user enters a longer data line
than will fit.

● Function fgets takes three arguments: (1)

1. The output parameter string,
2. A maximum number of characters to store (n) (2)
3. And the file pointer to the data source

● The next to last character may or may not be '\n' :
4. If fgets has room to store the entire line of data it will include '\n' before '\0' .
5. If the line is truncated, no '\n' is stored.

SCANNING A FULL LINE

● fgets stores the string created in its first argument and returns this string argument (i.e.,
its address) as its value (1)

● When a call to fgets encounters the end of file, the value returned is the address 0,

which is considered the null pointer.

● FIGURE 8.8 (2)

SCANNING A FULL LINE

➢ We studied the fact that characters are represented by numeric codes, and we used
relational and equality operators to compare characters.

➢ Unfortunately, these operators cannot be used for comparison of strings. (1)

➢ if str1 and str2 are string variables, the condition
is not checking whether str1 precedes str2 alphabetically (2)

● The standard string library provides the int function strcmp for comparison of two
strings that we will refer to as str1 and str2.

8.4 STRING COMPARISON

letter == 'C' ch1 < ch2

str1 < str2

➢ Function strcmp separates its argument pairs into three categories:

➢ str1[n] < str2[n] if:

8.4 STRING COMPARISON

OR

➢ The string library also provides an analogous function strncmp that bases its
comparison on only the first n characters of the two strings, where n is the third
argument.

➢ if str1 is “cabinet" and str2 is “cable " , the function calls

strncmp(str1, str2, 1) = 0
strncmp(str1, str2, 2) = 0
strncmp(str1, str2, 3) = 0 (1)

➢ strncmp(str1, str2, 4) would return a negative integer (2)

8.4 STRING COMPARISON

➢ EXAMPLE 8.5

➢ EXAMPLE 8.6, FIGURE 8.10

8.4 STRING COMPARISON

Figure 8.12

8.5 ARRAYS OF POINTERS

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to

8.5 ARRAYS OF POINTERS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 08

Strings

Loading…

Chapter Objectives:
1. Understand how a string constant is stored in an array of characters.

2. Learn about the placeholder %s and how it is used in printf and scanf operations.

3. Learn some of the operations that can be performed on strings. (1)

4. Understand how C compares two strings to determine their relative order.

5. Learn some of the operations that can be performed on individual characters using

functions from the library ctype.

6. How to write your own functions that perform some of the basic operations of a text

editor program

● A string: is a grouping of characters, a data structure.

● C implements the string data structure using arrays of type char (1)

● Strings are important in computer science (2)

● Strings play an important role in science as well (3)

● We need strings as the vehicle for communication between the computer system
and the human user.

STRING
S

Loading…

• We have already used string constants in our earlier work with printf and scanf (1)

● The first argument is the string constant "Average = %.2f", a string of 14 characters

● Notice that the blanks in the string are characters.

● A string constant can be associated with a symbolic name using the #define directive
(2)

8.1 STRING BASICS

printf("Average = %.2f", avg);

#define ERROR "*****Error - "

#define STD_NAME "Student Name"

➢ A string in C is implemented as an array, so declaring a string variable is
the same as declaring an array of type char .

➢ The variable string_var will hold strings from 0 to 29 characters long (1)

➢ C permits initialization of string variables using a string constant

DECLARING AND INITIALIZING STRING VARIABLES

char string_var[30];

char str[20] = "Initial value";

➢ str in memory after this declaration with initialization.

➢ str[13] contains the character ‘\0' , the null character that marks the end of

a string. (1)

DECLARING AND INITIALIZING STRING VARIABLES

char str[20] = "Initial value";

char str[20] = “Numbers and strings"; (2)

● Because one string is an array of characters, an array of strings is a two-dimensional
array of characters in which each row is one string.

● We can initialize an array of strings at declaration in the following manner:

ARRAYS OF
STRINGS

#define NUM_PEOPLE 30

#define NAME_LEN 25

. . .

char names[NUM_PEOPLE][NAME_LEN]; (1)

char month[12][10] = {"January", "February", "March", "April",

"May", "June", "July", "August", "September", "October", "November",

"December"};

● Use the placeholder %s in the format string with printf and scanf to handle string
argument.

● The printf function, depends on finding a null character in the character array to mark the
end of the string. (1)

● When we write our own string-building functions, we must be sure that a null character is

inserted at the end of every string. (2)

● This inclusion of the null character is automatic for constant strings.

● The %s placeholder in a printf format string can be used with a minimum field width (3)

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("Topic: %s\n", string_var);

printf ("%8s%3s***\n", "Short", "Strings");

➢ Placing a minus sign prefix on a placeholder’s field width causes left justification of
the value displayed.

● Scanf Function:

● Remember: when we call scanf with a string variable as an argument, we must

remember that array output arguments are always passed to functions by sending the
address of the initial array element. (2)

● Figure 8.2 p. 457

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("%-20s\n", “Name”); (1)

Loading…

 Figure 8.3

➢ scanf skips leading whitespace characters such as blanks, newlines, and tabs.(1)

➢ Starting with the first nonwhitespace character, scanf copies the characters it encounters into

successive memory cells of its character array argument.

➢ When it comes across a whitespace character, scanning stops, scanf places the null character at

the end of the string in its array argument.

INPUT/OUTPUT WITH PRINTF AND
SCANF

• For example, the data could have been entered one value per line with extra whitespace.

• or two values per line:

● But: (1)

●

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH

 1270

 TR

 1800

> MATH 1270

 TR 1800

> MATH1270 TR 1800 (2)

➢ => 17 characters

Figure 8.4

● EXAMPLE 8.1 p.459

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH,1270,TR,1800 (1)

➢ Using the assignment symbol in a declaration of a string variable with initialization,
is the only one in which the operator means to copy the string that is the right operand
into the variable that is the left operand.

➢ Array address is constant and cannot be changed through assignment (1)

➢

➢ a compiler error

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

one_str = "Test string"; /* Does not work */

Invalid target of assignment :

char one_str[20] = "Test String");

● C Library Functions:

➢ Along with assignment functions, the library string.h provides functions for
substring, concatenation, string length, string comparison, and whole line input
operations [See Table 8.1 p.461]

➢ The data type of the value returned by each string-building function is the pointer

type char * .

➢ Reminder: An array is being represented by the address of its initial value.

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

● String Assignment:

➢ Function strcpy copies the string that is its second argument into its first argument

➢ Like a call to scanf with a %s placeholder, a call to strcpy can easily overflow the
space allocated for the destination variable (2)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

strcpy(one_str, "Test String"); (1)

strcpy(one_str, "A very long test string"); (3)

● strncpy that takes an argument specifying the number of characters to copy (call this
number n). (1)

● The effect is the same as the call

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, "Test string", 20); (2)

strcpy(one_str, "Test string"); (3)

● when the source string is longer than n characters, only the first n characters are
copied.

● In general,

● Both strcpy and strncpy mimic the assignment operator in that the value they return
is the string assigned. (3)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, “A very long test string”, 20); (1)

strncpy(dest, source, dest_len - 1); (2)

dest[dest_len - 1] = '\0';

➢ For example, we might want to examine
 the “133" in the string “Comp133"
 or the "Jan" in the string "Jan. 30, 1996”.

➢ Assuming that the prototype of strncpy is (1)

SUBSTRING
S

char *strncpy(char *dest, const char *source, size_t n);

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0';

➢ Figure 8.5

SUBSTRING
S

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0'; (1)

➢ If we wish to use strncpy to extract a middle substring, we must call the function
with the address of the first character to copy.

 Fig. 8.6

SUBSTRING
S

strncpy(result, &s1[5], 2);

result[2] = '\0'; (1)

strcpy(result, &s1[9]); (2)

➢ EXAMPLE 8.2 (1)
➢ 1st Solution (2)

➢ 2nd Solution: (3)

SUBSTRING
S

char *last, *first, *middle;

char pres[20] = "Adams, John Quincy";

char pres_copy[20];

strcpy(pres_copy, pres);

last = strtok(pres_copy, ", ");

first = strtok(NULL, ", ");

middle = strtok(NULL, ", ");

➢ EXAMPLE 8.3, Figure 8.7

 used to display the last
 component.

➢ Instead of: (1)
 Since strcpy returns as its value the
starting address
 of the string it has just stored in elem

➢ The use of CMP_LEN and strlen(compound): the declared size of the array is no
longer the effective size once data have been stored in the array (2)

SUBSTRING
S

printf("%s\n", strcpy(elem, &compound[first]));

strcpy(elem, &compound[first]);

printf("%s\n", elem);

● Concatenation: String library functions strcat and strncat modify their first string
argument by adding all or part of their second string argument at the end of the first
argument.

● Both functions assume that sufficient space is allocated for the first argument to allow

addition of the extra characters.

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 15 EXAMPLE 8.4

char f1[STRSIZ] = "John ", f2[STRSIZ] = "Jacqueline ",

last[STRSIZ] = "Kennedy";

strcat(f1, last); => “John Kennedy” 12 characters + “\0”

strcat(f2, last);=> “Jacqueline Kennedy” 18 characters + “\0” /* invalid overflow of f2 */

//As an alternative to the second call to strcat (2)

strncat(f2, last, 3); /*Jacqueline Ken*/

● Concatenation:
● Take note that the call to strcat modifies the value of s1 even when embedded in other function

calls:

● Both strcat and strncat return as the function value the modified first argument.

● If s1 and s2 are both character strings
declared to hold STRSIZ characters (1)

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

if (strlen(s1) + strlen(s2) < STRSIZ) {

strcat(s1, s2);

} else {

strncat(s1, s2, STRSIZ - strlen(s1) - 1);

s1[STRSIZ - 1] = '\0';

}

printf("%s\n", strncat(f2, last, 3));

● String Length: function strlen returns the length of the value of its string argument, not counting
the '\0' character.

● For example: this code fragment displays the numbers 8 and 18 followed by the phrase Birzeit
University .

● Notice that the blank at the end of the initial value of s1 is counted in s1’s length.
● Two critical questions that must always be in the mind when working with strcpy, strncpy , strcat

, and strncat:
1. Is there enough space in the output parameter for the entire string being created?
2. Does the created string end in '\0' ?

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 20

char s1[STRSIZ] = “Birzeit ",

s2[STRSIZ] = “University";

printf("%d %d\n", strlen(s1), strlen(strcat(s1, s2)));

printf("%s\n", s1);

➢ A type char value is not a valid argument for a function with a corresponding
parameter of type char * (1)

➢ Note the difference internally between the representations of the character 'Q' and the

string "Q" .

● View the string as an array and use assignment to subscripted elements for access. (2)

● Be sure to include the null character at the end of the string.

DISTINCTION BETWEEN CHARACTERS AND
STRINGS

● Although blanks are natural separators to place between numeric data values, viewing
them as delimiters (1) when processing strings may not make sense (2)

➢ The stdio library provides the function gets for interactive input of one complete line

of data

 (3)

SCANNING A FULL LINE

char line[80];

printf("Type in a line of data.\n> ");

gets(line);

Type in a line of data.

> Here is a short sentence.

Loading…

● The \n character representing the <return> or <enter> key pressed at the end of the
sentence is not stored.

● Like scanf , gets can overflow its string argument if the user enters a longer data line
than will fit.

● Function fgets takes three arguments: (1)

1. The output parameter string,
2. A maximum number of characters to store (n) (2)
3. And the file pointer to the data source

● The next to last character may or may not be '\n' :
4. If fgets has room to store the entire line of data it will include '\n' before '\0' .
5. If the line is truncated, no '\n' is stored.

SCANNING A FULL LINE

● fgets stores the string created in its first argument and returns this string argument (i.e.,
its address) as its value (1)

● When a call to fgets encounters the end of file, the value returned is the address 0,

which is considered the null pointer.

● FIGURE 8.8 (2)

SCANNING A FULL LINE

➢ We studied the fact that characters are represented by numeric codes, and we used
relational and equality operators to compare characters.

➢ Unfortunately, these operators cannot be used for comparison of strings. (1)

➢ if str1 and str2 are string variables, the condition
is not checking whether str1 precedes str2 alphabetically (2)

● The standard string library provides the int function strcmp for comparison of two
strings that we will refer to as str1 and str2.

8.4 STRING COMPARISON

letter == 'C' ch1 < ch2

str1 < str2

➢ Function strcmp separates its argument pairs into three categories:

➢ str1[n] < str2[n] if:

8.4 STRING COMPARISON

OR

➢ The string library also provides an analogous function strncmp that bases its
comparison on only the first n characters of the two strings, where n is the third
argument.

➢ if str1 is “cabinet" and str2 is “cable " , the function calls

strncmp(str1, str2, 1) = 0
strncmp(str1, str2, 2) = 0
strncmp(str1, str2, 3) = 0 (1)

➢ strncmp(str1, str2, 4) would return a negative integer (2)

8.4 STRING COMPARISON

➢ EXAMPLE 8.5

➢ EXAMPLE 8.6, FIGURE 8.10

8.4 STRING COMPARISON

Figure 8.12

8.5 ARRAYS OF POINTERS

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to

8.5 ARRAYS OF POINTERS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 08

Strings

Loading…

Chapter Objectives:
1. Understand how a string constant is stored in an array of characters.

2. Learn about the placeholder %s and how it is used in printf and scanf operations.

3. Learn some of the operations that can be performed on strings. (1)

4. Understand how C compares two strings to determine their relative order.

5. Learn some of the operations that can be performed on individual characters using

functions from the library ctype.

6. How to write your own functions that perform some of the basic operations of a text

editor program

● A string: is a grouping of characters, a data structure.

● C implements the string data structure using arrays of type char (1)

● Strings are important in computer science (2)

● Strings play an important role in science as well (3)

● We need strings as the vehicle for communication between the computer system
and the human user.

STRING
S

Loading…

• We have already used string constants in our earlier work with printf and scanf (1)

● The first argument is the string constant "Average = %.2f", a string of 14 characters

● Notice that the blanks in the string are characters.

● A string constant can be associated with a symbolic name using the #define directive
(2)

8.1 STRING BASICS

printf("Average = %.2f", avg);

#define ERROR "*****Error - "

#define STD_NAME "Student Name"

➢ A string in C is implemented as an array, so declaring a string variable is
the same as declaring an array of type char .

➢ The variable string_var will hold strings from 0 to 29 characters long (1)

➢ C permits initialization of string variables using a string constant

DECLARING AND INITIALIZING STRING VARIABLES

char string_var[30];

char str[20] = "Initial value";

➢ str in memory after this declaration with initialization.

➢ str[13] contains the character ‘\0' , the null character that marks the end of

a string. (1)

DECLARING AND INITIALIZING STRING VARIABLES

char str[20] = "Initial value";

char str[20] = “Numbers and strings"; (2)

● Because one string is an array of characters, an array of strings is a two-dimensional
array of characters in which each row is one string.

● We can initialize an array of strings at declaration in the following manner:

ARRAYS OF
STRINGS

#define NUM_PEOPLE 30

#define NAME_LEN 25

. . .

char names[NUM_PEOPLE][NAME_LEN]; (1)

char month[12][10] = {"January", "February", "March", "April",

"May", "June", "July", "August", "September", "October", "November",

"December"};

● Use the placeholder %s in the format string with printf and scanf to handle string
argument.

● The printf function, depends on finding a null character in the character array to mark the
end of the string. (1)

● When we write our own string-building functions, we must be sure that a null character is

inserted at the end of every string. (2)

● This inclusion of the null character is automatic for constant strings.

● The %s placeholder in a printf format string can be used with a minimum field width (3)

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("Topic: %s\n", string_var);

printf ("%8s%3s***\n", "Short", "Strings");

➢ Placing a minus sign prefix on a placeholder’s field width causes left justification of
the value displayed.

● Scanf Function:

● Remember: when we call scanf with a string variable as an argument, we must

remember that array output arguments are always passed to functions by sending the
address of the initial array element. (2)

● Figure 8.2 p. 457

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("%-20s\n", “Name”); (1)

Loading…

 Figure 8.3

➢ scanf skips leading whitespace characters such as blanks, newlines, and tabs.(1)

➢ Starting with the first nonwhitespace character, scanf copies the characters it encounters into

successive memory cells of its character array argument.

➢ When it comes across a whitespace character, scanning stops, scanf places the null character at

the end of the string in its array argument.

INPUT/OUTPUT WITH PRINTF AND
SCANF

• For example, the data could have been entered one value per line with extra whitespace.

• or two values per line:

● But: (1)

●

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH

 1270

 TR

 1800

> MATH 1270

 TR 1800

> MATH1270 TR 1800 (2)

➢ => 17 characters

Figure 8.4

● EXAMPLE 8.1 p.459

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH,1270,TR,1800 (1)

➢ Using the assignment symbol in a declaration of a string variable with initialization,
is the only one in which the operator means to copy the string that is the right operand
into the variable that is the left operand.

➢ Array address is constant and cannot be changed through assignment (1)

➢

➢ a compiler error

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

one_str = "Test string"; /* Does not work */

Invalid target of assignment :

char one_str[20] = "Test String");

● C Library Functions:

➢ Along with assignment functions, the library string.h provides functions for
substring, concatenation, string length, string comparison, and whole line input
operations [See Table 8.1 p.461]

➢ The data type of the value returned by each string-building function is the pointer

type char * .

➢ Reminder: An array is being represented by the address of its initial value.

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

● String Assignment:

➢ Function strcpy copies the string that is its second argument into its first argument

➢ Like a call to scanf with a %s placeholder, a call to strcpy can easily overflow the
space allocated for the destination variable (2)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

strcpy(one_str, "Test String"); (1)

strcpy(one_str, "A very long test string"); (3)

● strncpy that takes an argument specifying the number of characters to copy (call this
number n). (1)

● The effect is the same as the call

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, "Test string", 20); (2)

strcpy(one_str, "Test string"); (3)

● when the source string is longer than n characters, only the first n characters are
copied.

● In general,

● Both strcpy and strncpy mimic the assignment operator in that the value they return
is the string assigned. (3)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, “A very long test string”, 20); (1)

strncpy(dest, source, dest_len - 1); (2)

dest[dest_len - 1] = '\0';

➢ For example, we might want to examine
 the “133" in the string “Comp133"
 or the "Jan" in the string "Jan. 30, 1996”.

➢ Assuming that the prototype of strncpy is (1)

SUBSTRING
S

char *strncpy(char *dest, const char *source, size_t n);

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0';

➢ Figure 8.5

SUBSTRING
S

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0'; (1)

➢ If we wish to use strncpy to extract a middle substring, we must call the function
with the address of the first character to copy.

 Fig. 8.6

SUBSTRING
S

strncpy(result, &s1[5], 2);

result[2] = '\0'; (1)

strcpy(result, &s1[9]); (2)

➢ EXAMPLE 8.2 (1)
➢ 1st Solution (2)

➢ 2nd Solution: (3)

SUBSTRING
S

char *last, *first, *middle;

char pres[20] = "Adams, John Quincy";

char pres_copy[20];

strcpy(pres_copy, pres);

last = strtok(pres_copy, ", ");

first = strtok(NULL, ", ");

middle = strtok(NULL, ", ");

➢ EXAMPLE 8.3, Figure 8.7

 used to display the last
 component.

➢ Instead of: (1)
 Since strcpy returns as its value the
starting address
 of the string it has just stored in elem

➢ The use of CMP_LEN and strlen(compound): the declared size of the array is no
longer the effective size once data have been stored in the array (2)

SUBSTRING
S

printf("%s\n", strcpy(elem, &compound[first]));

strcpy(elem, &compound[first]);

printf("%s\n", elem);

● Concatenation: String library functions strcat and strncat modify their first string
argument by adding all or part of their second string argument at the end of the first
argument.

● Both functions assume that sufficient space is allocated for the first argument to allow

addition of the extra characters.

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 15 EXAMPLE 8.4

char f1[STRSIZ] = "John ", f2[STRSIZ] = "Jacqueline ",

last[STRSIZ] = "Kennedy";

strcat(f1, last); => “John Kennedy” 12 characters + “\0”

strcat(f2, last);=> “Jacqueline Kennedy” 18 characters + “\0” /* invalid overflow of f2 */

//As an alternative to the second call to strcat (2)

strncat(f2, last, 3); /*Jacqueline Ken*/

● Concatenation:
● Take note that the call to strcat modifies the value of s1 even when embedded in other function

calls:

● Both strcat and strncat return as the function value the modified first argument.

● If s1 and s2 are both character strings
declared to hold STRSIZ characters (1)

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

if (strlen(s1) + strlen(s2) < STRSIZ) {

strcat(s1, s2);

} else {

strncat(s1, s2, STRSIZ - strlen(s1) - 1);

s1[STRSIZ - 1] = '\0';

}

printf("%s\n", strncat(f2, last, 3));

● String Length: function strlen returns the length of the value of its string argument, not counting
the '\0' character.

● For example: this code fragment displays the numbers 8 and 18 followed by the phrase Birzeit
University .

● Notice that the blank at the end of the initial value of s1 is counted in s1’s length.
● Two critical questions that must always be in the mind when working with strcpy, strncpy , strcat

, and strncat:
1. Is there enough space in the output parameter for the entire string being created?
2. Does the created string end in '\0' ?

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 20

char s1[STRSIZ] = “Birzeit ",

s2[STRSIZ] = “University";

printf("%d %d\n", strlen(s1), strlen(strcat(s1, s2)));

printf("%s\n", s1);

➢ A type char value is not a valid argument for a function with a corresponding
parameter of type char * (1)

➢ Note the difference internally between the representations of the character 'Q' and the

string "Q" .

● View the string as an array and use assignment to subscripted elements for access. (2)

● Be sure to include the null character at the end of the string.

DISTINCTION BETWEEN CHARACTERS AND
STRINGS

● Although blanks are natural separators to place between numeric data values, viewing
them as delimiters (1) when processing strings may not make sense (2)

➢ The stdio library provides the function gets for interactive input of one complete line

of data

 (3)

SCANNING A FULL LINE

char line[80];

printf("Type in a line of data.\n> ");

gets(line);

Type in a line of data.

> Here is a short sentence.

Loading…

● The \n character representing the <return> or <enter> key pressed at the end of the
sentence is not stored.

● Like scanf , gets can overflow its string argument if the user enters a longer data line
than will fit.

● Function fgets takes three arguments: (1)

1. The output parameter string,
2. A maximum number of characters to store (n) (2)
3. And the file pointer to the data source

● The next to last character may or may not be '\n' :
4. If fgets has room to store the entire line of data it will include '\n' before '\0' .
5. If the line is truncated, no '\n' is stored.

SCANNING A FULL LINE

● fgets stores the string created in its first argument and returns this string argument (i.e.,
its address) as its value (1)

● When a call to fgets encounters the end of file, the value returned is the address 0,

which is considered the null pointer.

● FIGURE 8.8 (2)

SCANNING A FULL LINE

➢ We studied the fact that characters are represented by numeric codes, and we used
relational and equality operators to compare characters.

➢ Unfortunately, these operators cannot be used for comparison of strings. (1)

➢ if str1 and str2 are string variables, the condition
is not checking whether str1 precedes str2 alphabetically (2)

● The standard string library provides the int function strcmp for comparison of two
strings that we will refer to as str1 and str2.

8.4 STRING COMPARISON

letter == 'C' ch1 < ch2

str1 < str2

➢ Function strcmp separates its argument pairs into three categories:

➢ str1[n] < str2[n] if:

8.4 STRING COMPARISON

OR

➢ The string library also provides an analogous function strncmp that bases its
comparison on only the first n characters of the two strings, where n is the third
argument.

➢ if str1 is “cabinet" and str2 is “cable " , the function calls

strncmp(str1, str2, 1) = 0
strncmp(str1, str2, 2) = 0
strncmp(str1, str2, 3) = 0 (1)

➢ strncmp(str1, str2, 4) would return a negative integer (2)

8.4 STRING COMPARISON

➢ EXAMPLE 8.5

➢ EXAMPLE 8.6, FIGURE 8.10

8.4 STRING COMPARISON

Figure 8.12

8.5 ARRAYS OF POINTERS

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to

8.5 ARRAYS OF POINTERS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 08

Strings

Loading…

Chapter Objectives:
1. Understand how a string constant is stored in an array of characters.

2. Learn about the placeholder %s and how it is used in printf and scanf operations.

3. Learn some of the operations that can be performed on strings. (1)

4. Understand how C compares two strings to determine their relative order.

5. Learn some of the operations that can be performed on individual characters using

functions from the library ctype.

6. How to write your own functions that perform some of the basic operations of a text

editor program

● A string: is a grouping of characters, a data structure.

● C implements the string data structure using arrays of type char (1)

● Strings are important in computer science (2)

● Strings play an important role in science as well (3)

● We need strings as the vehicle for communication between the computer system
and the human user.

STRING
S

Loading…

• We have already used string constants in our earlier work with printf and scanf (1)

● The first argument is the string constant "Average = %.2f", a string of 14 characters

● Notice that the blanks in the string are characters.

● A string constant can be associated with a symbolic name using the #define directive
(2)

8.1 STRING BASICS

printf("Average = %.2f", avg);

#define ERROR "*****Error - "

#define STD_NAME "Student Name"

➢ A string in C is implemented as an array, so declaring a string variable is
the same as declaring an array of type char .

➢ The variable string_var will hold strings from 0 to 29 characters long (1)

➢ C permits initialization of string variables using a string constant

DECLARING AND INITIALIZING STRING VARIABLES

char string_var[30];

char str[20] = "Initial value";

➢ str in memory after this declaration with initialization.

➢ str[13] contains the character ‘\0' , the null character that marks the end of

a string. (1)

DECLARING AND INITIALIZING STRING VARIABLES

char str[20] = "Initial value";

char str[20] = “Numbers and strings"; (2)

● Because one string is an array of characters, an array of strings is a two-dimensional
array of characters in which each row is one string.

● We can initialize an array of strings at declaration in the following manner:

ARRAYS OF
STRINGS

#define NUM_PEOPLE 30

#define NAME_LEN 25

. . .

char names[NUM_PEOPLE][NAME_LEN]; (1)

char month[12][10] = {"January", "February", "March", "April",

"May", "June", "July", "August", "September", "October", "November",

"December"};

● Use the placeholder %s in the format string with printf and scanf to handle string
argument.

● The printf function, depends on finding a null character in the character array to mark the
end of the string. (1)

● When we write our own string-building functions, we must be sure that a null character is

inserted at the end of every string. (2)

● This inclusion of the null character is automatic for constant strings.

● The %s placeholder in a printf format string can be used with a minimum field width (3)

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("Topic: %s\n", string_var);

printf ("%8s%3s***\n", "Short", "Strings");

➢ Placing a minus sign prefix on a placeholder’s field width causes left justification of
the value displayed.

● Scanf Function:

● Remember: when we call scanf with a string variable as an argument, we must

remember that array output arguments are always passed to functions by sending the
address of the initial array element. (2)

● Figure 8.2 p. 457

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("%-20s\n", “Name”); (1)

Loading…

 Figure 8.3

➢ scanf skips leading whitespace characters such as blanks, newlines, and tabs.(1)

➢ Starting with the first nonwhitespace character, scanf copies the characters it encounters into

successive memory cells of its character array argument.

➢ When it comes across a whitespace character, scanning stops, scanf places the null character at

the end of the string in its array argument.

INPUT/OUTPUT WITH PRINTF AND
SCANF

• For example, the data could have been entered one value per line with extra whitespace.

• or two values per line:

● But: (1)

●

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH

 1270

 TR

 1800

> MATH 1270

 TR 1800

> MATH1270 TR 1800 (2)

➢ => 17 characters

Figure 8.4

● EXAMPLE 8.1 p.459

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH,1270,TR,1800 (1)

➢ Using the assignment symbol in a declaration of a string variable with initialization,
is the only one in which the operator means to copy the string that is the right operand
into the variable that is the left operand.

➢ Array address is constant and cannot be changed through assignment (1)

➢

➢ a compiler error

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

one_str = "Test string"; /* Does not work */

Invalid target of assignment :

char one_str[20] = "Test String");

● C Library Functions:

➢ Along with assignment functions, the library string.h provides functions for
substring, concatenation, string length, string comparison, and whole line input
operations [See Table 8.1 p.461]

➢ The data type of the value returned by each string-building function is the pointer

type char * .

➢ Reminder: An array is being represented by the address of its initial value.

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

● String Assignment:

➢ Function strcpy copies the string that is its second argument into its first argument

➢ Like a call to scanf with a %s placeholder, a call to strcpy can easily overflow the
space allocated for the destination variable (2)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

strcpy(one_str, "Test String"); (1)

strcpy(one_str, "A very long test string"); (3)

● strncpy that takes an argument specifying the number of characters to copy (call this
number n). (1)

● The effect is the same as the call

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, "Test string", 20); (2)

strcpy(one_str, "Test string"); (3)

● when the source string is longer than n characters, only the first n characters are
copied.

● In general,

● Both strcpy and strncpy mimic the assignment operator in that the value they return
is the string assigned. (3)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, “A very long test string”, 20); (1)

strncpy(dest, source, dest_len - 1); (2)

dest[dest_len - 1] = '\0';

➢ For example, we might want to examine
 the “133" in the string “Comp133"
 or the "Jan" in the string "Jan. 30, 1996”.

➢ Assuming that the prototype of strncpy is (1)

SUBSTRING
S

char *strncpy(char *dest, const char *source, size_t n);

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0';

➢ Figure 8.5

SUBSTRING
S

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0'; (1)

➢ If we wish to use strncpy to extract a middle substring, we must call the function
with the address of the first character to copy.

 Fig. 8.6

SUBSTRING
S

strncpy(result, &s1[5], 2);

result[2] = '\0'; (1)

strcpy(result, &s1[9]); (2)

➢ EXAMPLE 8.2 (1)
➢ 1st Solution (2)

➢ 2nd Solution: (3)

SUBSTRING
S

char *last, *first, *middle;

char pres[20] = "Adams, John Quincy";

char pres_copy[20];

strcpy(pres_copy, pres);

last = strtok(pres_copy, ", ");

first = strtok(NULL, ", ");

middle = strtok(NULL, ", ");

➢ EXAMPLE 8.3, Figure 8.7

 used to display the last
 component.

➢ Instead of: (1)
 Since strcpy returns as its value the
starting address
 of the string it has just stored in elem

➢ The use of CMP_LEN and strlen(compound): the declared size of the array is no
longer the effective size once data have been stored in the array (2)

SUBSTRING
S

printf("%s\n", strcpy(elem, &compound[first]));

strcpy(elem, &compound[first]);

printf("%s\n", elem);

● Concatenation: String library functions strcat and strncat modify their first string
argument by adding all or part of their second string argument at the end of the first
argument.

● Both functions assume that sufficient space is allocated for the first argument to allow

addition of the extra characters.

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 15 EXAMPLE 8.4

char f1[STRSIZ] = "John ", f2[STRSIZ] = "Jacqueline ",

last[STRSIZ] = "Kennedy";

strcat(f1, last); => “John Kennedy” 12 characters + “\0”

strcat(f2, last);=> “Jacqueline Kennedy” 18 characters + “\0” /* invalid overflow of f2 */

//As an alternative to the second call to strcat (2)

strncat(f2, last, 3); /*Jacqueline Ken*/

● Concatenation:
● Take note that the call to strcat modifies the value of s1 even when embedded in other function

calls:

● Both strcat and strncat return as the function value the modified first argument.

● If s1 and s2 are both character strings
declared to hold STRSIZ characters (1)

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

if (strlen(s1) + strlen(s2) < STRSIZ) {

strcat(s1, s2);

} else {

strncat(s1, s2, STRSIZ - strlen(s1) - 1);

s1[STRSIZ - 1] = '\0';

}

printf("%s\n", strncat(f2, last, 3));

● String Length: function strlen returns the length of the value of its string argument, not counting
the '\0' character.

● For example: this code fragment displays the numbers 8 and 18 followed by the phrase Birzeit
University .

● Notice that the blank at the end of the initial value of s1 is counted in s1’s length.
● Two critical questions that must always be in the mind when working with strcpy, strncpy , strcat

, and strncat:
1. Is there enough space in the output parameter for the entire string being created?
2. Does the created string end in '\0' ?

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 20

char s1[STRSIZ] = “Birzeit ",

s2[STRSIZ] = “University";

printf("%d %d\n", strlen(s1), strlen(strcat(s1, s2)));

printf("%s\n", s1);

➢ A type char value is not a valid argument for a function with a corresponding
parameter of type char * (1)

➢ Note the difference internally between the representations of the character 'Q' and the

string "Q" .

● View the string as an array and use assignment to subscripted elements for access. (2)

● Be sure to include the null character at the end of the string.

DISTINCTION BETWEEN CHARACTERS AND
STRINGS

● Although blanks are natural separators to place between numeric data values, viewing
them as delimiters (1) when processing strings may not make sense (2)

➢ The stdio library provides the function gets for interactive input of one complete line

of data

 (3)

SCANNING A FULL LINE

char line[80];

printf("Type in a line of data.\n> ");

gets(line);

Type in a line of data.

> Here is a short sentence.

Loading…

● The \n character representing the <return> or <enter> key pressed at the end of the
sentence is not stored.

● Like scanf , gets can overflow its string argument if the user enters a longer data line
than will fit.

● Function fgets takes three arguments: (1)

1. The output parameter string,
2. A maximum number of characters to store (n) (2)
3. And the file pointer to the data source

● The next to last character may or may not be '\n' :
4. If fgets has room to store the entire line of data it will include '\n' before '\0' .
5. If the line is truncated, no '\n' is stored.

SCANNING A FULL LINE

● fgets stores the string created in its first argument and returns this string argument (i.e.,
its address) as its value (1)

● When a call to fgets encounters the end of file, the value returned is the address 0,

which is considered the null pointer.

● FIGURE 8.8 (2)

SCANNING A FULL LINE

➢ We studied the fact that characters are represented by numeric codes, and we used
relational and equality operators to compare characters.

➢ Unfortunately, these operators cannot be used for comparison of strings. (1)

➢ if str1 and str2 are string variables, the condition
is not checking whether str1 precedes str2 alphabetically (2)

● The standard string library provides the int function strcmp for comparison of two
strings that we will refer to as str1 and str2.

8.4 STRING COMPARISON

letter == 'C' ch1 < ch2

str1 < str2

➢ Function strcmp separates its argument pairs into three categories:

➢ str1[n] < str2[n] if:

8.4 STRING COMPARISON

OR

➢ The string library also provides an analogous function strncmp that bases its
comparison on only the first n characters of the two strings, where n is the third
argument.

➢ if str1 is “cabinet" and str2 is “cable " , the function calls

strncmp(str1, str2, 1) = 0
strncmp(str1, str2, 2) = 0
strncmp(str1, str2, 3) = 0 (1)

➢ strncmp(str1, str2, 4) would return a negative integer (2)

8.4 STRING COMPARISON

➢ EXAMPLE 8.5

➢ EXAMPLE 8.6, FIGURE 8.10

8.4 STRING COMPARISON

Figure 8.12

8.5 ARRAYS OF POINTERS

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to

8.5 ARRAYS OF POINTERS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 08

Strings

Loading…

Chapter Objectives:
1. Understand how a string constant is stored in an array of characters.

2. Learn about the placeholder %s and how it is used in printf and scanf operations.

3. Learn some of the operations that can be performed on strings. (1)

4. Understand how C compares two strings to determine their relative order.

5. Learn some of the operations that can be performed on individual characters using

functions from the library ctype.

6. How to write your own functions that perform some of the basic operations of a text

editor program

● A string: is a grouping of characters, a data structure.

● C implements the string data structure using arrays of type char (1)

● Strings are important in computer science (2)

● Strings play an important role in science as well (3)

● We need strings as the vehicle for communication between the computer system
and the human user.

STRING
S

Loading…

• We have already used string constants in our earlier work with printf and scanf (1)

● The first argument is the string constant "Average = %.2f", a string of 14 characters

● Notice that the blanks in the string are characters.

● A string constant can be associated with a symbolic name using the #define directive
(2)

8.1 STRING BASICS

printf("Average = %.2f", avg);

#define ERROR "*****Error - "

#define STD_NAME "Student Name"

➢ A string in C is implemented as an array, so declaring a string variable is
the same as declaring an array of type char .

➢ The variable string_var will hold strings from 0 to 29 characters long (1)

➢ C permits initialization of string variables using a string constant

DECLARING AND INITIALIZING STRING VARIABLES

char string_var[30];

char str[20] = "Initial value";

➢ str in memory after this declaration with initialization.

➢ str[13] contains the character ‘\0' , the null character that marks the end of

a string. (1)

DECLARING AND INITIALIZING STRING VARIABLES

char str[20] = "Initial value";

char str[20] = “Numbers and strings"; (2)

● Because one string is an array of characters, an array of strings is a two-dimensional
array of characters in which each row is one string.

● We can initialize an array of strings at declaration in the following manner:

ARRAYS OF
STRINGS

#define NUM_PEOPLE 30

#define NAME_LEN 25

. . .

char names[NUM_PEOPLE][NAME_LEN]; (1)

char month[12][10] = {"January", "February", "March", "April",

"May", "June", "July", "August", "September", "October", "November",

"December"};

● Use the placeholder %s in the format string with printf and scanf to handle string
argument.

● The printf function, depends on finding a null character in the character array to mark the
end of the string. (1)

● When we write our own string-building functions, we must be sure that a null character is

inserted at the end of every string. (2)

● This inclusion of the null character is automatic for constant strings.

● The %s placeholder in a printf format string can be used with a minimum field width (3)

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("Topic: %s\n", string_var);

printf ("%8s%3s***\n", "Short", "Strings");

➢ Placing a minus sign prefix on a placeholder’s field width causes left justification of
the value displayed.

● Scanf Function:

● Remember: when we call scanf with a string variable as an argument, we must

remember that array output arguments are always passed to functions by sending the
address of the initial array element. (2)

● Figure 8.2 p. 457

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("%-20s\n", “Name”); (1)

Loading…

 Figure 8.3

➢ scanf skips leading whitespace characters such as blanks, newlines, and tabs.(1)

➢ Starting with the first nonwhitespace character, scanf copies the characters it encounters into

successive memory cells of its character array argument.

➢ When it comes across a whitespace character, scanning stops, scanf places the null character at

the end of the string in its array argument.

INPUT/OUTPUT WITH PRINTF AND
SCANF

• For example, the data could have been entered one value per line with extra whitespace.

• or two values per line:

● But: (1)

●

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH

 1270

 TR

 1800

> MATH 1270

 TR 1800

> MATH1270 TR 1800 (2)

➢ => 17 characters

Figure 8.4

● EXAMPLE 8.1 p.459

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH,1270,TR,1800 (1)

➢ Using the assignment symbol in a declaration of a string variable with initialization,
is the only one in which the operator means to copy the string that is the right operand
into the variable that is the left operand.

➢ Array address is constant and cannot be changed through assignment (1)

➢

➢ a compiler error

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

one_str = "Test string"; /* Does not work */

Invalid target of assignment :

char one_str[20] = "Test String");

● C Library Functions:

➢ Along with assignment functions, the library string.h provides functions for
substring, concatenation, string length, string comparison, and whole line input
operations [See Table 8.1 p.461]

➢ The data type of the value returned by each string-building function is the pointer

type char * .

➢ Reminder: An array is being represented by the address of its initial value.

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

● String Assignment:

➢ Function strcpy copies the string that is its second argument into its first argument

➢ Like a call to scanf with a %s placeholder, a call to strcpy can easily overflow the
space allocated for the destination variable (2)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

strcpy(one_str, "Test String"); (1)

strcpy(one_str, "A very long test string"); (3)

● strncpy that takes an argument specifying the number of characters to copy (call this
number n). (1)

● The effect is the same as the call

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, "Test string", 20); (2)

strcpy(one_str, "Test string"); (3)

● when the source string is longer than n characters, only the first n characters are
copied.

● In general,

● Both strcpy and strncpy mimic the assignment operator in that the value they return
is the string assigned. (3)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, “A very long test string”, 20); (1)

strncpy(dest, source, dest_len - 1); (2)

dest[dest_len - 1] = '\0';

➢ For example, we might want to examine
 the “133" in the string “Comp133"
 or the "Jan" in the string "Jan. 30, 1996”.

➢ Assuming that the prototype of strncpy is (1)

SUBSTRING
S

char *strncpy(char *dest, const char *source, size_t n);

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0';

➢ Figure 8.5

SUBSTRING
S

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0'; (1)

➢ If we wish to use strncpy to extract a middle substring, we must call the function
with the address of the first character to copy.

 Fig. 8.6

SUBSTRING
S

strncpy(result, &s1[5], 2);

result[2] = '\0'; (1)

strcpy(result, &s1[9]); (2)

➢ EXAMPLE 8.2 (1)
➢ 1st Solution (2)

➢ 2nd Solution: (3)

SUBSTRING
S

char *last, *first, *middle;

char pres[20] = "Adams, John Quincy";

char pres_copy[20];

strcpy(pres_copy, pres);

last = strtok(pres_copy, ", ");

first = strtok(NULL, ", ");

middle = strtok(NULL, ", ");

➢ EXAMPLE 8.3, Figure 8.7

 used to display the last
 component.

➢ Instead of: (1)
 Since strcpy returns as its value the
starting address
 of the string it has just stored in elem

➢ The use of CMP_LEN and strlen(compound): the declared size of the array is no
longer the effective size once data have been stored in the array (2)

SUBSTRING
S

printf("%s\n", strcpy(elem, &compound[first]));

strcpy(elem, &compound[first]);

printf("%s\n", elem);

● Concatenation: String library functions strcat and strncat modify their first string
argument by adding all or part of their second string argument at the end of the first
argument.

● Both functions assume that sufficient space is allocated for the first argument to allow

addition of the extra characters.

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 15 EXAMPLE 8.4

char f1[STRSIZ] = "John ", f2[STRSIZ] = "Jacqueline ",

last[STRSIZ] = "Kennedy";

strcat(f1, last); => “John Kennedy” 12 characters + “\0”

strcat(f2, last);=> “Jacqueline Kennedy” 18 characters + “\0” /* invalid overflow of f2 */

//As an alternative to the second call to strcat (2)

strncat(f2, last, 3); /*Jacqueline Ken*/

● Concatenation:
● Take note that the call to strcat modifies the value of s1 even when embedded in other function

calls:

● Both strcat and strncat return as the function value the modified first argument.

● If s1 and s2 are both character strings
declared to hold STRSIZ characters (1)

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

if (strlen(s1) + strlen(s2) < STRSIZ) {

strcat(s1, s2);

} else {

strncat(s1, s2, STRSIZ - strlen(s1) - 1);

s1[STRSIZ - 1] = '\0';

}

printf("%s\n", strncat(f2, last, 3));

● String Length: function strlen returns the length of the value of its string argument, not counting
the '\0' character.

● For example: this code fragment displays the numbers 8 and 18 followed by the phrase Birzeit
University .

● Notice that the blank at the end of the initial value of s1 is counted in s1’s length.
● Two critical questions that must always be in the mind when working with strcpy, strncpy , strcat

, and strncat:
1. Is there enough space in the output parameter for the entire string being created?
2. Does the created string end in '\0' ?

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 20

char s1[STRSIZ] = “Birzeit ",

s2[STRSIZ] = “University";

printf("%d %d\n", strlen(s1), strlen(strcat(s1, s2)));

printf("%s\n", s1);

➢ A type char value is not a valid argument for a function with a corresponding
parameter of type char * (1)

➢ Note the difference internally between the representations of the character 'Q' and the

string "Q" .

● View the string as an array and use assignment to subscripted elements for access. (2)

● Be sure to include the null character at the end of the string.

DISTINCTION BETWEEN CHARACTERS AND
STRINGS

● Although blanks are natural separators to place between numeric data values, viewing
them as delimiters (1) when processing strings may not make sense (2)

➢ The stdio library provides the function gets for interactive input of one complete line

of data

 (3)

SCANNING A FULL LINE

char line[80];

printf("Type in a line of data.\n> ");

gets(line);

Type in a line of data.

> Here is a short sentence.

Loading…

● The \n character representing the <return> or <enter> key pressed at the end of the
sentence is not stored.

● Like scanf , gets can overflow its string argument if the user enters a longer data line
than will fit.

● Function fgets takes three arguments: (1)

1. The output parameter string,
2. A maximum number of characters to store (n) (2)
3. And the file pointer to the data source

● The next to last character may or may not be '\n' :
4. If fgets has room to store the entire line of data it will include '\n' before '\0' .
5. If the line is truncated, no '\n' is stored.

SCANNING A FULL LINE

● fgets stores the string created in its first argument and returns this string argument (i.e.,
its address) as its value (1)

● When a call to fgets encounters the end of file, the value returned is the address 0,

which is considered the null pointer.

● FIGURE 8.8 (2)

SCANNING A FULL LINE

➢ We studied the fact that characters are represented by numeric codes, and we used
relational and equality operators to compare characters.

➢ Unfortunately, these operators cannot be used for comparison of strings. (1)

➢ if str1 and str2 are string variables, the condition
is not checking whether str1 precedes str2 alphabetically (2)

● The standard string library provides the int function strcmp for comparison of two
strings that we will refer to as str1 and str2.

8.4 STRING COMPARISON

letter == 'C' ch1 < ch2

str1 < str2

➢ Function strcmp separates its argument pairs into three categories:

➢ str1[n] < str2[n] if:

8.4 STRING COMPARISON

OR

➢ The string library also provides an analogous function strncmp that bases its
comparison on only the first n characters of the two strings, where n is the third
argument.

➢ if str1 is “cabinet" and str2 is “cable " , the function calls

strncmp(str1, str2, 1) = 0
strncmp(str1, str2, 2) = 0
strncmp(str1, str2, 3) = 0 (1)

➢ strncmp(str1, str2, 4) would return a negative integer (2)

8.4 STRING COMPARISON

➢ EXAMPLE 8.5

➢ EXAMPLE 8.6, FIGURE 8.10

8.4 STRING COMPARISON

Figure 8.12

8.5 ARRAYS OF POINTERS

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to

8.5 ARRAYS OF POINTERS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 08

Strings

Loading…

Chapter Objectives:
1. Understand how a string constant is stored in an array of characters.

2. Learn about the placeholder %s and how it is used in printf and scanf operations.

3. Learn some of the operations that can be performed on strings. (1)

4. Understand how C compares two strings to determine their relative order.

5. Learn some of the operations that can be performed on individual characters using

functions from the library ctype.

6. How to write your own functions that perform some of the basic operations of a text

editor program

● A string: is a grouping of characters, a data structure.

● C implements the string data structure using arrays of type char (1)

● Strings are important in computer science (2)

● Strings play an important role in science as well (3)

● We need strings as the vehicle for communication between the computer system
and the human user.

STRING
S

Loading…

• We have already used string constants in our earlier work with printf and scanf (1)

● The first argument is the string constant "Average = %.2f", a string of 14 characters

● Notice that the blanks in the string are characters.

● A string constant can be associated with a symbolic name using the #define directive
(2)

8.1 STRING BASICS

printf("Average = %.2f", avg);

#define ERROR "*****Error - "

#define STD_NAME "Student Name"

➢ A string in C is implemented as an array, so declaring a string variable is
the same as declaring an array of type char .

➢ The variable string_var will hold strings from 0 to 29 characters long (1)

➢ C permits initialization of string variables using a string constant

DECLARING AND INITIALIZING STRING VARIABLES

char string_var[30];

char str[20] = "Initial value";

➢ str in memory after this declaration with initialization.

➢ str[13] contains the character ‘\0' , the null character that marks the end of

a string. (1)

DECLARING AND INITIALIZING STRING VARIABLES

char str[20] = "Initial value";

char str[20] = “Numbers and strings"; (2)

● Because one string is an array of characters, an array of strings is a two-dimensional
array of characters in which each row is one string.

● We can initialize an array of strings at declaration in the following manner:

ARRAYS OF
STRINGS

#define NUM_PEOPLE 30

#define NAME_LEN 25

. . .

char names[NUM_PEOPLE][NAME_LEN]; (1)

char month[12][10] = {"January", "February", "March", "April",

"May", "June", "July", "August", "September", "October", "November",

"December"};

● Use the placeholder %s in the format string with printf and scanf to handle string
argument.

● The printf function, depends on finding a null character in the character array to mark the
end of the string. (1)

● When we write our own string-building functions, we must be sure that a null character is

inserted at the end of every string. (2)

● This inclusion of the null character is automatic for constant strings.

● The %s placeholder in a printf format string can be used with a minimum field width (3)

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("Topic: %s\n", string_var);

printf ("%8s%3s***\n", "Short", "Strings");

➢ Placing a minus sign prefix on a placeholder’s field width causes left justification of
the value displayed.

● Scanf Function:

● Remember: when we call scanf with a string variable as an argument, we must

remember that array output arguments are always passed to functions by sending the
address of the initial array element. (2)

● Figure 8.2 p. 457

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("%-20s\n", “Name”); (1)

Loading…

 Figure 8.3

➢ scanf skips leading whitespace characters such as blanks, newlines, and tabs.(1)

➢ Starting with the first nonwhitespace character, scanf copies the characters it encounters into

successive memory cells of its character array argument.

➢ When it comes across a whitespace character, scanning stops, scanf places the null character at

the end of the string in its array argument.

INPUT/OUTPUT WITH PRINTF AND
SCANF

• For example, the data could have been entered one value per line with extra whitespace.

• or two values per line:

● But: (1)

●

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH

 1270

 TR

 1800

> MATH 1270

 TR 1800

> MATH1270 TR 1800 (2)

➢ => 17 characters

Figure 8.4

● EXAMPLE 8.1 p.459

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH,1270,TR,1800 (1)

➢ Using the assignment symbol in a declaration of a string variable with initialization,
is the only one in which the operator means to copy the string that is the right operand
into the variable that is the left operand.

➢ Array address is constant and cannot be changed through assignment (1)

➢

➢ a compiler error

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

one_str = "Test string"; /* Does not work */

Invalid target of assignment :

char one_str[20] = "Test String");

● C Library Functions:

➢ Along with assignment functions, the library string.h provides functions for
substring, concatenation, string length, string comparison, and whole line input
operations [See Table 8.1 p.461]

➢ The data type of the value returned by each string-building function is the pointer

type char * .

➢ Reminder: An array is being represented by the address of its initial value.

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

● String Assignment:

➢ Function strcpy copies the string that is its second argument into its first argument

➢ Like a call to scanf with a %s placeholder, a call to strcpy can easily overflow the
space allocated for the destination variable (2)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

strcpy(one_str, "Test String"); (1)

strcpy(one_str, "A very long test string"); (3)

● strncpy that takes an argument specifying the number of characters to copy (call this
number n). (1)

● The effect is the same as the call

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, "Test string", 20); (2)

strcpy(one_str, "Test string"); (3)

● when the source string is longer than n characters, only the first n characters are
copied.

● In general,

● Both strcpy and strncpy mimic the assignment operator in that the value they return
is the string assigned. (3)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, “A very long test string”, 20); (1)

strncpy(dest, source, dest_len - 1); (2)

dest[dest_len - 1] = '\0';

➢ For example, we might want to examine
 the “133" in the string “Comp133"
 or the "Jan" in the string "Jan. 30, 1996”.

➢ Assuming that the prototype of strncpy is (1)

SUBSTRING
S

char *strncpy(char *dest, const char *source, size_t n);

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0';

➢ Figure 8.5

SUBSTRING
S

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0'; (1)

➢ If we wish to use strncpy to extract a middle substring, we must call the function
with the address of the first character to copy.

 Fig. 8.6

SUBSTRING
S

strncpy(result, &s1[5], 2);

result[2] = '\0'; (1)

strcpy(result, &s1[9]); (2)

➢ EXAMPLE 8.2 (1)
➢ 1st Solution (2)

➢ 2nd Solution: (3)

SUBSTRING
S

char *last, *first, *middle;

char pres[20] = "Adams, John Quincy";

char pres_copy[20];

strcpy(pres_copy, pres);

last = strtok(pres_copy, ", ");

first = strtok(NULL, ", ");

middle = strtok(NULL, ", ");

➢ EXAMPLE 8.3, Figure 8.7

 used to display the last
 component.

➢ Instead of: (1)
 Since strcpy returns as its value the
starting address
 of the string it has just stored in elem

➢ The use of CMP_LEN and strlen(compound): the declared size of the array is no
longer the effective size once data have been stored in the array (2)

SUBSTRING
S

printf("%s\n", strcpy(elem, &compound[first]));

strcpy(elem, &compound[first]);

printf("%s\n", elem);

● Concatenation: String library functions strcat and strncat modify their first string
argument by adding all or part of their second string argument at the end of the first
argument.

● Both functions assume that sufficient space is allocated for the first argument to allow

addition of the extra characters.

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 15 EXAMPLE 8.4

char f1[STRSIZ] = "John ", f2[STRSIZ] = "Jacqueline ",

last[STRSIZ] = "Kennedy";

strcat(f1, last); => “John Kennedy” 12 characters + “\0”

strcat(f2, last);=> “Jacqueline Kennedy” 18 characters + “\0” /* invalid overflow of f2 */

//As an alternative to the second call to strcat (2)

strncat(f2, last, 3); /*Jacqueline Ken*/

● Concatenation:
● Take note that the call to strcat modifies the value of s1 even when embedded in other function

calls:

● Both strcat and strncat return as the function value the modified first argument.

● If s1 and s2 are both character strings
declared to hold STRSIZ characters (1)

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

if (strlen(s1) + strlen(s2) < STRSIZ) {

strcat(s1, s2);

} else {

strncat(s1, s2, STRSIZ - strlen(s1) - 1);

s1[STRSIZ - 1] = '\0';

}

printf("%s\n", strncat(f2, last, 3));

● String Length: function strlen returns the length of the value of its string argument, not counting
the '\0' character.

● For example: this code fragment displays the numbers 8 and 18 followed by the phrase Birzeit
University .

● Notice that the blank at the end of the initial value of s1 is counted in s1’s length.
● Two critical questions that must always be in the mind when working with strcpy, strncpy , strcat

, and strncat:
1. Is there enough space in the output parameter for the entire string being created?
2. Does the created string end in '\0' ?

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 20

char s1[STRSIZ] = “Birzeit ",

s2[STRSIZ] = “University";

printf("%d %d\n", strlen(s1), strlen(strcat(s1, s2)));

printf("%s\n", s1);

➢ A type char value is not a valid argument for a function with a corresponding
parameter of type char * (1)

➢ Note the difference internally between the representations of the character 'Q' and the

string "Q" .

● View the string as an array and use assignment to subscripted elements for access. (2)

● Be sure to include the null character at the end of the string.

DISTINCTION BETWEEN CHARACTERS AND
STRINGS

● Although blanks are natural separators to place between numeric data values, viewing
them as delimiters (1) when processing strings may not make sense (2)

➢ The stdio library provides the function gets for interactive input of one complete line

of data

 (3)

SCANNING A FULL LINE

char line[80];

printf("Type in a line of data.\n> ");

gets(line);

Type in a line of data.

> Here is a short sentence.

Loading…

● The \n character representing the <return> or <enter> key pressed at the end of the
sentence is not stored.

● Like scanf , gets can overflow its string argument if the user enters a longer data line
than will fit.

● Function fgets takes three arguments: (1)

1. The output parameter string,
2. A maximum number of characters to store (n) (2)
3. And the file pointer to the data source

● The next to last character may or may not be '\n' :
4. If fgets has room to store the entire line of data it will include '\n' before '\0' .
5. If the line is truncated, no '\n' is stored.

SCANNING A FULL LINE

● fgets stores the string created in its first argument and returns this string argument (i.e.,
its address) as its value (1)

● When a call to fgets encounters the end of file, the value returned is the address 0,

which is considered the null pointer.

● FIGURE 8.8 (2)

SCANNING A FULL LINE

➢ We studied the fact that characters are represented by numeric codes, and we used
relational and equality operators to compare characters.

➢ Unfortunately, these operators cannot be used for comparison of strings. (1)

➢ if str1 and str2 are string variables, the condition
is not checking whether str1 precedes str2 alphabetically (2)

● The standard string library provides the int function strcmp for comparison of two
strings that we will refer to as str1 and str2.

8.4 STRING COMPARISON

letter == 'C' ch1 < ch2

str1 < str2

➢ Function strcmp separates its argument pairs into three categories:

➢ str1[n] < str2[n] if:

8.4 STRING COMPARISON

OR

➢ The string library also provides an analogous function strncmp that bases its
comparison on only the first n characters of the two strings, where n is the third
argument.

➢ if str1 is “cabinet" and str2 is “cable " , the function calls

strncmp(str1, str2, 1) = 0
strncmp(str1, str2, 2) = 0
strncmp(str1, str2, 3) = 0 (1)

➢ strncmp(str1, str2, 4) would return a negative integer (2)

8.4 STRING COMPARISON

➢ EXAMPLE 8.5

➢ EXAMPLE 8.6, FIGURE 8.10

8.4 STRING COMPARISON

Figure 8.12

8.5 ARRAYS OF POINTERS

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to

8.5 ARRAYS OF POINTERS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 08

Strings

Loading…

Chapter Objectives:
1. Understand how a string constant is stored in an array of characters.

2. Learn about the placeholder %s and how it is used in printf and scanf operations.

3. Learn some of the operations that can be performed on strings. (1)

4. Understand how C compares two strings to determine their relative order.

5. Learn some of the operations that can be performed on individual characters using

functions from the library ctype.

6. How to write your own functions that perform some of the basic operations of a text

editor program

● A string: is a grouping of characters, a data structure.

● C implements the string data structure using arrays of type char (1)

● Strings are important in computer science (2)

● Strings play an important role in science as well (3)

● We need strings as the vehicle for communication between the computer system
and the human user.

STRING
S

Loading…

• We have already used string constants in our earlier work with printf and scanf (1)

● The first argument is the string constant "Average = %.2f", a string of 14 characters

● Notice that the blanks in the string are characters.

● A string constant can be associated with a symbolic name using the #define directive
(2)

8.1 STRING BASICS

printf("Average = %.2f", avg);

#define ERROR "*****Error - "

#define STD_NAME "Student Name"

➢ A string in C is implemented as an array, so declaring a string variable is
the same as declaring an array of type char .

➢ The variable string_var will hold strings from 0 to 29 characters long (1)

➢ C permits initialization of string variables using a string constant

DECLARING AND INITIALIZING STRING VARIABLES

char string_var[30];

char str[20] = "Initial value";

➢ str in memory after this declaration with initialization.

➢ str[13] contains the character ‘\0' , the null character that marks the end of

a string. (1)

DECLARING AND INITIALIZING STRING VARIABLES

char str[20] = "Initial value";

char str[20] = “Numbers and strings"; (2)

● Because one string is an array of characters, an array of strings is a two-dimensional
array of characters in which each row is one string.

● We can initialize an array of strings at declaration in the following manner:

ARRAYS OF
STRINGS

#define NUM_PEOPLE 30

#define NAME_LEN 25

. . .

char names[NUM_PEOPLE][NAME_LEN]; (1)

char month[12][10] = {"January", "February", "March", "April",

"May", "June", "July", "August", "September", "October", "November",

"December"};

● Use the placeholder %s in the format string with printf and scanf to handle string
argument.

● The printf function, depends on finding a null character in the character array to mark the
end of the string. (1)

● When we write our own string-building functions, we must be sure that a null character is

inserted at the end of every string. (2)

● This inclusion of the null character is automatic for constant strings.

● The %s placeholder in a printf format string can be used with a minimum field width (3)

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("Topic: %s\n", string_var);

printf ("%8s%3s***\n", "Short", "Strings");

➢ Placing a minus sign prefix on a placeholder’s field width causes left justification of
the value displayed.

● Scanf Function:

● Remember: when we call scanf with a string variable as an argument, we must

remember that array output arguments are always passed to functions by sending the
address of the initial array element. (2)

● Figure 8.2 p. 457

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("%-20s\n", “Name”); (1)

Loading…

 Figure 8.3

➢ scanf skips leading whitespace characters such as blanks, newlines, and tabs.(1)

➢ Starting with the first nonwhitespace character, scanf copies the characters it encounters into

successive memory cells of its character array argument.

➢ When it comes across a whitespace character, scanning stops, scanf places the null character at

the end of the string in its array argument.

INPUT/OUTPUT WITH PRINTF AND
SCANF

• For example, the data could have been entered one value per line with extra whitespace.

• or two values per line:

● But: (1)

●

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH

 1270

 TR

 1800

> MATH 1270

 TR 1800

> MATH1270 TR 1800 (2)

➢ => 17 characters

Figure 8.4

● EXAMPLE 8.1 p.459

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH,1270,TR,1800 (1)

➢ Using the assignment symbol in a declaration of a string variable with initialization,
is the only one in which the operator means to copy the string that is the right operand
into the variable that is the left operand.

➢ Array address is constant and cannot be changed through assignment (1)

➢

➢ a compiler error

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

one_str = "Test string"; /* Does not work */

Invalid target of assignment :

char one_str[20] = "Test String");

● C Library Functions:

➢ Along with assignment functions, the library string.h provides functions for
substring, concatenation, string length, string comparison, and whole line input
operations [See Table 8.1 p.461]

➢ The data type of the value returned by each string-building function is the pointer

type char * .

➢ Reminder: An array is being represented by the address of its initial value.

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

● String Assignment:

➢ Function strcpy copies the string that is its second argument into its first argument

➢ Like a call to scanf with a %s placeholder, a call to strcpy can easily overflow the
space allocated for the destination variable (2)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

strcpy(one_str, "Test String"); (1)

strcpy(one_str, "A very long test string"); (3)

● strncpy that takes an argument specifying the number of characters to copy (call this
number n). (1)

● The effect is the same as the call

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, "Test string", 20); (2)

strcpy(one_str, "Test string"); (3)

● when the source string is longer than n characters, only the first n characters are
copied.

● In general,

● Both strcpy and strncpy mimic the assignment operator in that the value they return
is the string assigned. (3)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, “A very long test string”, 20); (1)

strncpy(dest, source, dest_len - 1); (2)

dest[dest_len - 1] = '\0';

➢ For example, we might want to examine
 the “133" in the string “Comp133"
 or the "Jan" in the string "Jan. 30, 1996”.

➢ Assuming that the prototype of strncpy is (1)

SUBSTRING
S

char *strncpy(char *dest, const char *source, size_t n);

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0';

➢ Figure 8.5

SUBSTRING
S

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0'; (1)

➢ If we wish to use strncpy to extract a middle substring, we must call the function
with the address of the first character to copy.

 Fig. 8.6

SUBSTRING
S

strncpy(result, &s1[5], 2);

result[2] = '\0'; (1)

strcpy(result, &s1[9]); (2)

➢ EXAMPLE 8.2 (1)
➢ 1st Solution (2)

➢ 2nd Solution: (3)

SUBSTRING
S

char *last, *first, *middle;

char pres[20] = "Adams, John Quincy";

char pres_copy[20];

strcpy(pres_copy, pres);

last = strtok(pres_copy, ", ");

first = strtok(NULL, ", ");

middle = strtok(NULL, ", ");

➢ EXAMPLE 8.3, Figure 8.7

 used to display the last
 component.

➢ Instead of: (1)
 Since strcpy returns as its value the
starting address
 of the string it has just stored in elem

➢ The use of CMP_LEN and strlen(compound): the declared size of the array is no
longer the effective size once data have been stored in the array (2)

SUBSTRING
S

printf("%s\n", strcpy(elem, &compound[first]));

strcpy(elem, &compound[first]);

printf("%s\n", elem);

● Concatenation: String library functions strcat and strncat modify their first string
argument by adding all or part of their second string argument at the end of the first
argument.

● Both functions assume that sufficient space is allocated for the first argument to allow

addition of the extra characters.

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 15 EXAMPLE 8.4

char f1[STRSIZ] = "John ", f2[STRSIZ] = "Jacqueline ",

last[STRSIZ] = "Kennedy";

strcat(f1, last); => “John Kennedy” 12 characters + “\0”

strcat(f2, last);=> “Jacqueline Kennedy” 18 characters + “\0” /* invalid overflow of f2 */

//As an alternative to the second call to strcat (2)

strncat(f2, last, 3); /*Jacqueline Ken*/

● Concatenation:
● Take note that the call to strcat modifies the value of s1 even when embedded in other function

calls:

● Both strcat and strncat return as the function value the modified first argument.

● If s1 and s2 are both character strings
declared to hold STRSIZ characters (1)

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

if (strlen(s1) + strlen(s2) < STRSIZ) {

strcat(s1, s2);

} else {

strncat(s1, s2, STRSIZ - strlen(s1) - 1);

s1[STRSIZ - 1] = '\0';

}

printf("%s\n", strncat(f2, last, 3));

● String Length: function strlen returns the length of the value of its string argument, not counting
the '\0' character.

● For example: this code fragment displays the numbers 8 and 18 followed by the phrase Birzeit
University .

● Notice that the blank at the end of the initial value of s1 is counted in s1’s length.
● Two critical questions that must always be in the mind when working with strcpy, strncpy , strcat

, and strncat:
1. Is there enough space in the output parameter for the entire string being created?
2. Does the created string end in '\0' ?

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 20

char s1[STRSIZ] = “Birzeit ",

s2[STRSIZ] = “University";

printf("%d %d\n", strlen(s1), strlen(strcat(s1, s2)));

printf("%s\n", s1);

➢ A type char value is not a valid argument for a function with a corresponding
parameter of type char * (1)

➢ Note the difference internally between the representations of the character 'Q' and the

string "Q" .

● View the string as an array and use assignment to subscripted elements for access. (2)

● Be sure to include the null character at the end of the string.

DISTINCTION BETWEEN CHARACTERS AND
STRINGS

● Although blanks are natural separators to place between numeric data values, viewing
them as delimiters (1) when processing strings may not make sense (2)

➢ The stdio library provides the function gets for interactive input of one complete line

of data

 (3)

SCANNING A FULL LINE

char line[80];

printf("Type in a line of data.\n> ");

gets(line);

Type in a line of data.

> Here is a short sentence.

Loading…

● The \n character representing the <return> or <enter> key pressed at the end of the
sentence is not stored.

● Like scanf , gets can overflow its string argument if the user enters a longer data line
than will fit.

● Function fgets takes three arguments: (1)

1. The output parameter string,
2. A maximum number of characters to store (n) (2)
3. And the file pointer to the data source

● The next to last character may or may not be '\n' :
4. If fgets has room to store the entire line of data it will include '\n' before '\0' .
5. If the line is truncated, no '\n' is stored.

SCANNING A FULL LINE

● fgets stores the string created in its first argument and returns this string argument (i.e.,
its address) as its value (1)

● When a call to fgets encounters the end of file, the value returned is the address 0,

which is considered the null pointer.

● FIGURE 8.8 (2)

SCANNING A FULL LINE

➢ We studied the fact that characters are represented by numeric codes, and we used
relational and equality operators to compare characters.

➢ Unfortunately, these operators cannot be used for comparison of strings. (1)

➢ if str1 and str2 are string variables, the condition
is not checking whether str1 precedes str2 alphabetically (2)

● The standard string library provides the int function strcmp for comparison of two
strings that we will refer to as str1 and str2.

8.4 STRING COMPARISON

letter == 'C' ch1 < ch2

str1 < str2

➢ Function strcmp separates its argument pairs into three categories:

➢ str1[n] < str2[n] if:

8.4 STRING COMPARISON

OR

➢ The string library also provides an analogous function strncmp that bases its
comparison on only the first n characters of the two strings, where n is the third
argument.

➢ if str1 is “cabinet" and str2 is “cable " , the function calls

strncmp(str1, str2, 1) = 0
strncmp(str1, str2, 2) = 0
strncmp(str1, str2, 3) = 0 (1)

➢ strncmp(str1, str2, 4) would return a negative integer (2)

8.4 STRING COMPARISON

➢ EXAMPLE 8.5

➢ EXAMPLE 8.6, FIGURE 8.10

8.4 STRING COMPARISON

Figure 8.12

8.5 ARRAYS OF POINTERS

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to

8.5 ARRAYS OF POINTERS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 08

Strings

Loading…

Chapter Objectives:
1. Understand how a string constant is stored in an array of characters.

2. Learn about the placeholder %s and how it is used in printf and scanf operations.

3. Learn some of the operations that can be performed on strings. (1)

4. Understand how C compares two strings to determine their relative order.

5. Learn some of the operations that can be performed on individual characters using

functions from the library ctype.

6. How to write your own functions that perform some of the basic operations of a text

editor program

● A string: is a grouping of characters, a data structure.

● C implements the string data structure using arrays of type char (1)

● Strings are important in computer science (2)

● Strings play an important role in science as well (3)

● We need strings as the vehicle for communication between the computer system
and the human user.

STRING
S

Loading…

• We have already used string constants in our earlier work with printf and scanf (1)

● The first argument is the string constant "Average = %.2f", a string of 14 characters

● Notice that the blanks in the string are characters.

● A string constant can be associated with a symbolic name using the #define directive
(2)

8.1 STRING BASICS

printf("Average = %.2f", avg);

#define ERROR "*****Error - "

#define STD_NAME "Student Name"

➢ A string in C is implemented as an array, so declaring a string variable is
the same as declaring an array of type char .

➢ The variable string_var will hold strings from 0 to 29 characters long (1)

➢ C permits initialization of string variables using a string constant

DECLARING AND INITIALIZING STRING VARIABLES

char string_var[30];

char str[20] = "Initial value";

➢ str in memory after this declaration with initialization.

➢ str[13] contains the character ‘\0' , the null character that marks the end of

a string. (1)

DECLARING AND INITIALIZING STRING VARIABLES

char str[20] = "Initial value";

char str[20] = “Numbers and strings"; (2)

● Because one string is an array of characters, an array of strings is a two-dimensional
array of characters in which each row is one string.

● We can initialize an array of strings at declaration in the following manner:

ARRAYS OF
STRINGS

#define NUM_PEOPLE 30

#define NAME_LEN 25

. . .

char names[NUM_PEOPLE][NAME_LEN]; (1)

char month[12][10] = {"January", "February", "March", "April",

"May", "June", "July", "August", "September", "October", "November",

"December"};

● Use the placeholder %s in the format string with printf and scanf to handle string
argument.

● The printf function, depends on finding a null character in the character array to mark the
end of the string. (1)

● When we write our own string-building functions, we must be sure that a null character is

inserted at the end of every string. (2)

● This inclusion of the null character is automatic for constant strings.

● The %s placeholder in a printf format string can be used with a minimum field width (3)

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("Topic: %s\n", string_var);

printf ("%8s%3s***\n", "Short", "Strings");

➢ Placing a minus sign prefix on a placeholder’s field width causes left justification of
the value displayed.

● Scanf Function:

● Remember: when we call scanf with a string variable as an argument, we must

remember that array output arguments are always passed to functions by sending the
address of the initial array element. (2)

● Figure 8.2 p. 457

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("%-20s\n", “Name”); (1)

Loading…

 Figure 8.3

➢ scanf skips leading whitespace characters such as blanks, newlines, and tabs.(1)

➢ Starting with the first nonwhitespace character, scanf copies the characters it encounters into

successive memory cells of its character array argument.

➢ When it comes across a whitespace character, scanning stops, scanf places the null character at

the end of the string in its array argument.

INPUT/OUTPUT WITH PRINTF AND
SCANF

• For example, the data could have been entered one value per line with extra whitespace.

• or two values per line:

● But: (1)

●

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH

 1270

 TR

 1800

> MATH 1270

 TR 1800

> MATH1270 TR 1800 (2)

➢ => 17 characters

Figure 8.4

● EXAMPLE 8.1 p.459

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH,1270,TR,1800 (1)

➢ Using the assignment symbol in a declaration of a string variable with initialization,
is the only one in which the operator means to copy the string that is the right operand
into the variable that is the left operand.

➢ Array address is constant and cannot be changed through assignment (1)

➢

➢ a compiler error

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

one_str = "Test string"; /* Does not work */

Invalid target of assignment :

char one_str[20] = "Test String");

● C Library Functions:

➢ Along with assignment functions, the library string.h provides functions for
substring, concatenation, string length, string comparison, and whole line input
operations [See Table 8.1 p.461]

➢ The data type of the value returned by each string-building function is the pointer

type char * .

➢ Reminder: An array is being represented by the address of its initial value.

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

● String Assignment:

➢ Function strcpy copies the string that is its second argument into its first argument

➢ Like a call to scanf with a %s placeholder, a call to strcpy can easily overflow the
space allocated for the destination variable (2)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

strcpy(one_str, "Test String"); (1)

strcpy(one_str, "A very long test string"); (3)

● strncpy that takes an argument specifying the number of characters to copy (call this
number n). (1)

● The effect is the same as the call

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, "Test string", 20); (2)

strcpy(one_str, "Test string"); (3)

● when the source string is longer than n characters, only the first n characters are
copied.

● In general,

● Both strcpy and strncpy mimic the assignment operator in that the value they return
is the string assigned. (3)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, “A very long test string”, 20); (1)

strncpy(dest, source, dest_len - 1); (2)

dest[dest_len - 1] = '\0';

➢ For example, we might want to examine
 the “133" in the string “Comp133"
 or the "Jan" in the string "Jan. 30, 1996”.

➢ Assuming that the prototype of strncpy is (1)

SUBSTRING
S

char *strncpy(char *dest, const char *source, size_t n);

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0';

➢ Figure 8.5

SUBSTRING
S

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0'; (1)

➢ If we wish to use strncpy to extract a middle substring, we must call the function
with the address of the first character to copy.

 Fig. 8.6

SUBSTRING
S

strncpy(result, &s1[5], 2);

result[2] = '\0'; (1)

strcpy(result, &s1[9]); (2)

➢ EXAMPLE 8.2 (1)
➢ 1st Solution (2)

➢ 2nd Solution: (3)

SUBSTRING
S

char *last, *first, *middle;

char pres[20] = "Adams, John Quincy";

char pres_copy[20];

strcpy(pres_copy, pres);

last = strtok(pres_copy, ", ");

first = strtok(NULL, ", ");

middle = strtok(NULL, ", ");

➢ EXAMPLE 8.3, Figure 8.7

 used to display the last
 component.

➢ Instead of: (1)
 Since strcpy returns as its value the
starting address
 of the string it has just stored in elem

➢ The use of CMP_LEN and strlen(compound): the declared size of the array is no
longer the effective size once data have been stored in the array (2)

SUBSTRING
S

printf("%s\n", strcpy(elem, &compound[first]));

strcpy(elem, &compound[first]);

printf("%s\n", elem);

● Concatenation: String library functions strcat and strncat modify their first string
argument by adding all or part of their second string argument at the end of the first
argument.

● Both functions assume that sufficient space is allocated for the first argument to allow

addition of the extra characters.

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 15 EXAMPLE 8.4

char f1[STRSIZ] = "John ", f2[STRSIZ] = "Jacqueline ",

last[STRSIZ] = "Kennedy";

strcat(f1, last); => “John Kennedy” 12 characters + “\0”

strcat(f2, last);=> “Jacqueline Kennedy” 18 characters + “\0” /* invalid overflow of f2 */

//As an alternative to the second call to strcat (2)

strncat(f2, last, 3); /*Jacqueline Ken*/

● Concatenation:
● Take note that the call to strcat modifies the value of s1 even when embedded in other function

calls:

● Both strcat and strncat return as the function value the modified first argument.

● If s1 and s2 are both character strings
declared to hold STRSIZ characters (1)

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

if (strlen(s1) + strlen(s2) < STRSIZ) {

strcat(s1, s2);

} else {

strncat(s1, s2, STRSIZ - strlen(s1) - 1);

s1[STRSIZ - 1] = '\0';

}

printf("%s\n", strncat(f2, last, 3));

● String Length: function strlen returns the length of the value of its string argument, not counting
the '\0' character.

● For example: this code fragment displays the numbers 8 and 18 followed by the phrase Birzeit
University .

● Notice that the blank at the end of the initial value of s1 is counted in s1’s length.
● Two critical questions that must always be in the mind when working with strcpy, strncpy , strcat

, and strncat:
1. Is there enough space in the output parameter for the entire string being created?
2. Does the created string end in '\0' ?

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 20

char s1[STRSIZ] = “Birzeit ",

s2[STRSIZ] = “University";

printf("%d %d\n", strlen(s1), strlen(strcat(s1, s2)));

printf("%s\n", s1);

➢ A type char value is not a valid argument for a function with a corresponding
parameter of type char * (1)

➢ Note the difference internally between the representations of the character 'Q' and the

string "Q" .

● View the string as an array and use assignment to subscripted elements for access. (2)

● Be sure to include the null character at the end of the string.

DISTINCTION BETWEEN CHARACTERS AND
STRINGS

● Although blanks are natural separators to place between numeric data values, viewing
them as delimiters (1) when processing strings may not make sense (2)

➢ The stdio library provides the function gets for interactive input of one complete line

of data

 (3)

SCANNING A FULL LINE

char line[80];

printf("Type in a line of data.\n> ");

gets(line);

Type in a line of data.

> Here is a short sentence.

Loading…

● The \n character representing the <return> or <enter> key pressed at the end of the
sentence is not stored.

● Like scanf , gets can overflow its string argument if the user enters a longer data line
than will fit.

● Function fgets takes three arguments: (1)

1. The output parameter string,
2. A maximum number of characters to store (n) (2)
3. And the file pointer to the data source

● The next to last character may or may not be '\n' :
4. If fgets has room to store the entire line of data it will include '\n' before '\0' .
5. If the line is truncated, no '\n' is stored.

SCANNING A FULL LINE

● fgets stores the string created in its first argument and returns this string argument (i.e.,
its address) as its value (1)

● When a call to fgets encounters the end of file, the value returned is the address 0,

which is considered the null pointer.

● FIGURE 8.8 (2)

SCANNING A FULL LINE

➢ We studied the fact that characters are represented by numeric codes, and we used
relational and equality operators to compare characters.

➢ Unfortunately, these operators cannot be used for comparison of strings. (1)

➢ if str1 and str2 are string variables, the condition
is not checking whether str1 precedes str2 alphabetically (2)

● The standard string library provides the int function strcmp for comparison of two
strings that we will refer to as str1 and str2.

8.4 STRING COMPARISON

letter == 'C' ch1 < ch2

str1 < str2

➢ Function strcmp separates its argument pairs into three categories:

➢ str1[n] < str2[n] if:

8.4 STRING COMPARISON

OR

➢ The string library also provides an analogous function strncmp that bases its
comparison on only the first n characters of the two strings, where n is the third
argument.

➢ if str1 is “cabinet" and str2 is “cable " , the function calls

strncmp(str1, str2, 1) = 0
strncmp(str1, str2, 2) = 0
strncmp(str1, str2, 3) = 0 (1)

➢ strncmp(str1, str2, 4) would return a negative integer (2)

8.4 STRING COMPARISON

➢ EXAMPLE 8.5

➢ EXAMPLE 8.6, FIGURE 8.10

8.4 STRING COMPARISON

Figure 8.12

8.5 ARRAYS OF POINTERS

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to

8.5 ARRAYS OF POINTERS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 08

Strings

Loading…

Chapter Objectives:
1. Understand how a string constant is stored in an array of characters.

2. Learn about the placeholder %s and how it is used in printf and scanf operations.

3. Learn some of the operations that can be performed on strings. (1)

4. Understand how C compares two strings to determine their relative order.

5. Learn some of the operations that can be performed on individual characters using

functions from the library ctype.

6. How to write your own functions that perform some of the basic operations of a text

editor program

● A string: is a grouping of characters, a data structure.

● C implements the string data structure using arrays of type char (1)

● Strings are important in computer science (2)

● Strings play an important role in science as well (3)

● We need strings as the vehicle for communication between the computer system
and the human user.

STRING
S

Loading…

• We have already used string constants in our earlier work with printf and scanf (1)

● The first argument is the string constant "Average = %.2f", a string of 14 characters

● Notice that the blanks in the string are characters.

● A string constant can be associated with a symbolic name using the #define directive
(2)

8.1 STRING BASICS

printf("Average = %.2f", avg);

#define ERROR "*****Error - "

#define STD_NAME "Student Name"

➢ A string in C is implemented as an array, so declaring a string variable is
the same as declaring an array of type char .

➢ The variable string_var will hold strings from 0 to 29 characters long (1)

➢ C permits initialization of string variables using a string constant

DECLARING AND INITIALIZING STRING VARIABLES

char string_var[30];

char str[20] = "Initial value";

➢ str in memory after this declaration with initialization.

➢ str[13] contains the character ‘\0' , the null character that marks the end of

a string. (1)

DECLARING AND INITIALIZING STRING VARIABLES

char str[20] = "Initial value";

char str[20] = “Numbers and strings"; (2)

● Because one string is an array of characters, an array of strings is a two-dimensional
array of characters in which each row is one string.

● We can initialize an array of strings at declaration in the following manner:

ARRAYS OF
STRINGS

#define NUM_PEOPLE 30

#define NAME_LEN 25

. . .

char names[NUM_PEOPLE][NAME_LEN]; (1)

char month[12][10] = {"January", "February", "March", "April",

"May", "June", "July", "August", "September", "October", "November",

"December"};

● Use the placeholder %s in the format string with printf and scanf to handle string
argument.

● The printf function, depends on finding a null character in the character array to mark the
end of the string. (1)

● When we write our own string-building functions, we must be sure that a null character is

inserted at the end of every string. (2)

● This inclusion of the null character is automatic for constant strings.

● The %s placeholder in a printf format string can be used with a minimum field width (3)

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("Topic: %s\n", string_var);

printf ("%8s%3s***\n", "Short", "Strings");

➢ Placing a minus sign prefix on a placeholder’s field width causes left justification of
the value displayed.

● Scanf Function:

● Remember: when we call scanf with a string variable as an argument, we must

remember that array output arguments are always passed to functions by sending the
address of the initial array element. (2)

● Figure 8.2 p. 457

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("%-20s\n", “Name”); (1)

Loading…

 Figure 8.3

➢ scanf skips leading whitespace characters such as blanks, newlines, and tabs.(1)

➢ Starting with the first nonwhitespace character, scanf copies the characters it encounters into

successive memory cells of its character array argument.

➢ When it comes across a whitespace character, scanning stops, scanf places the null character at

the end of the string in its array argument.

INPUT/OUTPUT WITH PRINTF AND
SCANF

• For example, the data could have been entered one value per line with extra whitespace.

• or two values per line:

● But: (1)

●

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH

 1270

 TR

 1800

> MATH 1270

 TR 1800

> MATH1270 TR 1800 (2)

➢ => 17 characters

Figure 8.4

● EXAMPLE 8.1 p.459

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH,1270,TR,1800 (1)

➢ Using the assignment symbol in a declaration of a string variable with initialization,
is the only one in which the operator means to copy the string that is the right operand
into the variable that is the left operand.

➢ Array address is constant and cannot be changed through assignment (1)

➢

➢ a compiler error

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

one_str = "Test string"; /* Does not work */

Invalid target of assignment :

char one_str[20] = "Test String");

● C Library Functions:

➢ Along with assignment functions, the library string.h provides functions for
substring, concatenation, string length, string comparison, and whole line input
operations [See Table 8.1 p.461]

➢ The data type of the value returned by each string-building function is the pointer

type char * .

➢ Reminder: An array is being represented by the address of its initial value.

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

● String Assignment:

➢ Function strcpy copies the string that is its second argument into its first argument

➢ Like a call to scanf with a %s placeholder, a call to strcpy can easily overflow the
space allocated for the destination variable (2)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

strcpy(one_str, "Test String"); (1)

strcpy(one_str, "A very long test string"); (3)

● strncpy that takes an argument specifying the number of characters to copy (call this
number n). (1)

● The effect is the same as the call

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, "Test string", 20); (2)

strcpy(one_str, "Test string"); (3)

● when the source string is longer than n characters, only the first n characters are
copied.

● In general,

● Both strcpy and strncpy mimic the assignment operator in that the value they return
is the string assigned. (3)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, “A very long test string”, 20); (1)

strncpy(dest, source, dest_len - 1); (2)

dest[dest_len - 1] = '\0';

➢ For example, we might want to examine
 the “133" in the string “Comp133"
 or the "Jan" in the string "Jan. 30, 1996”.

➢ Assuming that the prototype of strncpy is (1)

SUBSTRING
S

char *strncpy(char *dest, const char *source, size_t n);

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0';

➢ Figure 8.5

SUBSTRING
S

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0'; (1)

➢ If we wish to use strncpy to extract a middle substring, we must call the function
with the address of the first character to copy.

 Fig. 8.6

SUBSTRING
S

strncpy(result, &s1[5], 2);

result[2] = '\0'; (1)

strcpy(result, &s1[9]); (2)

➢ EXAMPLE 8.2 (1)
➢ 1st Solution (2)

➢ 2nd Solution: (3)

SUBSTRING
S

char *last, *first, *middle;

char pres[20] = "Adams, John Quincy";

char pres_copy[20];

strcpy(pres_copy, pres);

last = strtok(pres_copy, ", ");

first = strtok(NULL, ", ");

middle = strtok(NULL, ", ");

➢ EXAMPLE 8.3, Figure 8.7

 used to display the last
 component.

➢ Instead of: (1)
 Since strcpy returns as its value the
starting address
 of the string it has just stored in elem

➢ The use of CMP_LEN and strlen(compound): the declared size of the array is no
longer the effective size once data have been stored in the array (2)

SUBSTRING
S

printf("%s\n", strcpy(elem, &compound[first]));

strcpy(elem, &compound[first]);

printf("%s\n", elem);

● Concatenation: String library functions strcat and strncat modify their first string
argument by adding all or part of their second string argument at the end of the first
argument.

● Both functions assume that sufficient space is allocated for the first argument to allow

addition of the extra characters.

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 15 EXAMPLE 8.4

char f1[STRSIZ] = "John ", f2[STRSIZ] = "Jacqueline ",

last[STRSIZ] = "Kennedy";

strcat(f1, last); => “John Kennedy” 12 characters + “\0”

strcat(f2, last);=> “Jacqueline Kennedy” 18 characters + “\0” /* invalid overflow of f2 */

//As an alternative to the second call to strcat (2)

strncat(f2, last, 3); /*Jacqueline Ken*/

● Concatenation:
● Take note that the call to strcat modifies the value of s1 even when embedded in other function

calls:

● Both strcat and strncat return as the function value the modified first argument.

● If s1 and s2 are both character strings
declared to hold STRSIZ characters (1)

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

if (strlen(s1) + strlen(s2) < STRSIZ) {

strcat(s1, s2);

} else {

strncat(s1, s2, STRSIZ - strlen(s1) - 1);

s1[STRSIZ - 1] = '\0';

}

printf("%s\n", strncat(f2, last, 3));

● String Length: function strlen returns the length of the value of its string argument, not counting
the '\0' character.

● For example: this code fragment displays the numbers 8 and 18 followed by the phrase Birzeit
University .

● Notice that the blank at the end of the initial value of s1 is counted in s1’s length.
● Two critical questions that must always be in the mind when working with strcpy, strncpy , strcat

, and strncat:
1. Is there enough space in the output parameter for the entire string being created?
2. Does the created string end in '\0' ?

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 20

char s1[STRSIZ] = “Birzeit ",

s2[STRSIZ] = “University";

printf("%d %d\n", strlen(s1), strlen(strcat(s1, s2)));

printf("%s\n", s1);

➢ A type char value is not a valid argument for a function with a corresponding
parameter of type char * (1)

➢ Note the difference internally between the representations of the character 'Q' and the

string "Q" .

● View the string as an array and use assignment to subscripted elements for access. (2)

● Be sure to include the null character at the end of the string.

DISTINCTION BETWEEN CHARACTERS AND
STRINGS

● Although blanks are natural separators to place between numeric data values, viewing
them as delimiters (1) when processing strings may not make sense (2)

➢ The stdio library provides the function gets for interactive input of one complete line

of data

 (3)

SCANNING A FULL LINE

char line[80];

printf("Type in a line of data.\n> ");

gets(line);

Type in a line of data.

> Here is a short sentence.

Loading…

● The \n character representing the <return> or <enter> key pressed at the end of the
sentence is not stored.

● Like scanf , gets can overflow its string argument if the user enters a longer data line
than will fit.

● Function fgets takes three arguments: (1)

1. The output parameter string,
2. A maximum number of characters to store (n) (2)
3. And the file pointer to the data source

● The next to last character may or may not be '\n' :
4. If fgets has room to store the entire line of data it will include '\n' before '\0' .
5. If the line is truncated, no '\n' is stored.

SCANNING A FULL LINE

● fgets stores the string created in its first argument and returns this string argument (i.e.,
its address) as its value (1)

● When a call to fgets encounters the end of file, the value returned is the address 0,

which is considered the null pointer.

● FIGURE 8.8 (2)

SCANNING A FULL LINE

➢ We studied the fact that characters are represented by numeric codes, and we used
relational and equality operators to compare characters.

➢ Unfortunately, these operators cannot be used for comparison of strings. (1)

➢ if str1 and str2 are string variables, the condition
is not checking whether str1 precedes str2 alphabetically (2)

● The standard string library provides the int function strcmp for comparison of two
strings that we will refer to as str1 and str2.

8.4 STRING COMPARISON

letter == 'C' ch1 < ch2

str1 < str2

➢ Function strcmp separates its argument pairs into three categories:

➢ str1[n] < str2[n] if:

8.4 STRING COMPARISON

OR

➢ The string library also provides an analogous function strncmp that bases its
comparison on only the first n characters of the two strings, where n is the third
argument.

➢ if str1 is “cabinet" and str2 is “cable " , the function calls

strncmp(str1, str2, 1) = 0
strncmp(str1, str2, 2) = 0
strncmp(str1, str2, 3) = 0 (1)

➢ strncmp(str1, str2, 4) would return a negative integer (2)

8.4 STRING COMPARISON

➢ EXAMPLE 8.5

➢ EXAMPLE 8.6, FIGURE 8.10

8.4 STRING COMPARISON

Figure 8.12

8.5 ARRAYS OF POINTERS

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to

8.5 ARRAYS OF POINTERS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 08

Strings

Loading…

Chapter Objectives:
1. Understand how a string constant is stored in an array of characters.

2. Learn about the placeholder %s and how it is used in printf and scanf operations.

3. Learn some of the operations that can be performed on strings. (1)

4. Understand how C compares two strings to determine their relative order.

5. Learn some of the operations that can be performed on individual characters using

functions from the library ctype.

6. How to write your own functions that perform some of the basic operations of a text

editor program

● A string: is a grouping of characters, a data structure.

● C implements the string data structure using arrays of type char (1)

● Strings are important in computer science (2)

● Strings play an important role in science as well (3)

● We need strings as the vehicle for communication between the computer system
and the human user.

STRING
S

Loading…

• We have already used string constants in our earlier work with printf and scanf (1)

● The first argument is the string constant "Average = %.2f", a string of 14 characters

● Notice that the blanks in the string are characters.

● A string constant can be associated with a symbolic name using the #define directive
(2)

8.1 STRING BASICS

printf("Average = %.2f", avg);

#define ERROR "*****Error - "

#define STD_NAME "Student Name"

➢ A string in C is implemented as an array, so declaring a string variable is
the same as declaring an array of type char .

➢ The variable string_var will hold strings from 0 to 29 characters long (1)

➢ C permits initialization of string variables using a string constant

DECLARING AND INITIALIZING STRING VARIABLES

char string_var[30];

char str[20] = "Initial value";

➢ str in memory after this declaration with initialization.

➢ str[13] contains the character ‘\0' , the null character that marks the end of

a string. (1)

DECLARING AND INITIALIZING STRING VARIABLES

char str[20] = "Initial value";

char str[20] = “Numbers and strings"; (2)

● Because one string is an array of characters, an array of strings is a two-dimensional
array of characters in which each row is one string.

● We can initialize an array of strings at declaration in the following manner:

ARRAYS OF
STRINGS

#define NUM_PEOPLE 30

#define NAME_LEN 25

. . .

char names[NUM_PEOPLE][NAME_LEN]; (1)

char month[12][10] = {"January", "February", "March", "April",

"May", "June", "July", "August", "September", "October", "November",

"December"};

● Use the placeholder %s in the format string with printf and scanf to handle string
argument.

● The printf function, depends on finding a null character in the character array to mark the
end of the string. (1)

● When we write our own string-building functions, we must be sure that a null character is

inserted at the end of every string. (2)

● This inclusion of the null character is automatic for constant strings.

● The %s placeholder in a printf format string can be used with a minimum field width (3)

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("Topic: %s\n", string_var);

printf ("%8s%3s***\n", "Short", "Strings");

➢ Placing a minus sign prefix on a placeholder’s field width causes left justification of
the value displayed.

● Scanf Function:

● Remember: when we call scanf with a string variable as an argument, we must

remember that array output arguments are always passed to functions by sending the
address of the initial array element. (2)

● Figure 8.2 p. 457

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("%-20s\n", “Name”); (1)

Loading…

 Figure 8.3

➢ scanf skips leading whitespace characters such as blanks, newlines, and tabs.(1)

➢ Starting with the first nonwhitespace character, scanf copies the characters it encounters into

successive memory cells of its character array argument.

➢ When it comes across a whitespace character, scanning stops, scanf places the null character at

the end of the string in its array argument.

INPUT/OUTPUT WITH PRINTF AND
SCANF

• For example, the data could have been entered one value per line with extra whitespace.

• or two values per line:

● But: (1)

●

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH

 1270

 TR

 1800

> MATH 1270

 TR 1800

> MATH1270 TR 1800 (2)

➢ => 17 characters

Figure 8.4

● EXAMPLE 8.1 p.459

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH,1270,TR,1800 (1)

➢ Using the assignment symbol in a declaration of a string variable with initialization,
is the only one in which the operator means to copy the string that is the right operand
into the variable that is the left operand.

➢ Array address is constant and cannot be changed through assignment (1)

➢

➢ a compiler error

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

one_str = "Test string"; /* Does not work */

Invalid target of assignment :

char one_str[20] = "Test String");

● C Library Functions:

➢ Along with assignment functions, the library string.h provides functions for
substring, concatenation, string length, string comparison, and whole line input
operations [See Table 8.1 p.461]

➢ The data type of the value returned by each string-building function is the pointer

type char * .

➢ Reminder: An array is being represented by the address of its initial value.

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

● String Assignment:

➢ Function strcpy copies the string that is its second argument into its first argument

➢ Like a call to scanf with a %s placeholder, a call to strcpy can easily overflow the
space allocated for the destination variable (2)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

strcpy(one_str, "Test String"); (1)

strcpy(one_str, "A very long test string"); (3)

● strncpy that takes an argument specifying the number of characters to copy (call this
number n). (1)

● The effect is the same as the call

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, "Test string", 20); (2)

strcpy(one_str, "Test string"); (3)

● when the source string is longer than n characters, only the first n characters are
copied.

● In general,

● Both strcpy and strncpy mimic the assignment operator in that the value they return
is the string assigned. (3)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, “A very long test string”, 20); (1)

strncpy(dest, source, dest_len - 1); (2)

dest[dest_len - 1] = '\0';

➢ For example, we might want to examine
 the “133" in the string “Comp133"
 or the "Jan" in the string "Jan. 30, 1996”.

➢ Assuming that the prototype of strncpy is (1)

SUBSTRING
S

char *strncpy(char *dest, const char *source, size_t n);

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0';

➢ Figure 8.5

SUBSTRING
S

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0'; (1)

➢ If we wish to use strncpy to extract a middle substring, we must call the function
with the address of the first character to copy.

 Fig. 8.6

SUBSTRING
S

strncpy(result, &s1[5], 2);

result[2] = '\0'; (1)

strcpy(result, &s1[9]); (2)

➢ EXAMPLE 8.2 (1)
➢ 1st Solution (2)

➢ 2nd Solution: (3)

SUBSTRING
S

char *last, *first, *middle;

char pres[20] = "Adams, John Quincy";

char pres_copy[20];

strcpy(pres_copy, pres);

last = strtok(pres_copy, ", ");

first = strtok(NULL, ", ");

middle = strtok(NULL, ", ");

➢ EXAMPLE 8.3, Figure 8.7

 used to display the last
 component.

➢ Instead of: (1)
 Since strcpy returns as its value the
starting address
 of the string it has just stored in elem

➢ The use of CMP_LEN and strlen(compound): the declared size of the array is no
longer the effective size once data have been stored in the array (2)

SUBSTRING
S

printf("%s\n", strcpy(elem, &compound[first]));

strcpy(elem, &compound[first]);

printf("%s\n", elem);

● Concatenation: String library functions strcat and strncat modify their first string
argument by adding all or part of their second string argument at the end of the first
argument.

● Both functions assume that sufficient space is allocated for the first argument to allow

addition of the extra characters.

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 15 EXAMPLE 8.4

char f1[STRSIZ] = "John ", f2[STRSIZ] = "Jacqueline ",

last[STRSIZ] = "Kennedy";

strcat(f1, last); => “John Kennedy” 12 characters + “\0”

strcat(f2, last);=> “Jacqueline Kennedy” 18 characters + “\0” /* invalid overflow of f2 */

//As an alternative to the second call to strcat (2)

strncat(f2, last, 3); /*Jacqueline Ken*/

● Concatenation:
● Take note that the call to strcat modifies the value of s1 even when embedded in other function

calls:

● Both strcat and strncat return as the function value the modified first argument.

● If s1 and s2 are both character strings
declared to hold STRSIZ characters (1)

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

if (strlen(s1) + strlen(s2) < STRSIZ) {

strcat(s1, s2);

} else {

strncat(s1, s2, STRSIZ - strlen(s1) - 1);

s1[STRSIZ - 1] = '\0';

}

printf("%s\n", strncat(f2, last, 3));

● String Length: function strlen returns the length of the value of its string argument, not counting
the '\0' character.

● For example: this code fragment displays the numbers 8 and 18 followed by the phrase Birzeit
University .

● Notice that the blank at the end of the initial value of s1 is counted in s1’s length.
● Two critical questions that must always be in the mind when working with strcpy, strncpy , strcat

, and strncat:
1. Is there enough space in the output parameter for the entire string being created?
2. Does the created string end in '\0' ?

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 20

char s1[STRSIZ] = “Birzeit ",

s2[STRSIZ] = “University";

printf("%d %d\n", strlen(s1), strlen(strcat(s1, s2)));

printf("%s\n", s1);

➢ A type char value is not a valid argument for a function with a corresponding
parameter of type char * (1)

➢ Note the difference internally between the representations of the character 'Q' and the

string "Q" .

● View the string as an array and use assignment to subscripted elements for access. (2)

● Be sure to include the null character at the end of the string.

DISTINCTION BETWEEN CHARACTERS AND
STRINGS

● Although blanks are natural separators to place between numeric data values, viewing
them as delimiters (1) when processing strings may not make sense (2)

➢ The stdio library provides the function gets for interactive input of one complete line

of data

 (3)

SCANNING A FULL LINE

char line[80];

printf("Type in a line of data.\n> ");

gets(line);

Type in a line of data.

> Here is a short sentence.

Loading…

● The \n character representing the <return> or <enter> key pressed at the end of the
sentence is not stored.

● Like scanf , gets can overflow its string argument if the user enters a longer data line
than will fit.

● Function fgets takes three arguments: (1)

1. The output parameter string,
2. A maximum number of characters to store (n) (2)
3. And the file pointer to the data source

● The next to last character may or may not be '\n' :
4. If fgets has room to store the entire line of data it will include '\n' before '\0' .
5. If the line is truncated, no '\n' is stored.

SCANNING A FULL LINE

● fgets stores the string created in its first argument and returns this string argument (i.e.,
its address) as its value (1)

● When a call to fgets encounters the end of file, the value returned is the address 0,

which is considered the null pointer.

● FIGURE 8.8 (2)

SCANNING A FULL LINE

➢ We studied the fact that characters are represented by numeric codes, and we used
relational and equality operators to compare characters.

➢ Unfortunately, these operators cannot be used for comparison of strings. (1)

➢ if str1 and str2 are string variables, the condition
is not checking whether str1 precedes str2 alphabetically (2)

● The standard string library provides the int function strcmp for comparison of two
strings that we will refer to as str1 and str2.

8.4 STRING COMPARISON

letter == 'C' ch1 < ch2

str1 < str2

➢ Function strcmp separates its argument pairs into three categories:

➢ str1[n] < str2[n] if:

8.4 STRING COMPARISON

OR

➢ The string library also provides an analogous function strncmp that bases its
comparison on only the first n characters of the two strings, where n is the third
argument.

➢ if str1 is “cabinet" and str2 is “cable " , the function calls

strncmp(str1, str2, 1) = 0
strncmp(str1, str2, 2) = 0
strncmp(str1, str2, 3) = 0 (1)

➢ strncmp(str1, str2, 4) would return a negative integer (2)

8.4 STRING COMPARISON

➢ EXAMPLE 8.5

➢ EXAMPLE 8.6, FIGURE 8.10

8.4 STRING COMPARISON

Figure 8.12

8.5 ARRAYS OF POINTERS

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to

8.5 ARRAYS OF POINTERS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 08

Strings

Loading…

Chapter Objectives:
1. Understand how a string constant is stored in an array of characters.

2. Learn about the placeholder %s and how it is used in printf and scanf operations.

3. Learn some of the operations that can be performed on strings. (1)

4. Understand how C compares two strings to determine their relative order.

5. Learn some of the operations that can be performed on individual characters using

functions from the library ctype.

6. How to write your own functions that perform some of the basic operations of a text

editor program

● A string: is a grouping of characters, a data structure.

● C implements the string data structure using arrays of type char (1)

● Strings are important in computer science (2)

● Strings play an important role in science as well (3)

● We need strings as the vehicle for communication between the computer system
and the human user.

STRING
S

Loading…

• We have already used string constants in our earlier work with printf and scanf (1)

● The first argument is the string constant "Average = %.2f", a string of 14 characters

● Notice that the blanks in the string are characters.

● A string constant can be associated with a symbolic name using the #define directive
(2)

8.1 STRING BASICS

printf("Average = %.2f", avg);

#define ERROR "*****Error - "

#define STD_NAME "Student Name"

➢ A string in C is implemented as an array, so declaring a string variable is
the same as declaring an array of type char .

➢ The variable string_var will hold strings from 0 to 29 characters long (1)

➢ C permits initialization of string variables using a string constant

DECLARING AND INITIALIZING STRING VARIABLES

char string_var[30];

char str[20] = "Initial value";

➢ str in memory after this declaration with initialization.

➢ str[13] contains the character ‘\0' , the null character that marks the end of

a string. (1)

DECLARING AND INITIALIZING STRING VARIABLES

char str[20] = "Initial value";

char str[20] = “Numbers and strings"; (2)

● Because one string is an array of characters, an array of strings is a two-dimensional
array of characters in which each row is one string.

● We can initialize an array of strings at declaration in the following manner:

ARRAYS OF
STRINGS

#define NUM_PEOPLE 30

#define NAME_LEN 25

. . .

char names[NUM_PEOPLE][NAME_LEN]; (1)

char month[12][10] = {"January", "February", "March", "April",

"May", "June", "July", "August", "September", "October", "November",

"December"};

● Use the placeholder %s in the format string with printf and scanf to handle string
argument.

● The printf function, depends on finding a null character in the character array to mark the
end of the string. (1)

● When we write our own string-building functions, we must be sure that a null character is

inserted at the end of every string. (2)

● This inclusion of the null character is automatic for constant strings.

● The %s placeholder in a printf format string can be used with a minimum field width (3)

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("Topic: %s\n", string_var);

printf ("%8s%3s***\n", "Short", "Strings");

➢ Placing a minus sign prefix on a placeholder’s field width causes left justification of
the value displayed.

● Scanf Function:

● Remember: when we call scanf with a string variable as an argument, we must

remember that array output arguments are always passed to functions by sending the
address of the initial array element. (2)

● Figure 8.2 p. 457

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("%-20s\n", “Name”); (1)

Loading…

 Figure 8.3

➢ scanf skips leading whitespace characters such as blanks, newlines, and tabs.(1)

➢ Starting with the first nonwhitespace character, scanf copies the characters it encounters into

successive memory cells of its character array argument.

➢ When it comes across a whitespace character, scanning stops, scanf places the null character at

the end of the string in its array argument.

INPUT/OUTPUT WITH PRINTF AND
SCANF

• For example, the data could have been entered one value per line with extra whitespace.

• or two values per line:

● But: (1)

●

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH

 1270

 TR

 1800

> MATH 1270

 TR 1800

> MATH1270 TR 1800 (2)

➢ => 17 characters

Figure 8.4

● EXAMPLE 8.1 p.459

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH,1270,TR,1800 (1)

➢ Using the assignment symbol in a declaration of a string variable with initialization,
is the only one in which the operator means to copy the string that is the right operand
into the variable that is the left operand.

➢ Array address is constant and cannot be changed through assignment (1)

➢

➢ a compiler error

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

one_str = "Test string"; /* Does not work */

Invalid target of assignment :

char one_str[20] = "Test String");

● C Library Functions:

➢ Along with assignment functions, the library string.h provides functions for
substring, concatenation, string length, string comparison, and whole line input
operations [See Table 8.1 p.461]

➢ The data type of the value returned by each string-building function is the pointer

type char * .

➢ Reminder: An array is being represented by the address of its initial value.

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

● String Assignment:

➢ Function strcpy copies the string that is its second argument into its first argument

➢ Like a call to scanf with a %s placeholder, a call to strcpy can easily overflow the
space allocated for the destination variable (2)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

strcpy(one_str, "Test String"); (1)

strcpy(one_str, "A very long test string"); (3)

● strncpy that takes an argument specifying the number of characters to copy (call this
number n). (1)

● The effect is the same as the call

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, "Test string", 20); (2)

strcpy(one_str, "Test string"); (3)

● when the source string is longer than n characters, only the first n characters are
copied.

● In general,

● Both strcpy and strncpy mimic the assignment operator in that the value they return
is the string assigned. (3)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, “A very long test string”, 20); (1)

strncpy(dest, source, dest_len - 1); (2)

dest[dest_len - 1] = '\0';

➢ For example, we might want to examine
 the “133" in the string “Comp133"
 or the "Jan" in the string "Jan. 30, 1996”.

➢ Assuming that the prototype of strncpy is (1)

SUBSTRING
S

char *strncpy(char *dest, const char *source, size_t n);

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0';

➢ Figure 8.5

SUBSTRING
S

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0'; (1)

➢ If we wish to use strncpy to extract a middle substring, we must call the function
with the address of the first character to copy.

 Fig. 8.6

SUBSTRING
S

strncpy(result, &s1[5], 2);

result[2] = '\0'; (1)

strcpy(result, &s1[9]); (2)

➢ EXAMPLE 8.2 (1)
➢ 1st Solution (2)

➢ 2nd Solution: (3)

SUBSTRING
S

char *last, *first, *middle;

char pres[20] = "Adams, John Quincy";

char pres_copy[20];

strcpy(pres_copy, pres);

last = strtok(pres_copy, ", ");

first = strtok(NULL, ", ");

middle = strtok(NULL, ", ");

➢ EXAMPLE 8.3, Figure 8.7

 used to display the last
 component.

➢ Instead of: (1)
 Since strcpy returns as its value the
starting address
 of the string it has just stored in elem

➢ The use of CMP_LEN and strlen(compound): the declared size of the array is no
longer the effective size once data have been stored in the array (2)

SUBSTRING
S

printf("%s\n", strcpy(elem, &compound[first]));

strcpy(elem, &compound[first]);

printf("%s\n", elem);

● Concatenation: String library functions strcat and strncat modify their first string
argument by adding all or part of their second string argument at the end of the first
argument.

● Both functions assume that sufficient space is allocated for the first argument to allow

addition of the extra characters.

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 15 EXAMPLE 8.4

char f1[STRSIZ] = "John ", f2[STRSIZ] = "Jacqueline ",

last[STRSIZ] = "Kennedy";

strcat(f1, last); => “John Kennedy” 12 characters + “\0”

strcat(f2, last);=> “Jacqueline Kennedy” 18 characters + “\0” /* invalid overflow of f2 */

//As an alternative to the second call to strcat (2)

strncat(f2, last, 3); /*Jacqueline Ken*/

● Concatenation:
● Take note that the call to strcat modifies the value of s1 even when embedded in other function

calls:

● Both strcat and strncat return as the function value the modified first argument.

● If s1 and s2 are both character strings
declared to hold STRSIZ characters (1)

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

if (strlen(s1) + strlen(s2) < STRSIZ) {

strcat(s1, s2);

} else {

strncat(s1, s2, STRSIZ - strlen(s1) - 1);

s1[STRSIZ - 1] = '\0';

}

printf("%s\n", strncat(f2, last, 3));

● String Length: function strlen returns the length of the value of its string argument, not counting
the '\0' character.

● For example: this code fragment displays the numbers 8 and 18 followed by the phrase Birzeit
University .

● Notice that the blank at the end of the initial value of s1 is counted in s1’s length.
● Two critical questions that must always be in the mind when working with strcpy, strncpy , strcat

, and strncat:
1. Is there enough space in the output parameter for the entire string being created?
2. Does the created string end in '\0' ?

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 20

char s1[STRSIZ] = “Birzeit ",

s2[STRSIZ] = “University";

printf("%d %d\n", strlen(s1), strlen(strcat(s1, s2)));

printf("%s\n", s1);

➢ A type char value is not a valid argument for a function with a corresponding
parameter of type char * (1)

➢ Note the difference internally between the representations of the character 'Q' and the

string "Q" .

● View the string as an array and use assignment to subscripted elements for access. (2)

● Be sure to include the null character at the end of the string.

DISTINCTION BETWEEN CHARACTERS AND
STRINGS

● Although blanks are natural separators to place between numeric data values, viewing
them as delimiters (1) when processing strings may not make sense (2)

➢ The stdio library provides the function gets for interactive input of one complete line

of data

 (3)

SCANNING A FULL LINE

char line[80];

printf("Type in a line of data.\n> ");

gets(line);

Type in a line of data.

> Here is a short sentence.

Loading…

● The \n character representing the <return> or <enter> key pressed at the end of the
sentence is not stored.

● Like scanf , gets can overflow its string argument if the user enters a longer data line
than will fit.

● Function fgets takes three arguments: (1)

1. The output parameter string,
2. A maximum number of characters to store (n) (2)
3. And the file pointer to the data source

● The next to last character may or may not be '\n' :
4. If fgets has room to store the entire line of data it will include '\n' before '\0' .
5. If the line is truncated, no '\n' is stored.

SCANNING A FULL LINE

● fgets stores the string created in its first argument and returns this string argument (i.e.,
its address) as its value (1)

● When a call to fgets encounters the end of file, the value returned is the address 0,

which is considered the null pointer.

● FIGURE 8.8 (2)

SCANNING A FULL LINE

➢ We studied the fact that characters are represented by numeric codes, and we used
relational and equality operators to compare characters.

➢ Unfortunately, these operators cannot be used for comparison of strings. (1)

➢ if str1 and str2 are string variables, the condition
is not checking whether str1 precedes str2 alphabetically (2)

● The standard string library provides the int function strcmp for comparison of two
strings that we will refer to as str1 and str2.

8.4 STRING COMPARISON

letter == 'C' ch1 < ch2

str1 < str2

➢ Function strcmp separates its argument pairs into three categories:

➢ str1[n] < str2[n] if:

8.4 STRING COMPARISON

OR

➢ The string library also provides an analogous function strncmp that bases its
comparison on only the first n characters of the two strings, where n is the third
argument.

➢ if str1 is “cabinet" and str2 is “cable " , the function calls

strncmp(str1, str2, 1) = 0
strncmp(str1, str2, 2) = 0
strncmp(str1, str2, 3) = 0 (1)

➢ strncmp(str1, str2, 4) would return a negative integer (2)

8.4 STRING COMPARISON

➢ EXAMPLE 8.5

➢ EXAMPLE 8.6, FIGURE 8.10

8.4 STRING COMPARISON

Figure 8.12

8.5 ARRAYS OF POINTERS

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to

8.5 ARRAYS OF POINTERS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 08

Strings

Loading…

Chapter Objectives:
1. Understand how a string constant is stored in an array of characters.

2. Learn about the placeholder %s and how it is used in printf and scanf operations.

3. Learn some of the operations that can be performed on strings. (1)

4. Understand how C compares two strings to determine their relative order.

5. Learn some of the operations that can be performed on individual characters using

functions from the library ctype.

6. How to write your own functions that perform some of the basic operations of a text

editor program

● A string: is a grouping of characters, a data structure.

● C implements the string data structure using arrays of type char (1)

● Strings are important in computer science (2)

● Strings play an important role in science as well (3)

● We need strings as the vehicle for communication between the computer system
and the human user.

STRING
S

Loading…

• We have already used string constants in our earlier work with printf and scanf (1)

● The first argument is the string constant "Average = %.2f", a string of 14 characters

● Notice that the blanks in the string are characters.

● A string constant can be associated with a symbolic name using the #define directive
(2)

8.1 STRING BASICS

printf("Average = %.2f", avg);

#define ERROR "*****Error - "

#define STD_NAME "Student Name"

➢ A string in C is implemented as an array, so declaring a string variable is
the same as declaring an array of type char .

➢ The variable string_var will hold strings from 0 to 29 characters long (1)

➢ C permits initialization of string variables using a string constant

DECLARING AND INITIALIZING STRING VARIABLES

char string_var[30];

char str[20] = "Initial value";

➢ str in memory after this declaration with initialization.

➢ str[13] contains the character ‘\0' , the null character that marks the end of

a string. (1)

DECLARING AND INITIALIZING STRING VARIABLES

char str[20] = "Initial value";

char str[20] = “Numbers and strings"; (2)

● Because one string is an array of characters, an array of strings is a two-dimensional
array of characters in which each row is one string.

● We can initialize an array of strings at declaration in the following manner:

ARRAYS OF
STRINGS

#define NUM_PEOPLE 30

#define NAME_LEN 25

. . .

char names[NUM_PEOPLE][NAME_LEN]; (1)

char month[12][10] = {"January", "February", "March", "April",

"May", "June", "July", "August", "September", "October", "November",

"December"};

● Use the placeholder %s in the format string with printf and scanf to handle string
argument.

● The printf function, depends on finding a null character in the character array to mark the
end of the string. (1)

● When we write our own string-building functions, we must be sure that a null character is

inserted at the end of every string. (2)

● This inclusion of the null character is automatic for constant strings.

● The %s placeholder in a printf format string can be used with a minimum field width (3)

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("Topic: %s\n", string_var);

printf ("%8s%3s***\n", "Short", "Strings");

➢ Placing a minus sign prefix on a placeholder’s field width causes left justification of
the value displayed.

● Scanf Function:

● Remember: when we call scanf with a string variable as an argument, we must

remember that array output arguments are always passed to functions by sending the
address of the initial array element. (2)

● Figure 8.2 p. 457

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("%-20s\n", “Name”); (1)

Loading…

 Figure 8.3

➢ scanf skips leading whitespace characters such as blanks, newlines, and tabs.(1)

➢ Starting with the first nonwhitespace character, scanf copies the characters it encounters into

successive memory cells of its character array argument.

➢ When it comes across a whitespace character, scanning stops, scanf places the null character at

the end of the string in its array argument.

INPUT/OUTPUT WITH PRINTF AND
SCANF

• For example, the data could have been entered one value per line with extra whitespace.

• or two values per line:

● But: (1)

●

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH

 1270

 TR

 1800

> MATH 1270

 TR 1800

> MATH1270 TR 1800 (2)

➢ => 17 characters

Figure 8.4

● EXAMPLE 8.1 p.459

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH,1270,TR,1800 (1)

➢ Using the assignment symbol in a declaration of a string variable with initialization,
is the only one in which the operator means to copy the string that is the right operand
into the variable that is the left operand.

➢ Array address is constant and cannot be changed through assignment (1)

➢

➢ a compiler error

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

one_str = "Test string"; /* Does not work */

Invalid target of assignment :

char one_str[20] = "Test String");

● C Library Functions:

➢ Along with assignment functions, the library string.h provides functions for
substring, concatenation, string length, string comparison, and whole line input
operations [See Table 8.1 p.461]

➢ The data type of the value returned by each string-building function is the pointer

type char * .

➢ Reminder: An array is being represented by the address of its initial value.

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

● String Assignment:

➢ Function strcpy copies the string that is its second argument into its first argument

➢ Like a call to scanf with a %s placeholder, a call to strcpy can easily overflow the
space allocated for the destination variable (2)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

strcpy(one_str, "Test String"); (1)

strcpy(one_str, "A very long test string"); (3)

● strncpy that takes an argument specifying the number of characters to copy (call this
number n). (1)

● The effect is the same as the call

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, "Test string", 20); (2)

strcpy(one_str, "Test string"); (3)

● when the source string is longer than n characters, only the first n characters are
copied.

● In general,

● Both strcpy and strncpy mimic the assignment operator in that the value they return
is the string assigned. (3)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, “A very long test string”, 20); (1)

strncpy(dest, source, dest_len - 1); (2)

dest[dest_len - 1] = '\0';

➢ For example, we might want to examine
 the “133" in the string “Comp133"
 or the "Jan" in the string "Jan. 30, 1996”.

➢ Assuming that the prototype of strncpy is (1)

SUBSTRING
S

char *strncpy(char *dest, const char *source, size_t n);

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0';

➢ Figure 8.5

SUBSTRING
S

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0'; (1)

➢ If we wish to use strncpy to extract a middle substring, we must call the function
with the address of the first character to copy.

 Fig. 8.6

SUBSTRING
S

strncpy(result, &s1[5], 2);

result[2] = '\0'; (1)

strcpy(result, &s1[9]); (2)

➢ EXAMPLE 8.2 (1)
➢ 1st Solution (2)

➢ 2nd Solution: (3)

SUBSTRING
S

char *last, *first, *middle;

char pres[20] = "Adams, John Quincy";

char pres_copy[20];

strcpy(pres_copy, pres);

last = strtok(pres_copy, ", ");

first = strtok(NULL, ", ");

middle = strtok(NULL, ", ");

➢ EXAMPLE 8.3, Figure 8.7

 used to display the last
 component.

➢ Instead of: (1)
 Since strcpy returns as its value the
starting address
 of the string it has just stored in elem

➢ The use of CMP_LEN and strlen(compound): the declared size of the array is no
longer the effective size once data have been stored in the array (2)

SUBSTRING
S

printf("%s\n", strcpy(elem, &compound[first]));

strcpy(elem, &compound[first]);

printf("%s\n", elem);

● Concatenation: String library functions strcat and strncat modify their first string
argument by adding all or part of their second string argument at the end of the first
argument.

● Both functions assume that sufficient space is allocated for the first argument to allow

addition of the extra characters.

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 15 EXAMPLE 8.4

char f1[STRSIZ] = "John ", f2[STRSIZ] = "Jacqueline ",

last[STRSIZ] = "Kennedy";

strcat(f1, last); => “John Kennedy” 12 characters + “\0”

strcat(f2, last);=> “Jacqueline Kennedy” 18 characters + “\0” /* invalid overflow of f2 */

//As an alternative to the second call to strcat (2)

strncat(f2, last, 3); /*Jacqueline Ken*/

● Concatenation:
● Take note that the call to strcat modifies the value of s1 even when embedded in other function

calls:

● Both strcat and strncat return as the function value the modified first argument.

● If s1 and s2 are both character strings
declared to hold STRSIZ characters (1)

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

if (strlen(s1) + strlen(s2) < STRSIZ) {

strcat(s1, s2);

} else {

strncat(s1, s2, STRSIZ - strlen(s1) - 1);

s1[STRSIZ - 1] = '\0';

}

printf("%s\n", strncat(f2, last, 3));

● String Length: function strlen returns the length of the value of its string argument, not counting
the '\0' character.

● For example: this code fragment displays the numbers 8 and 18 followed by the phrase Birzeit
University .

● Notice that the blank at the end of the initial value of s1 is counted in s1’s length.
● Two critical questions that must always be in the mind when working with strcpy, strncpy , strcat

, and strncat:
1. Is there enough space in the output parameter for the entire string being created?
2. Does the created string end in '\0' ?

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 20

char s1[STRSIZ] = “Birzeit ",

s2[STRSIZ] = “University";

printf("%d %d\n", strlen(s1), strlen(strcat(s1, s2)));

printf("%s\n", s1);

➢ A type char value is not a valid argument for a function with a corresponding
parameter of type char * (1)

➢ Note the difference internally between the representations of the character 'Q' and the

string "Q" .

● View the string as an array and use assignment to subscripted elements for access. (2)

● Be sure to include the null character at the end of the string.

DISTINCTION BETWEEN CHARACTERS AND
STRINGS

● Although blanks are natural separators to place between numeric data values, viewing
them as delimiters (1) when processing strings may not make sense (2)

➢ The stdio library provides the function gets for interactive input of one complete line

of data

 (3)

SCANNING A FULL LINE

char line[80];

printf("Type in a line of data.\n> ");

gets(line);

Type in a line of data.

> Here is a short sentence.

Loading…

● The \n character representing the <return> or <enter> key pressed at the end of the
sentence is not stored.

● Like scanf , gets can overflow its string argument if the user enters a longer data line
than will fit.

● Function fgets takes three arguments: (1)

1. The output parameter string,
2. A maximum number of characters to store (n) (2)
3. And the file pointer to the data source

● The next to last character may or may not be '\n' :
4. If fgets has room to store the entire line of data it will include '\n' before '\0' .
5. If the line is truncated, no '\n' is stored.

SCANNING A FULL LINE

● fgets stores the string created in its first argument and returns this string argument (i.e.,
its address) as its value (1)

● When a call to fgets encounters the end of file, the value returned is the address 0,

which is considered the null pointer.

● FIGURE 8.8 (2)

SCANNING A FULL LINE

➢ We studied the fact that characters are represented by numeric codes, and we used
relational and equality operators to compare characters.

➢ Unfortunately, these operators cannot be used for comparison of strings. (1)

➢ if str1 and str2 are string variables, the condition
is not checking whether str1 precedes str2 alphabetically (2)

● The standard string library provides the int function strcmp for comparison of two
strings that we will refer to as str1 and str2.

8.4 STRING COMPARISON

letter == 'C' ch1 < ch2

str1 < str2

➢ Function strcmp separates its argument pairs into three categories:

➢ str1[n] < str2[n] if:

8.4 STRING COMPARISON

OR

➢ The string library also provides an analogous function strncmp that bases its
comparison on only the first n characters of the two strings, where n is the third
argument.

➢ if str1 is “cabinet" and str2 is “cable " , the function calls

strncmp(str1, str2, 1) = 0
strncmp(str1, str2, 2) = 0
strncmp(str1, str2, 3) = 0 (1)

➢ strncmp(str1, str2, 4) would return a negative integer (2)

8.4 STRING COMPARISON

➢ EXAMPLE 8.5

➢ EXAMPLE 8.6, FIGURE 8.10

8.4 STRING COMPARISON

Figure 8.12

8.5 ARRAYS OF POINTERS

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to

8.5 ARRAYS OF POINTERS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 08

Strings

Loading…

Chapter Objectives:
1. Understand how a string constant is stored in an array of characters.

2. Learn about the placeholder %s and how it is used in printf and scanf operations.

3. Learn some of the operations that can be performed on strings. (1)

4. Understand how C compares two strings to determine their relative order.

5. Learn some of the operations that can be performed on individual characters using

functions from the library ctype.

6. How to write your own functions that perform some of the basic operations of a text

editor program

● A string: is a grouping of characters, a data structure.

● C implements the string data structure using arrays of type char (1)

● Strings are important in computer science (2)

● Strings play an important role in science as well (3)

● We need strings as the vehicle for communication between the computer system
and the human user.

STRING
S

Loading…

• We have already used string constants in our earlier work with printf and scanf (1)

● The first argument is the string constant "Average = %.2f", a string of 14 characters

● Notice that the blanks in the string are characters.

● A string constant can be associated with a symbolic name using the #define directive
(2)

8.1 STRING BASICS

printf("Average = %.2f", avg);

#define ERROR "*****Error - "

#define STD_NAME "Student Name"

➢ A string in C is implemented as an array, so declaring a string variable is
the same as declaring an array of type char .

➢ The variable string_var will hold strings from 0 to 29 characters long (1)

➢ C permits initialization of string variables using a string constant

DECLARING AND INITIALIZING STRING VARIABLES

char string_var[30];

char str[20] = "Initial value";

➢ str in memory after this declaration with initialization.

➢ str[13] contains the character ‘\0' , the null character that marks the end of

a string. (1)

DECLARING AND INITIALIZING STRING VARIABLES

char str[20] = "Initial value";

char str[20] = “Numbers and strings"; (2)

● Because one string is an array of characters, an array of strings is a two-dimensional
array of characters in which each row is one string.

● We can initialize an array of strings at declaration in the following manner:

ARRAYS OF
STRINGS

#define NUM_PEOPLE 30

#define NAME_LEN 25

. . .

char names[NUM_PEOPLE][NAME_LEN]; (1)

char month[12][10] = {"January", "February", "March", "April",

"May", "June", "July", "August", "September", "October", "November",

"December"};

● Use the placeholder %s in the format string with printf and scanf to handle string
argument.

● The printf function, depends on finding a null character in the character array to mark the
end of the string. (1)

● When we write our own string-building functions, we must be sure that a null character is

inserted at the end of every string. (2)

● This inclusion of the null character is automatic for constant strings.

● The %s placeholder in a printf format string can be used with a minimum field width (3)

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("Topic: %s\n", string_var);

printf ("%8s%3s***\n", "Short", "Strings");

➢ Placing a minus sign prefix on a placeholder’s field width causes left justification of
the value displayed.

● Scanf Function:

● Remember: when we call scanf with a string variable as an argument, we must

remember that array output arguments are always passed to functions by sending the
address of the initial array element. (2)

● Figure 8.2 p. 457

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("%-20s\n", “Name”); (1)

Loading…

 Figure 8.3

➢ scanf skips leading whitespace characters such as blanks, newlines, and tabs.(1)

➢ Starting with the first nonwhitespace character, scanf copies the characters it encounters into

successive memory cells of its character array argument.

➢ When it comes across a whitespace character, scanning stops, scanf places the null character at

the end of the string in its array argument.

INPUT/OUTPUT WITH PRINTF AND
SCANF

• For example, the data could have been entered one value per line with extra whitespace.

• or two values per line:

● But: (1)

●

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH

 1270

 TR

 1800

> MATH 1270

 TR 1800

> MATH1270 TR 1800 (2)

➢ => 17 characters

Figure 8.4

● EXAMPLE 8.1 p.459

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH,1270,TR,1800 (1)

➢ Using the assignment symbol in a declaration of a string variable with initialization,
is the only one in which the operator means to copy the string that is the right operand
into the variable that is the left operand.

➢ Array address is constant and cannot be changed through assignment (1)

➢

➢ a compiler error

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

one_str = "Test string"; /* Does not work */

Invalid target of assignment :

char one_str[20] = "Test String");

● C Library Functions:

➢ Along with assignment functions, the library string.h provides functions for
substring, concatenation, string length, string comparison, and whole line input
operations [See Table 8.1 p.461]

➢ The data type of the value returned by each string-building function is the pointer

type char * .

➢ Reminder: An array is being represented by the address of its initial value.

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

● String Assignment:

➢ Function strcpy copies the string that is its second argument into its first argument

➢ Like a call to scanf with a %s placeholder, a call to strcpy can easily overflow the
space allocated for the destination variable (2)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

strcpy(one_str, "Test String"); (1)

strcpy(one_str, "A very long test string"); (3)

● strncpy that takes an argument specifying the number of characters to copy (call this
number n). (1)

● The effect is the same as the call

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, "Test string", 20); (2)

strcpy(one_str, "Test string"); (3)

● when the source string is longer than n characters, only the first n characters are
copied.

● In general,

● Both strcpy and strncpy mimic the assignment operator in that the value they return
is the string assigned. (3)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, “A very long test string”, 20); (1)

strncpy(dest, source, dest_len - 1); (2)

dest[dest_len - 1] = '\0';

➢ For example, we might want to examine
 the “133" in the string “Comp133"
 or the "Jan" in the string "Jan. 30, 1996”.

➢ Assuming that the prototype of strncpy is (1)

SUBSTRING
S

char *strncpy(char *dest, const char *source, size_t n);

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0';

➢ Figure 8.5

SUBSTRING
S

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0'; (1)

➢ If we wish to use strncpy to extract a middle substring, we must call the function
with the address of the first character to copy.

 Fig. 8.6

SUBSTRING
S

strncpy(result, &s1[5], 2);

result[2] = '\0'; (1)

strcpy(result, &s1[9]); (2)

➢ EXAMPLE 8.2 (1)
➢ 1st Solution (2)

➢ 2nd Solution: (3)

SUBSTRING
S

char *last, *first, *middle;

char pres[20] = "Adams, John Quincy";

char pres_copy[20];

strcpy(pres_copy, pres);

last = strtok(pres_copy, ", ");

first = strtok(NULL, ", ");

middle = strtok(NULL, ", ");

➢ EXAMPLE 8.3, Figure 8.7

 used to display the last
 component.

➢ Instead of: (1)
 Since strcpy returns as its value the
starting address
 of the string it has just stored in elem

➢ The use of CMP_LEN and strlen(compound): the declared size of the array is no
longer the effective size once data have been stored in the array (2)

SUBSTRING
S

printf("%s\n", strcpy(elem, &compound[first]));

strcpy(elem, &compound[first]);

printf("%s\n", elem);

● Concatenation: String library functions strcat and strncat modify their first string
argument by adding all or part of their second string argument at the end of the first
argument.

● Both functions assume that sufficient space is allocated for the first argument to allow

addition of the extra characters.

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 15 EXAMPLE 8.4

char f1[STRSIZ] = "John ", f2[STRSIZ] = "Jacqueline ",

last[STRSIZ] = "Kennedy";

strcat(f1, last); => “John Kennedy” 12 characters + “\0”

strcat(f2, last);=> “Jacqueline Kennedy” 18 characters + “\0” /* invalid overflow of f2 */

//As an alternative to the second call to strcat (2)

strncat(f2, last, 3); /*Jacqueline Ken*/

● Concatenation:
● Take note that the call to strcat modifies the value of s1 even when embedded in other function

calls:

● Both strcat and strncat return as the function value the modified first argument.

● If s1 and s2 are both character strings
declared to hold STRSIZ characters (1)

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

if (strlen(s1) + strlen(s2) < STRSIZ) {

strcat(s1, s2);

} else {

strncat(s1, s2, STRSIZ - strlen(s1) - 1);

s1[STRSIZ - 1] = '\0';

}

printf("%s\n", strncat(f2, last, 3));

● String Length: function strlen returns the length of the value of its string argument, not counting
the '\0' character.

● For example: this code fragment displays the numbers 8 and 18 followed by the phrase Birzeit
University .

● Notice that the blank at the end of the initial value of s1 is counted in s1’s length.
● Two critical questions that must always be in the mind when working with strcpy, strncpy , strcat

, and strncat:
1. Is there enough space in the output parameter for the entire string being created?
2. Does the created string end in '\0' ?

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 20

char s1[STRSIZ] = “Birzeit ",

s2[STRSIZ] = “University";

printf("%d %d\n", strlen(s1), strlen(strcat(s1, s2)));

printf("%s\n", s1);

➢ A type char value is not a valid argument for a function with a corresponding
parameter of type char * (1)

➢ Note the difference internally between the representations of the character 'Q' and the

string "Q" .

● View the string as an array and use assignment to subscripted elements for access. (2)

● Be sure to include the null character at the end of the string.

DISTINCTION BETWEEN CHARACTERS AND
STRINGS

● Although blanks are natural separators to place between numeric data values, viewing
them as delimiters (1) when processing strings may not make sense (2)

➢ The stdio library provides the function gets for interactive input of one complete line

of data

 (3)

SCANNING A FULL LINE

char line[80];

printf("Type in a line of data.\n> ");

gets(line);

Type in a line of data.

> Here is a short sentence.

Loading…

● The \n character representing the <return> or <enter> key pressed at the end of the
sentence is not stored.

● Like scanf , gets can overflow its string argument if the user enters a longer data line
than will fit.

● Function fgets takes three arguments: (1)

1. The output parameter string,
2. A maximum number of characters to store (n) (2)
3. And the file pointer to the data source

● The next to last character may or may not be '\n' :
4. If fgets has room to store the entire line of data it will include '\n' before '\0' .
5. If the line is truncated, no '\n' is stored.

SCANNING A FULL LINE

● fgets stores the string created in its first argument and returns this string argument (i.e.,
its address) as its value (1)

● When a call to fgets encounters the end of file, the value returned is the address 0,

which is considered the null pointer.

● FIGURE 8.8 (2)

SCANNING A FULL LINE

➢ We studied the fact that characters are represented by numeric codes, and we used
relational and equality operators to compare characters.

➢ Unfortunately, these operators cannot be used for comparison of strings. (1)

➢ if str1 and str2 are string variables, the condition
is not checking whether str1 precedes str2 alphabetically (2)

● The standard string library provides the int function strcmp for comparison of two
strings that we will refer to as str1 and str2.

8.4 STRING COMPARISON

letter == 'C' ch1 < ch2

str1 < str2

➢ Function strcmp separates its argument pairs into three categories:

➢ str1[n] < str2[n] if:

8.4 STRING COMPARISON

OR

➢ The string library also provides an analogous function strncmp that bases its
comparison on only the first n characters of the two strings, where n is the third
argument.

➢ if str1 is “cabinet" and str2 is “cable " , the function calls

strncmp(str1, str2, 1) = 0
strncmp(str1, str2, 2) = 0
strncmp(str1, str2, 3) = 0 (1)

➢ strncmp(str1, str2, 4) would return a negative integer (2)

8.4 STRING COMPARISON

➢ EXAMPLE 8.5

➢ EXAMPLE 8.6, FIGURE 8.10

8.4 STRING COMPARISON

Figure 8.12

8.5 ARRAYS OF POINTERS

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to

8.5 ARRAYS OF POINTERS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 08

Strings

Loading…

Chapter Objectives:
1. Understand how a string constant is stored in an array of characters.

2. Learn about the placeholder %s and how it is used in printf and scanf operations.

3. Learn some of the operations that can be performed on strings. (1)

4. Understand how C compares two strings to determine their relative order.

5. Learn some of the operations that can be performed on individual characters using

functions from the library ctype.

6. How to write your own functions that perform some of the basic operations of a text

editor program

● A string: is a grouping of characters, a data structure.

● C implements the string data structure using arrays of type char (1)

● Strings are important in computer science (2)

● Strings play an important role in science as well (3)

● We need strings as the vehicle for communication between the computer system
and the human user.

STRING
S

Loading…

• We have already used string constants in our earlier work with printf and scanf (1)

● The first argument is the string constant "Average = %.2f", a string of 14 characters

● Notice that the blanks in the string are characters.

● A string constant can be associated with a symbolic name using the #define directive
(2)

8.1 STRING BASICS

printf("Average = %.2f", avg);

#define ERROR "*****Error - "

#define STD_NAME "Student Name"

➢ A string in C is implemented as an array, so declaring a string variable is
the same as declaring an array of type char .

➢ The variable string_var will hold strings from 0 to 29 characters long (1)

➢ C permits initialization of string variables using a string constant

DECLARING AND INITIALIZING STRING VARIABLES

char string_var[30];

char str[20] = "Initial value";

➢ str in memory after this declaration with initialization.

➢ str[13] contains the character ‘\0' , the null character that marks the end of

a string. (1)

DECLARING AND INITIALIZING STRING VARIABLES

char str[20] = "Initial value";

char str[20] = “Numbers and strings"; (2)

● Because one string is an array of characters, an array of strings is a two-dimensional
array of characters in which each row is one string.

● We can initialize an array of strings at declaration in the following manner:

ARRAYS OF
STRINGS

#define NUM_PEOPLE 30

#define NAME_LEN 25

. . .

char names[NUM_PEOPLE][NAME_LEN]; (1)

char month[12][10] = {"January", "February", "March", "April",

"May", "June", "July", "August", "September", "October", "November",

"December"};

● Use the placeholder %s in the format string with printf and scanf to handle string
argument.

● The printf function, depends on finding a null character in the character array to mark the
end of the string. (1)

● When we write our own string-building functions, we must be sure that a null character is

inserted at the end of every string. (2)

● This inclusion of the null character is automatic for constant strings.

● The %s placeholder in a printf format string can be used with a minimum field width (3)

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("Topic: %s\n", string_var);

printf ("%8s%3s***\n", "Short", "Strings");

➢ Placing a minus sign prefix on a placeholder’s field width causes left justification of
the value displayed.

● Scanf Function:

● Remember: when we call scanf with a string variable as an argument, we must

remember that array output arguments are always passed to functions by sending the
address of the initial array element. (2)

● Figure 8.2 p. 457

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("%-20s\n", “Name”); (1)

Loading…

 Figure 8.3

➢ scanf skips leading whitespace characters such as blanks, newlines, and tabs.(1)

➢ Starting with the first nonwhitespace character, scanf copies the characters it encounters into

successive memory cells of its character array argument.

➢ When it comes across a whitespace character, scanning stops, scanf places the null character at

the end of the string in its array argument.

INPUT/OUTPUT WITH PRINTF AND
SCANF

• For example, the data could have been entered one value per line with extra whitespace.

• or two values per line:

● But: (1)

●

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH

 1270

 TR

 1800

> MATH 1270

 TR 1800

> MATH1270 TR 1800 (2)

➢ => 17 characters

Figure 8.4

● EXAMPLE 8.1 p.459

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH,1270,TR,1800 (1)

➢ Using the assignment symbol in a declaration of a string variable with initialization,
is the only one in which the operator means to copy the string that is the right operand
into the variable that is the left operand.

➢ Array address is constant and cannot be changed through assignment (1)

➢

➢ a compiler error

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

one_str = "Test string"; /* Does not work */

Invalid target of assignment :

char one_str[20] = "Test String");

● C Library Functions:

➢ Along with assignment functions, the library string.h provides functions for
substring, concatenation, string length, string comparison, and whole line input
operations [See Table 8.1 p.461]

➢ The data type of the value returned by each string-building function is the pointer

type char * .

➢ Reminder: An array is being represented by the address of its initial value.

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

● String Assignment:

➢ Function strcpy copies the string that is its second argument into its first argument

➢ Like a call to scanf with a %s placeholder, a call to strcpy can easily overflow the
space allocated for the destination variable (2)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

strcpy(one_str, "Test String"); (1)

strcpy(one_str, "A very long test string"); (3)

● strncpy that takes an argument specifying the number of characters to copy (call this
number n). (1)

● The effect is the same as the call

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, "Test string", 20); (2)

strcpy(one_str, "Test string"); (3)

● when the source string is longer than n characters, only the first n characters are
copied.

● In general,

● Both strcpy and strncpy mimic the assignment operator in that the value they return
is the string assigned. (3)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, “A very long test string”, 20); (1)

strncpy(dest, source, dest_len - 1); (2)

dest[dest_len - 1] = '\0';

➢ For example, we might want to examine
 the “133" in the string “Comp133"
 or the "Jan" in the string "Jan. 30, 1996”.

➢ Assuming that the prototype of strncpy is (1)

SUBSTRING
S

char *strncpy(char *dest, const char *source, size_t n);

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0';

➢ Figure 8.5

SUBSTRING
S

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0'; (1)

➢ If we wish to use strncpy to extract a middle substring, we must call the function
with the address of the first character to copy.

 Fig. 8.6

SUBSTRING
S

strncpy(result, &s1[5], 2);

result[2] = '\0'; (1)

strcpy(result, &s1[9]); (2)

➢ EXAMPLE 8.2 (1)
➢ 1st Solution (2)

➢ 2nd Solution: (3)

SUBSTRING
S

char *last, *first, *middle;

char pres[20] = "Adams, John Quincy";

char pres_copy[20];

strcpy(pres_copy, pres);

last = strtok(pres_copy, ", ");

first = strtok(NULL, ", ");

middle = strtok(NULL, ", ");

➢ EXAMPLE 8.3, Figure 8.7

 used to display the last
 component.

➢ Instead of: (1)
 Since strcpy returns as its value the
starting address
 of the string it has just stored in elem

➢ The use of CMP_LEN and strlen(compound): the declared size of the array is no
longer the effective size once data have been stored in the array (2)

SUBSTRING
S

printf("%s\n", strcpy(elem, &compound[first]));

strcpy(elem, &compound[first]);

printf("%s\n", elem);

● Concatenation: String library functions strcat and strncat modify their first string
argument by adding all or part of their second string argument at the end of the first
argument.

● Both functions assume that sufficient space is allocated for the first argument to allow

addition of the extra characters.

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 15 EXAMPLE 8.4

char f1[STRSIZ] = "John ", f2[STRSIZ] = "Jacqueline ",

last[STRSIZ] = "Kennedy";

strcat(f1, last); => “John Kennedy” 12 characters + “\0”

strcat(f2, last);=> “Jacqueline Kennedy” 18 characters + “\0” /* invalid overflow of f2 */

//As an alternative to the second call to strcat (2)

strncat(f2, last, 3); /*Jacqueline Ken*/

● Concatenation:
● Take note that the call to strcat modifies the value of s1 even when embedded in other function

calls:

● Both strcat and strncat return as the function value the modified first argument.

● If s1 and s2 are both character strings
declared to hold STRSIZ characters (1)

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

if (strlen(s1) + strlen(s2) < STRSIZ) {

strcat(s1, s2);

} else {

strncat(s1, s2, STRSIZ - strlen(s1) - 1);

s1[STRSIZ - 1] = '\0';

}

printf("%s\n", strncat(f2, last, 3));

● String Length: function strlen returns the length of the value of its string argument, not counting
the '\0' character.

● For example: this code fragment displays the numbers 8 and 18 followed by the phrase Birzeit
University .

● Notice that the blank at the end of the initial value of s1 is counted in s1’s length.
● Two critical questions that must always be in the mind when working with strcpy, strncpy , strcat

, and strncat:
1. Is there enough space in the output parameter for the entire string being created?
2. Does the created string end in '\0' ?

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 20

char s1[STRSIZ] = “Birzeit ",

s2[STRSIZ] = “University";

printf("%d %d\n", strlen(s1), strlen(strcat(s1, s2)));

printf("%s\n", s1);

➢ A type char value is not a valid argument for a function with a corresponding
parameter of type char * (1)

➢ Note the difference internally between the representations of the character 'Q' and the

string "Q" .

● View the string as an array and use assignment to subscripted elements for access. (2)

● Be sure to include the null character at the end of the string.

DISTINCTION BETWEEN CHARACTERS AND
STRINGS

● Although blanks are natural separators to place between numeric data values, viewing
them as delimiters (1) when processing strings may not make sense (2)

➢ The stdio library provides the function gets for interactive input of one complete line

of data

 (3)

SCANNING A FULL LINE

char line[80];

printf("Type in a line of data.\n> ");

gets(line);

Type in a line of data.

> Here is a short sentence.

Loading…

● The \n character representing the <return> or <enter> key pressed at the end of the
sentence is not stored.

● Like scanf , gets can overflow its string argument if the user enters a longer data line
than will fit.

● Function fgets takes three arguments: (1)

1. The output parameter string,
2. A maximum number of characters to store (n) (2)
3. And the file pointer to the data source

● The next to last character may or may not be '\n' :
4. If fgets has room to store the entire line of data it will include '\n' before '\0' .
5. If the line is truncated, no '\n' is stored.

SCANNING A FULL LINE

● fgets stores the string created in its first argument and returns this string argument (i.e.,
its address) as its value (1)

● When a call to fgets encounters the end of file, the value returned is the address 0,

which is considered the null pointer.

● FIGURE 8.8 (2)

SCANNING A FULL LINE

➢ We studied the fact that characters are represented by numeric codes, and we used
relational and equality operators to compare characters.

➢ Unfortunately, these operators cannot be used for comparison of strings. (1)

➢ if str1 and str2 are string variables, the condition
is not checking whether str1 precedes str2 alphabetically (2)

● The standard string library provides the int function strcmp for comparison of two
strings that we will refer to as str1 and str2.

8.4 STRING COMPARISON

letter == 'C' ch1 < ch2

str1 < str2

➢ Function strcmp separates its argument pairs into three categories:

➢ str1[n] < str2[n] if:

8.4 STRING COMPARISON

OR

➢ The string library also provides an analogous function strncmp that bases its
comparison on only the first n characters of the two strings, where n is the third
argument.

➢ if str1 is “cabinet" and str2 is “cable " , the function calls

strncmp(str1, str2, 1) = 0
strncmp(str1, str2, 2) = 0
strncmp(str1, str2, 3) = 0 (1)

➢ strncmp(str1, str2, 4) would return a negative integer (2)

8.4 STRING COMPARISON

➢ EXAMPLE 8.5

➢ EXAMPLE 8.6, FIGURE 8.10

8.4 STRING COMPARISON

Figure 8.12

8.5 ARRAYS OF POINTERS

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to

8.5 ARRAYS OF POINTERS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 08

Strings

Loading…

Chapter Objectives:
1. Understand how a string constant is stored in an array of characters.

2. Learn about the placeholder %s and how it is used in printf and scanf operations.

3. Learn some of the operations that can be performed on strings. (1)

4. Understand how C compares two strings to determine their relative order.

5. Learn some of the operations that can be performed on individual characters using

functions from the library ctype.

6. How to write your own functions that perform some of the basic operations of a text

editor program

● A string: is a grouping of characters, a data structure.

● C implements the string data structure using arrays of type char (1)

● Strings are important in computer science (2)

● Strings play an important role in science as well (3)

● We need strings as the vehicle for communication between the computer system
and the human user.

STRING
S

Loading…

• We have already used string constants in our earlier work with printf and scanf (1)

● The first argument is the string constant "Average = %.2f", a string of 14 characters

● Notice that the blanks in the string are characters.

● A string constant can be associated with a symbolic name using the #define directive
(2)

8.1 STRING BASICS

printf("Average = %.2f", avg);

#define ERROR "*****Error - "

#define STD_NAME "Student Name"

➢ A string in C is implemented as an array, so declaring a string variable is
the same as declaring an array of type char .

➢ The variable string_var will hold strings from 0 to 29 characters long (1)

➢ C permits initialization of string variables using a string constant

DECLARING AND INITIALIZING STRING VARIABLES

char string_var[30];

char str[20] = "Initial value";

➢ str in memory after this declaration with initialization.

➢ str[13] contains the character ‘\0' , the null character that marks the end of

a string. (1)

DECLARING AND INITIALIZING STRING VARIABLES

char str[20] = "Initial value";

char str[20] = “Numbers and strings"; (2)

● Because one string is an array of characters, an array of strings is a two-dimensional
array of characters in which each row is one string.

● We can initialize an array of strings at declaration in the following manner:

ARRAYS OF
STRINGS

#define NUM_PEOPLE 30

#define NAME_LEN 25

. . .

char names[NUM_PEOPLE][NAME_LEN]; (1)

char month[12][10] = {"January", "February", "March", "April",

"May", "June", "July", "August", "September", "October", "November",

"December"};

● Use the placeholder %s in the format string with printf and scanf to handle string
argument.

● The printf function, depends on finding a null character in the character array to mark the
end of the string. (1)

● When we write our own string-building functions, we must be sure that a null character is

inserted at the end of every string. (2)

● This inclusion of the null character is automatic for constant strings.

● The %s placeholder in a printf format string can be used with a minimum field width (3)

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("Topic: %s\n", string_var);

printf ("%8s%3s***\n", "Short", "Strings");

➢ Placing a minus sign prefix on a placeholder’s field width causes left justification of
the value displayed.

● Scanf Function:

● Remember: when we call scanf with a string variable as an argument, we must

remember that array output arguments are always passed to functions by sending the
address of the initial array element. (2)

● Figure 8.2 p. 457

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("%-20s\n", “Name”); (1)

Loading…

 Figure 8.3

➢ scanf skips leading whitespace characters such as blanks, newlines, and tabs.(1)

➢ Starting with the first nonwhitespace character, scanf copies the characters it encounters into

successive memory cells of its character array argument.

➢ When it comes across a whitespace character, scanning stops, scanf places the null character at

the end of the string in its array argument.

INPUT/OUTPUT WITH PRINTF AND
SCANF

• For example, the data could have been entered one value per line with extra whitespace.

• or two values per line:

● But: (1)

●

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH

 1270

 TR

 1800

> MATH 1270

 TR 1800

> MATH1270 TR 1800 (2)

➢ => 17 characters

Figure 8.4

● EXAMPLE 8.1 p.459

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH,1270,TR,1800 (1)

➢ Using the assignment symbol in a declaration of a string variable with initialization,
is the only one in which the operator means to copy the string that is the right operand
into the variable that is the left operand.

➢ Array address is constant and cannot be changed through assignment (1)

➢

➢ a compiler error

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

one_str = "Test string"; /* Does not work */

Invalid target of assignment :

char one_str[20] = "Test String");

● C Library Functions:

➢ Along with assignment functions, the library string.h provides functions for
substring, concatenation, string length, string comparison, and whole line input
operations [See Table 8.1 p.461]

➢ The data type of the value returned by each string-building function is the pointer

type char * .

➢ Reminder: An array is being represented by the address of its initial value.

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

● String Assignment:

➢ Function strcpy copies the string that is its second argument into its first argument

➢ Like a call to scanf with a %s placeholder, a call to strcpy can easily overflow the
space allocated for the destination variable (2)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

strcpy(one_str, "Test String"); (1)

strcpy(one_str, "A very long test string"); (3)

● strncpy that takes an argument specifying the number of characters to copy (call this
number n). (1)

● The effect is the same as the call

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, "Test string", 20); (2)

strcpy(one_str, "Test string"); (3)

● when the source string is longer than n characters, only the first n characters are
copied.

● In general,

● Both strcpy and strncpy mimic the assignment operator in that the value they return
is the string assigned. (3)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, “A very long test string”, 20); (1)

strncpy(dest, source, dest_len - 1); (2)

dest[dest_len - 1] = '\0';

➢ For example, we might want to examine
 the “133" in the string “Comp133"
 or the "Jan" in the string "Jan. 30, 1996”.

➢ Assuming that the prototype of strncpy is (1)

SUBSTRING
S

char *strncpy(char *dest, const char *source, size_t n);

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0';

➢ Figure 8.5

SUBSTRING
S

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0'; (1)

➢ If we wish to use strncpy to extract a middle substring, we must call the function
with the address of the first character to copy.

 Fig. 8.6

SUBSTRING
S

strncpy(result, &s1[5], 2);

result[2] = '\0'; (1)

strcpy(result, &s1[9]); (2)

➢ EXAMPLE 8.2 (1)
➢ 1st Solution (2)

➢ 2nd Solution: (3)

SUBSTRING
S

char *last, *first, *middle;

char pres[20] = "Adams, John Quincy";

char pres_copy[20];

strcpy(pres_copy, pres);

last = strtok(pres_copy, ", ");

first = strtok(NULL, ", ");

middle = strtok(NULL, ", ");

➢ EXAMPLE 8.3, Figure 8.7

 used to display the last
 component.

➢ Instead of: (1)
 Since strcpy returns as its value the
starting address
 of the string it has just stored in elem

➢ The use of CMP_LEN and strlen(compound): the declared size of the array is no
longer the effective size once data have been stored in the array (2)

SUBSTRING
S

printf("%s\n", strcpy(elem, &compound[first]));

strcpy(elem, &compound[first]);

printf("%s\n", elem);

● Concatenation: String library functions strcat and strncat modify their first string
argument by adding all or part of their second string argument at the end of the first
argument.

● Both functions assume that sufficient space is allocated for the first argument to allow

addition of the extra characters.

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 15 EXAMPLE 8.4

char f1[STRSIZ] = "John ", f2[STRSIZ] = "Jacqueline ",

last[STRSIZ] = "Kennedy";

strcat(f1, last); => “John Kennedy” 12 characters + “\0”

strcat(f2, last);=> “Jacqueline Kennedy” 18 characters + “\0” /* invalid overflow of f2 */

//As an alternative to the second call to strcat (2)

strncat(f2, last, 3); /*Jacqueline Ken*/

● Concatenation:
● Take note that the call to strcat modifies the value of s1 even when embedded in other function

calls:

● Both strcat and strncat return as the function value the modified first argument.

● If s1 and s2 are both character strings
declared to hold STRSIZ characters (1)

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

if (strlen(s1) + strlen(s2) < STRSIZ) {

strcat(s1, s2);

} else {

strncat(s1, s2, STRSIZ - strlen(s1) - 1);

s1[STRSIZ - 1] = '\0';

}

printf("%s\n", strncat(f2, last, 3));

● String Length: function strlen returns the length of the value of its string argument, not counting
the '\0' character.

● For example: this code fragment displays the numbers 8 and 18 followed by the phrase Birzeit
University .

● Notice that the blank at the end of the initial value of s1 is counted in s1’s length.
● Two critical questions that must always be in the mind when working with strcpy, strncpy , strcat

, and strncat:
1. Is there enough space in the output parameter for the entire string being created?
2. Does the created string end in '\0' ?

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 20

char s1[STRSIZ] = “Birzeit ",

s2[STRSIZ] = “University";

printf("%d %d\n", strlen(s1), strlen(strcat(s1, s2)));

printf("%s\n", s1);

➢ A type char value is not a valid argument for a function with a corresponding
parameter of type char * (1)

➢ Note the difference internally between the representations of the character 'Q' and the

string "Q" .

● View the string as an array and use assignment to subscripted elements for access. (2)

● Be sure to include the null character at the end of the string.

DISTINCTION BETWEEN CHARACTERS AND
STRINGS

● Although blanks are natural separators to place between numeric data values, viewing
them as delimiters (1) when processing strings may not make sense (2)

➢ The stdio library provides the function gets for interactive input of one complete line

of data

 (3)

SCANNING A FULL LINE

char line[80];

printf("Type in a line of data.\n> ");

gets(line);

Type in a line of data.

> Here is a short sentence.

Loading…

● The \n character representing the <return> or <enter> key pressed at the end of the
sentence is not stored.

● Like scanf , gets can overflow its string argument if the user enters a longer data line
than will fit.

● Function fgets takes three arguments: (1)

1. The output parameter string,
2. A maximum number of characters to store (n) (2)
3. And the file pointer to the data source

● The next to last character may or may not be '\n' :
4. If fgets has room to store the entire line of data it will include '\n' before '\0' .
5. If the line is truncated, no '\n' is stored.

SCANNING A FULL LINE

● fgets stores the string created in its first argument and returns this string argument (i.e.,
its address) as its value (1)

● When a call to fgets encounters the end of file, the value returned is the address 0,

which is considered the null pointer.

● FIGURE 8.8 (2)

SCANNING A FULL LINE

➢ We studied the fact that characters are represented by numeric codes, and we used
relational and equality operators to compare characters.

➢ Unfortunately, these operators cannot be used for comparison of strings. (1)

➢ if str1 and str2 are string variables, the condition
is not checking whether str1 precedes str2 alphabetically (2)

● The standard string library provides the int function strcmp for comparison of two
strings that we will refer to as str1 and str2.

8.4 STRING COMPARISON

letter == 'C' ch1 < ch2

str1 < str2

➢ Function strcmp separates its argument pairs into three categories:

➢ str1[n] < str2[n] if:

8.4 STRING COMPARISON

OR

➢ The string library also provides an analogous function strncmp that bases its
comparison on only the first n characters of the two strings, where n is the third
argument.

➢ if str1 is “cabinet" and str2 is “cable " , the function calls

strncmp(str1, str2, 1) = 0
strncmp(str1, str2, 2) = 0
strncmp(str1, str2, 3) = 0 (1)

➢ strncmp(str1, str2, 4) would return a negative integer (2)

8.4 STRING COMPARISON

➢ EXAMPLE 8.5

➢ EXAMPLE 8.6, FIGURE 8.10

8.4 STRING COMPARISON

Figure 8.12

8.5 ARRAYS OF POINTERS

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to

8.5 ARRAYS OF POINTERS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 08

Strings

Loading…

Chapter Objectives:
1. Understand how a string constant is stored in an array of characters.

2. Learn about the placeholder %s and how it is used in printf and scanf operations.

3. Learn some of the operations that can be performed on strings. (1)

4. Understand how C compares two strings to determine their relative order.

5. Learn some of the operations that can be performed on individual characters using

functions from the library ctype.

6. How to write your own functions that perform some of the basic operations of a text

editor program

● A string: is a grouping of characters, a data structure.

● C implements the string data structure using arrays of type char (1)

● Strings are important in computer science (2)

● Strings play an important role in science as well (3)

● We need strings as the vehicle for communication between the computer system
and the human user.

STRING
S

Loading…

• We have already used string constants in our earlier work with printf and scanf (1)

● The first argument is the string constant "Average = %.2f", a string of 14 characters

● Notice that the blanks in the string are characters.

● A string constant can be associated with a symbolic name using the #define directive
(2)

8.1 STRING BASICS

printf("Average = %.2f", avg);

#define ERROR "*****Error - "

#define STD_NAME "Student Name"

➢ A string in C is implemented as an array, so declaring a string variable is
the same as declaring an array of type char .

➢ The variable string_var will hold strings from 0 to 29 characters long (1)

➢ C permits initialization of string variables using a string constant

DECLARING AND INITIALIZING STRING VARIABLES

char string_var[30];

char str[20] = "Initial value";

➢ str in memory after this declaration with initialization.

➢ str[13] contains the character ‘\0' , the null character that marks the end of

a string. (1)

DECLARING AND INITIALIZING STRING VARIABLES

char str[20] = "Initial value";

char str[20] = “Numbers and strings"; (2)

● Because one string is an array of characters, an array of strings is a two-dimensional
array of characters in which each row is one string.

● We can initialize an array of strings at declaration in the following manner:

ARRAYS OF
STRINGS

#define NUM_PEOPLE 30

#define NAME_LEN 25

. . .

char names[NUM_PEOPLE][NAME_LEN]; (1)

char month[12][10] = {"January", "February", "March", "April",

"May", "June", "July", "August", "September", "October", "November",

"December"};

● Use the placeholder %s in the format string with printf and scanf to handle string
argument.

● The printf function, depends on finding a null character in the character array to mark the
end of the string. (1)

● When we write our own string-building functions, we must be sure that a null character is

inserted at the end of every string. (2)

● This inclusion of the null character is automatic for constant strings.

● The %s placeholder in a printf format string can be used with a minimum field width (3)

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("Topic: %s\n", string_var);

printf ("%8s%3s***\n", "Short", "Strings");

➢ Placing a minus sign prefix on a placeholder’s field width causes left justification of
the value displayed.

● Scanf Function:

● Remember: when we call scanf with a string variable as an argument, we must

remember that array output arguments are always passed to functions by sending the
address of the initial array element. (2)

● Figure 8.2 p. 457

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("%-20s\n", “Name”); (1)

Loading…

 Figure 8.3

➢ scanf skips leading whitespace characters such as blanks, newlines, and tabs.(1)

➢ Starting with the first nonwhitespace character, scanf copies the characters it encounters into

successive memory cells of its character array argument.

➢ When it comes across a whitespace character, scanning stops, scanf places the null character at

the end of the string in its array argument.

INPUT/OUTPUT WITH PRINTF AND
SCANF

• For example, the data could have been entered one value per line with extra whitespace.

• or two values per line:

● But: (1)

●

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH

 1270

 TR

 1800

> MATH 1270

 TR 1800

> MATH1270 TR 1800 (2)

➢ => 17 characters

Figure 8.4

● EXAMPLE 8.1 p.459

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH,1270,TR,1800 (1)

➢ Using the assignment symbol in a declaration of a string variable with initialization,
is the only one in which the operator means to copy the string that is the right operand
into the variable that is the left operand.

➢ Array address is constant and cannot be changed through assignment (1)

➢

➢ a compiler error

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

one_str = "Test string"; /* Does not work */

Invalid target of assignment :

char one_str[20] = "Test String");

● C Library Functions:

➢ Along with assignment functions, the library string.h provides functions for
substring, concatenation, string length, string comparison, and whole line input
operations [See Table 8.1 p.461]

➢ The data type of the value returned by each string-building function is the pointer

type char * .

➢ Reminder: An array is being represented by the address of its initial value.

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

● String Assignment:

➢ Function strcpy copies the string that is its second argument into its first argument

➢ Like a call to scanf with a %s placeholder, a call to strcpy can easily overflow the
space allocated for the destination variable (2)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

strcpy(one_str, "Test String"); (1)

strcpy(one_str, "A very long test string"); (3)

● strncpy that takes an argument specifying the number of characters to copy (call this
number n). (1)

● The effect is the same as the call

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, "Test string", 20); (2)

strcpy(one_str, "Test string"); (3)

● when the source string is longer than n characters, only the first n characters are
copied.

● In general,

● Both strcpy and strncpy mimic the assignment operator in that the value they return
is the string assigned. (3)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, “A very long test string”, 20); (1)

strncpy(dest, source, dest_len - 1); (2)

dest[dest_len - 1] = '\0';

➢ For example, we might want to examine
 the “133" in the string “Comp133"
 or the "Jan" in the string "Jan. 30, 1996”.

➢ Assuming that the prototype of strncpy is (1)

SUBSTRING
S

char *strncpy(char *dest, const char *source, size_t n);

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0';

➢ Figure 8.5

SUBSTRING
S

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0'; (1)

➢ If we wish to use strncpy to extract a middle substring, we must call the function
with the address of the first character to copy.

 Fig. 8.6

SUBSTRING
S

strncpy(result, &s1[5], 2);

result[2] = '\0'; (1)

strcpy(result, &s1[9]); (2)

➢ EXAMPLE 8.2 (1)
➢ 1st Solution (2)

➢ 2nd Solution: (3)

SUBSTRING
S

char *last, *first, *middle;

char pres[20] = "Adams, John Quincy";

char pres_copy[20];

strcpy(pres_copy, pres);

last = strtok(pres_copy, ", ");

first = strtok(NULL, ", ");

middle = strtok(NULL, ", ");

➢ EXAMPLE 8.3, Figure 8.7

 used to display the last
 component.

➢ Instead of: (1)
 Since strcpy returns as its value the
starting address
 of the string it has just stored in elem

➢ The use of CMP_LEN and strlen(compound): the declared size of the array is no
longer the effective size once data have been stored in the array (2)

SUBSTRING
S

printf("%s\n", strcpy(elem, &compound[first]));

strcpy(elem, &compound[first]);

printf("%s\n", elem);

● Concatenation: String library functions strcat and strncat modify their first string
argument by adding all or part of their second string argument at the end of the first
argument.

● Both functions assume that sufficient space is allocated for the first argument to allow

addition of the extra characters.

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 15 EXAMPLE 8.4

char f1[STRSIZ] = "John ", f2[STRSIZ] = "Jacqueline ",

last[STRSIZ] = "Kennedy";

strcat(f1, last); => “John Kennedy” 12 characters + “\0”

strcat(f2, last);=> “Jacqueline Kennedy” 18 characters + “\0” /* invalid overflow of f2 */

//As an alternative to the second call to strcat (2)

strncat(f2, last, 3); /*Jacqueline Ken*/

● Concatenation:
● Take note that the call to strcat modifies the value of s1 even when embedded in other function

calls:

● Both strcat and strncat return as the function value the modified first argument.

● If s1 and s2 are both character strings
declared to hold STRSIZ characters (1)

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

if (strlen(s1) + strlen(s2) < STRSIZ) {

strcat(s1, s2);

} else {

strncat(s1, s2, STRSIZ - strlen(s1) - 1);

s1[STRSIZ - 1] = '\0';

}

printf("%s\n", strncat(f2, last, 3));

● String Length: function strlen returns the length of the value of its string argument, not counting
the '\0' character.

● For example: this code fragment displays the numbers 8 and 18 followed by the phrase Birzeit
University .

● Notice that the blank at the end of the initial value of s1 is counted in s1’s length.
● Two critical questions that must always be in the mind when working with strcpy, strncpy , strcat

, and strncat:
1. Is there enough space in the output parameter for the entire string being created?
2. Does the created string end in '\0' ?

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 20

char s1[STRSIZ] = “Birzeit ",

s2[STRSIZ] = “University";

printf("%d %d\n", strlen(s1), strlen(strcat(s1, s2)));

printf("%s\n", s1);

➢ A type char value is not a valid argument for a function with a corresponding
parameter of type char * (1)

➢ Note the difference internally between the representations of the character 'Q' and the

string "Q" .

● View the string as an array and use assignment to subscripted elements for access. (2)

● Be sure to include the null character at the end of the string.

DISTINCTION BETWEEN CHARACTERS AND
STRINGS

● Although blanks are natural separators to place between numeric data values, viewing
them as delimiters (1) when processing strings may not make sense (2)

➢ The stdio library provides the function gets for interactive input of one complete line

of data

 (3)

SCANNING A FULL LINE

char line[80];

printf("Type in a line of data.\n> ");

gets(line);

Type in a line of data.

> Here is a short sentence.

Loading…

● The \n character representing the <return> or <enter> key pressed at the end of the
sentence is not stored.

● Like scanf , gets can overflow its string argument if the user enters a longer data line
than will fit.

● Function fgets takes three arguments: (1)

1. The output parameter string,
2. A maximum number of characters to store (n) (2)
3. And the file pointer to the data source

● The next to last character may or may not be '\n' :
4. If fgets has room to store the entire line of data it will include '\n' before '\0' .
5. If the line is truncated, no '\n' is stored.

SCANNING A FULL LINE

● fgets stores the string created in its first argument and returns this string argument (i.e.,
its address) as its value (1)

● When a call to fgets encounters the end of file, the value returned is the address 0,

which is considered the null pointer.

● FIGURE 8.8 (2)

SCANNING A FULL LINE

➢ We studied the fact that characters are represented by numeric codes, and we used
relational and equality operators to compare characters.

➢ Unfortunately, these operators cannot be used for comparison of strings. (1)

➢ if str1 and str2 are string variables, the condition
is not checking whether str1 precedes str2 alphabetically (2)

● The standard string library provides the int function strcmp for comparison of two
strings that we will refer to as str1 and str2.

8.4 STRING COMPARISON

letter == 'C' ch1 < ch2

str1 < str2

➢ Function strcmp separates its argument pairs into three categories:

➢ str1[n] < str2[n] if:

8.4 STRING COMPARISON

OR

➢ The string library also provides an analogous function strncmp that bases its
comparison on only the first n characters of the two strings, where n is the third
argument.

➢ if str1 is “cabinet" and str2 is “cable " , the function calls

strncmp(str1, str2, 1) = 0
strncmp(str1, str2, 2) = 0
strncmp(str1, str2, 3) = 0 (1)

➢ strncmp(str1, str2, 4) would return a negative integer (2)

8.4 STRING COMPARISON

➢ EXAMPLE 8.5

➢ EXAMPLE 8.6, FIGURE 8.10

8.4 STRING COMPARISON

Figure 8.12

8.5 ARRAYS OF POINTERS

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to

8.5 ARRAYS OF POINTERS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 08

Strings

Loading…

Chapter Objectives:
1. Understand how a string constant is stored in an array of characters.

2. Learn about the placeholder %s and how it is used in printf and scanf operations.

3. Learn some of the operations that can be performed on strings. (1)

4. Understand how C compares two strings to determine their relative order.

5. Learn some of the operations that can be performed on individual characters using

functions from the library ctype.

6. How to write your own functions that perform some of the basic operations of a text

editor program

● A string: is a grouping of characters, a data structure.

● C implements the string data structure using arrays of type char (1)

● Strings are important in computer science (2)

● Strings play an important role in science as well (3)

● We need strings as the vehicle for communication between the computer system
and the human user.

STRING
S

Loading…

• We have already used string constants in our earlier work with printf and scanf (1)

● The first argument is the string constant "Average = %.2f", a string of 14 characters

● Notice that the blanks in the string are characters.

● A string constant can be associated with a symbolic name using the #define directive
(2)

8.1 STRING BASICS

printf("Average = %.2f", avg);

#define ERROR "*****Error - "

#define STD_NAME "Student Name"

➢ A string in C is implemented as an array, so declaring a string variable is
the same as declaring an array of type char .

➢ The variable string_var will hold strings from 0 to 29 characters long (1)

➢ C permits initialization of string variables using a string constant

DECLARING AND INITIALIZING STRING VARIABLES

char string_var[30];

char str[20] = "Initial value";

➢ str in memory after this declaration with initialization.

➢ str[13] contains the character ‘\0' , the null character that marks the end of

a string. (1)

DECLARING AND INITIALIZING STRING VARIABLES

char str[20] = "Initial value";

char str[20] = “Numbers and strings"; (2)

● Because one string is an array of characters, an array of strings is a two-dimensional
array of characters in which each row is one string.

● We can initialize an array of strings at declaration in the following manner:

ARRAYS OF
STRINGS

#define NUM_PEOPLE 30

#define NAME_LEN 25

. . .

char names[NUM_PEOPLE][NAME_LEN]; (1)

char month[12][10] = {"January", "February", "March", "April",

"May", "June", "July", "August", "September", "October", "November",

"December"};

● Use the placeholder %s in the format string with printf and scanf to handle string
argument.

● The printf function, depends on finding a null character in the character array to mark the
end of the string. (1)

● When we write our own string-building functions, we must be sure that a null character is

inserted at the end of every string. (2)

● This inclusion of the null character is automatic for constant strings.

● The %s placeholder in a printf format string can be used with a minimum field width (3)

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("Topic: %s\n", string_var);

printf ("%8s%3s***\n", "Short", "Strings");

➢ Placing a minus sign prefix on a placeholder’s field width causes left justification of
the value displayed.

● Scanf Function:

● Remember: when we call scanf with a string variable as an argument, we must

remember that array output arguments are always passed to functions by sending the
address of the initial array element. (2)

● Figure 8.2 p. 457

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("%-20s\n", “Name”); (1)

Loading…

 Figure 8.3

➢ scanf skips leading whitespace characters such as blanks, newlines, and tabs.(1)

➢ Starting with the first nonwhitespace character, scanf copies the characters it encounters into

successive memory cells of its character array argument.

➢ When it comes across a whitespace character, scanning stops, scanf places the null character at

the end of the string in its array argument.

INPUT/OUTPUT WITH PRINTF AND
SCANF

• For example, the data could have been entered one value per line with extra whitespace.

• or two values per line:

● But: (1)

●

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH

 1270

 TR

 1800

> MATH 1270

 TR 1800

> MATH1270 TR 1800 (2)

➢ => 17 characters

Figure 8.4

● EXAMPLE 8.1 p.459

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH,1270,TR,1800 (1)

➢ Using the assignment symbol in a declaration of a string variable with initialization,
is the only one in which the operator means to copy the string that is the right operand
into the variable that is the left operand.

➢ Array address is constant and cannot be changed through assignment (1)

➢

➢ a compiler error

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

one_str = "Test string"; /* Does not work */

Invalid target of assignment :

char one_str[20] = "Test String");

● C Library Functions:

➢ Along with assignment functions, the library string.h provides functions for
substring, concatenation, string length, string comparison, and whole line input
operations [See Table 8.1 p.461]

➢ The data type of the value returned by each string-building function is the pointer

type char * .

➢ Reminder: An array is being represented by the address of its initial value.

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

● String Assignment:

➢ Function strcpy copies the string that is its second argument into its first argument

➢ Like a call to scanf with a %s placeholder, a call to strcpy can easily overflow the
space allocated for the destination variable (2)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

strcpy(one_str, "Test String"); (1)

strcpy(one_str, "A very long test string"); (3)

● strncpy that takes an argument specifying the number of characters to copy (call this
number n). (1)

● The effect is the same as the call

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, "Test string", 20); (2)

strcpy(one_str, "Test string"); (3)

● when the source string is longer than n characters, only the first n characters are
copied.

● In general,

● Both strcpy and strncpy mimic the assignment operator in that the value they return
is the string assigned. (3)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, “A very long test string”, 20); (1)

strncpy(dest, source, dest_len - 1); (2)

dest[dest_len - 1] = '\0';

➢ For example, we might want to examine
 the “133" in the string “Comp133"
 or the "Jan" in the string "Jan. 30, 1996”.

➢ Assuming that the prototype of strncpy is (1)

SUBSTRING
S

char *strncpy(char *dest, const char *source, size_t n);

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0';

➢ Figure 8.5

SUBSTRING
S

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0'; (1)

➢ If we wish to use strncpy to extract a middle substring, we must call the function
with the address of the first character to copy.

 Fig. 8.6

SUBSTRING
S

strncpy(result, &s1[5], 2);

result[2] = '\0'; (1)

strcpy(result, &s1[9]); (2)

➢ EXAMPLE 8.2 (1)
➢ 1st Solution (2)

➢ 2nd Solution: (3)

SUBSTRING
S

char *last, *first, *middle;

char pres[20] = "Adams, John Quincy";

char pres_copy[20];

strcpy(pres_copy, pres);

last = strtok(pres_copy, ", ");

first = strtok(NULL, ", ");

middle = strtok(NULL, ", ");

➢ EXAMPLE 8.3, Figure 8.7

 used to display the last
 component.

➢ Instead of: (1)
 Since strcpy returns as its value the
starting address
 of the string it has just stored in elem

➢ The use of CMP_LEN and strlen(compound): the declared size of the array is no
longer the effective size once data have been stored in the array (2)

SUBSTRING
S

printf("%s\n", strcpy(elem, &compound[first]));

strcpy(elem, &compound[first]);

printf("%s\n", elem);

● Concatenation: String library functions strcat and strncat modify their first string
argument by adding all or part of their second string argument at the end of the first
argument.

● Both functions assume that sufficient space is allocated for the first argument to allow

addition of the extra characters.

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 15 EXAMPLE 8.4

char f1[STRSIZ] = "John ", f2[STRSIZ] = "Jacqueline ",

last[STRSIZ] = "Kennedy";

strcat(f1, last); => “John Kennedy” 12 characters + “\0”

strcat(f2, last);=> “Jacqueline Kennedy” 18 characters + “\0” /* invalid overflow of f2 */

//As an alternative to the second call to strcat (2)

strncat(f2, last, 3); /*Jacqueline Ken*/

● Concatenation:
● Take note that the call to strcat modifies the value of s1 even when embedded in other function

calls:

● Both strcat and strncat return as the function value the modified first argument.

● If s1 and s2 are both character strings
declared to hold STRSIZ characters (1)

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

if (strlen(s1) + strlen(s2) < STRSIZ) {

strcat(s1, s2);

} else {

strncat(s1, s2, STRSIZ - strlen(s1) - 1);

s1[STRSIZ - 1] = '\0';

}

printf("%s\n", strncat(f2, last, 3));

● String Length: function strlen returns the length of the value of its string argument, not counting
the '\0' character.

● For example: this code fragment displays the numbers 8 and 18 followed by the phrase Birzeit
University .

● Notice that the blank at the end of the initial value of s1 is counted in s1’s length.
● Two critical questions that must always be in the mind when working with strcpy, strncpy , strcat

, and strncat:
1. Is there enough space in the output parameter for the entire string being created?
2. Does the created string end in '\0' ?

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 20

char s1[STRSIZ] = “Birzeit ",

s2[STRSIZ] = “University";

printf("%d %d\n", strlen(s1), strlen(strcat(s1, s2)));

printf("%s\n", s1);

➢ A type char value is not a valid argument for a function with a corresponding
parameter of type char * (1)

➢ Note the difference internally between the representations of the character 'Q' and the

string "Q" .

● View the string as an array and use assignment to subscripted elements for access. (2)

● Be sure to include the null character at the end of the string.

DISTINCTION BETWEEN CHARACTERS AND
STRINGS

● Although blanks are natural separators to place between numeric data values, viewing
them as delimiters (1) when processing strings may not make sense (2)

➢ The stdio library provides the function gets for interactive input of one complete line

of data

 (3)

SCANNING A FULL LINE

char line[80];

printf("Type in a line of data.\n> ");

gets(line);

Type in a line of data.

> Here is a short sentence.

Loading…

● The \n character representing the <return> or <enter> key pressed at the end of the
sentence is not stored.

● Like scanf , gets can overflow its string argument if the user enters a longer data line
than will fit.

● Function fgets takes three arguments: (1)

1. The output parameter string,
2. A maximum number of characters to store (n) (2)
3. And the file pointer to the data source

● The next to last character may or may not be '\n' :
4. If fgets has room to store the entire line of data it will include '\n' before '\0' .
5. If the line is truncated, no '\n' is stored.

SCANNING A FULL LINE

● fgets stores the string created in its first argument and returns this string argument (i.e.,
its address) as its value (1)

● When a call to fgets encounters the end of file, the value returned is the address 0,

which is considered the null pointer.

● FIGURE 8.8 (2)

SCANNING A FULL LINE

➢ We studied the fact that characters are represented by numeric codes, and we used
relational and equality operators to compare characters.

➢ Unfortunately, these operators cannot be used for comparison of strings. (1)

➢ if str1 and str2 are string variables, the condition
is not checking whether str1 precedes str2 alphabetically (2)

● The standard string library provides the int function strcmp for comparison of two
strings that we will refer to as str1 and str2.

8.4 STRING COMPARISON

letter == 'C' ch1 < ch2

str1 < str2

➢ Function strcmp separates its argument pairs into three categories:

➢ str1[n] < str2[n] if:

8.4 STRING COMPARISON

OR

➢ The string library also provides an analogous function strncmp that bases its
comparison on only the first n characters of the two strings, where n is the third
argument.

➢ if str1 is “cabinet" and str2 is “cable " , the function calls

strncmp(str1, str2, 1) = 0
strncmp(str1, str2, 2) = 0
strncmp(str1, str2, 3) = 0 (1)

➢ strncmp(str1, str2, 4) would return a negative integer (2)

8.4 STRING COMPARISON

➢ EXAMPLE 8.5

➢ EXAMPLE 8.6, FIGURE 8.10

8.4 STRING COMPARISON

Figure 8.12

8.5 ARRAYS OF POINTERS

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to

8.5 ARRAYS OF POINTERS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 08

Strings

Loading…

Chapter Objectives:
1. Understand how a string constant is stored in an array of characters.

2. Learn about the placeholder %s and how it is used in printf and scanf operations.

3. Learn some of the operations that can be performed on strings. (1)

4. Understand how C compares two strings to determine their relative order.

5. Learn some of the operations that can be performed on individual characters using

functions from the library ctype.

6. How to write your own functions that perform some of the basic operations of a text

editor program

● A string: is a grouping of characters, a data structure.

● C implements the string data structure using arrays of type char (1)

● Strings are important in computer science (2)

● Strings play an important role in science as well (3)

● We need strings as the vehicle for communication between the computer system
and the human user.

STRING
S

Loading…

• We have already used string constants in our earlier work with printf and scanf (1)

● The first argument is the string constant "Average = %.2f", a string of 14 characters

● Notice that the blanks in the string are characters.

● A string constant can be associated with a symbolic name using the #define directive
(2)

8.1 STRING BASICS

printf("Average = %.2f", avg);

#define ERROR "*****Error - "

#define STD_NAME "Student Name"

➢ A string in C is implemented as an array, so declaring a string variable is
the same as declaring an array of type char .

➢ The variable string_var will hold strings from 0 to 29 characters long (1)

➢ C permits initialization of string variables using a string constant

DECLARING AND INITIALIZING STRING VARIABLES

char string_var[30];

char str[20] = "Initial value";

➢ str in memory after this declaration with initialization.

➢ str[13] contains the character ‘\0' , the null character that marks the end of

a string. (1)

DECLARING AND INITIALIZING STRING VARIABLES

char str[20] = "Initial value";

char str[20] = “Numbers and strings"; (2)

● Because one string is an array of characters, an array of strings is a two-dimensional
array of characters in which each row is one string.

● We can initialize an array of strings at declaration in the following manner:

ARRAYS OF
STRINGS

#define NUM_PEOPLE 30

#define NAME_LEN 25

. . .

char names[NUM_PEOPLE][NAME_LEN]; (1)

char month[12][10] = {"January", "February", "March", "April",

"May", "June", "July", "August", "September", "October", "November",

"December"};

● Use the placeholder %s in the format string with printf and scanf to handle string
argument.

● The printf function, depends on finding a null character in the character array to mark the
end of the string. (1)

● When we write our own string-building functions, we must be sure that a null character is

inserted at the end of every string. (2)

● This inclusion of the null character is automatic for constant strings.

● The %s placeholder in a printf format string can be used with a minimum field width (3)

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("Topic: %s\n", string_var);

printf ("%8s%3s***\n", "Short", "Strings");

➢ Placing a minus sign prefix on a placeholder’s field width causes left justification of
the value displayed.

● Scanf Function:

● Remember: when we call scanf with a string variable as an argument, we must

remember that array output arguments are always passed to functions by sending the
address of the initial array element. (2)

● Figure 8.2 p. 457

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("%-20s\n", “Name”); (1)

Loading…

 Figure 8.3

➢ scanf skips leading whitespace characters such as blanks, newlines, and tabs.(1)

➢ Starting with the first nonwhitespace character, scanf copies the characters it encounters into

successive memory cells of its character array argument.

➢ When it comes across a whitespace character, scanning stops, scanf places the null character at

the end of the string in its array argument.

INPUT/OUTPUT WITH PRINTF AND
SCANF

• For example, the data could have been entered one value per line with extra whitespace.

• or two values per line:

● But: (1)

●

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH

 1270

 TR

 1800

> MATH 1270

 TR 1800

> MATH1270 TR 1800 (2)

➢ => 17 characters

Figure 8.4

● EXAMPLE 8.1 p.459

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH,1270,TR,1800 (1)

➢ Using the assignment symbol in a declaration of a string variable with initialization,
is the only one in which the operator means to copy the string that is the right operand
into the variable that is the left operand.

➢ Array address is constant and cannot be changed through assignment (1)

➢

➢ a compiler error

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

one_str = "Test string"; /* Does not work */

Invalid target of assignment :

char one_str[20] = "Test String");

● C Library Functions:

➢ Along with assignment functions, the library string.h provides functions for
substring, concatenation, string length, string comparison, and whole line input
operations [See Table 8.1 p.461]

➢ The data type of the value returned by each string-building function is the pointer

type char * .

➢ Reminder: An array is being represented by the address of its initial value.

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

● String Assignment:

➢ Function strcpy copies the string that is its second argument into its first argument

➢ Like a call to scanf with a %s placeholder, a call to strcpy can easily overflow the
space allocated for the destination variable (2)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

strcpy(one_str, "Test String"); (1)

strcpy(one_str, "A very long test string"); (3)

● strncpy that takes an argument specifying the number of characters to copy (call this
number n). (1)

● The effect is the same as the call

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, "Test string", 20); (2)

strcpy(one_str, "Test string"); (3)

● when the source string is longer than n characters, only the first n characters are
copied.

● In general,

● Both strcpy and strncpy mimic the assignment operator in that the value they return
is the string assigned. (3)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, “A very long test string”, 20); (1)

strncpy(dest, source, dest_len - 1); (2)

dest[dest_len - 1] = '\0';

➢ For example, we might want to examine
 the “133" in the string “Comp133"
 or the "Jan" in the string "Jan. 30, 1996”.

➢ Assuming that the prototype of strncpy is (1)

SUBSTRING
S

char *strncpy(char *dest, const char *source, size_t n);

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0';

➢ Figure 8.5

SUBSTRING
S

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0'; (1)

➢ If we wish to use strncpy to extract a middle substring, we must call the function
with the address of the first character to copy.

 Fig. 8.6

SUBSTRING
S

strncpy(result, &s1[5], 2);

result[2] = '\0'; (1)

strcpy(result, &s1[9]); (2)

➢ EXAMPLE 8.2 (1)
➢ 1st Solution (2)

➢ 2nd Solution: (3)

SUBSTRING
S

char *last, *first, *middle;

char pres[20] = "Adams, John Quincy";

char pres_copy[20];

strcpy(pres_copy, pres);

last = strtok(pres_copy, ", ");

first = strtok(NULL, ", ");

middle = strtok(NULL, ", ");

➢ EXAMPLE 8.3, Figure 8.7

 used to display the last
 component.

➢ Instead of: (1)
 Since strcpy returns as its value the
starting address
 of the string it has just stored in elem

➢ The use of CMP_LEN and strlen(compound): the declared size of the array is no
longer the effective size once data have been stored in the array (2)

SUBSTRING
S

printf("%s\n", strcpy(elem, &compound[first]));

strcpy(elem, &compound[first]);

printf("%s\n", elem);

● Concatenation: String library functions strcat and strncat modify their first string
argument by adding all or part of their second string argument at the end of the first
argument.

● Both functions assume that sufficient space is allocated for the first argument to allow

addition of the extra characters.

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 15 EXAMPLE 8.4

char f1[STRSIZ] = "John ", f2[STRSIZ] = "Jacqueline ",

last[STRSIZ] = "Kennedy";

strcat(f1, last); => “John Kennedy” 12 characters + “\0”

strcat(f2, last);=> “Jacqueline Kennedy” 18 characters + “\0” /* invalid overflow of f2 */

//As an alternative to the second call to strcat (2)

strncat(f2, last, 3); /*Jacqueline Ken*/

● Concatenation:
● Take note that the call to strcat modifies the value of s1 even when embedded in other function

calls:

● Both strcat and strncat return as the function value the modified first argument.

● If s1 and s2 are both character strings
declared to hold STRSIZ characters (1)

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

if (strlen(s1) + strlen(s2) < STRSIZ) {

strcat(s1, s2);

} else {

strncat(s1, s2, STRSIZ - strlen(s1) - 1);

s1[STRSIZ - 1] = '\0';

}

printf("%s\n", strncat(f2, last, 3));

● String Length: function strlen returns the length of the value of its string argument, not counting
the '\0' character.

● For example: this code fragment displays the numbers 8 and 18 followed by the phrase Birzeit
University .

● Notice that the blank at the end of the initial value of s1 is counted in s1’s length.
● Two critical questions that must always be in the mind when working with strcpy, strncpy , strcat

, and strncat:
1. Is there enough space in the output parameter for the entire string being created?
2. Does the created string end in '\0' ?

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 20

char s1[STRSIZ] = “Birzeit ",

s2[STRSIZ] = “University";

printf("%d %d\n", strlen(s1), strlen(strcat(s1, s2)));

printf("%s\n", s1);

➢ A type char value is not a valid argument for a function with a corresponding
parameter of type char * (1)

➢ Note the difference internally between the representations of the character 'Q' and the

string "Q" .

● View the string as an array and use assignment to subscripted elements for access. (2)

● Be sure to include the null character at the end of the string.

DISTINCTION BETWEEN CHARACTERS AND
STRINGS

● Although blanks are natural separators to place between numeric data values, viewing
them as delimiters (1) when processing strings may not make sense (2)

➢ The stdio library provides the function gets for interactive input of one complete line

of data

 (3)

SCANNING A FULL LINE

char line[80];

printf("Type in a line of data.\n> ");

gets(line);

Type in a line of data.

> Here is a short sentence.

Loading…

● The \n character representing the <return> or <enter> key pressed at the end of the
sentence is not stored.

● Like scanf , gets can overflow its string argument if the user enters a longer data line
than will fit.

● Function fgets takes three arguments: (1)

1. The output parameter string,
2. A maximum number of characters to store (n) (2)
3. And the file pointer to the data source

● The next to last character may or may not be '\n' :
4. If fgets has room to store the entire line of data it will include '\n' before '\0' .
5. If the line is truncated, no '\n' is stored.

SCANNING A FULL LINE

● fgets stores the string created in its first argument and returns this string argument (i.e.,
its address) as its value (1)

● When a call to fgets encounters the end of file, the value returned is the address 0,

which is considered the null pointer.

● FIGURE 8.8 (2)

SCANNING A FULL LINE

➢ We studied the fact that characters are represented by numeric codes, and we used
relational and equality operators to compare characters.

➢ Unfortunately, these operators cannot be used for comparison of strings. (1)

➢ if str1 and str2 are string variables, the condition
is not checking whether str1 precedes str2 alphabetically (2)

● The standard string library provides the int function strcmp for comparison of two
strings that we will refer to as str1 and str2.

8.4 STRING COMPARISON

letter == 'C' ch1 < ch2

str1 < str2

➢ Function strcmp separates its argument pairs into three categories:

➢ str1[n] < str2[n] if:

8.4 STRING COMPARISON

OR

➢ The string library also provides an analogous function strncmp that bases its
comparison on only the first n characters of the two strings, where n is the third
argument.

➢ if str1 is “cabinet" and str2 is “cable " , the function calls

strncmp(str1, str2, 1) = 0
strncmp(str1, str2, 2) = 0
strncmp(str1, str2, 3) = 0 (1)

➢ strncmp(str1, str2, 4) would return a negative integer (2)

8.4 STRING COMPARISON

➢ EXAMPLE 8.5

➢ EXAMPLE 8.6, FIGURE 8.10

8.4 STRING COMPARISON

Figure 8.12

8.5 ARRAYS OF POINTERS

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to

8.5 ARRAYS OF POINTERS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 08

Strings

Loading…

Chapter Objectives:
1. Understand how a string constant is stored in an array of characters.

2. Learn about the placeholder %s and how it is used in printf and scanf operations.

3. Learn some of the operations that can be performed on strings. (1)

4. Understand how C compares two strings to determine their relative order.

5. Learn some of the operations that can be performed on individual characters using

functions from the library ctype.

6. How to write your own functions that perform some of the basic operations of a text

editor program

● A string: is a grouping of characters, a data structure.

● C implements the string data structure using arrays of type char (1)

● Strings are important in computer science (2)

● Strings play an important role in science as well (3)

● We need strings as the vehicle for communication between the computer system
and the human user.

STRING
S

Loading…

• We have already used string constants in our earlier work with printf and scanf (1)

● The first argument is the string constant "Average = %.2f", a string of 14 characters

● Notice that the blanks in the string are characters.

● A string constant can be associated with a symbolic name using the #define directive
(2)

8.1 STRING BASICS

printf("Average = %.2f", avg);

#define ERROR "*****Error - "

#define STD_NAME "Student Name"

➢ A string in C is implemented as an array, so declaring a string variable is
the same as declaring an array of type char .

➢ The variable string_var will hold strings from 0 to 29 characters long (1)

➢ C permits initialization of string variables using a string constant

DECLARING AND INITIALIZING STRING VARIABLES

char string_var[30];

char str[20] = "Initial value";

➢ str in memory after this declaration with initialization.

➢ str[13] contains the character ‘\0' , the null character that marks the end of

a string. (1)

DECLARING AND INITIALIZING STRING VARIABLES

char str[20] = "Initial value";

char str[20] = “Numbers and strings"; (2)

● Because one string is an array of characters, an array of strings is a two-dimensional
array of characters in which each row is one string.

● We can initialize an array of strings at declaration in the following manner:

ARRAYS OF
STRINGS

#define NUM_PEOPLE 30

#define NAME_LEN 25

. . .

char names[NUM_PEOPLE][NAME_LEN]; (1)

char month[12][10] = {"January", "February", "March", "April",

"May", "June", "July", "August", "September", "October", "November",

"December"};

● Use the placeholder %s in the format string with printf and scanf to handle string
argument.

● The printf function, depends on finding a null character in the character array to mark the
end of the string. (1)

● When we write our own string-building functions, we must be sure that a null character is

inserted at the end of every string. (2)

● This inclusion of the null character is automatic for constant strings.

● The %s placeholder in a printf format string can be used with a minimum field width (3)

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("Topic: %s\n", string_var);

printf ("%8s%3s***\n", "Short", "Strings");

➢ Placing a minus sign prefix on a placeholder’s field width causes left justification of
the value displayed.

● Scanf Function:

● Remember: when we call scanf with a string variable as an argument, we must

remember that array output arguments are always passed to functions by sending the
address of the initial array element. (2)

● Figure 8.2 p. 457

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("%-20s\n", “Name”); (1)

Loading…

 Figure 8.3

➢ scanf skips leading whitespace characters such as blanks, newlines, and tabs.(1)

➢ Starting with the first nonwhitespace character, scanf copies the characters it encounters into

successive memory cells of its character array argument.

➢ When it comes across a whitespace character, scanning stops, scanf places the null character at

the end of the string in its array argument.

INPUT/OUTPUT WITH PRINTF AND
SCANF

• For example, the data could have been entered one value per line with extra whitespace.

• or two values per line:

● But: (1)

●

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH

 1270

 TR

 1800

> MATH 1270

 TR 1800

> MATH1270 TR 1800 (2)

➢ => 17 characters

Figure 8.4

● EXAMPLE 8.1 p.459

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH,1270,TR,1800 (1)

➢ Using the assignment symbol in a declaration of a string variable with initialization,
is the only one in which the operator means to copy the string that is the right operand
into the variable that is the left operand.

➢ Array address is constant and cannot be changed through assignment (1)

➢

➢ a compiler error

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

one_str = "Test string"; /* Does not work */

Invalid target of assignment :

char one_str[20] = "Test String");

● C Library Functions:

➢ Along with assignment functions, the library string.h provides functions for
substring, concatenation, string length, string comparison, and whole line input
operations [See Table 8.1 p.461]

➢ The data type of the value returned by each string-building function is the pointer

type char * .

➢ Reminder: An array is being represented by the address of its initial value.

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

● String Assignment:

➢ Function strcpy copies the string that is its second argument into its first argument

➢ Like a call to scanf with a %s placeholder, a call to strcpy can easily overflow the
space allocated for the destination variable (2)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

strcpy(one_str, "Test String"); (1)

strcpy(one_str, "A very long test string"); (3)

● strncpy that takes an argument specifying the number of characters to copy (call this
number n). (1)

● The effect is the same as the call

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, "Test string", 20); (2)

strcpy(one_str, "Test string"); (3)

● when the source string is longer than n characters, only the first n characters are
copied.

● In general,

● Both strcpy and strncpy mimic the assignment operator in that the value they return
is the string assigned. (3)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, “A very long test string”, 20); (1)

strncpy(dest, source, dest_len - 1); (2)

dest[dest_len - 1] = '\0';

➢ For example, we might want to examine
 the “133" in the string “Comp133"
 or the "Jan" in the string "Jan. 30, 1996”.

➢ Assuming that the prototype of strncpy is (1)

SUBSTRING
S

char *strncpy(char *dest, const char *source, size_t n);

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0';

➢ Figure 8.5

SUBSTRING
S

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0'; (1)

➢ If we wish to use strncpy to extract a middle substring, we must call the function
with the address of the first character to copy.

 Fig. 8.6

SUBSTRING
S

strncpy(result, &s1[5], 2);

result[2] = '\0'; (1)

strcpy(result, &s1[9]); (2)

➢ EXAMPLE 8.2 (1)
➢ 1st Solution (2)

➢ 2nd Solution: (3)

SUBSTRING
S

char *last, *first, *middle;

char pres[20] = "Adams, John Quincy";

char pres_copy[20];

strcpy(pres_copy, pres);

last = strtok(pres_copy, ", ");

first = strtok(NULL, ", ");

middle = strtok(NULL, ", ");

➢ EXAMPLE 8.3, Figure 8.7

 used to display the last
 component.

➢ Instead of: (1)
 Since strcpy returns as its value the
starting address
 of the string it has just stored in elem

➢ The use of CMP_LEN and strlen(compound): the declared size of the array is no
longer the effective size once data have been stored in the array (2)

SUBSTRING
S

printf("%s\n", strcpy(elem, &compound[first]));

strcpy(elem, &compound[first]);

printf("%s\n", elem);

● Concatenation: String library functions strcat and strncat modify their first string
argument by adding all or part of their second string argument at the end of the first
argument.

● Both functions assume that sufficient space is allocated for the first argument to allow

addition of the extra characters.

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 15 EXAMPLE 8.4

char f1[STRSIZ] = "John ", f2[STRSIZ] = "Jacqueline ",

last[STRSIZ] = "Kennedy";

strcat(f1, last); => “John Kennedy” 12 characters + “\0”

strcat(f2, last);=> “Jacqueline Kennedy” 18 characters + “\0” /* invalid overflow of f2 */

//As an alternative to the second call to strcat (2)

strncat(f2, last, 3); /*Jacqueline Ken*/

● Concatenation:
● Take note that the call to strcat modifies the value of s1 even when embedded in other function

calls:

● Both strcat and strncat return as the function value the modified first argument.

● If s1 and s2 are both character strings
declared to hold STRSIZ characters (1)

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

if (strlen(s1) + strlen(s2) < STRSIZ) {

strcat(s1, s2);

} else {

strncat(s1, s2, STRSIZ - strlen(s1) - 1);

s1[STRSIZ - 1] = '\0';

}

printf("%s\n", strncat(f2, last, 3));

● String Length: function strlen returns the length of the value of its string argument, not counting
the '\0' character.

● For example: this code fragment displays the numbers 8 and 18 followed by the phrase Birzeit
University .

● Notice that the blank at the end of the initial value of s1 is counted in s1’s length.
● Two critical questions that must always be in the mind when working with strcpy, strncpy , strcat

, and strncat:
1. Is there enough space in the output parameter for the entire string being created?
2. Does the created string end in '\0' ?

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 20

char s1[STRSIZ] = “Birzeit ",

s2[STRSIZ] = “University";

printf("%d %d\n", strlen(s1), strlen(strcat(s1, s2)));

printf("%s\n", s1);

➢ A type char value is not a valid argument for a function with a corresponding
parameter of type char * (1)

➢ Note the difference internally between the representations of the character 'Q' and the

string "Q" .

● View the string as an array and use assignment to subscripted elements for access. (2)

● Be sure to include the null character at the end of the string.

DISTINCTION BETWEEN CHARACTERS AND
STRINGS

● Although blanks are natural separators to place between numeric data values, viewing
them as delimiters (1) when processing strings may not make sense (2)

➢ The stdio library provides the function gets for interactive input of one complete line

of data

 (3)

SCANNING A FULL LINE

char line[80];

printf("Type in a line of data.\n> ");

gets(line);

Type in a line of data.

> Here is a short sentence.

Loading…

● The \n character representing the <return> or <enter> key pressed at the end of the
sentence is not stored.

● Like scanf , gets can overflow its string argument if the user enters a longer data line
than will fit.

● Function fgets takes three arguments: (1)

1. The output parameter string,
2. A maximum number of characters to store (n) (2)
3. And the file pointer to the data source

● The next to last character may or may not be '\n' :
4. If fgets has room to store the entire line of data it will include '\n' before '\0' .
5. If the line is truncated, no '\n' is stored.

SCANNING A FULL LINE

● fgets stores the string created in its first argument and returns this string argument (i.e.,
its address) as its value (1)

● When a call to fgets encounters the end of file, the value returned is the address 0,

which is considered the null pointer.

● FIGURE 8.8 (2)

SCANNING A FULL LINE

➢ We studied the fact that characters are represented by numeric codes, and we used
relational and equality operators to compare characters.

➢ Unfortunately, these operators cannot be used for comparison of strings. (1)

➢ if str1 and str2 are string variables, the condition
is not checking whether str1 precedes str2 alphabetically (2)

● The standard string library provides the int function strcmp for comparison of two
strings that we will refer to as str1 and str2.

8.4 STRING COMPARISON

letter == 'C' ch1 < ch2

str1 < str2

➢ Function strcmp separates its argument pairs into three categories:

➢ str1[n] < str2[n] if:

8.4 STRING COMPARISON

OR

➢ The string library also provides an analogous function strncmp that bases its
comparison on only the first n characters of the two strings, where n is the third
argument.

➢ if str1 is “cabinet" and str2 is “cable " , the function calls

strncmp(str1, str2, 1) = 0
strncmp(str1, str2, 2) = 0
strncmp(str1, str2, 3) = 0 (1)

➢ strncmp(str1, str2, 4) would return a negative integer (2)

8.4 STRING COMPARISON

➢ EXAMPLE 8.5

➢ EXAMPLE 8.6, FIGURE 8.10

8.4 STRING COMPARISON

Figure 8.12

8.5 ARRAYS OF POINTERS

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to

8.5 ARRAYS OF POINTERS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 08

Strings

Loading…

Chapter Objectives:
1. Understand how a string constant is stored in an array of characters.

2. Learn about the placeholder %s and how it is used in printf and scanf operations.

3. Learn some of the operations that can be performed on strings. (1)

4. Understand how C compares two strings to determine their relative order.

5. Learn some of the operations that can be performed on individual characters using

functions from the library ctype.

6. How to write your own functions that perform some of the basic operations of a text

editor program

● A string: is a grouping of characters, a data structure.

● C implements the string data structure using arrays of type char (1)

● Strings are important in computer science (2)

● Strings play an important role in science as well (3)

● We need strings as the vehicle for communication between the computer system
and the human user.

STRING
S

Loading…

• We have already used string constants in our earlier work with printf and scanf (1)

● The first argument is the string constant "Average = %.2f", a string of 14 characters

● Notice that the blanks in the string are characters.

● A string constant can be associated with a symbolic name using the #define directive
(2)

8.1 STRING BASICS

printf("Average = %.2f", avg);

#define ERROR "*****Error - "

#define STD_NAME "Student Name"

➢ A string in C is implemented as an array, so declaring a string variable is
the same as declaring an array of type char .

➢ The variable string_var will hold strings from 0 to 29 characters long (1)

➢ C permits initialization of string variables using a string constant

DECLARING AND INITIALIZING STRING VARIABLES

char string_var[30];

char str[20] = "Initial value";

➢ str in memory after this declaration with initialization.

➢ str[13] contains the character ‘\0' , the null character that marks the end of

a string. (1)

DECLARING AND INITIALIZING STRING VARIABLES

char str[20] = "Initial value";

char str[20] = “Numbers and strings"; (2)

● Because one string is an array of characters, an array of strings is a two-dimensional
array of characters in which each row is one string.

● We can initialize an array of strings at declaration in the following manner:

ARRAYS OF
STRINGS

#define NUM_PEOPLE 30

#define NAME_LEN 25

. . .

char names[NUM_PEOPLE][NAME_LEN]; (1)

char month[12][10] = {"January", "February", "March", "April",

"May", "June", "July", "August", "September", "October", "November",

"December"};

● Use the placeholder %s in the format string with printf and scanf to handle string
argument.

● The printf function, depends on finding a null character in the character array to mark the
end of the string. (1)

● When we write our own string-building functions, we must be sure that a null character is

inserted at the end of every string. (2)

● This inclusion of the null character is automatic for constant strings.

● The %s placeholder in a printf format string can be used with a minimum field width (3)

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("Topic: %s\n", string_var);

printf ("%8s%3s***\n", "Short", "Strings");

➢ Placing a minus sign prefix on a placeholder’s field width causes left justification of
the value displayed.

● Scanf Function:

● Remember: when we call scanf with a string variable as an argument, we must

remember that array output arguments are always passed to functions by sending the
address of the initial array element. (2)

● Figure 8.2 p. 457

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("%-20s\n", “Name”); (1)

Loading…

 Figure 8.3

➢ scanf skips leading whitespace characters such as blanks, newlines, and tabs.(1)

➢ Starting with the first nonwhitespace character, scanf copies the characters it encounters into

successive memory cells of its character array argument.

➢ When it comes across a whitespace character, scanning stops, scanf places the null character at

the end of the string in its array argument.

INPUT/OUTPUT WITH PRINTF AND
SCANF

• For example, the data could have been entered one value per line with extra whitespace.

• or two values per line:

● But: (1)

●

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH

 1270

 TR

 1800

> MATH 1270

 TR 1800

> MATH1270 TR 1800 (2)

➢ => 17 characters

Figure 8.4

● EXAMPLE 8.1 p.459

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH,1270,TR,1800 (1)

➢ Using the assignment symbol in a declaration of a string variable with initialization,
is the only one in which the operator means to copy the string that is the right operand
into the variable that is the left operand.

➢ Array address is constant and cannot be changed through assignment (1)

➢

➢ a compiler error

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

one_str = "Test string"; /* Does not work */

Invalid target of assignment :

char one_str[20] = "Test String");

● C Library Functions:

➢ Along with assignment functions, the library string.h provides functions for
substring, concatenation, string length, string comparison, and whole line input
operations [See Table 8.1 p.461]

➢ The data type of the value returned by each string-building function is the pointer

type char * .

➢ Reminder: An array is being represented by the address of its initial value.

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

● String Assignment:

➢ Function strcpy copies the string that is its second argument into its first argument

➢ Like a call to scanf with a %s placeholder, a call to strcpy can easily overflow the
space allocated for the destination variable (2)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

strcpy(one_str, "Test String"); (1)

strcpy(one_str, "A very long test string"); (3)

● strncpy that takes an argument specifying the number of characters to copy (call this
number n). (1)

● The effect is the same as the call

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, "Test string", 20); (2)

strcpy(one_str, "Test string"); (3)

● when the source string is longer than n characters, only the first n characters are
copied.

● In general,

● Both strcpy and strncpy mimic the assignment operator in that the value they return
is the string assigned. (3)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, “A very long test string”, 20); (1)

strncpy(dest, source, dest_len - 1); (2)

dest[dest_len - 1] = '\0';

➢ For example, we might want to examine
 the “133" in the string “Comp133"
 or the "Jan" in the string "Jan. 30, 1996”.

➢ Assuming that the prototype of strncpy is (1)

SUBSTRING
S

char *strncpy(char *dest, const char *source, size_t n);

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0';

➢ Figure 8.5

SUBSTRING
S

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0'; (1)

➢ If we wish to use strncpy to extract a middle substring, we must call the function
with the address of the first character to copy.

 Fig. 8.6

SUBSTRING
S

strncpy(result, &s1[5], 2);

result[2] = '\0'; (1)

strcpy(result, &s1[9]); (2)

➢ EXAMPLE 8.2 (1)
➢ 1st Solution (2)

➢ 2nd Solution: (3)

SUBSTRING
S

char *last, *first, *middle;

char pres[20] = "Adams, John Quincy";

char pres_copy[20];

strcpy(pres_copy, pres);

last = strtok(pres_copy, ", ");

first = strtok(NULL, ", ");

middle = strtok(NULL, ", ");

➢ EXAMPLE 8.3, Figure 8.7

 used to display the last
 component.

➢ Instead of: (1)
 Since strcpy returns as its value the
starting address
 of the string it has just stored in elem

➢ The use of CMP_LEN and strlen(compound): the declared size of the array is no
longer the effective size once data have been stored in the array (2)

SUBSTRING
S

printf("%s\n", strcpy(elem, &compound[first]));

strcpy(elem, &compound[first]);

printf("%s\n", elem);

● Concatenation: String library functions strcat and strncat modify their first string
argument by adding all or part of their second string argument at the end of the first
argument.

● Both functions assume that sufficient space is allocated for the first argument to allow

addition of the extra characters.

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 15 EXAMPLE 8.4

char f1[STRSIZ] = "John ", f2[STRSIZ] = "Jacqueline ",

last[STRSIZ] = "Kennedy";

strcat(f1, last); => “John Kennedy” 12 characters + “\0”

strcat(f2, last);=> “Jacqueline Kennedy” 18 characters + “\0” /* invalid overflow of f2 */

//As an alternative to the second call to strcat (2)

strncat(f2, last, 3); /*Jacqueline Ken*/

● Concatenation:
● Take note that the call to strcat modifies the value of s1 even when embedded in other function

calls:

● Both strcat and strncat return as the function value the modified first argument.

● If s1 and s2 are both character strings
declared to hold STRSIZ characters (1)

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

if (strlen(s1) + strlen(s2) < STRSIZ) {

strcat(s1, s2);

} else {

strncat(s1, s2, STRSIZ - strlen(s1) - 1);

s1[STRSIZ - 1] = '\0';

}

printf("%s\n", strncat(f2, last, 3));

● String Length: function strlen returns the length of the value of its string argument, not counting
the '\0' character.

● For example: this code fragment displays the numbers 8 and 18 followed by the phrase Birzeit
University .

● Notice that the blank at the end of the initial value of s1 is counted in s1’s length.
● Two critical questions that must always be in the mind when working with strcpy, strncpy , strcat

, and strncat:
1. Is there enough space in the output parameter for the entire string being created?
2. Does the created string end in '\0' ?

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 20

char s1[STRSIZ] = “Birzeit ",

s2[STRSIZ] = “University";

printf("%d %d\n", strlen(s1), strlen(strcat(s1, s2)));

printf("%s\n", s1);

➢ A type char value is not a valid argument for a function with a corresponding
parameter of type char * (1)

➢ Note the difference internally between the representations of the character 'Q' and the

string "Q" .

● View the string as an array and use assignment to subscripted elements for access. (2)

● Be sure to include the null character at the end of the string.

DISTINCTION BETWEEN CHARACTERS AND
STRINGS

● Although blanks are natural separators to place between numeric data values, viewing
them as delimiters (1) when processing strings may not make sense (2)

➢ The stdio library provides the function gets for interactive input of one complete line

of data

 (3)

SCANNING A FULL LINE

char line[80];

printf("Type in a line of data.\n> ");

gets(line);

Type in a line of data.

> Here is a short sentence.

Loading…

● The \n character representing the <return> or <enter> key pressed at the end of the
sentence is not stored.

● Like scanf , gets can overflow its string argument if the user enters a longer data line
than will fit.

● Function fgets takes three arguments: (1)

1. The output parameter string,
2. A maximum number of characters to store (n) (2)
3. And the file pointer to the data source

● The next to last character may or may not be '\n' :
4. If fgets has room to store the entire line of data it will include '\n' before '\0' .
5. If the line is truncated, no '\n' is stored.

SCANNING A FULL LINE

● fgets stores the string created in its first argument and returns this string argument (i.e.,
its address) as its value (1)

● When a call to fgets encounters the end of file, the value returned is the address 0,

which is considered the null pointer.

● FIGURE 8.8 (2)

SCANNING A FULL LINE

➢ We studied the fact that characters are represented by numeric codes, and we used
relational and equality operators to compare characters.

➢ Unfortunately, these operators cannot be used for comparison of strings. (1)

➢ if str1 and str2 are string variables, the condition
is not checking whether str1 precedes str2 alphabetically (2)

● The standard string library provides the int function strcmp for comparison of two
strings that we will refer to as str1 and str2.

8.4 STRING COMPARISON

letter == 'C' ch1 < ch2

str1 < str2

➢ Function strcmp separates its argument pairs into three categories:

➢ str1[n] < str2[n] if:

8.4 STRING COMPARISON

OR

➢ The string library also provides an analogous function strncmp that bases its
comparison on only the first n characters of the two strings, where n is the third
argument.

➢ if str1 is “cabinet" and str2 is “cable " , the function calls

strncmp(str1, str2, 1) = 0
strncmp(str1, str2, 2) = 0
strncmp(str1, str2, 3) = 0 (1)

➢ strncmp(str1, str2, 4) would return a negative integer (2)

8.4 STRING COMPARISON

➢ EXAMPLE 8.5

➢ EXAMPLE 8.6, FIGURE 8.10

8.4 STRING COMPARISON

Figure 8.12

8.5 ARRAYS OF POINTERS

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to

8.5 ARRAYS OF POINTERS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 08

Strings

Loading…

Chapter Objectives:
1. Understand how a string constant is stored in an array of characters.

2. Learn about the placeholder %s and how it is used in printf and scanf operations.

3. Learn some of the operations that can be performed on strings. (1)

4. Understand how C compares two strings to determine their relative order.

5. Learn some of the operations that can be performed on individual characters using

functions from the library ctype.

6. How to write your own functions that perform some of the basic operations of a text

editor program

● A string: is a grouping of characters, a data structure.

● C implements the string data structure using arrays of type char (1)

● Strings are important in computer science (2)

● Strings play an important role in science as well (3)

● We need strings as the vehicle for communication between the computer system
and the human user.

STRING
S

Loading…

• We have already used string constants in our earlier work with printf and scanf (1)

● The first argument is the string constant "Average = %.2f", a string of 14 characters

● Notice that the blanks in the string are characters.

● A string constant can be associated with a symbolic name using the #define directive
(2)

8.1 STRING BASICS

printf("Average = %.2f", avg);

#define ERROR "*****Error - "

#define STD_NAME "Student Name"

➢ A string in C is implemented as an array, so declaring a string variable is
the same as declaring an array of type char .

➢ The variable string_var will hold strings from 0 to 29 characters long (1)

➢ C permits initialization of string variables using a string constant

DECLARING AND INITIALIZING STRING VARIABLES

char string_var[30];

char str[20] = "Initial value";

➢ str in memory after this declaration with initialization.

➢ str[13] contains the character ‘\0' , the null character that marks the end of

a string. (1)

DECLARING AND INITIALIZING STRING VARIABLES

char str[20] = "Initial value";

char str[20] = “Numbers and strings"; (2)

● Because one string is an array of characters, an array of strings is a two-dimensional
array of characters in which each row is one string.

● We can initialize an array of strings at declaration in the following manner:

ARRAYS OF
STRINGS

#define NUM_PEOPLE 30

#define NAME_LEN 25

. . .

char names[NUM_PEOPLE][NAME_LEN]; (1)

char month[12][10] = {"January", "February", "March", "April",

"May", "June", "July", "August", "September", "October", "November",

"December"};

● Use the placeholder %s in the format string with printf and scanf to handle string
argument.

● The printf function, depends on finding a null character in the character array to mark the
end of the string. (1)

● When we write our own string-building functions, we must be sure that a null character is

inserted at the end of every string. (2)

● This inclusion of the null character is automatic for constant strings.

● The %s placeholder in a printf format string can be used with a minimum field width (3)

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("Topic: %s\n", string_var);

printf ("%8s%3s***\n", "Short", "Strings");

➢ Placing a minus sign prefix on a placeholder’s field width causes left justification of
the value displayed.

● Scanf Function:

● Remember: when we call scanf with a string variable as an argument, we must

remember that array output arguments are always passed to functions by sending the
address of the initial array element. (2)

● Figure 8.2 p. 457

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("%-20s\n", “Name”); (1)

Loading…

 Figure 8.3

➢ scanf skips leading whitespace characters such as blanks, newlines, and tabs.(1)

➢ Starting with the first nonwhitespace character, scanf copies the characters it encounters into

successive memory cells of its character array argument.

➢ When it comes across a whitespace character, scanning stops, scanf places the null character at

the end of the string in its array argument.

INPUT/OUTPUT WITH PRINTF AND
SCANF

• For example, the data could have been entered one value per line with extra whitespace.

• or two values per line:

● But: (1)

●

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH

 1270

 TR

 1800

> MATH 1270

 TR 1800

> MATH1270 TR 1800 (2)

➢ => 17 characters

Figure 8.4

● EXAMPLE 8.1 p.459

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH,1270,TR,1800 (1)

➢ Using the assignment symbol in a declaration of a string variable with initialization,
is the only one in which the operator means to copy the string that is the right operand
into the variable that is the left operand.

➢ Array address is constant and cannot be changed through assignment (1)

➢

➢ a compiler error

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

one_str = "Test string"; /* Does not work */

Invalid target of assignment :

char one_str[20] = "Test String");

● C Library Functions:

➢ Along with assignment functions, the library string.h provides functions for
substring, concatenation, string length, string comparison, and whole line input
operations [See Table 8.1 p.461]

➢ The data type of the value returned by each string-building function is the pointer

type char * .

➢ Reminder: An array is being represented by the address of its initial value.

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

● String Assignment:

➢ Function strcpy copies the string that is its second argument into its first argument

➢ Like a call to scanf with a %s placeholder, a call to strcpy can easily overflow the
space allocated for the destination variable (2)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

strcpy(one_str, "Test String"); (1)

strcpy(one_str, "A very long test string"); (3)

● strncpy that takes an argument specifying the number of characters to copy (call this
number n). (1)

● The effect is the same as the call

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, "Test string", 20); (2)

strcpy(one_str, "Test string"); (3)

● when the source string is longer than n characters, only the first n characters are
copied.

● In general,

● Both strcpy and strncpy mimic the assignment operator in that the value they return
is the string assigned. (3)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, “A very long test string”, 20); (1)

strncpy(dest, source, dest_len - 1); (2)

dest[dest_len - 1] = '\0';

➢ For example, we might want to examine
 the “133" in the string “Comp133"
 or the "Jan" in the string "Jan. 30, 1996”.

➢ Assuming that the prototype of strncpy is (1)

SUBSTRING
S

char *strncpy(char *dest, const char *source, size_t n);

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0';

➢ Figure 8.5

SUBSTRING
S

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0'; (1)

➢ If we wish to use strncpy to extract a middle substring, we must call the function
with the address of the first character to copy.

 Fig. 8.6

SUBSTRING
S

strncpy(result, &s1[5], 2);

result[2] = '\0'; (1)

strcpy(result, &s1[9]); (2)

➢ EXAMPLE 8.2 (1)
➢ 1st Solution (2)

➢ 2nd Solution: (3)

SUBSTRING
S

char *last, *first, *middle;

char pres[20] = "Adams, John Quincy";

char pres_copy[20];

strcpy(pres_copy, pres);

last = strtok(pres_copy, ", ");

first = strtok(NULL, ", ");

middle = strtok(NULL, ", ");

➢ EXAMPLE 8.3, Figure 8.7

 used to display the last
 component.

➢ Instead of: (1)
 Since strcpy returns as its value the
starting address
 of the string it has just stored in elem

➢ The use of CMP_LEN and strlen(compound): the declared size of the array is no
longer the effective size once data have been stored in the array (2)

SUBSTRING
S

printf("%s\n", strcpy(elem, &compound[first]));

strcpy(elem, &compound[first]);

printf("%s\n", elem);

● Concatenation: String library functions strcat and strncat modify their first string
argument by adding all or part of their second string argument at the end of the first
argument.

● Both functions assume that sufficient space is allocated for the first argument to allow

addition of the extra characters.

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 15 EXAMPLE 8.4

char f1[STRSIZ] = "John ", f2[STRSIZ] = "Jacqueline ",

last[STRSIZ] = "Kennedy";

strcat(f1, last); => “John Kennedy” 12 characters + “\0”

strcat(f2, last);=> “Jacqueline Kennedy” 18 characters + “\0” /* invalid overflow of f2 */

//As an alternative to the second call to strcat (2)

strncat(f2, last, 3); /*Jacqueline Ken*/

● Concatenation:
● Take note that the call to strcat modifies the value of s1 even when embedded in other function

calls:

● Both strcat and strncat return as the function value the modified first argument.

● If s1 and s2 are both character strings
declared to hold STRSIZ characters (1)

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

if (strlen(s1) + strlen(s2) < STRSIZ) {

strcat(s1, s2);

} else {

strncat(s1, s2, STRSIZ - strlen(s1) - 1);

s1[STRSIZ - 1] = '\0';

}

printf("%s\n", strncat(f2, last, 3));

● String Length: function strlen returns the length of the value of its string argument, not counting
the '\0' character.

● For example: this code fragment displays the numbers 8 and 18 followed by the phrase Birzeit
University .

● Notice that the blank at the end of the initial value of s1 is counted in s1’s length.
● Two critical questions that must always be in the mind when working with strcpy, strncpy , strcat

, and strncat:
1. Is there enough space in the output parameter for the entire string being created?
2. Does the created string end in '\0' ?

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 20

char s1[STRSIZ] = “Birzeit ",

s2[STRSIZ] = “University";

printf("%d %d\n", strlen(s1), strlen(strcat(s1, s2)));

printf("%s\n", s1);

➢ A type char value is not a valid argument for a function with a corresponding
parameter of type char * (1)

➢ Note the difference internally between the representations of the character 'Q' and the

string "Q" .

● View the string as an array and use assignment to subscripted elements for access. (2)

● Be sure to include the null character at the end of the string.

DISTINCTION BETWEEN CHARACTERS AND
STRINGS

● Although blanks are natural separators to place between numeric data values, viewing
them as delimiters (1) when processing strings may not make sense (2)

➢ The stdio library provides the function gets for interactive input of one complete line

of data

 (3)

SCANNING A FULL LINE

char line[80];

printf("Type in a line of data.\n> ");

gets(line);

Type in a line of data.

> Here is a short sentence.

Loading…

● The \n character representing the <return> or <enter> key pressed at the end of the
sentence is not stored.

● Like scanf , gets can overflow its string argument if the user enters a longer data line
than will fit.

● Function fgets takes three arguments: (1)

1. The output parameter string,
2. A maximum number of characters to store (n) (2)
3. And the file pointer to the data source

● The next to last character may or may not be '\n' :
4. If fgets has room to store the entire line of data it will include '\n' before '\0' .
5. If the line is truncated, no '\n' is stored.

SCANNING A FULL LINE

● fgets stores the string created in its first argument and returns this string argument (i.e.,
its address) as its value (1)

● When a call to fgets encounters the end of file, the value returned is the address 0,

which is considered the null pointer.

● FIGURE 8.8 (2)

SCANNING A FULL LINE

➢ We studied the fact that characters are represented by numeric codes, and we used
relational and equality operators to compare characters.

➢ Unfortunately, these operators cannot be used for comparison of strings. (1)

➢ if str1 and str2 are string variables, the condition
is not checking whether str1 precedes str2 alphabetically (2)

● The standard string library provides the int function strcmp for comparison of two
strings that we will refer to as str1 and str2.

8.4 STRING COMPARISON

letter == 'C' ch1 < ch2

str1 < str2

➢ Function strcmp separates its argument pairs into three categories:

➢ str1[n] < str2[n] if:

8.4 STRING COMPARISON

OR

➢ The string library also provides an analogous function strncmp that bases its
comparison on only the first n characters of the two strings, where n is the third
argument.

➢ if str1 is “cabinet" and str2 is “cable " , the function calls

strncmp(str1, str2, 1) = 0
strncmp(str1, str2, 2) = 0
strncmp(str1, str2, 3) = 0 (1)

➢ strncmp(str1, str2, 4) would return a negative integer (2)

8.4 STRING COMPARISON

➢ EXAMPLE 8.5

➢ EXAMPLE 8.6, FIGURE 8.10

8.4 STRING COMPARISON

Figure 8.12

8.5 ARRAYS OF POINTERS

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to

8.5 ARRAYS OF POINTERS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 08

Strings

Loading…

Chapter Objectives:
1. Understand how a string constant is stored in an array of characters.

2. Learn about the placeholder %s and how it is used in printf and scanf operations.

3. Learn some of the operations that can be performed on strings. (1)

4. Understand how C compares two strings to determine their relative order.

5. Learn some of the operations that can be performed on individual characters using

functions from the library ctype.

6. How to write your own functions that perform some of the basic operations of a text

editor program

● A string: is a grouping of characters, a data structure.

● C implements the string data structure using arrays of type char (1)

● Strings are important in computer science (2)

● Strings play an important role in science as well (3)

● We need strings as the vehicle for communication between the computer system
and the human user.

STRING
S

Loading…

• We have already used string constants in our earlier work with printf and scanf (1)

● The first argument is the string constant "Average = %.2f", a string of 14 characters

● Notice that the blanks in the string are characters.

● A string constant can be associated with a symbolic name using the #define directive
(2)

8.1 STRING BASICS

printf("Average = %.2f", avg);

#define ERROR "*****Error - "

#define STD_NAME "Student Name"

➢ A string in C is implemented as an array, so declaring a string variable is
the same as declaring an array of type char .

➢ The variable string_var will hold strings from 0 to 29 characters long (1)

➢ C permits initialization of string variables using a string constant

DECLARING AND INITIALIZING STRING VARIABLES

char string_var[30];

char str[20] = "Initial value";

➢ str in memory after this declaration with initialization.

➢ str[13] contains the character ‘\0' , the null character that marks the end of

a string. (1)

DECLARING AND INITIALIZING STRING VARIABLES

char str[20] = "Initial value";

char str[20] = “Numbers and strings"; (2)

● Because one string is an array of characters, an array of strings is a two-dimensional
array of characters in which each row is one string.

● We can initialize an array of strings at declaration in the following manner:

ARRAYS OF
STRINGS

#define NUM_PEOPLE 30

#define NAME_LEN 25

. . .

char names[NUM_PEOPLE][NAME_LEN]; (1)

char month[12][10] = {"January", "February", "March", "April",

"May", "June", "July", "August", "September", "October", "November",

"December"};

● Use the placeholder %s in the format string with printf and scanf to handle string
argument.

● The printf function, depends on finding a null character in the character array to mark the
end of the string. (1)

● When we write our own string-building functions, we must be sure that a null character is

inserted at the end of every string. (2)

● This inclusion of the null character is automatic for constant strings.

● The %s placeholder in a printf format string can be used with a minimum field width (3)

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("Topic: %s\n", string_var);

printf ("%8s%3s***\n", "Short", "Strings");

➢ Placing a minus sign prefix on a placeholder’s field width causes left justification of
the value displayed.

● Scanf Function:

● Remember: when we call scanf with a string variable as an argument, we must

remember that array output arguments are always passed to functions by sending the
address of the initial array element. (2)

● Figure 8.2 p. 457

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("%-20s\n", “Name”); (1)

Loading…

 Figure 8.3

➢ scanf skips leading whitespace characters such as blanks, newlines, and tabs.(1)

➢ Starting with the first nonwhitespace character, scanf copies the characters it encounters into

successive memory cells of its character array argument.

➢ When it comes across a whitespace character, scanning stops, scanf places the null character at

the end of the string in its array argument.

INPUT/OUTPUT WITH PRINTF AND
SCANF

• For example, the data could have been entered one value per line with extra whitespace.

• or two values per line:

● But: (1)

●

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH

 1270

 TR

 1800

> MATH 1270

 TR 1800

> MATH1270 TR 1800 (2)

➢ => 17 characters

Figure 8.4

● EXAMPLE 8.1 p.459

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH,1270,TR,1800 (1)

➢ Using the assignment symbol in a declaration of a string variable with initialization,
is the only one in which the operator means to copy the string that is the right operand
into the variable that is the left operand.

➢ Array address is constant and cannot be changed through assignment (1)

➢

➢ a compiler error

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

one_str = "Test string"; /* Does not work */

Invalid target of assignment :

char one_str[20] = "Test String");

● C Library Functions:

➢ Along with assignment functions, the library string.h provides functions for
substring, concatenation, string length, string comparison, and whole line input
operations [See Table 8.1 p.461]

➢ The data type of the value returned by each string-building function is the pointer

type char * .

➢ Reminder: An array is being represented by the address of its initial value.

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

● String Assignment:

➢ Function strcpy copies the string that is its second argument into its first argument

➢ Like a call to scanf with a %s placeholder, a call to strcpy can easily overflow the
space allocated for the destination variable (2)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

strcpy(one_str, "Test String"); (1)

strcpy(one_str, "A very long test string"); (3)

● strncpy that takes an argument specifying the number of characters to copy (call this
number n). (1)

● The effect is the same as the call

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, "Test string", 20); (2)

strcpy(one_str, "Test string"); (3)

● when the source string is longer than n characters, only the first n characters are
copied.

● In general,

● Both strcpy and strncpy mimic the assignment operator in that the value they return
is the string assigned. (3)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, “A very long test string”, 20); (1)

strncpy(dest, source, dest_len - 1); (2)

dest[dest_len - 1] = '\0';

➢ For example, we might want to examine
 the “133" in the string “Comp133"
 or the "Jan" in the string "Jan. 30, 1996”.

➢ Assuming that the prototype of strncpy is (1)

SUBSTRING
S

char *strncpy(char *dest, const char *source, size_t n);

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0';

➢ Figure 8.5

SUBSTRING
S

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0'; (1)

➢ If we wish to use strncpy to extract a middle substring, we must call the function
with the address of the first character to copy.

 Fig. 8.6

SUBSTRING
S

strncpy(result, &s1[5], 2);

result[2] = '\0'; (1)

strcpy(result, &s1[9]); (2)

➢ EXAMPLE 8.2 (1)
➢ 1st Solution (2)

➢ 2nd Solution: (3)

SUBSTRING
S

char *last, *first, *middle;

char pres[20] = "Adams, John Quincy";

char pres_copy[20];

strcpy(pres_copy, pres);

last = strtok(pres_copy, ", ");

first = strtok(NULL, ", ");

middle = strtok(NULL, ", ");

➢ EXAMPLE 8.3, Figure 8.7

 used to display the last
 component.

➢ Instead of: (1)
 Since strcpy returns as its value the
starting address
 of the string it has just stored in elem

➢ The use of CMP_LEN and strlen(compound): the declared size of the array is no
longer the effective size once data have been stored in the array (2)

SUBSTRING
S

printf("%s\n", strcpy(elem, &compound[first]));

strcpy(elem, &compound[first]);

printf("%s\n", elem);

● Concatenation: String library functions strcat and strncat modify their first string
argument by adding all or part of their second string argument at the end of the first
argument.

● Both functions assume that sufficient space is allocated for the first argument to allow

addition of the extra characters.

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 15 EXAMPLE 8.4

char f1[STRSIZ] = "John ", f2[STRSIZ] = "Jacqueline ",

last[STRSIZ] = "Kennedy";

strcat(f1, last); => “John Kennedy” 12 characters + “\0”

strcat(f2, last);=> “Jacqueline Kennedy” 18 characters + “\0” /* invalid overflow of f2 */

//As an alternative to the second call to strcat (2)

strncat(f2, last, 3); /*Jacqueline Ken*/

● Concatenation:
● Take note that the call to strcat modifies the value of s1 even when embedded in other function

calls:

● Both strcat and strncat return as the function value the modified first argument.

● If s1 and s2 are both character strings
declared to hold STRSIZ characters (1)

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

if (strlen(s1) + strlen(s2) < STRSIZ) {

strcat(s1, s2);

} else {

strncat(s1, s2, STRSIZ - strlen(s1) - 1);

s1[STRSIZ - 1] = '\0';

}

printf("%s\n", strncat(f2, last, 3));

● String Length: function strlen returns the length of the value of its string argument, not counting
the '\0' character.

● For example: this code fragment displays the numbers 8 and 18 followed by the phrase Birzeit
University .

● Notice that the blank at the end of the initial value of s1 is counted in s1’s length.
● Two critical questions that must always be in the mind when working with strcpy, strncpy , strcat

, and strncat:
1. Is there enough space in the output parameter for the entire string being created?
2. Does the created string end in '\0' ?

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 20

char s1[STRSIZ] = “Birzeit ",

s2[STRSIZ] = “University";

printf("%d %d\n", strlen(s1), strlen(strcat(s1, s2)));

printf("%s\n", s1);

➢ A type char value is not a valid argument for a function with a corresponding
parameter of type char * (1)

➢ Note the difference internally between the representations of the character 'Q' and the

string "Q" .

● View the string as an array and use assignment to subscripted elements for access. (2)

● Be sure to include the null character at the end of the string.

DISTINCTION BETWEEN CHARACTERS AND
STRINGS

● Although blanks are natural separators to place between numeric data values, viewing
them as delimiters (1) when processing strings may not make sense (2)

➢ The stdio library provides the function gets for interactive input of one complete line

of data

 (3)

SCANNING A FULL LINE

char line[80];

printf("Type in a line of data.\n> ");

gets(line);

Type in a line of data.

> Here is a short sentence.

Loading…

● The \n character representing the <return> or <enter> key pressed at the end of the
sentence is not stored.

● Like scanf , gets can overflow its string argument if the user enters a longer data line
than will fit.

● Function fgets takes three arguments: (1)

1. The output parameter string,
2. A maximum number of characters to store (n) (2)
3. And the file pointer to the data source

● The next to last character may or may not be '\n' :
4. If fgets has room to store the entire line of data it will include '\n' before '\0' .
5. If the line is truncated, no '\n' is stored.

SCANNING A FULL LINE

● fgets stores the string created in its first argument and returns this string argument (i.e.,
its address) as its value (1)

● When a call to fgets encounters the end of file, the value returned is the address 0,

which is considered the null pointer.

● FIGURE 8.8 (2)

SCANNING A FULL LINE

➢ We studied the fact that characters are represented by numeric codes, and we used
relational and equality operators to compare characters.

➢ Unfortunately, these operators cannot be used for comparison of strings. (1)

➢ if str1 and str2 are string variables, the condition
is not checking whether str1 precedes str2 alphabetically (2)

● The standard string library provides the int function strcmp for comparison of two
strings that we will refer to as str1 and str2.

8.4 STRING COMPARISON

letter == 'C' ch1 < ch2

str1 < str2

➢ Function strcmp separates its argument pairs into three categories:

➢ str1[n] < str2[n] if:

8.4 STRING COMPARISON

OR

➢ The string library also provides an analogous function strncmp that bases its
comparison on only the first n characters of the two strings, where n is the third
argument.

➢ if str1 is “cabinet" and str2 is “cable " , the function calls

strncmp(str1, str2, 1) = 0
strncmp(str1, str2, 2) = 0
strncmp(str1, str2, 3) = 0 (1)

➢ strncmp(str1, str2, 4) would return a negative integer (2)

8.4 STRING COMPARISON

➢ EXAMPLE 8.5

➢ EXAMPLE 8.6, FIGURE 8.10

8.4 STRING COMPARISON

Figure 8.12

8.5 ARRAYS OF POINTERS

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to

8.5 ARRAYS OF POINTERS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 08

Strings

Loading…

Chapter Objectives:
1. Understand how a string constant is stored in an array of characters.

2. Learn about the placeholder %s and how it is used in printf and scanf operations.

3. Learn some of the operations that can be performed on strings. (1)

4. Understand how C compares two strings to determine their relative order.

5. Learn some of the operations that can be performed on individual characters using

functions from the library ctype.

6. How to write your own functions that perform some of the basic operations of a text

editor program

● A string: is a grouping of characters, a data structure.

● C implements the string data structure using arrays of type char (1)

● Strings are important in computer science (2)

● Strings play an important role in science as well (3)

● We need strings as the vehicle for communication between the computer system
and the human user.

STRING
S

Loading…

• We have already used string constants in our earlier work with printf and scanf (1)

● The first argument is the string constant "Average = %.2f", a string of 14 characters

● Notice that the blanks in the string are characters.

● A string constant can be associated with a symbolic name using the #define directive
(2)

8.1 STRING BASICS

printf("Average = %.2f", avg);

#define ERROR "*****Error - "

#define STD_NAME "Student Name"

➢ A string in C is implemented as an array, so declaring a string variable is
the same as declaring an array of type char .

➢ The variable string_var will hold strings from 0 to 29 characters long (1)

➢ C permits initialization of string variables using a string constant

DECLARING AND INITIALIZING STRING VARIABLES

char string_var[30];

char str[20] = "Initial value";

➢ str in memory after this declaration with initialization.

➢ str[13] contains the character ‘\0' , the null character that marks the end of

a string. (1)

DECLARING AND INITIALIZING STRING VARIABLES

char str[20] = "Initial value";

char str[20] = “Numbers and strings"; (2)

● Because one string is an array of characters, an array of strings is a two-dimensional
array of characters in which each row is one string.

● We can initialize an array of strings at declaration in the following manner:

ARRAYS OF
STRINGS

#define NUM_PEOPLE 30

#define NAME_LEN 25

. . .

char names[NUM_PEOPLE][NAME_LEN]; (1)

char month[12][10] = {"January", "February", "March", "April",

"May", "June", "July", "August", "September", "October", "November",

"December"};

● Use the placeholder %s in the format string with printf and scanf to handle string
argument.

● The printf function, depends on finding a null character in the character array to mark the
end of the string. (1)

● When we write our own string-building functions, we must be sure that a null character is

inserted at the end of every string. (2)

● This inclusion of the null character is automatic for constant strings.

● The %s placeholder in a printf format string can be used with a minimum field width (3)

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("Topic: %s\n", string_var);

printf ("%8s%3s***\n", "Short", "Strings");

➢ Placing a minus sign prefix on a placeholder’s field width causes left justification of
the value displayed.

● Scanf Function:

● Remember: when we call scanf with a string variable as an argument, we must

remember that array output arguments are always passed to functions by sending the
address of the initial array element. (2)

● Figure 8.2 p. 457

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("%-20s\n", “Name”); (1)

Loading…

 Figure 8.3

➢ scanf skips leading whitespace characters such as blanks, newlines, and tabs.(1)

➢ Starting with the first nonwhitespace character, scanf copies the characters it encounters into

successive memory cells of its character array argument.

➢ When it comes across a whitespace character, scanning stops, scanf places the null character at

the end of the string in its array argument.

INPUT/OUTPUT WITH PRINTF AND
SCANF

• For example, the data could have been entered one value per line with extra whitespace.

• or two values per line:

● But: (1)

●

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH

 1270

 TR

 1800

> MATH 1270

 TR 1800

> MATH1270 TR 1800 (2)

➢ => 17 characters

Figure 8.4

● EXAMPLE 8.1 p.459

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH,1270,TR,1800 (1)

➢ Using the assignment symbol in a declaration of a string variable with initialization,
is the only one in which the operator means to copy the string that is the right operand
into the variable that is the left operand.

➢ Array address is constant and cannot be changed through assignment (1)

➢

➢ a compiler error

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

one_str = "Test string"; /* Does not work */

Invalid target of assignment :

char one_str[20] = "Test String");

● C Library Functions:

➢ Along with assignment functions, the library string.h provides functions for
substring, concatenation, string length, string comparison, and whole line input
operations [See Table 8.1 p.461]

➢ The data type of the value returned by each string-building function is the pointer

type char * .

➢ Reminder: An array is being represented by the address of its initial value.

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

● String Assignment:

➢ Function strcpy copies the string that is its second argument into its first argument

➢ Like a call to scanf with a %s placeholder, a call to strcpy can easily overflow the
space allocated for the destination variable (2)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

strcpy(one_str, "Test String"); (1)

strcpy(one_str, "A very long test string"); (3)

● strncpy that takes an argument specifying the number of characters to copy (call this
number n). (1)

● The effect is the same as the call

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, "Test string", 20); (2)

strcpy(one_str, "Test string"); (3)

● when the source string is longer than n characters, only the first n characters are
copied.

● In general,

● Both strcpy and strncpy mimic the assignment operator in that the value they return
is the string assigned. (3)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, “A very long test string”, 20); (1)

strncpy(dest, source, dest_len - 1); (2)

dest[dest_len - 1] = '\0';

➢ For example, we might want to examine
 the “133" in the string “Comp133"
 or the "Jan" in the string "Jan. 30, 1996”.

➢ Assuming that the prototype of strncpy is (1)

SUBSTRING
S

char *strncpy(char *dest, const char *source, size_t n);

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0';

➢ Figure 8.5

SUBSTRING
S

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0'; (1)

➢ If we wish to use strncpy to extract a middle substring, we must call the function
with the address of the first character to copy.

 Fig. 8.6

SUBSTRING
S

strncpy(result, &s1[5], 2);

result[2] = '\0'; (1)

strcpy(result, &s1[9]); (2)

➢ EXAMPLE 8.2 (1)
➢ 1st Solution (2)

➢ 2nd Solution: (3)

SUBSTRING
S

char *last, *first, *middle;

char pres[20] = "Adams, John Quincy";

char pres_copy[20];

strcpy(pres_copy, pres);

last = strtok(pres_copy, ", ");

first = strtok(NULL, ", ");

middle = strtok(NULL, ", ");

➢ EXAMPLE 8.3, Figure 8.7

 used to display the last
 component.

➢ Instead of: (1)
 Since strcpy returns as its value the
starting address
 of the string it has just stored in elem

➢ The use of CMP_LEN and strlen(compound): the declared size of the array is no
longer the effective size once data have been stored in the array (2)

SUBSTRING
S

printf("%s\n", strcpy(elem, &compound[first]));

strcpy(elem, &compound[first]);

printf("%s\n", elem);

● Concatenation: String library functions strcat and strncat modify their first string
argument by adding all or part of their second string argument at the end of the first
argument.

● Both functions assume that sufficient space is allocated for the first argument to allow

addition of the extra characters.

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 15 EXAMPLE 8.4

char f1[STRSIZ] = "John ", f2[STRSIZ] = "Jacqueline ",

last[STRSIZ] = "Kennedy";

strcat(f1, last); => “John Kennedy” 12 characters + “\0”

strcat(f2, last);=> “Jacqueline Kennedy” 18 characters + “\0” /* invalid overflow of f2 */

//As an alternative to the second call to strcat (2)

strncat(f2, last, 3); /*Jacqueline Ken*/

● Concatenation:
● Take note that the call to strcat modifies the value of s1 even when embedded in other function

calls:

● Both strcat and strncat return as the function value the modified first argument.

● If s1 and s2 are both character strings
declared to hold STRSIZ characters (1)

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

if (strlen(s1) + strlen(s2) < STRSIZ) {

strcat(s1, s2);

} else {

strncat(s1, s2, STRSIZ - strlen(s1) - 1);

s1[STRSIZ - 1] = '\0';

}

printf("%s\n", strncat(f2, last, 3));

● String Length: function strlen returns the length of the value of its string argument, not counting
the '\0' character.

● For example: this code fragment displays the numbers 8 and 18 followed by the phrase Birzeit
University .

● Notice that the blank at the end of the initial value of s1 is counted in s1’s length.
● Two critical questions that must always be in the mind when working with strcpy, strncpy , strcat

, and strncat:
1. Is there enough space in the output parameter for the entire string being created?
2. Does the created string end in '\0' ?

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 20

char s1[STRSIZ] = “Birzeit ",

s2[STRSIZ] = “University";

printf("%d %d\n", strlen(s1), strlen(strcat(s1, s2)));

printf("%s\n", s1);

➢ A type char value is not a valid argument for a function with a corresponding
parameter of type char * (1)

➢ Note the difference internally between the representations of the character 'Q' and the

string "Q" .

● View the string as an array and use assignment to subscripted elements for access. (2)

● Be sure to include the null character at the end of the string.

DISTINCTION BETWEEN CHARACTERS AND
STRINGS

● Although blanks are natural separators to place between numeric data values, viewing
them as delimiters (1) when processing strings may not make sense (2)

➢ The stdio library provides the function gets for interactive input of one complete line

of data

 (3)

SCANNING A FULL LINE

char line[80];

printf("Type in a line of data.\n> ");

gets(line);

Type in a line of data.

> Here is a short sentence.

Loading…

● The \n character representing the <return> or <enter> key pressed at the end of the
sentence is not stored.

● Like scanf , gets can overflow its string argument if the user enters a longer data line
than will fit.

● Function fgets takes three arguments: (1)

1. The output parameter string,
2. A maximum number of characters to store (n) (2)
3. And the file pointer to the data source

● The next to last character may or may not be '\n' :
4. If fgets has room to store the entire line of data it will include '\n' before '\0' .
5. If the line is truncated, no '\n' is stored.

SCANNING A FULL LINE

● fgets stores the string created in its first argument and returns this string argument (i.e.,
its address) as its value (1)

● When a call to fgets encounters the end of file, the value returned is the address 0,

which is considered the null pointer.

● FIGURE 8.8 (2)

SCANNING A FULL LINE

➢ We studied the fact that characters are represented by numeric codes, and we used
relational and equality operators to compare characters.

➢ Unfortunately, these operators cannot be used for comparison of strings. (1)

➢ if str1 and str2 are string variables, the condition
is not checking whether str1 precedes str2 alphabetically (2)

● The standard string library provides the int function strcmp for comparison of two
strings that we will refer to as str1 and str2.

8.4 STRING COMPARISON

letter == 'C' ch1 < ch2

str1 < str2

➢ Function strcmp separates its argument pairs into three categories:

➢ str1[n] < str2[n] if:

8.4 STRING COMPARISON

OR

➢ The string library also provides an analogous function strncmp that bases its
comparison on only the first n characters of the two strings, where n is the third
argument.

➢ if str1 is “cabinet" and str2 is “cable " , the function calls

strncmp(str1, str2, 1) = 0
strncmp(str1, str2, 2) = 0
strncmp(str1, str2, 3) = 0 (1)

➢ strncmp(str1, str2, 4) would return a negative integer (2)

8.4 STRING COMPARISON

➢ EXAMPLE 8.5

➢ EXAMPLE 8.6, FIGURE 8.10

8.4 STRING COMPARISON

Figure 8.12

8.5 ARRAYS OF POINTERS

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to

8.5 ARRAYS OF POINTERS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 08

Strings

Loading…

Chapter Objectives:
1. Understand how a string constant is stored in an array of characters.

2. Learn about the placeholder %s and how it is used in printf and scanf operations.

3. Learn some of the operations that can be performed on strings. (1)

4. Understand how C compares two strings to determine their relative order.

5. Learn some of the operations that can be performed on individual characters using

functions from the library ctype.

6. How to write your own functions that perform some of the basic operations of a text

editor program

● A string: is a grouping of characters, a data structure.

● C implements the string data structure using arrays of type char (1)

● Strings are important in computer science (2)

● Strings play an important role in science as well (3)

● We need strings as the vehicle for communication between the computer system
and the human user.

STRING
S

Loading…

• We have already used string constants in our earlier work with printf and scanf (1)

● The first argument is the string constant "Average = %.2f", a string of 14 characters

● Notice that the blanks in the string are characters.

● A string constant can be associated with a symbolic name using the #define directive
(2)

8.1 STRING BASICS

printf("Average = %.2f", avg);

#define ERROR "*****Error - "

#define STD_NAME "Student Name"

➢ A string in C is implemented as an array, so declaring a string variable is
the same as declaring an array of type char .

➢ The variable string_var will hold strings from 0 to 29 characters long (1)

➢ C permits initialization of string variables using a string constant

DECLARING AND INITIALIZING STRING VARIABLES

char string_var[30];

char str[20] = "Initial value";

➢ str in memory after this declaration with initialization.

➢ str[13] contains the character ‘\0' , the null character that marks the end of

a string. (1)

DECLARING AND INITIALIZING STRING VARIABLES

char str[20] = "Initial value";

char str[20] = “Numbers and strings"; (2)

● Because one string is an array of characters, an array of strings is a two-dimensional
array of characters in which each row is one string.

● We can initialize an array of strings at declaration in the following manner:

ARRAYS OF
STRINGS

#define NUM_PEOPLE 30

#define NAME_LEN 25

. . .

char names[NUM_PEOPLE][NAME_LEN]; (1)

char month[12][10] = {"January", "February", "March", "April",

"May", "June", "July", "August", "September", "October", "November",

"December"};

● Use the placeholder %s in the format string with printf and scanf to handle string
argument.

● The printf function, depends on finding a null character in the character array to mark the
end of the string. (1)

● When we write our own string-building functions, we must be sure that a null character is

inserted at the end of every string. (2)

● This inclusion of the null character is automatic for constant strings.

● The %s placeholder in a printf format string can be used with a minimum field width (3)

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("Topic: %s\n", string_var);

printf ("%8s%3s***\n", "Short", "Strings");

➢ Placing a minus sign prefix on a placeholder’s field width causes left justification of
the value displayed.

● Scanf Function:

● Remember: when we call scanf with a string variable as an argument, we must

remember that array output arguments are always passed to functions by sending the
address of the initial array element. (2)

● Figure 8.2 p. 457

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("%-20s\n", “Name”); (1)

Loading…

 Figure 8.3

➢ scanf skips leading whitespace characters such as blanks, newlines, and tabs.(1)

➢ Starting with the first nonwhitespace character, scanf copies the characters it encounters into

successive memory cells of its character array argument.

➢ When it comes across a whitespace character, scanning stops, scanf places the null character at

the end of the string in its array argument.

INPUT/OUTPUT WITH PRINTF AND
SCANF

• For example, the data could have been entered one value per line with extra whitespace.

• or two values per line:

● But: (1)

●

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH

 1270

 TR

 1800

> MATH 1270

 TR 1800

> MATH1270 TR 1800 (2)

➢ => 17 characters

Figure 8.4

● EXAMPLE 8.1 p.459

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH,1270,TR,1800 (1)

➢ Using the assignment symbol in a declaration of a string variable with initialization,
is the only one in which the operator means to copy the string that is the right operand
into the variable that is the left operand.

➢ Array address is constant and cannot be changed through assignment (1)

➢

➢ a compiler error

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

one_str = "Test string"; /* Does not work */

Invalid target of assignment :

char one_str[20] = "Test String");

● C Library Functions:

➢ Along with assignment functions, the library string.h provides functions for
substring, concatenation, string length, string comparison, and whole line input
operations [See Table 8.1 p.461]

➢ The data type of the value returned by each string-building function is the pointer

type char * .

➢ Reminder: An array is being represented by the address of its initial value.

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

● String Assignment:

➢ Function strcpy copies the string that is its second argument into its first argument

➢ Like a call to scanf with a %s placeholder, a call to strcpy can easily overflow the
space allocated for the destination variable (2)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

strcpy(one_str, "Test String"); (1)

strcpy(one_str, "A very long test string"); (3)

● strncpy that takes an argument specifying the number of characters to copy (call this
number n). (1)

● The effect is the same as the call

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, "Test string", 20); (2)

strcpy(one_str, "Test string"); (3)

● when the source string is longer than n characters, only the first n characters are
copied.

● In general,

● Both strcpy and strncpy mimic the assignment operator in that the value they return
is the string assigned. (3)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, “A very long test string”, 20); (1)

strncpy(dest, source, dest_len - 1); (2)

dest[dest_len - 1] = '\0';

➢ For example, we might want to examine
 the “133" in the string “Comp133"
 or the "Jan" in the string "Jan. 30, 1996”.

➢ Assuming that the prototype of strncpy is (1)

SUBSTRING
S

char *strncpy(char *dest, const char *source, size_t n);

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0';

➢ Figure 8.5

SUBSTRING
S

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0'; (1)

➢ If we wish to use strncpy to extract a middle substring, we must call the function
with the address of the first character to copy.

 Fig. 8.6

SUBSTRING
S

strncpy(result, &s1[5], 2);

result[2] = '\0'; (1)

strcpy(result, &s1[9]); (2)

➢ EXAMPLE 8.2 (1)
➢ 1st Solution (2)

➢ 2nd Solution: (3)

SUBSTRING
S

char *last, *first, *middle;

char pres[20] = "Adams, John Quincy";

char pres_copy[20];

strcpy(pres_copy, pres);

last = strtok(pres_copy, ", ");

first = strtok(NULL, ", ");

middle = strtok(NULL, ", ");

➢ EXAMPLE 8.3, Figure 8.7

 used to display the last
 component.

➢ Instead of: (1)
 Since strcpy returns as its value the
starting address
 of the string it has just stored in elem

➢ The use of CMP_LEN and strlen(compound): the declared size of the array is no
longer the effective size once data have been stored in the array (2)

SUBSTRING
S

printf("%s\n", strcpy(elem, &compound[first]));

strcpy(elem, &compound[first]);

printf("%s\n", elem);

● Concatenation: String library functions strcat and strncat modify their first string
argument by adding all or part of their second string argument at the end of the first
argument.

● Both functions assume that sufficient space is allocated for the first argument to allow

addition of the extra characters.

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 15 EXAMPLE 8.4

char f1[STRSIZ] = "John ", f2[STRSIZ] = "Jacqueline ",

last[STRSIZ] = "Kennedy";

strcat(f1, last); => “John Kennedy” 12 characters + “\0”

strcat(f2, last);=> “Jacqueline Kennedy” 18 characters + “\0” /* invalid overflow of f2 */

//As an alternative to the second call to strcat (2)

strncat(f2, last, 3); /*Jacqueline Ken*/

● Concatenation:
● Take note that the call to strcat modifies the value of s1 even when embedded in other function

calls:

● Both strcat and strncat return as the function value the modified first argument.

● If s1 and s2 are both character strings
declared to hold STRSIZ characters (1)

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

if (strlen(s1) + strlen(s2) < STRSIZ) {

strcat(s1, s2);

} else {

strncat(s1, s2, STRSIZ - strlen(s1) - 1);

s1[STRSIZ - 1] = '\0';

}

printf("%s\n", strncat(f2, last, 3));

● String Length: function strlen returns the length of the value of its string argument, not counting
the '\0' character.

● For example: this code fragment displays the numbers 8 and 18 followed by the phrase Birzeit
University .

● Notice that the blank at the end of the initial value of s1 is counted in s1’s length.
● Two critical questions that must always be in the mind when working with strcpy, strncpy , strcat

, and strncat:
1. Is there enough space in the output parameter for the entire string being created?
2. Does the created string end in '\0' ?

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 20

char s1[STRSIZ] = “Birzeit ",

s2[STRSIZ] = “University";

printf("%d %d\n", strlen(s1), strlen(strcat(s1, s2)));

printf("%s\n", s1);

➢ A type char value is not a valid argument for a function with a corresponding
parameter of type char * (1)

➢ Note the difference internally between the representations of the character 'Q' and the

string "Q" .

● View the string as an array and use assignment to subscripted elements for access. (2)

● Be sure to include the null character at the end of the string.

DISTINCTION BETWEEN CHARACTERS AND
STRINGS

● Although blanks are natural separators to place between numeric data values, viewing
them as delimiters (1) when processing strings may not make sense (2)

➢ The stdio library provides the function gets for interactive input of one complete line

of data

 (3)

SCANNING A FULL LINE

char line[80];

printf("Type in a line of data.\n> ");

gets(line);

Type in a line of data.

> Here is a short sentence.

Loading…

● The \n character representing the <return> or <enter> key pressed at the end of the
sentence is not stored.

● Like scanf , gets can overflow its string argument if the user enters a longer data line
than will fit.

● Function fgets takes three arguments: (1)

1. The output parameter string,
2. A maximum number of characters to store (n) (2)
3. And the file pointer to the data source

● The next to last character may or may not be '\n' :
4. If fgets has room to store the entire line of data it will include '\n' before '\0' .
5. If the line is truncated, no '\n' is stored.

SCANNING A FULL LINE

● fgets stores the string created in its first argument and returns this string argument (i.e.,
its address) as its value (1)

● When a call to fgets encounters the end of file, the value returned is the address 0,

which is considered the null pointer.

● FIGURE 8.8 (2)

SCANNING A FULL LINE

➢ We studied the fact that characters are represented by numeric codes, and we used
relational and equality operators to compare characters.

➢ Unfortunately, these operators cannot be used for comparison of strings. (1)

➢ if str1 and str2 are string variables, the condition
is not checking whether str1 precedes str2 alphabetically (2)

● The standard string library provides the int function strcmp for comparison of two
strings that we will refer to as str1 and str2.

8.4 STRING COMPARISON

letter == 'C' ch1 < ch2

str1 < str2

➢ Function strcmp separates its argument pairs into three categories:

➢ str1[n] < str2[n] if:

8.4 STRING COMPARISON

OR

➢ The string library also provides an analogous function strncmp that bases its
comparison on only the first n characters of the two strings, where n is the third
argument.

➢ if str1 is “cabinet" and str2 is “cable " , the function calls

strncmp(str1, str2, 1) = 0
strncmp(str1, str2, 2) = 0
strncmp(str1, str2, 3) = 0 (1)

➢ strncmp(str1, str2, 4) would return a negative integer (2)

8.4 STRING COMPARISON

➢ EXAMPLE 8.5

➢ EXAMPLE 8.6, FIGURE 8.10

8.4 STRING COMPARISON

Figure 8.12

8.5 ARRAYS OF POINTERS

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to

8.5 ARRAYS OF POINTERS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 08

Strings

Loading…

Chapter Objectives:
1. Understand how a string constant is stored in an array of characters.

2. Learn about the placeholder %s and how it is used in printf and scanf operations.

3. Learn some of the operations that can be performed on strings. (1)

4. Understand how C compares two strings to determine their relative order.

5. Learn some of the operations that can be performed on individual characters using

functions from the library ctype.

6. How to write your own functions that perform some of the basic operations of a text

editor program

● A string: is a grouping of characters, a data structure.

● C implements the string data structure using arrays of type char (1)

● Strings are important in computer science (2)

● Strings play an important role in science as well (3)

● We need strings as the vehicle for communication between the computer system
and the human user.

STRING
S

Loading…

• We have already used string constants in our earlier work with printf and scanf (1)

● The first argument is the string constant "Average = %.2f", a string of 14 characters

● Notice that the blanks in the string are characters.

● A string constant can be associated with a symbolic name using the #define directive
(2)

8.1 STRING BASICS

printf("Average = %.2f", avg);

#define ERROR "*****Error - "

#define STD_NAME "Student Name"

➢ A string in C is implemented as an array, so declaring a string variable is
the same as declaring an array of type char .

➢ The variable string_var will hold strings from 0 to 29 characters long (1)

➢ C permits initialization of string variables using a string constant

DECLARING AND INITIALIZING STRING VARIABLES

char string_var[30];

char str[20] = "Initial value";

➢ str in memory after this declaration with initialization.

➢ str[13] contains the character ‘\0' , the null character that marks the end of

a string. (1)

DECLARING AND INITIALIZING STRING VARIABLES

char str[20] = "Initial value";

char str[20] = “Numbers and strings"; (2)

● Because one string is an array of characters, an array of strings is a two-dimensional
array of characters in which each row is one string.

● We can initialize an array of strings at declaration in the following manner:

ARRAYS OF
STRINGS

#define NUM_PEOPLE 30

#define NAME_LEN 25

. . .

char names[NUM_PEOPLE][NAME_LEN]; (1)

char month[12][10] = {"January", "February", "March", "April",

"May", "June", "July", "August", "September", "October", "November",

"December"};

● Use the placeholder %s in the format string with printf and scanf to handle string
argument.

● The printf function, depends on finding a null character in the character array to mark the
end of the string. (1)

● When we write our own string-building functions, we must be sure that a null character is

inserted at the end of every string. (2)

● This inclusion of the null character is automatic for constant strings.

● The %s placeholder in a printf format string can be used with a minimum field width (3)

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("Topic: %s\n", string_var);

printf ("%8s%3s***\n", "Short", "Strings");

➢ Placing a minus sign prefix on a placeholder’s field width causes left justification of
the value displayed.

● Scanf Function:

● Remember: when we call scanf with a string variable as an argument, we must

remember that array output arguments are always passed to functions by sending the
address of the initial array element. (2)

● Figure 8.2 p. 457

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("%-20s\n", “Name”); (1)

Loading…

 Figure 8.3

➢ scanf skips leading whitespace characters such as blanks, newlines, and tabs.(1)

➢ Starting with the first nonwhitespace character, scanf copies the characters it encounters into

successive memory cells of its character array argument.

➢ When it comes across a whitespace character, scanning stops, scanf places the null character at

the end of the string in its array argument.

INPUT/OUTPUT WITH PRINTF AND
SCANF

• For example, the data could have been entered one value per line with extra whitespace.

• or two values per line:

● But: (1)

●

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH

 1270

 TR

 1800

> MATH 1270

 TR 1800

> MATH1270 TR 1800 (2)

➢ => 17 characters

Figure 8.4

● EXAMPLE 8.1 p.459

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH,1270,TR,1800 (1)

➢ Using the assignment symbol in a declaration of a string variable with initialization,
is the only one in which the operator means to copy the string that is the right operand
into the variable that is the left operand.

➢ Array address is constant and cannot be changed through assignment (1)

➢

➢ a compiler error

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

one_str = "Test string"; /* Does not work */

Invalid target of assignment :

char one_str[20] = "Test String");

● C Library Functions:

➢ Along with assignment functions, the library string.h provides functions for
substring, concatenation, string length, string comparison, and whole line input
operations [See Table 8.1 p.461]

➢ The data type of the value returned by each string-building function is the pointer

type char * .

➢ Reminder: An array is being represented by the address of its initial value.

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

● String Assignment:

➢ Function strcpy copies the string that is its second argument into its first argument

➢ Like a call to scanf with a %s placeholder, a call to strcpy can easily overflow the
space allocated for the destination variable (2)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

strcpy(one_str, "Test String"); (1)

strcpy(one_str, "A very long test string"); (3)

● strncpy that takes an argument specifying the number of characters to copy (call this
number n). (1)

● The effect is the same as the call

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, "Test string", 20); (2)

strcpy(one_str, "Test string"); (3)

● when the source string is longer than n characters, only the first n characters are
copied.

● In general,

● Both strcpy and strncpy mimic the assignment operator in that the value they return
is the string assigned. (3)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, “A very long test string”, 20); (1)

strncpy(dest, source, dest_len - 1); (2)

dest[dest_len - 1] = '\0';

➢ For example, we might want to examine
 the “133" in the string “Comp133"
 or the "Jan" in the string "Jan. 30, 1996”.

➢ Assuming that the prototype of strncpy is (1)

SUBSTRING
S

char *strncpy(char *dest, const char *source, size_t n);

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0';

➢ Figure 8.5

SUBSTRING
S

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0'; (1)

➢ If we wish to use strncpy to extract a middle substring, we must call the function
with the address of the first character to copy.

 Fig. 8.6

SUBSTRING
S

strncpy(result, &s1[5], 2);

result[2] = '\0'; (1)

strcpy(result, &s1[9]); (2)

➢ EXAMPLE 8.2 (1)
➢ 1st Solution (2)

➢ 2nd Solution: (3)

SUBSTRING
S

char *last, *first, *middle;

char pres[20] = "Adams, John Quincy";

char pres_copy[20];

strcpy(pres_copy, pres);

last = strtok(pres_copy, ", ");

first = strtok(NULL, ", ");

middle = strtok(NULL, ", ");

➢ EXAMPLE 8.3, Figure 8.7

 used to display the last
 component.

➢ Instead of: (1)
 Since strcpy returns as its value the
starting address
 of the string it has just stored in elem

➢ The use of CMP_LEN and strlen(compound): the declared size of the array is no
longer the effective size once data have been stored in the array (2)

SUBSTRING
S

printf("%s\n", strcpy(elem, &compound[first]));

strcpy(elem, &compound[first]);

printf("%s\n", elem);

● Concatenation: String library functions strcat and strncat modify their first string
argument by adding all or part of their second string argument at the end of the first
argument.

● Both functions assume that sufficient space is allocated for the first argument to allow

addition of the extra characters.

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 15 EXAMPLE 8.4

char f1[STRSIZ] = "John ", f2[STRSIZ] = "Jacqueline ",

last[STRSIZ] = "Kennedy";

strcat(f1, last); => “John Kennedy” 12 characters + “\0”

strcat(f2, last);=> “Jacqueline Kennedy” 18 characters + “\0” /* invalid overflow of f2 */

//As an alternative to the second call to strcat (2)

strncat(f2, last, 3); /*Jacqueline Ken*/

● Concatenation:
● Take note that the call to strcat modifies the value of s1 even when embedded in other function

calls:

● Both strcat and strncat return as the function value the modified first argument.

● If s1 and s2 are both character strings
declared to hold STRSIZ characters (1)

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

if (strlen(s1) + strlen(s2) < STRSIZ) {

strcat(s1, s2);

} else {

strncat(s1, s2, STRSIZ - strlen(s1) - 1);

s1[STRSIZ - 1] = '\0';

}

printf("%s\n", strncat(f2, last, 3));

● String Length: function strlen returns the length of the value of its string argument, not counting
the '\0' character.

● For example: this code fragment displays the numbers 8 and 18 followed by the phrase Birzeit
University .

● Notice that the blank at the end of the initial value of s1 is counted in s1’s length.
● Two critical questions that must always be in the mind when working with strcpy, strncpy , strcat

, and strncat:
1. Is there enough space in the output parameter for the entire string being created?
2. Does the created string end in '\0' ?

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 20

char s1[STRSIZ] = “Birzeit ",

s2[STRSIZ] = “University";

printf("%d %d\n", strlen(s1), strlen(strcat(s1, s2)));

printf("%s\n", s1);

➢ A type char value is not a valid argument for a function with a corresponding
parameter of type char * (1)

➢ Note the difference internally between the representations of the character 'Q' and the

string "Q" .

● View the string as an array and use assignment to subscripted elements for access. (2)

● Be sure to include the null character at the end of the string.

DISTINCTION BETWEEN CHARACTERS AND
STRINGS

● Although blanks are natural separators to place between numeric data values, viewing
them as delimiters (1) when processing strings may not make sense (2)

➢ The stdio library provides the function gets for interactive input of one complete line

of data

 (3)

SCANNING A FULL LINE

char line[80];

printf("Type in a line of data.\n> ");

gets(line);

Type in a line of data.

> Here is a short sentence.

Loading…

● The \n character representing the <return> or <enter> key pressed at the end of the
sentence is not stored.

● Like scanf , gets can overflow its string argument if the user enters a longer data line
than will fit.

● Function fgets takes three arguments: (1)

1. The output parameter string,
2. A maximum number of characters to store (n) (2)
3. And the file pointer to the data source

● The next to last character may or may not be '\n' :
4. If fgets has room to store the entire line of data it will include '\n' before '\0' .
5. If the line is truncated, no '\n' is stored.

SCANNING A FULL LINE

● fgets stores the string created in its first argument and returns this string argument (i.e.,
its address) as its value (1)

● When a call to fgets encounters the end of file, the value returned is the address 0,

which is considered the null pointer.

● FIGURE 8.8 (2)

SCANNING A FULL LINE

➢ We studied the fact that characters are represented by numeric codes, and we used
relational and equality operators to compare characters.

➢ Unfortunately, these operators cannot be used for comparison of strings. (1)

➢ if str1 and str2 are string variables, the condition
is not checking whether str1 precedes str2 alphabetically (2)

● The standard string library provides the int function strcmp for comparison of two
strings that we will refer to as str1 and str2.

8.4 STRING COMPARISON

letter == 'C' ch1 < ch2

str1 < str2

➢ Function strcmp separates its argument pairs into three categories:

➢ str1[n] < str2[n] if:

8.4 STRING COMPARISON

OR

➢ The string library also provides an analogous function strncmp that bases its
comparison on only the first n characters of the two strings, where n is the third
argument.

➢ if str1 is “cabinet" and str2 is “cable " , the function calls

strncmp(str1, str2, 1) = 0
strncmp(str1, str2, 2) = 0
strncmp(str1, str2, 3) = 0 (1)

➢ strncmp(str1, str2, 4) would return a negative integer (2)

8.4 STRING COMPARISON

➢ EXAMPLE 8.5

➢ EXAMPLE 8.6, FIGURE 8.10

8.4 STRING COMPARISON

Figure 8.12

8.5 ARRAYS OF POINTERS

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to

8.5 ARRAYS OF POINTERS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 08

Strings

Loading…

Chapter Objectives:
1. Understand how a string constant is stored in an array of characters.

2. Learn about the placeholder %s and how it is used in printf and scanf operations.

3. Learn some of the operations that can be performed on strings. (1)

4. Understand how C compares two strings to determine their relative order.

5. Learn some of the operations that can be performed on individual characters using

functions from the library ctype.

6. How to write your own functions that perform some of the basic operations of a text

editor program

● A string: is a grouping of characters, a data structure.

● C implements the string data structure using arrays of type char (1)

● Strings are important in computer science (2)

● Strings play an important role in science as well (3)

● We need strings as the vehicle for communication between the computer system
and the human user.

STRING
S

Loading…

• We have already used string constants in our earlier work with printf and scanf (1)

● The first argument is the string constant "Average = %.2f", a string of 14 characters

● Notice that the blanks in the string are characters.

● A string constant can be associated with a symbolic name using the #define directive
(2)

8.1 STRING BASICS

printf("Average = %.2f", avg);

#define ERROR "*****Error - "

#define STD_NAME "Student Name"

➢ A string in C is implemented as an array, so declaring a string variable is
the same as declaring an array of type char .

➢ The variable string_var will hold strings from 0 to 29 characters long (1)

➢ C permits initialization of string variables using a string constant

DECLARING AND INITIALIZING STRING VARIABLES

char string_var[30];

char str[20] = "Initial value";

➢ str in memory after this declaration with initialization.

➢ str[13] contains the character ‘\0' , the null character that marks the end of

a string. (1)

DECLARING AND INITIALIZING STRING VARIABLES

char str[20] = "Initial value";

char str[20] = “Numbers and strings"; (2)

● Because one string is an array of characters, an array of strings is a two-dimensional
array of characters in which each row is one string.

● We can initialize an array of strings at declaration in the following manner:

ARRAYS OF
STRINGS

#define NUM_PEOPLE 30

#define NAME_LEN 25

. . .

char names[NUM_PEOPLE][NAME_LEN]; (1)

char month[12][10] = {"January", "February", "March", "April",

"May", "June", "July", "August", "September", "October", "November",

"December"};

● Use the placeholder %s in the format string with printf and scanf to handle string
argument.

● The printf function, depends on finding a null character in the character array to mark the
end of the string. (1)

● When we write our own string-building functions, we must be sure that a null character is

inserted at the end of every string. (2)

● This inclusion of the null character is automatic for constant strings.

● The %s placeholder in a printf format string can be used with a minimum field width (3)

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("Topic: %s\n", string_var);

printf ("%8s%3s***\n", "Short", "Strings");

➢ Placing a minus sign prefix on a placeholder’s field width causes left justification of
the value displayed.

● Scanf Function:

● Remember: when we call scanf with a string variable as an argument, we must

remember that array output arguments are always passed to functions by sending the
address of the initial array element. (2)

● Figure 8.2 p. 457

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("%-20s\n", “Name”); (1)

Loading…

 Figure 8.3

➢ scanf skips leading whitespace characters such as blanks, newlines, and tabs.(1)

➢ Starting with the first nonwhitespace character, scanf copies the characters it encounters into

successive memory cells of its character array argument.

➢ When it comes across a whitespace character, scanning stops, scanf places the null character at

the end of the string in its array argument.

INPUT/OUTPUT WITH PRINTF AND
SCANF

• For example, the data could have been entered one value per line with extra whitespace.

• or two values per line:

● But: (1)

●

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH

 1270

 TR

 1800

> MATH 1270

 TR 1800

> MATH1270 TR 1800 (2)

➢ => 17 characters

Figure 8.4

● EXAMPLE 8.1 p.459

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH,1270,TR,1800 (1)

➢ Using the assignment symbol in a declaration of a string variable with initialization,
is the only one in which the operator means to copy the string that is the right operand
into the variable that is the left operand.

➢ Array address is constant and cannot be changed through assignment (1)

➢

➢ a compiler error

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

one_str = "Test string"; /* Does not work */

Invalid target of assignment :

char one_str[20] = "Test String");

● C Library Functions:

➢ Along with assignment functions, the library string.h provides functions for
substring, concatenation, string length, string comparison, and whole line input
operations [See Table 8.1 p.461]

➢ The data type of the value returned by each string-building function is the pointer

type char * .

➢ Reminder: An array is being represented by the address of its initial value.

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

● String Assignment:

➢ Function strcpy copies the string that is its second argument into its first argument

➢ Like a call to scanf with a %s placeholder, a call to strcpy can easily overflow the
space allocated for the destination variable (2)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

strcpy(one_str, "Test String"); (1)

strcpy(one_str, "A very long test string"); (3)

● strncpy that takes an argument specifying the number of characters to copy (call this
number n). (1)

● The effect is the same as the call

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, "Test string", 20); (2)

strcpy(one_str, "Test string"); (3)

● when the source string is longer than n characters, only the first n characters are
copied.

● In general,

● Both strcpy and strncpy mimic the assignment operator in that the value they return
is the string assigned. (3)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, “A very long test string”, 20); (1)

strncpy(dest, source, dest_len - 1); (2)

dest[dest_len - 1] = '\0';

➢ For example, we might want to examine
 the “133" in the string “Comp133"
 or the "Jan" in the string "Jan. 30, 1996”.

➢ Assuming that the prototype of strncpy is (1)

SUBSTRING
S

char *strncpy(char *dest, const char *source, size_t n);

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0';

➢ Figure 8.5

SUBSTRING
S

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0'; (1)

➢ If we wish to use strncpy to extract a middle substring, we must call the function
with the address of the first character to copy.

 Fig. 8.6

SUBSTRING
S

strncpy(result, &s1[5], 2);

result[2] = '\0'; (1)

strcpy(result, &s1[9]); (2)

➢ EXAMPLE 8.2 (1)
➢ 1st Solution (2)

➢ 2nd Solution: (3)

SUBSTRING
S

char *last, *first, *middle;

char pres[20] = "Adams, John Quincy";

char pres_copy[20];

strcpy(pres_copy, pres);

last = strtok(pres_copy, ", ");

first = strtok(NULL, ", ");

middle = strtok(NULL, ", ");

➢ EXAMPLE 8.3, Figure 8.7

 used to display the last
 component.

➢ Instead of: (1)
 Since strcpy returns as its value the
starting address
 of the string it has just stored in elem

➢ The use of CMP_LEN and strlen(compound): the declared size of the array is no
longer the effective size once data have been stored in the array (2)

SUBSTRING
S

printf("%s\n", strcpy(elem, &compound[first]));

strcpy(elem, &compound[first]);

printf("%s\n", elem);

● Concatenation: String library functions strcat and strncat modify their first string
argument by adding all or part of their second string argument at the end of the first
argument.

● Both functions assume that sufficient space is allocated for the first argument to allow

addition of the extra characters.

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 15 EXAMPLE 8.4

char f1[STRSIZ] = "John ", f2[STRSIZ] = "Jacqueline ",

last[STRSIZ] = "Kennedy";

strcat(f1, last); => “John Kennedy” 12 characters + “\0”

strcat(f2, last);=> “Jacqueline Kennedy” 18 characters + “\0” /* invalid overflow of f2 */

//As an alternative to the second call to strcat (2)

strncat(f2, last, 3); /*Jacqueline Ken*/

● Concatenation:
● Take note that the call to strcat modifies the value of s1 even when embedded in other function

calls:

● Both strcat and strncat return as the function value the modified first argument.

● If s1 and s2 are both character strings
declared to hold STRSIZ characters (1)

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

if (strlen(s1) + strlen(s2) < STRSIZ) {

strcat(s1, s2);

} else {

strncat(s1, s2, STRSIZ - strlen(s1) - 1);

s1[STRSIZ - 1] = '\0';

}

printf("%s\n", strncat(f2, last, 3));

● String Length: function strlen returns the length of the value of its string argument, not counting
the '\0' character.

● For example: this code fragment displays the numbers 8 and 18 followed by the phrase Birzeit
University .

● Notice that the blank at the end of the initial value of s1 is counted in s1’s length.
● Two critical questions that must always be in the mind when working with strcpy, strncpy , strcat

, and strncat:
1. Is there enough space in the output parameter for the entire string being created?
2. Does the created string end in '\0' ?

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 20

char s1[STRSIZ] = “Birzeit ",

s2[STRSIZ] = “University";

printf("%d %d\n", strlen(s1), strlen(strcat(s1, s2)));

printf("%s\n", s1);

➢ A type char value is not a valid argument for a function with a corresponding
parameter of type char * (1)

➢ Note the difference internally between the representations of the character 'Q' and the

string "Q" .

● View the string as an array and use assignment to subscripted elements for access. (2)

● Be sure to include the null character at the end of the string.

DISTINCTION BETWEEN CHARACTERS AND
STRINGS

● Although blanks are natural separators to place between numeric data values, viewing
them as delimiters (1) when processing strings may not make sense (2)

➢ The stdio library provides the function gets for interactive input of one complete line

of data

 (3)

SCANNING A FULL LINE

char line[80];

printf("Type in a line of data.\n> ");

gets(line);

Type in a line of data.

> Here is a short sentence.

Loading…

● The \n character representing the <return> or <enter> key pressed at the end of the
sentence is not stored.

● Like scanf , gets can overflow its string argument if the user enters a longer data line
than will fit.

● Function fgets takes three arguments: (1)

1. The output parameter string,
2. A maximum number of characters to store (n) (2)
3. And the file pointer to the data source

● The next to last character may or may not be '\n' :
4. If fgets has room to store the entire line of data it will include '\n' before '\0' .
5. If the line is truncated, no '\n' is stored.

SCANNING A FULL LINE

● fgets stores the string created in its first argument and returns this string argument (i.e.,
its address) as its value (1)

● When a call to fgets encounters the end of file, the value returned is the address 0,

which is considered the null pointer.

● FIGURE 8.8 (2)

SCANNING A FULL LINE

➢ We studied the fact that characters are represented by numeric codes, and we used
relational and equality operators to compare characters.

➢ Unfortunately, these operators cannot be used for comparison of strings. (1)

➢ if str1 and str2 are string variables, the condition
is not checking whether str1 precedes str2 alphabetically (2)

● The standard string library provides the int function strcmp for comparison of two
strings that we will refer to as str1 and str2.

8.4 STRING COMPARISON

letter == 'C' ch1 < ch2

str1 < str2

➢ Function strcmp separates its argument pairs into three categories:

➢ str1[n] < str2[n] if:

8.4 STRING COMPARISON

OR

➢ The string library also provides an analogous function strncmp that bases its
comparison on only the first n characters of the two strings, where n is the third
argument.

➢ if str1 is “cabinet" and str2 is “cable " , the function calls

strncmp(str1, str2, 1) = 0
strncmp(str1, str2, 2) = 0
strncmp(str1, str2, 3) = 0 (1)

➢ strncmp(str1, str2, 4) would return a negative integer (2)

8.4 STRING COMPARISON

➢ EXAMPLE 8.5

➢ EXAMPLE 8.6, FIGURE 8.10

8.4 STRING COMPARISON

Figure 8.12

8.5 ARRAYS OF POINTERS

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to

8.5 ARRAYS OF POINTERS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 08

Strings

Loading…

Chapter Objectives:
1. Understand how a string constant is stored in an array of characters.

2. Learn about the placeholder %s and how it is used in printf and scanf operations.

3. Learn some of the operations that can be performed on strings. (1)

4. Understand how C compares two strings to determine their relative order.

5. Learn some of the operations that can be performed on individual characters using

functions from the library ctype.

6. How to write your own functions that perform some of the basic operations of a text

editor program

● A string: is a grouping of characters, a data structure.

● C implements the string data structure using arrays of type char (1)

● Strings are important in computer science (2)

● Strings play an important role in science as well (3)

● We need strings as the vehicle for communication between the computer system
and the human user.

STRING
S

Loading…

• We have already used string constants in our earlier work with printf and scanf (1)

● The first argument is the string constant "Average = %.2f", a string of 14 characters

● Notice that the blanks in the string are characters.

● A string constant can be associated with a symbolic name using the #define directive
(2)

8.1 STRING BASICS

printf("Average = %.2f", avg);

#define ERROR "*****Error - "

#define STD_NAME "Student Name"

➢ A string in C is implemented as an array, so declaring a string variable is
the same as declaring an array of type char .

➢ The variable string_var will hold strings from 0 to 29 characters long (1)

➢ C permits initialization of string variables using a string constant

DECLARING AND INITIALIZING STRING VARIABLES

char string_var[30];

char str[20] = "Initial value";

➢ str in memory after this declaration with initialization.

➢ str[13] contains the character ‘\0' , the null character that marks the end of

a string. (1)

DECLARING AND INITIALIZING STRING VARIABLES

char str[20] = "Initial value";

char str[20] = “Numbers and strings"; (2)

● Because one string is an array of characters, an array of strings is a two-dimensional
array of characters in which each row is one string.

● We can initialize an array of strings at declaration in the following manner:

ARRAYS OF
STRINGS

#define NUM_PEOPLE 30

#define NAME_LEN 25

. . .

char names[NUM_PEOPLE][NAME_LEN]; (1)

char month[12][10] = {"January", "February", "March", "April",

"May", "June", "July", "August", "September", "October", "November",

"December"};

● Use the placeholder %s in the format string with printf and scanf to handle string
argument.

● The printf function, depends on finding a null character in the character array to mark the
end of the string. (1)

● When we write our own string-building functions, we must be sure that a null character is

inserted at the end of every string. (2)

● This inclusion of the null character is automatic for constant strings.

● The %s placeholder in a printf format string can be used with a minimum field width (3)

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("Topic: %s\n", string_var);

printf ("%8s%3s***\n", "Short", "Strings");

➢ Placing a minus sign prefix on a placeholder’s field width causes left justification of
the value displayed.

● Scanf Function:

● Remember: when we call scanf with a string variable as an argument, we must

remember that array output arguments are always passed to functions by sending the
address of the initial array element. (2)

● Figure 8.2 p. 457

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("%-20s\n", “Name”); (1)

Loading…

 Figure 8.3

➢ scanf skips leading whitespace characters such as blanks, newlines, and tabs.(1)

➢ Starting with the first nonwhitespace character, scanf copies the characters it encounters into

successive memory cells of its character array argument.

➢ When it comes across a whitespace character, scanning stops, scanf places the null character at

the end of the string in its array argument.

INPUT/OUTPUT WITH PRINTF AND
SCANF

• For example, the data could have been entered one value per line with extra whitespace.

• or two values per line:

● But: (1)

●

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH

 1270

 TR

 1800

> MATH 1270

 TR 1800

> MATH1270 TR 1800 (2)

➢ => 17 characters

Figure 8.4

● EXAMPLE 8.1 p.459

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH,1270,TR,1800 (1)

➢ Using the assignment symbol in a declaration of a string variable with initialization,
is the only one in which the operator means to copy the string that is the right operand
into the variable that is the left operand.

➢ Array address is constant and cannot be changed through assignment (1)

➢

➢ a compiler error

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

one_str = "Test string"; /* Does not work */

Invalid target of assignment :

char one_str[20] = "Test String");

● C Library Functions:

➢ Along with assignment functions, the library string.h provides functions for
substring, concatenation, string length, string comparison, and whole line input
operations [See Table 8.1 p.461]

➢ The data type of the value returned by each string-building function is the pointer

type char * .

➢ Reminder: An array is being represented by the address of its initial value.

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

● String Assignment:

➢ Function strcpy copies the string that is its second argument into its first argument

➢ Like a call to scanf with a %s placeholder, a call to strcpy can easily overflow the
space allocated for the destination variable (2)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

strcpy(one_str, "Test String"); (1)

strcpy(one_str, "A very long test string"); (3)

● strncpy that takes an argument specifying the number of characters to copy (call this
number n). (1)

● The effect is the same as the call

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, "Test string", 20); (2)

strcpy(one_str, "Test string"); (3)

● when the source string is longer than n characters, only the first n characters are
copied.

● In general,

● Both strcpy and strncpy mimic the assignment operator in that the value they return
is the string assigned. (3)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, “A very long test string”, 20); (1)

strncpy(dest, source, dest_len - 1); (2)

dest[dest_len - 1] = '\0';

➢ For example, we might want to examine
 the “133" in the string “Comp133"
 or the "Jan" in the string "Jan. 30, 1996”.

➢ Assuming that the prototype of strncpy is (1)

SUBSTRING
S

char *strncpy(char *dest, const char *source, size_t n);

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0';

➢ Figure 8.5

SUBSTRING
S

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0'; (1)

➢ If we wish to use strncpy to extract a middle substring, we must call the function
with the address of the first character to copy.

 Fig. 8.6

SUBSTRING
S

strncpy(result, &s1[5], 2);

result[2] = '\0'; (1)

strcpy(result, &s1[9]); (2)

➢ EXAMPLE 8.2 (1)
➢ 1st Solution (2)

➢ 2nd Solution: (3)

SUBSTRING
S

char *last, *first, *middle;

char pres[20] = "Adams, John Quincy";

char pres_copy[20];

strcpy(pres_copy, pres);

last = strtok(pres_copy, ", ");

first = strtok(NULL, ", ");

middle = strtok(NULL, ", ");

➢ EXAMPLE 8.3, Figure 8.7

 used to display the last
 component.

➢ Instead of: (1)
 Since strcpy returns as its value the
starting address
 of the string it has just stored in elem

➢ The use of CMP_LEN and strlen(compound): the declared size of the array is no
longer the effective size once data have been stored in the array (2)

SUBSTRING
S

printf("%s\n", strcpy(elem, &compound[first]));

strcpy(elem, &compound[first]);

printf("%s\n", elem);

● Concatenation: String library functions strcat and strncat modify their first string
argument by adding all or part of their second string argument at the end of the first
argument.

● Both functions assume that sufficient space is allocated for the first argument to allow

addition of the extra characters.

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 15 EXAMPLE 8.4

char f1[STRSIZ] = "John ", f2[STRSIZ] = "Jacqueline ",

last[STRSIZ] = "Kennedy";

strcat(f1, last); => “John Kennedy” 12 characters + “\0”

strcat(f2, last);=> “Jacqueline Kennedy” 18 characters + “\0” /* invalid overflow of f2 */

//As an alternative to the second call to strcat (2)

strncat(f2, last, 3); /*Jacqueline Ken*/

● Concatenation:
● Take note that the call to strcat modifies the value of s1 even when embedded in other function

calls:

● Both strcat and strncat return as the function value the modified first argument.

● If s1 and s2 are both character strings
declared to hold STRSIZ characters (1)

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

if (strlen(s1) + strlen(s2) < STRSIZ) {

strcat(s1, s2);

} else {

strncat(s1, s2, STRSIZ - strlen(s1) - 1);

s1[STRSIZ - 1] = '\0';

}

printf("%s\n", strncat(f2, last, 3));

● String Length: function strlen returns the length of the value of its string argument, not counting
the '\0' character.

● For example: this code fragment displays the numbers 8 and 18 followed by the phrase Birzeit
University .

● Notice that the blank at the end of the initial value of s1 is counted in s1’s length.
● Two critical questions that must always be in the mind when working with strcpy, strncpy , strcat

, and strncat:
1. Is there enough space in the output parameter for the entire string being created?
2. Does the created string end in '\0' ?

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 20

char s1[STRSIZ] = “Birzeit ",

s2[STRSIZ] = “University";

printf("%d %d\n", strlen(s1), strlen(strcat(s1, s2)));

printf("%s\n", s1);

➢ A type char value is not a valid argument for a function with a corresponding
parameter of type char * (1)

➢ Note the difference internally between the representations of the character 'Q' and the

string "Q" .

● View the string as an array and use assignment to subscripted elements for access. (2)

● Be sure to include the null character at the end of the string.

DISTINCTION BETWEEN CHARACTERS AND
STRINGS

● Although blanks are natural separators to place between numeric data values, viewing
them as delimiters (1) when processing strings may not make sense (2)

➢ The stdio library provides the function gets for interactive input of one complete line

of data

 (3)

SCANNING A FULL LINE

char line[80];

printf("Type in a line of data.\n> ");

gets(line);

Type in a line of data.

> Here is a short sentence.

Loading…

● The \n character representing the <return> or <enter> key pressed at the end of the
sentence is not stored.

● Like scanf , gets can overflow its string argument if the user enters a longer data line
than will fit.

● Function fgets takes three arguments: (1)

1. The output parameter string,
2. A maximum number of characters to store (n) (2)
3. And the file pointer to the data source

● The next to last character may or may not be '\n' :
4. If fgets has room to store the entire line of data it will include '\n' before '\0' .
5. If the line is truncated, no '\n' is stored.

SCANNING A FULL LINE

● fgets stores the string created in its first argument and returns this string argument (i.e.,
its address) as its value (1)

● When a call to fgets encounters the end of file, the value returned is the address 0,

which is considered the null pointer.

● FIGURE 8.8 (2)

SCANNING A FULL LINE

➢ We studied the fact that characters are represented by numeric codes, and we used
relational and equality operators to compare characters.

➢ Unfortunately, these operators cannot be used for comparison of strings. (1)

➢ if str1 and str2 are string variables, the condition
is not checking whether str1 precedes str2 alphabetically (2)

● The standard string library provides the int function strcmp for comparison of two
strings that we will refer to as str1 and str2.

8.4 STRING COMPARISON

letter == 'C' ch1 < ch2

str1 < str2

➢ Function strcmp separates its argument pairs into three categories:

➢ str1[n] < str2[n] if:

8.4 STRING COMPARISON

OR

➢ The string library also provides an analogous function strncmp that bases its
comparison on only the first n characters of the two strings, where n is the third
argument.

➢ if str1 is “cabinet" and str2 is “cable " , the function calls

strncmp(str1, str2, 1) = 0
strncmp(str1, str2, 2) = 0
strncmp(str1, str2, 3) = 0 (1)

➢ strncmp(str1, str2, 4) would return a negative integer (2)

8.4 STRING COMPARISON

➢ EXAMPLE 8.5

➢ EXAMPLE 8.6, FIGURE 8.10

8.4 STRING COMPARISON

Figure 8.12

8.5 ARRAYS OF POINTERS

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to

8.5 ARRAYS OF POINTERS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 08

Strings

Loading…

Chapter Objectives:
1. Understand how a string constant is stored in an array of characters.

2. Learn about the placeholder %s and how it is used in printf and scanf operations.

3. Learn some of the operations that can be performed on strings. (1)

4. Understand how C compares two strings to determine their relative order.

5. Learn some of the operations that can be performed on individual characters using

functions from the library ctype.

6. How to write your own functions that perform some of the basic operations of a text

editor program

● A string: is a grouping of characters, a data structure.

● C implements the string data structure using arrays of type char (1)

● Strings are important in computer science (2)

● Strings play an important role in science as well (3)

● We need strings as the vehicle for communication between the computer system
and the human user.

STRING
S

Loading…

• We have already used string constants in our earlier work with printf and scanf (1)

● The first argument is the string constant "Average = %.2f", a string of 14 characters

● Notice that the blanks in the string are characters.

● A string constant can be associated with a symbolic name using the #define directive
(2)

8.1 STRING BASICS

printf("Average = %.2f", avg);

#define ERROR "*****Error - "

#define STD_NAME "Student Name"

➢ A string in C is implemented as an array, so declaring a string variable is
the same as declaring an array of type char .

➢ The variable string_var will hold strings from 0 to 29 characters long (1)

➢ C permits initialization of string variables using a string constant

DECLARING AND INITIALIZING STRING VARIABLES

char string_var[30];

char str[20] = "Initial value";

➢ str in memory after this declaration with initialization.

➢ str[13] contains the character ‘\0' , the null character that marks the end of

a string. (1)

DECLARING AND INITIALIZING STRING VARIABLES

char str[20] = "Initial value";

char str[20] = “Numbers and strings"; (2)

● Because one string is an array of characters, an array of strings is a two-dimensional
array of characters in which each row is one string.

● We can initialize an array of strings at declaration in the following manner:

ARRAYS OF
STRINGS

#define NUM_PEOPLE 30

#define NAME_LEN 25

. . .

char names[NUM_PEOPLE][NAME_LEN]; (1)

char month[12][10] = {"January", "February", "March", "April",

"May", "June", "July", "August", "September", "October", "November",

"December"};

● Use the placeholder %s in the format string with printf and scanf to handle string
argument.

● The printf function, depends on finding a null character in the character array to mark the
end of the string. (1)

● When we write our own string-building functions, we must be sure that a null character is

inserted at the end of every string. (2)

● This inclusion of the null character is automatic for constant strings.

● The %s placeholder in a printf format string can be used with a minimum field width (3)

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("Topic: %s\n", string_var);

printf ("%8s%3s***\n", "Short", "Strings");

➢ Placing a minus sign prefix on a placeholder’s field width causes left justification of
the value displayed.

● Scanf Function:

● Remember: when we call scanf with a string variable as an argument, we must

remember that array output arguments are always passed to functions by sending the
address of the initial array element. (2)

● Figure 8.2 p. 457

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("%-20s\n", “Name”); (1)

Loading…

 Figure 8.3

➢ scanf skips leading whitespace characters such as blanks, newlines, and tabs.(1)

➢ Starting with the first nonwhitespace character, scanf copies the characters it encounters into

successive memory cells of its character array argument.

➢ When it comes across a whitespace character, scanning stops, scanf places the null character at

the end of the string in its array argument.

INPUT/OUTPUT WITH PRINTF AND
SCANF

• For example, the data could have been entered one value per line with extra whitespace.

• or two values per line:

● But: (1)

●

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH

 1270

 TR

 1800

> MATH 1270

 TR 1800

> MATH1270 TR 1800 (2)

➢ => 17 characters

Figure 8.4

● EXAMPLE 8.1 p.459

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH,1270,TR,1800 (1)

➢ Using the assignment symbol in a declaration of a string variable with initialization,
is the only one in which the operator means to copy the string that is the right operand
into the variable that is the left operand.

➢ Array address is constant and cannot be changed through assignment (1)

➢

➢ a compiler error

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

one_str = "Test string"; /* Does not work */

Invalid target of assignment :

char one_str[20] = "Test String");

● C Library Functions:

➢ Along with assignment functions, the library string.h provides functions for
substring, concatenation, string length, string comparison, and whole line input
operations [See Table 8.1 p.461]

➢ The data type of the value returned by each string-building function is the pointer

type char * .

➢ Reminder: An array is being represented by the address of its initial value.

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

● String Assignment:

➢ Function strcpy copies the string that is its second argument into its first argument

➢ Like a call to scanf with a %s placeholder, a call to strcpy can easily overflow the
space allocated for the destination variable (2)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

strcpy(one_str, "Test String"); (1)

strcpy(one_str, "A very long test string"); (3)

● strncpy that takes an argument specifying the number of characters to copy (call this
number n). (1)

● The effect is the same as the call

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, "Test string", 20); (2)

strcpy(one_str, "Test string"); (3)

● when the source string is longer than n characters, only the first n characters are
copied.

● In general,

● Both strcpy and strncpy mimic the assignment operator in that the value they return
is the string assigned. (3)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, “A very long test string”, 20); (1)

strncpy(dest, source, dest_len - 1); (2)

dest[dest_len - 1] = '\0';

➢ For example, we might want to examine
 the “133" in the string “Comp133"
 or the "Jan" in the string "Jan. 30, 1996”.

➢ Assuming that the prototype of strncpy is (1)

SUBSTRING
S

char *strncpy(char *dest, const char *source, size_t n);

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0';

➢ Figure 8.5

SUBSTRING
S

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0'; (1)

➢ If we wish to use strncpy to extract a middle substring, we must call the function
with the address of the first character to copy.

 Fig. 8.6

SUBSTRING
S

strncpy(result, &s1[5], 2);

result[2] = '\0'; (1)

strcpy(result, &s1[9]); (2)

➢ EXAMPLE 8.2 (1)
➢ 1st Solution (2)

➢ 2nd Solution: (3)

SUBSTRING
S

char *last, *first, *middle;

char pres[20] = "Adams, John Quincy";

char pres_copy[20];

strcpy(pres_copy, pres);

last = strtok(pres_copy, ", ");

first = strtok(NULL, ", ");

middle = strtok(NULL, ", ");

➢ EXAMPLE 8.3, Figure 8.7

 used to display the last
 component.

➢ Instead of: (1)
 Since strcpy returns as its value the
starting address
 of the string it has just stored in elem

➢ The use of CMP_LEN and strlen(compound): the declared size of the array is no
longer the effective size once data have been stored in the array (2)

SUBSTRING
S

printf("%s\n", strcpy(elem, &compound[first]));

strcpy(elem, &compound[first]);

printf("%s\n", elem);

● Concatenation: String library functions strcat and strncat modify their first string
argument by adding all or part of their second string argument at the end of the first
argument.

● Both functions assume that sufficient space is allocated for the first argument to allow

addition of the extra characters.

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 15 EXAMPLE 8.4

char f1[STRSIZ] = "John ", f2[STRSIZ] = "Jacqueline ",

last[STRSIZ] = "Kennedy";

strcat(f1, last); => “John Kennedy” 12 characters + “\0”

strcat(f2, last);=> “Jacqueline Kennedy” 18 characters + “\0” /* invalid overflow of f2 */

//As an alternative to the second call to strcat (2)

strncat(f2, last, 3); /*Jacqueline Ken*/

● Concatenation:
● Take note that the call to strcat modifies the value of s1 even when embedded in other function

calls:

● Both strcat and strncat return as the function value the modified first argument.

● If s1 and s2 are both character strings
declared to hold STRSIZ characters (1)

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

if (strlen(s1) + strlen(s2) < STRSIZ) {

strcat(s1, s2);

} else {

strncat(s1, s2, STRSIZ - strlen(s1) - 1);

s1[STRSIZ - 1] = '\0';

}

printf("%s\n", strncat(f2, last, 3));

● String Length: function strlen returns the length of the value of its string argument, not counting
the '\0' character.

● For example: this code fragment displays the numbers 8 and 18 followed by the phrase Birzeit
University .

● Notice that the blank at the end of the initial value of s1 is counted in s1’s length.
● Two critical questions that must always be in the mind when working with strcpy, strncpy , strcat

, and strncat:
1. Is there enough space in the output parameter for the entire string being created?
2. Does the created string end in '\0' ?

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 20

char s1[STRSIZ] = “Birzeit ",

s2[STRSIZ] = “University";

printf("%d %d\n", strlen(s1), strlen(strcat(s1, s2)));

printf("%s\n", s1);

➢ A type char value is not a valid argument for a function with a corresponding
parameter of type char * (1)

➢ Note the difference internally between the representations of the character 'Q' and the

string "Q" .

● View the string as an array and use assignment to subscripted elements for access. (2)

● Be sure to include the null character at the end of the string.

DISTINCTION BETWEEN CHARACTERS AND
STRINGS

● Although blanks are natural separators to place between numeric data values, viewing
them as delimiters (1) when processing strings may not make sense (2)

➢ The stdio library provides the function gets for interactive input of one complete line

of data

 (3)

SCANNING A FULL LINE

char line[80];

printf("Type in a line of data.\n> ");

gets(line);

Type in a line of data.

> Here is a short sentence.

Loading…

● The \n character representing the <return> or <enter> key pressed at the end of the
sentence is not stored.

● Like scanf , gets can overflow its string argument if the user enters a longer data line
than will fit.

● Function fgets takes three arguments: (1)

1. The output parameter string,
2. A maximum number of characters to store (n) (2)
3. And the file pointer to the data source

● The next to last character may or may not be '\n' :
4. If fgets has room to store the entire line of data it will include '\n' before '\0' .
5. If the line is truncated, no '\n' is stored.

SCANNING A FULL LINE

● fgets stores the string created in its first argument and returns this string argument (i.e.,
its address) as its value (1)

● When a call to fgets encounters the end of file, the value returned is the address 0,

which is considered the null pointer.

● FIGURE 8.8 (2)

SCANNING A FULL LINE

➢ We studied the fact that characters are represented by numeric codes, and we used
relational and equality operators to compare characters.

➢ Unfortunately, these operators cannot be used for comparison of strings. (1)

➢ if str1 and str2 are string variables, the condition
is not checking whether str1 precedes str2 alphabetically (2)

● The standard string library provides the int function strcmp for comparison of two
strings that we will refer to as str1 and str2.

8.4 STRING COMPARISON

letter == 'C' ch1 < ch2

str1 < str2

➢ Function strcmp separates its argument pairs into three categories:

➢ str1[n] < str2[n] if:

8.4 STRING COMPARISON

OR

➢ The string library also provides an analogous function strncmp that bases its
comparison on only the first n characters of the two strings, where n is the third
argument.

➢ if str1 is “cabinet" and str2 is “cable " , the function calls

strncmp(str1, str2, 1) = 0
strncmp(str1, str2, 2) = 0
strncmp(str1, str2, 3) = 0 (1)

➢ strncmp(str1, str2, 4) would return a negative integer (2)

8.4 STRING COMPARISON

➢ EXAMPLE 8.5

➢ EXAMPLE 8.6, FIGURE 8.10

8.4 STRING COMPARISON

Figure 8.12

8.5 ARRAYS OF POINTERS

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to

8.5 ARRAYS OF POINTERS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 08

Strings

Loading…

Chapter Objectives:
1. Understand how a string constant is stored in an array of characters.

2. Learn about the placeholder %s and how it is used in printf and scanf operations.

3. Learn some of the operations that can be performed on strings. (1)

4. Understand how C compares two strings to determine their relative order.

5. Learn some of the operations that can be performed on individual characters using

functions from the library ctype.

6. How to write your own functions that perform some of the basic operations of a text

editor program

● A string: is a grouping of characters, a data structure.

● C implements the string data structure using arrays of type char (1)

● Strings are important in computer science (2)

● Strings play an important role in science as well (3)

● We need strings as the vehicle for communication between the computer system
and the human user.

STRING
S

Loading…

• We have already used string constants in our earlier work with printf and scanf (1)

● The first argument is the string constant "Average = %.2f", a string of 14 characters

● Notice that the blanks in the string are characters.

● A string constant can be associated with a symbolic name using the #define directive
(2)

8.1 STRING BASICS

printf("Average = %.2f", avg);

#define ERROR "*****Error - "

#define STD_NAME "Student Name"

➢ A string in C is implemented as an array, so declaring a string variable is
the same as declaring an array of type char .

➢ The variable string_var will hold strings from 0 to 29 characters long (1)

➢ C permits initialization of string variables using a string constant

DECLARING AND INITIALIZING STRING VARIABLES

char string_var[30];

char str[20] = "Initial value";

➢ str in memory after this declaration with initialization.

➢ str[13] contains the character ‘\0' , the null character that marks the end of

a string. (1)

DECLARING AND INITIALIZING STRING VARIABLES

char str[20] = "Initial value";

char str[20] = “Numbers and strings"; (2)

● Because one string is an array of characters, an array of strings is a two-dimensional
array of characters in which each row is one string.

● We can initialize an array of strings at declaration in the following manner:

ARRAYS OF
STRINGS

#define NUM_PEOPLE 30

#define NAME_LEN 25

. . .

char names[NUM_PEOPLE][NAME_LEN]; (1)

char month[12][10] = {"January", "February", "March", "April",

"May", "June", "July", "August", "September", "October", "November",

"December"};

● Use the placeholder %s in the format string with printf and scanf to handle string
argument.

● The printf function, depends on finding a null character in the character array to mark the
end of the string. (1)

● When we write our own string-building functions, we must be sure that a null character is

inserted at the end of every string. (2)

● This inclusion of the null character is automatic for constant strings.

● The %s placeholder in a printf format string can be used with a minimum field width (3)

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("Topic: %s\n", string_var);

printf ("%8s%3s***\n", "Short", "Strings");

➢ Placing a minus sign prefix on a placeholder’s field width causes left justification of
the value displayed.

● Scanf Function:

● Remember: when we call scanf with a string variable as an argument, we must

remember that array output arguments are always passed to functions by sending the
address of the initial array element. (2)

● Figure 8.2 p. 457

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("%-20s\n", “Name”); (1)

Loading…

 Figure 8.3

➢ scanf skips leading whitespace characters such as blanks, newlines, and tabs.(1)

➢ Starting with the first nonwhitespace character, scanf copies the characters it encounters into

successive memory cells of its character array argument.

➢ When it comes across a whitespace character, scanning stops, scanf places the null character at

the end of the string in its array argument.

INPUT/OUTPUT WITH PRINTF AND
SCANF

• For example, the data could have been entered one value per line with extra whitespace.

• or two values per line:

● But: (1)

●

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH

 1270

 TR

 1800

> MATH 1270

 TR 1800

> MATH1270 TR 1800 (2)

➢ => 17 characters

Figure 8.4

● EXAMPLE 8.1 p.459

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH,1270,TR,1800 (1)

➢ Using the assignment symbol in a declaration of a string variable with initialization,
is the only one in which the operator means to copy the string that is the right operand
into the variable that is the left operand.

➢ Array address is constant and cannot be changed through assignment (1)

➢

➢ a compiler error

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

one_str = "Test string"; /* Does not work */

Invalid target of assignment :

char one_str[20] = "Test String");

● C Library Functions:

➢ Along with assignment functions, the library string.h provides functions for
substring, concatenation, string length, string comparison, and whole line input
operations [See Table 8.1 p.461]

➢ The data type of the value returned by each string-building function is the pointer

type char * .

➢ Reminder: An array is being represented by the address of its initial value.

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

● String Assignment:

➢ Function strcpy copies the string that is its second argument into its first argument

➢ Like a call to scanf with a %s placeholder, a call to strcpy can easily overflow the
space allocated for the destination variable (2)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

strcpy(one_str, "Test String"); (1)

strcpy(one_str, "A very long test string"); (3)

● strncpy that takes an argument specifying the number of characters to copy (call this
number n). (1)

● The effect is the same as the call

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, "Test string", 20); (2)

strcpy(one_str, "Test string"); (3)

● when the source string is longer than n characters, only the first n characters are
copied.

● In general,

● Both strcpy and strncpy mimic the assignment operator in that the value they return
is the string assigned. (3)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, “A very long test string”, 20); (1)

strncpy(dest, source, dest_len - 1); (2)

dest[dest_len - 1] = '\0';

➢ For example, we might want to examine
 the “133" in the string “Comp133"
 or the "Jan" in the string "Jan. 30, 1996”.

➢ Assuming that the prototype of strncpy is (1)

SUBSTRING
S

char *strncpy(char *dest, const char *source, size_t n);

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0';

➢ Figure 8.5

SUBSTRING
S

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0'; (1)

➢ If we wish to use strncpy to extract a middle substring, we must call the function
with the address of the first character to copy.

 Fig. 8.6

SUBSTRING
S

strncpy(result, &s1[5], 2);

result[2] = '\0'; (1)

strcpy(result, &s1[9]); (2)

➢ EXAMPLE 8.2 (1)
➢ 1st Solution (2)

➢ 2nd Solution: (3)

SUBSTRING
S

char *last, *first, *middle;

char pres[20] = "Adams, John Quincy";

char pres_copy[20];

strcpy(pres_copy, pres);

last = strtok(pres_copy, ", ");

first = strtok(NULL, ", ");

middle = strtok(NULL, ", ");

➢ EXAMPLE 8.3, Figure 8.7

 used to display the last
 component.

➢ Instead of: (1)
 Since strcpy returns as its value the
starting address
 of the string it has just stored in elem

➢ The use of CMP_LEN and strlen(compound): the declared size of the array is no
longer the effective size once data have been stored in the array (2)

SUBSTRING
S

printf("%s\n", strcpy(elem, &compound[first]));

strcpy(elem, &compound[first]);

printf("%s\n", elem);

● Concatenation: String library functions strcat and strncat modify their first string
argument by adding all or part of their second string argument at the end of the first
argument.

● Both functions assume that sufficient space is allocated for the first argument to allow

addition of the extra characters.

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 15 EXAMPLE 8.4

char f1[STRSIZ] = "John ", f2[STRSIZ] = "Jacqueline ",

last[STRSIZ] = "Kennedy";

strcat(f1, last); => “John Kennedy” 12 characters + “\0”

strcat(f2, last);=> “Jacqueline Kennedy” 18 characters + “\0” /* invalid overflow of f2 */

//As an alternative to the second call to strcat (2)

strncat(f2, last, 3); /*Jacqueline Ken*/

● Concatenation:
● Take note that the call to strcat modifies the value of s1 even when embedded in other function

calls:

● Both strcat and strncat return as the function value the modified first argument.

● If s1 and s2 are both character strings
declared to hold STRSIZ characters (1)

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

if (strlen(s1) + strlen(s2) < STRSIZ) {

strcat(s1, s2);

} else {

strncat(s1, s2, STRSIZ - strlen(s1) - 1);

s1[STRSIZ - 1] = '\0';

}

printf("%s\n", strncat(f2, last, 3));

● String Length: function strlen returns the length of the value of its string argument, not counting
the '\0' character.

● For example: this code fragment displays the numbers 8 and 18 followed by the phrase Birzeit
University .

● Notice that the blank at the end of the initial value of s1 is counted in s1’s length.
● Two critical questions that must always be in the mind when working with strcpy, strncpy , strcat

, and strncat:
1. Is there enough space in the output parameter for the entire string being created?
2. Does the created string end in '\0' ?

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 20

char s1[STRSIZ] = “Birzeit ",

s2[STRSIZ] = “University";

printf("%d %d\n", strlen(s1), strlen(strcat(s1, s2)));

printf("%s\n", s1);

➢ A type char value is not a valid argument for a function with a corresponding
parameter of type char * (1)

➢ Note the difference internally between the representations of the character 'Q' and the

string "Q" .

● View the string as an array and use assignment to subscripted elements for access. (2)

● Be sure to include the null character at the end of the string.

DISTINCTION BETWEEN CHARACTERS AND
STRINGS

● Although blanks are natural separators to place between numeric data values, viewing
them as delimiters (1) when processing strings may not make sense (2)

➢ The stdio library provides the function gets for interactive input of one complete line

of data

 (3)

SCANNING A FULL LINE

char line[80];

printf("Type in a line of data.\n> ");

gets(line);

Type in a line of data.

> Here is a short sentence.

Loading…

● The \n character representing the <return> or <enter> key pressed at the end of the
sentence is not stored.

● Like scanf , gets can overflow its string argument if the user enters a longer data line
than will fit.

● Function fgets takes three arguments: (1)

1. The output parameter string,
2. A maximum number of characters to store (n) (2)
3. And the file pointer to the data source

● The next to last character may or may not be '\n' :
4. If fgets has room to store the entire line of data it will include '\n' before '\0' .
5. If the line is truncated, no '\n' is stored.

SCANNING A FULL LINE

● fgets stores the string created in its first argument and returns this string argument (i.e.,
its address) as its value (1)

● When a call to fgets encounters the end of file, the value returned is the address 0,

which is considered the null pointer.

● FIGURE 8.8 (2)

SCANNING A FULL LINE

➢ We studied the fact that characters are represented by numeric codes, and we used
relational and equality operators to compare characters.

➢ Unfortunately, these operators cannot be used for comparison of strings. (1)

➢ if str1 and str2 are string variables, the condition
is not checking whether str1 precedes str2 alphabetically (2)

● The standard string library provides the int function strcmp for comparison of two
strings that we will refer to as str1 and str2.

8.4 STRING COMPARISON

letter == 'C' ch1 < ch2

str1 < str2

➢ Function strcmp separates its argument pairs into three categories:

➢ str1[n] < str2[n] if:

8.4 STRING COMPARISON

OR

➢ The string library also provides an analogous function strncmp that bases its
comparison on only the first n characters of the two strings, where n is the third
argument.

➢ if str1 is “cabinet" and str2 is “cable " , the function calls

strncmp(str1, str2, 1) = 0
strncmp(str1, str2, 2) = 0
strncmp(str1, str2, 3) = 0 (1)

➢ strncmp(str1, str2, 4) would return a negative integer (2)

8.4 STRING COMPARISON

➢ EXAMPLE 8.5

➢ EXAMPLE 8.6, FIGURE 8.10

8.4 STRING COMPARISON

Figure 8.12

8.5 ARRAYS OF POINTERS

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to

8.5 ARRAYS OF POINTERS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 08

Strings

Loading…

Chapter Objectives:
1. Understand how a string constant is stored in an array of characters.

2. Learn about the placeholder %s and how it is used in printf and scanf operations.

3. Learn some of the operations that can be performed on strings. (1)

4. Understand how C compares two strings to determine their relative order.

5. Learn some of the operations that can be performed on individual characters using

functions from the library ctype.

6. How to write your own functions that perform some of the basic operations of a text

editor program

● A string: is a grouping of characters, a data structure.

● C implements the string data structure using arrays of type char (1)

● Strings are important in computer science (2)

● Strings play an important role in science as well (3)

● We need strings as the vehicle for communication between the computer system
and the human user.

STRING
S

Loading…

• We have already used string constants in our earlier work with printf and scanf (1)

● The first argument is the string constant "Average = %.2f", a string of 14 characters

● Notice that the blanks in the string are characters.

● A string constant can be associated with a symbolic name using the #define directive
(2)

8.1 STRING BASICS

printf("Average = %.2f", avg);

#define ERROR "*****Error - "

#define STD_NAME "Student Name"

➢ A string in C is implemented as an array, so declaring a string variable is
the same as declaring an array of type char .

➢ The variable string_var will hold strings from 0 to 29 characters long (1)

➢ C permits initialization of string variables using a string constant

DECLARING AND INITIALIZING STRING VARIABLES

char string_var[30];

char str[20] = "Initial value";

➢ str in memory after this declaration with initialization.

➢ str[13] contains the character ‘\0' , the null character that marks the end of

a string. (1)

DECLARING AND INITIALIZING STRING VARIABLES

char str[20] = "Initial value";

char str[20] = “Numbers and strings"; (2)

● Because one string is an array of characters, an array of strings is a two-dimensional
array of characters in which each row is one string.

● We can initialize an array of strings at declaration in the following manner:

ARRAYS OF
STRINGS

#define NUM_PEOPLE 30

#define NAME_LEN 25

. . .

char names[NUM_PEOPLE][NAME_LEN]; (1)

char month[12][10] = {"January", "February", "March", "April",

"May", "June", "July", "August", "September", "October", "November",

"December"};

● Use the placeholder %s in the format string with printf and scanf to handle string
argument.

● The printf function, depends on finding a null character in the character array to mark the
end of the string. (1)

● When we write our own string-building functions, we must be sure that a null character is

inserted at the end of every string. (2)

● This inclusion of the null character is automatic for constant strings.

● The %s placeholder in a printf format string can be used with a minimum field width (3)

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("Topic: %s\n", string_var);

printf ("%8s%3s***\n", "Short", "Strings");

➢ Placing a minus sign prefix on a placeholder’s field width causes left justification of
the value displayed.

● Scanf Function:

● Remember: when we call scanf with a string variable as an argument, we must

remember that array output arguments are always passed to functions by sending the
address of the initial array element. (2)

● Figure 8.2 p. 457

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("%-20s\n", “Name”); (1)

Loading…

 Figure 8.3

➢ scanf skips leading whitespace characters such as blanks, newlines, and tabs.(1)

➢ Starting with the first nonwhitespace character, scanf copies the characters it encounters into

successive memory cells of its character array argument.

➢ When it comes across a whitespace character, scanning stops, scanf places the null character at

the end of the string in its array argument.

INPUT/OUTPUT WITH PRINTF AND
SCANF

• For example, the data could have been entered one value per line with extra whitespace.

• or two values per line:

● But: (1)

●

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH

 1270

 TR

 1800

> MATH 1270

 TR 1800

> MATH1270 TR 1800 (2)

➢ => 17 characters

Figure 8.4

● EXAMPLE 8.1 p.459

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH,1270,TR,1800 (1)

➢ Using the assignment symbol in a declaration of a string variable with initialization,
is the only one in which the operator means to copy the string that is the right operand
into the variable that is the left operand.

➢ Array address is constant and cannot be changed through assignment (1)

➢

➢ a compiler error

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

one_str = "Test string"; /* Does not work */

Invalid target of assignment :

char one_str[20] = "Test String");

● C Library Functions:

➢ Along with assignment functions, the library string.h provides functions for
substring, concatenation, string length, string comparison, and whole line input
operations [See Table 8.1 p.461]

➢ The data type of the value returned by each string-building function is the pointer

type char * .

➢ Reminder: An array is being represented by the address of its initial value.

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

● String Assignment:

➢ Function strcpy copies the string that is its second argument into its first argument

➢ Like a call to scanf with a %s placeholder, a call to strcpy can easily overflow the
space allocated for the destination variable (2)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

strcpy(one_str, "Test String"); (1)

strcpy(one_str, "A very long test string"); (3)

● strncpy that takes an argument specifying the number of characters to copy (call this
number n). (1)

● The effect is the same as the call

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, "Test string", 20); (2)

strcpy(one_str, "Test string"); (3)

● when the source string is longer than n characters, only the first n characters are
copied.

● In general,

● Both strcpy and strncpy mimic the assignment operator in that the value they return
is the string assigned. (3)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, “A very long test string”, 20); (1)

strncpy(dest, source, dest_len - 1); (2)

dest[dest_len - 1] = '\0';

➢ For example, we might want to examine
 the “133" in the string “Comp133"
 or the "Jan" in the string "Jan. 30, 1996”.

➢ Assuming that the prototype of strncpy is (1)

SUBSTRING
S

char *strncpy(char *dest, const char *source, size_t n);

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0';

➢ Figure 8.5

SUBSTRING
S

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0'; (1)

➢ If we wish to use strncpy to extract a middle substring, we must call the function
with the address of the first character to copy.

 Fig. 8.6

SUBSTRING
S

strncpy(result, &s1[5], 2);

result[2] = '\0'; (1)

strcpy(result, &s1[9]); (2)

➢ EXAMPLE 8.2 (1)
➢ 1st Solution (2)

➢ 2nd Solution: (3)

SUBSTRING
S

char *last, *first, *middle;

char pres[20] = "Adams, John Quincy";

char pres_copy[20];

strcpy(pres_copy, pres);

last = strtok(pres_copy, ", ");

first = strtok(NULL, ", ");

middle = strtok(NULL, ", ");

➢ EXAMPLE 8.3, Figure 8.7

 used to display the last
 component.

➢ Instead of: (1)
 Since strcpy returns as its value the
starting address
 of the string it has just stored in elem

➢ The use of CMP_LEN and strlen(compound): the declared size of the array is no
longer the effective size once data have been stored in the array (2)

SUBSTRING
S

printf("%s\n", strcpy(elem, &compound[first]));

strcpy(elem, &compound[first]);

printf("%s\n", elem);

● Concatenation: String library functions strcat and strncat modify their first string
argument by adding all or part of their second string argument at the end of the first
argument.

● Both functions assume that sufficient space is allocated for the first argument to allow

addition of the extra characters.

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 15 EXAMPLE 8.4

char f1[STRSIZ] = "John ", f2[STRSIZ] = "Jacqueline ",

last[STRSIZ] = "Kennedy";

strcat(f1, last); => “John Kennedy” 12 characters + “\0”

strcat(f2, last);=> “Jacqueline Kennedy” 18 characters + “\0” /* invalid overflow of f2 */

//As an alternative to the second call to strcat (2)

strncat(f2, last, 3); /*Jacqueline Ken*/

● Concatenation:
● Take note that the call to strcat modifies the value of s1 even when embedded in other function

calls:

● Both strcat and strncat return as the function value the modified first argument.

● If s1 and s2 are both character strings
declared to hold STRSIZ characters (1)

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

if (strlen(s1) + strlen(s2) < STRSIZ) {

strcat(s1, s2);

} else {

strncat(s1, s2, STRSIZ - strlen(s1) - 1);

s1[STRSIZ - 1] = '\0';

}

printf("%s\n", strncat(f2, last, 3));

● String Length: function strlen returns the length of the value of its string argument, not counting
the '\0' character.

● For example: this code fragment displays the numbers 8 and 18 followed by the phrase Birzeit
University .

● Notice that the blank at the end of the initial value of s1 is counted in s1’s length.
● Two critical questions that must always be in the mind when working with strcpy, strncpy , strcat

, and strncat:
1. Is there enough space in the output parameter for the entire string being created?
2. Does the created string end in '\0' ?

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 20

char s1[STRSIZ] = “Birzeit ",

s2[STRSIZ] = “University";

printf("%d %d\n", strlen(s1), strlen(strcat(s1, s2)));

printf("%s\n", s1);

➢ A type char value is not a valid argument for a function with a corresponding
parameter of type char * (1)

➢ Note the difference internally between the representations of the character 'Q' and the

string "Q" .

● View the string as an array and use assignment to subscripted elements for access. (2)

● Be sure to include the null character at the end of the string.

DISTINCTION BETWEEN CHARACTERS AND
STRINGS

● Although blanks are natural separators to place between numeric data values, viewing
them as delimiters (1) when processing strings may not make sense (2)

➢ The stdio library provides the function gets for interactive input of one complete line

of data

 (3)

SCANNING A FULL LINE

char line[80];

printf("Type in a line of data.\n> ");

gets(line);

Type in a line of data.

> Here is a short sentence.

Loading…

● The \n character representing the <return> or <enter> key pressed at the end of the
sentence is not stored.

● Like scanf , gets can overflow its string argument if the user enters a longer data line
than will fit.

● Function fgets takes three arguments: (1)

1. The output parameter string,
2. A maximum number of characters to store (n) (2)
3. And the file pointer to the data source

● The next to last character may or may not be '\n' :
4. If fgets has room to store the entire line of data it will include '\n' before '\0' .
5. If the line is truncated, no '\n' is stored.

SCANNING A FULL LINE

● fgets stores the string created in its first argument and returns this string argument (i.e.,
its address) as its value (1)

● When a call to fgets encounters the end of file, the value returned is the address 0,

which is considered the null pointer.

● FIGURE 8.8 (2)

SCANNING A FULL LINE

➢ We studied the fact that characters are represented by numeric codes, and we used
relational and equality operators to compare characters.

➢ Unfortunately, these operators cannot be used for comparison of strings. (1)

➢ if str1 and str2 are string variables, the condition
is not checking whether str1 precedes str2 alphabetically (2)

● The standard string library provides the int function strcmp for comparison of two
strings that we will refer to as str1 and str2.

8.4 STRING COMPARISON

letter == 'C' ch1 < ch2

str1 < str2

➢ Function strcmp separates its argument pairs into three categories:

➢ str1[n] < str2[n] if:

8.4 STRING COMPARISON

OR

➢ The string library also provides an analogous function strncmp that bases its
comparison on only the first n characters of the two strings, where n is the third
argument.

➢ if str1 is “cabinet" and str2 is “cable " , the function calls

strncmp(str1, str2, 1) = 0
strncmp(str1, str2, 2) = 0
strncmp(str1, str2, 3) = 0 (1)

➢ strncmp(str1, str2, 4) would return a negative integer (2)

8.4 STRING COMPARISON

➢ EXAMPLE 8.5

➢ EXAMPLE 8.6, FIGURE 8.10

8.4 STRING COMPARISON

Figure 8.12

8.5 ARRAYS OF POINTERS

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to

8.5 ARRAYS OF POINTERS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 08

Strings

Loading…

Chapter Objectives:
1. Understand how a string constant is stored in an array of characters.

2. Learn about the placeholder %s and how it is used in printf and scanf operations.

3. Learn some of the operations that can be performed on strings. (1)

4. Understand how C compares two strings to determine their relative order.

5. Learn some of the operations that can be performed on individual characters using

functions from the library ctype.

6. How to write your own functions that perform some of the basic operations of a text

editor program

● A string: is a grouping of characters, a data structure.

● C implements the string data structure using arrays of type char (1)

● Strings are important in computer science (2)

● Strings play an important role in science as well (3)

● We need strings as the vehicle for communication between the computer system
and the human user.

STRING
S

Loading…

• We have already used string constants in our earlier work with printf and scanf (1)

● The first argument is the string constant "Average = %.2f", a string of 14 characters

● Notice that the blanks in the string are characters.

● A string constant can be associated with a symbolic name using the #define directive
(2)

8.1 STRING BASICS

printf("Average = %.2f", avg);

#define ERROR "*****Error - "

#define STD_NAME "Student Name"

➢ A string in C is implemented as an array, so declaring a string variable is
the same as declaring an array of type char .

➢ The variable string_var will hold strings from 0 to 29 characters long (1)

➢ C permits initialization of string variables using a string constant

DECLARING AND INITIALIZING STRING VARIABLES

char string_var[30];

char str[20] = "Initial value";

➢ str in memory after this declaration with initialization.

➢ str[13] contains the character ‘\0' , the null character that marks the end of

a string. (1)

DECLARING AND INITIALIZING STRING VARIABLES

char str[20] = "Initial value";

char str[20] = “Numbers and strings"; (2)

● Because one string is an array of characters, an array of strings is a two-dimensional
array of characters in which each row is one string.

● We can initialize an array of strings at declaration in the following manner:

ARRAYS OF
STRINGS

#define NUM_PEOPLE 30

#define NAME_LEN 25

. . .

char names[NUM_PEOPLE][NAME_LEN]; (1)

char month[12][10] = {"January", "February", "March", "April",

"May", "June", "July", "August", "September", "October", "November",

"December"};

● Use the placeholder %s in the format string with printf and scanf to handle string
argument.

● The printf function, depends on finding a null character in the character array to mark the
end of the string. (1)

● When we write our own string-building functions, we must be sure that a null character is

inserted at the end of every string. (2)

● This inclusion of the null character is automatic for constant strings.

● The %s placeholder in a printf format string can be used with a minimum field width (3)

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("Topic: %s\n", string_var);

printf ("%8s%3s***\n", "Short", "Strings");

➢ Placing a minus sign prefix on a placeholder’s field width causes left justification of
the value displayed.

● Scanf Function:

● Remember: when we call scanf with a string variable as an argument, we must

remember that array output arguments are always passed to functions by sending the
address of the initial array element. (2)

● Figure 8.2 p. 457

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("%-20s\n", “Name”); (1)

Loading…

 Figure 8.3

➢ scanf skips leading whitespace characters such as blanks, newlines, and tabs.(1)

➢ Starting with the first nonwhitespace character, scanf copies the characters it encounters into

successive memory cells of its character array argument.

➢ When it comes across a whitespace character, scanning stops, scanf places the null character at

the end of the string in its array argument.

INPUT/OUTPUT WITH PRINTF AND
SCANF

• For example, the data could have been entered one value per line with extra whitespace.

• or two values per line:

● But: (1)

●

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH

 1270

 TR

 1800

> MATH 1270

 TR 1800

> MATH1270 TR 1800 (2)

➢ => 17 characters

Figure 8.4

● EXAMPLE 8.1 p.459

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH,1270,TR,1800 (1)

➢ Using the assignment symbol in a declaration of a string variable with initialization,
is the only one in which the operator means to copy the string that is the right operand
into the variable that is the left operand.

➢ Array address is constant and cannot be changed through assignment (1)

➢

➢ a compiler error

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

one_str = "Test string"; /* Does not work */

Invalid target of assignment :

char one_str[20] = "Test String");

● C Library Functions:

➢ Along with assignment functions, the library string.h provides functions for
substring, concatenation, string length, string comparison, and whole line input
operations [See Table 8.1 p.461]

➢ The data type of the value returned by each string-building function is the pointer

type char * .

➢ Reminder: An array is being represented by the address of its initial value.

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

● String Assignment:

➢ Function strcpy copies the string that is its second argument into its first argument

➢ Like a call to scanf with a %s placeholder, a call to strcpy can easily overflow the
space allocated for the destination variable (2)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

strcpy(one_str, "Test String"); (1)

strcpy(one_str, "A very long test string"); (3)

● strncpy that takes an argument specifying the number of characters to copy (call this
number n). (1)

● The effect is the same as the call

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, "Test string", 20); (2)

strcpy(one_str, "Test string"); (3)

● when the source string is longer than n characters, only the first n characters are
copied.

● In general,

● Both strcpy and strncpy mimic the assignment operator in that the value they return
is the string assigned. (3)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, “A very long test string”, 20); (1)

strncpy(dest, source, dest_len - 1); (2)

dest[dest_len - 1] = '\0';

➢ For example, we might want to examine
 the “133" in the string “Comp133"
 or the "Jan" in the string "Jan. 30, 1996”.

➢ Assuming that the prototype of strncpy is (1)

SUBSTRING
S

char *strncpy(char *dest, const char *source, size_t n);

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0';

➢ Figure 8.5

SUBSTRING
S

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0'; (1)

➢ If we wish to use strncpy to extract a middle substring, we must call the function
with the address of the first character to copy.

 Fig. 8.6

SUBSTRING
S

strncpy(result, &s1[5], 2);

result[2] = '\0'; (1)

strcpy(result, &s1[9]); (2)

➢ EXAMPLE 8.2 (1)
➢ 1st Solution (2)

➢ 2nd Solution: (3)

SUBSTRING
S

char *last, *first, *middle;

char pres[20] = "Adams, John Quincy";

char pres_copy[20];

strcpy(pres_copy, pres);

last = strtok(pres_copy, ", ");

first = strtok(NULL, ", ");

middle = strtok(NULL, ", ");

➢ EXAMPLE 8.3, Figure 8.7

 used to display the last
 component.

➢ Instead of: (1)
 Since strcpy returns as its value the
starting address
 of the string it has just stored in elem

➢ The use of CMP_LEN and strlen(compound): the declared size of the array is no
longer the effective size once data have been stored in the array (2)

SUBSTRING
S

printf("%s\n", strcpy(elem, &compound[first]));

strcpy(elem, &compound[first]);

printf("%s\n", elem);

● Concatenation: String library functions strcat and strncat modify their first string
argument by adding all or part of their second string argument at the end of the first
argument.

● Both functions assume that sufficient space is allocated for the first argument to allow

addition of the extra characters.

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 15 EXAMPLE 8.4

char f1[STRSIZ] = "John ", f2[STRSIZ] = "Jacqueline ",

last[STRSIZ] = "Kennedy";

strcat(f1, last); => “John Kennedy” 12 characters + “\0”

strcat(f2, last);=> “Jacqueline Kennedy” 18 characters + “\0” /* invalid overflow of f2 */

//As an alternative to the second call to strcat (2)

strncat(f2, last, 3); /*Jacqueline Ken*/

● Concatenation:
● Take note that the call to strcat modifies the value of s1 even when embedded in other function

calls:

● Both strcat and strncat return as the function value the modified first argument.

● If s1 and s2 are both character strings
declared to hold STRSIZ characters (1)

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

if (strlen(s1) + strlen(s2) < STRSIZ) {

strcat(s1, s2);

} else {

strncat(s1, s2, STRSIZ - strlen(s1) - 1);

s1[STRSIZ - 1] = '\0';

}

printf("%s\n", strncat(f2, last, 3));

● String Length: function strlen returns the length of the value of its string argument, not counting
the '\0' character.

● For example: this code fragment displays the numbers 8 and 18 followed by the phrase Birzeit
University .

● Notice that the blank at the end of the initial value of s1 is counted in s1’s length.
● Two critical questions that must always be in the mind when working with strcpy, strncpy , strcat

, and strncat:
1. Is there enough space in the output parameter for the entire string being created?
2. Does the created string end in '\0' ?

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 20

char s1[STRSIZ] = “Birzeit ",

s2[STRSIZ] = “University";

printf("%d %d\n", strlen(s1), strlen(strcat(s1, s2)));

printf("%s\n", s1);

➢ A type char value is not a valid argument for a function with a corresponding
parameter of type char * (1)

➢ Note the difference internally between the representations of the character 'Q' and the

string "Q" .

● View the string as an array and use assignment to subscripted elements for access. (2)

● Be sure to include the null character at the end of the string.

DISTINCTION BETWEEN CHARACTERS AND
STRINGS

● Although blanks are natural separators to place between numeric data values, viewing
them as delimiters (1) when processing strings may not make sense (2)

➢ The stdio library provides the function gets for interactive input of one complete line

of data

 (3)

SCANNING A FULL LINE

char line[80];

printf("Type in a line of data.\n> ");

gets(line);

Type in a line of data.

> Here is a short sentence.

Loading…

● The \n character representing the <return> or <enter> key pressed at the end of the
sentence is not stored.

● Like scanf , gets can overflow its string argument if the user enters a longer data line
than will fit.

● Function fgets takes three arguments: (1)

1. The output parameter string,
2. A maximum number of characters to store (n) (2)
3. And the file pointer to the data source

● The next to last character may or may not be '\n' :
4. If fgets has room to store the entire line of data it will include '\n' before '\0' .
5. If the line is truncated, no '\n' is stored.

SCANNING A FULL LINE

● fgets stores the string created in its first argument and returns this string argument (i.e.,
its address) as its value (1)

● When a call to fgets encounters the end of file, the value returned is the address 0,

which is considered the null pointer.

● FIGURE 8.8 (2)

SCANNING A FULL LINE

➢ We studied the fact that characters are represented by numeric codes, and we used
relational and equality operators to compare characters.

➢ Unfortunately, these operators cannot be used for comparison of strings. (1)

➢ if str1 and str2 are string variables, the condition
is not checking whether str1 precedes str2 alphabetically (2)

● The standard string library provides the int function strcmp for comparison of two
strings that we will refer to as str1 and str2.

8.4 STRING COMPARISON

letter == 'C' ch1 < ch2

str1 < str2

➢ Function strcmp separates its argument pairs into three categories:

➢ str1[n] < str2[n] if:

8.4 STRING COMPARISON

OR

➢ The string library also provides an analogous function strncmp that bases its
comparison on only the first n characters of the two strings, where n is the third
argument.

➢ if str1 is “cabinet" and str2 is “cable " , the function calls

strncmp(str1, str2, 1) = 0
strncmp(str1, str2, 2) = 0
strncmp(str1, str2, 3) = 0 (1)

➢ strncmp(str1, str2, 4) would return a negative integer (2)

8.4 STRING COMPARISON

➢ EXAMPLE 8.5

➢ EXAMPLE 8.6, FIGURE 8.10

8.4 STRING COMPARISON

Figure 8.12

8.5 ARRAYS OF POINTERS

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to

8.5 ARRAYS OF POINTERS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 08

Strings

Loading…

Chapter Objectives:
1. Understand how a string constant is stored in an array of characters.

2. Learn about the placeholder %s and how it is used in printf and scanf operations.

3. Learn some of the operations that can be performed on strings. (1)

4. Understand how C compares two strings to determine their relative order.

5. Learn some of the operations that can be performed on individual characters using

functions from the library ctype.

6. How to write your own functions that perform some of the basic operations of a text

editor program

● A string: is a grouping of characters, a data structure.

● C implements the string data structure using arrays of type char (1)

● Strings are important in computer science (2)

● Strings play an important role in science as well (3)

● We need strings as the vehicle for communication between the computer system
and the human user.

STRING
S

Loading…

• We have already used string constants in our earlier work with printf and scanf (1)

● The first argument is the string constant "Average = %.2f", a string of 14 characters

● Notice that the blanks in the string are characters.

● A string constant can be associated with a symbolic name using the #define directive
(2)

8.1 STRING BASICS

printf("Average = %.2f", avg);

#define ERROR "*****Error - "

#define STD_NAME "Student Name"

➢ A string in C is implemented as an array, so declaring a string variable is
the same as declaring an array of type char .

➢ The variable string_var will hold strings from 0 to 29 characters long (1)

➢ C permits initialization of string variables using a string constant

DECLARING AND INITIALIZING STRING VARIABLES

char string_var[30];

char str[20] = "Initial value";

➢ str in memory after this declaration with initialization.

➢ str[13] contains the character ‘\0' , the null character that marks the end of

a string. (1)

DECLARING AND INITIALIZING STRING VARIABLES

char str[20] = "Initial value";

char str[20] = “Numbers and strings"; (2)

● Because one string is an array of characters, an array of strings is a two-dimensional
array of characters in which each row is one string.

● We can initialize an array of strings at declaration in the following manner:

ARRAYS OF
STRINGS

#define NUM_PEOPLE 30

#define NAME_LEN 25

. . .

char names[NUM_PEOPLE][NAME_LEN]; (1)

char month[12][10] = {"January", "February", "March", "April",

"May", "June", "July", "August", "September", "October", "November",

"December"};

● Use the placeholder %s in the format string with printf and scanf to handle string
argument.

● The printf function, depends on finding a null character in the character array to mark the
end of the string. (1)

● When we write our own string-building functions, we must be sure that a null character is

inserted at the end of every string. (2)

● This inclusion of the null character is automatic for constant strings.

● The %s placeholder in a printf format string can be used with a minimum field width (3)

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("Topic: %s\n", string_var);

printf ("%8s%3s***\n", "Short", "Strings");

➢ Placing a minus sign prefix on a placeholder’s field width causes left justification of
the value displayed.

● Scanf Function:

● Remember: when we call scanf with a string variable as an argument, we must

remember that array output arguments are always passed to functions by sending the
address of the initial array element. (2)

● Figure 8.2 p. 457

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("%-20s\n", “Name”); (1)

Loading…

 Figure 8.3

➢ scanf skips leading whitespace characters such as blanks, newlines, and tabs.(1)

➢ Starting with the first nonwhitespace character, scanf copies the characters it encounters into

successive memory cells of its character array argument.

➢ When it comes across a whitespace character, scanning stops, scanf places the null character at

the end of the string in its array argument.

INPUT/OUTPUT WITH PRINTF AND
SCANF

• For example, the data could have been entered one value per line with extra whitespace.

• or two values per line:

● But: (1)

●

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH

 1270

 TR

 1800

> MATH 1270

 TR 1800

> MATH1270 TR 1800 (2)

➢ => 17 characters

Figure 8.4

● EXAMPLE 8.1 p.459

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH,1270,TR,1800 (1)

➢ Using the assignment symbol in a declaration of a string variable with initialization,
is the only one in which the operator means to copy the string that is the right operand
into the variable that is the left operand.

➢ Array address is constant and cannot be changed through assignment (1)

➢

➢ a compiler error

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

one_str = "Test string"; /* Does not work */

Invalid target of assignment :

char one_str[20] = "Test String");

● C Library Functions:

➢ Along with assignment functions, the library string.h provides functions for
substring, concatenation, string length, string comparison, and whole line input
operations [See Table 8.1 p.461]

➢ The data type of the value returned by each string-building function is the pointer

type char * .

➢ Reminder: An array is being represented by the address of its initial value.

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

● String Assignment:

➢ Function strcpy copies the string that is its second argument into its first argument

➢ Like a call to scanf with a %s placeholder, a call to strcpy can easily overflow the
space allocated for the destination variable (2)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

strcpy(one_str, "Test String"); (1)

strcpy(one_str, "A very long test string"); (3)

● strncpy that takes an argument specifying the number of characters to copy (call this
number n). (1)

● The effect is the same as the call

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, "Test string", 20); (2)

strcpy(one_str, "Test string"); (3)

● when the source string is longer than n characters, only the first n characters are
copied.

● In general,

● Both strcpy and strncpy mimic the assignment operator in that the value they return
is the string assigned. (3)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, “A very long test string”, 20); (1)

strncpy(dest, source, dest_len - 1); (2)

dest[dest_len - 1] = '\0';

➢ For example, we might want to examine
 the “133" in the string “Comp133"
 or the "Jan" in the string "Jan. 30, 1996”.

➢ Assuming that the prototype of strncpy is (1)

SUBSTRING
S

char *strncpy(char *dest, const char *source, size_t n);

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0';

➢ Figure 8.5

SUBSTRING
S

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0'; (1)

➢ If we wish to use strncpy to extract a middle substring, we must call the function
with the address of the first character to copy.

 Fig. 8.6

SUBSTRING
S

strncpy(result, &s1[5], 2);

result[2] = '\0'; (1)

strcpy(result, &s1[9]); (2)

➢ EXAMPLE 8.2 (1)
➢ 1st Solution (2)

➢ 2nd Solution: (3)

SUBSTRING
S

char *last, *first, *middle;

char pres[20] = "Adams, John Quincy";

char pres_copy[20];

strcpy(pres_copy, pres);

last = strtok(pres_copy, ", ");

first = strtok(NULL, ", ");

middle = strtok(NULL, ", ");

➢ EXAMPLE 8.3, Figure 8.7

 used to display the last
 component.

➢ Instead of: (1)
 Since strcpy returns as its value the
starting address
 of the string it has just stored in elem

➢ The use of CMP_LEN and strlen(compound): the declared size of the array is no
longer the effective size once data have been stored in the array (2)

SUBSTRING
S

printf("%s\n", strcpy(elem, &compound[first]));

strcpy(elem, &compound[first]);

printf("%s\n", elem);

● Concatenation: String library functions strcat and strncat modify their first string
argument by adding all or part of their second string argument at the end of the first
argument.

● Both functions assume that sufficient space is allocated for the first argument to allow

addition of the extra characters.

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 15 EXAMPLE 8.4

char f1[STRSIZ] = "John ", f2[STRSIZ] = "Jacqueline ",

last[STRSIZ] = "Kennedy";

strcat(f1, last); => “John Kennedy” 12 characters + “\0”

strcat(f2, last);=> “Jacqueline Kennedy” 18 characters + “\0” /* invalid overflow of f2 */

//As an alternative to the second call to strcat (2)

strncat(f2, last, 3); /*Jacqueline Ken*/

● Concatenation:
● Take note that the call to strcat modifies the value of s1 even when embedded in other function

calls:

● Both strcat and strncat return as the function value the modified first argument.

● If s1 and s2 are both character strings
declared to hold STRSIZ characters (1)

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

if (strlen(s1) + strlen(s2) < STRSIZ) {

strcat(s1, s2);

} else {

strncat(s1, s2, STRSIZ - strlen(s1) - 1);

s1[STRSIZ - 1] = '\0';

}

printf("%s\n", strncat(f2, last, 3));

● String Length: function strlen returns the length of the value of its string argument, not counting
the '\0' character.

● For example: this code fragment displays the numbers 8 and 18 followed by the phrase Birzeit
University .

● Notice that the blank at the end of the initial value of s1 is counted in s1’s length.
● Two critical questions that must always be in the mind when working with strcpy, strncpy , strcat

, and strncat:
1. Is there enough space in the output parameter for the entire string being created?
2. Does the created string end in '\0' ?

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 20

char s1[STRSIZ] = “Birzeit ",

s2[STRSIZ] = “University";

printf("%d %d\n", strlen(s1), strlen(strcat(s1, s2)));

printf("%s\n", s1);

➢ A type char value is not a valid argument for a function with a corresponding
parameter of type char * (1)

➢ Note the difference internally between the representations of the character 'Q' and the

string "Q" .

● View the string as an array and use assignment to subscripted elements for access. (2)

● Be sure to include the null character at the end of the string.

DISTINCTION BETWEEN CHARACTERS AND
STRINGS

● Although blanks are natural separators to place between numeric data values, viewing
them as delimiters (1) when processing strings may not make sense (2)

➢ The stdio library provides the function gets for interactive input of one complete line

of data

 (3)

SCANNING A FULL LINE

char line[80];

printf("Type in a line of data.\n> ");

gets(line);

Type in a line of data.

> Here is a short sentence.

Loading…

● The \n character representing the <return> or <enter> key pressed at the end of the
sentence is not stored.

● Like scanf , gets can overflow its string argument if the user enters a longer data line
than will fit.

● Function fgets takes three arguments: (1)

1. The output parameter string,
2. A maximum number of characters to store (n) (2)
3. And the file pointer to the data source

● The next to last character may or may not be '\n' :
4. If fgets has room to store the entire line of data it will include '\n' before '\0' .
5. If the line is truncated, no '\n' is stored.

SCANNING A FULL LINE

● fgets stores the string created in its first argument and returns this string argument (i.e.,
its address) as its value (1)

● When a call to fgets encounters the end of file, the value returned is the address 0,

which is considered the null pointer.

● FIGURE 8.8 (2)

SCANNING A FULL LINE

➢ We studied the fact that characters are represented by numeric codes, and we used
relational and equality operators to compare characters.

➢ Unfortunately, these operators cannot be used for comparison of strings. (1)

➢ if str1 and str2 are string variables, the condition
is not checking whether str1 precedes str2 alphabetically (2)

● The standard string library provides the int function strcmp for comparison of two
strings that we will refer to as str1 and str2.

8.4 STRING COMPARISON

letter == 'C' ch1 < ch2

str1 < str2

➢ Function strcmp separates its argument pairs into three categories:

➢ str1[n] < str2[n] if:

8.4 STRING COMPARISON

OR

➢ The string library also provides an analogous function strncmp that bases its
comparison on only the first n characters of the two strings, where n is the third
argument.

➢ if str1 is “cabinet" and str2 is “cable " , the function calls

strncmp(str1, str2, 1) = 0
strncmp(str1, str2, 2) = 0
strncmp(str1, str2, 3) = 0 (1)

➢ strncmp(str1, str2, 4) would return a negative integer (2)

8.4 STRING COMPARISON

➢ EXAMPLE 8.5

➢ EXAMPLE 8.6, FIGURE 8.10

8.4 STRING COMPARISON

Figure 8.12

8.5 ARRAYS OF POINTERS

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to

8.5 ARRAYS OF POINTERS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 08

Strings

Loading…

Chapter Objectives:
1. Understand how a string constant is stored in an array of characters.

2. Learn about the placeholder %s and how it is used in printf and scanf operations.

3. Learn some of the operations that can be performed on strings. (1)

4. Understand how C compares two strings to determine their relative order.

5. Learn some of the operations that can be performed on individual characters using

functions from the library ctype.

6. How to write your own functions that perform some of the basic operations of a text

editor program

● A string: is a grouping of characters, a data structure.

● C implements the string data structure using arrays of type char (1)

● Strings are important in computer science (2)

● Strings play an important role in science as well (3)

● We need strings as the vehicle for communication between the computer system
and the human user.

STRING
S

Loading…

• We have already used string constants in our earlier work with printf and scanf (1)

● The first argument is the string constant "Average = %.2f", a string of 14 characters

● Notice that the blanks in the string are characters.

● A string constant can be associated with a symbolic name using the #define directive
(2)

8.1 STRING BASICS

printf("Average = %.2f", avg);

#define ERROR "*****Error - "

#define STD_NAME "Student Name"

➢ A string in C is implemented as an array, so declaring a string variable is
the same as declaring an array of type char .

➢ The variable string_var will hold strings from 0 to 29 characters long (1)

➢ C permits initialization of string variables using a string constant

DECLARING AND INITIALIZING STRING VARIABLES

char string_var[30];

char str[20] = "Initial value";

➢ str in memory after this declaration with initialization.

➢ str[13] contains the character ‘\0' , the null character that marks the end of

a string. (1)

DECLARING AND INITIALIZING STRING VARIABLES

char str[20] = "Initial value";

char str[20] = “Numbers and strings"; (2)

● Because one string is an array of characters, an array of strings is a two-dimensional
array of characters in which each row is one string.

● We can initialize an array of strings at declaration in the following manner:

ARRAYS OF
STRINGS

#define NUM_PEOPLE 30

#define NAME_LEN 25

. . .

char names[NUM_PEOPLE][NAME_LEN]; (1)

char month[12][10] = {"January", "February", "March", "April",

"May", "June", "July", "August", "September", "October", "November",

"December"};

● Use the placeholder %s in the format string with printf and scanf to handle string
argument.

● The printf function, depends on finding a null character in the character array to mark the
end of the string. (1)

● When we write our own string-building functions, we must be sure that a null character is

inserted at the end of every string. (2)

● This inclusion of the null character is automatic for constant strings.

● The %s placeholder in a printf format string can be used with a minimum field width (3)

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("Topic: %s\n", string_var);

printf ("%8s%3s***\n", "Short", "Strings");

➢ Placing a minus sign prefix on a placeholder’s field width causes left justification of
the value displayed.

● Scanf Function:

● Remember: when we call scanf with a string variable as an argument, we must

remember that array output arguments are always passed to functions by sending the
address of the initial array element. (2)

● Figure 8.2 p. 457

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("%-20s\n", “Name”); (1)

Loading…

 Figure 8.3

➢ scanf skips leading whitespace characters such as blanks, newlines, and tabs.(1)

➢ Starting with the first nonwhitespace character, scanf copies the characters it encounters into

successive memory cells of its character array argument.

➢ When it comes across a whitespace character, scanning stops, scanf places the null character at

the end of the string in its array argument.

INPUT/OUTPUT WITH PRINTF AND
SCANF

• For example, the data could have been entered one value per line with extra whitespace.

• or two values per line:

● But: (1)

●

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH

 1270

 TR

 1800

> MATH 1270

 TR 1800

> MATH1270 TR 1800 (2)

➢ => 17 characters

Figure 8.4

● EXAMPLE 8.1 p.459

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH,1270,TR,1800 (1)

➢ Using the assignment symbol in a declaration of a string variable with initialization,
is the only one in which the operator means to copy the string that is the right operand
into the variable that is the left operand.

➢ Array address is constant and cannot be changed through assignment (1)

➢

➢ a compiler error

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

one_str = "Test string"; /* Does not work */

Invalid target of assignment :

char one_str[20] = "Test String");

● C Library Functions:

➢ Along with assignment functions, the library string.h provides functions for
substring, concatenation, string length, string comparison, and whole line input
operations [See Table 8.1 p.461]

➢ The data type of the value returned by each string-building function is the pointer

type char * .

➢ Reminder: An array is being represented by the address of its initial value.

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

● String Assignment:

➢ Function strcpy copies the string that is its second argument into its first argument

➢ Like a call to scanf with a %s placeholder, a call to strcpy can easily overflow the
space allocated for the destination variable (2)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

strcpy(one_str, "Test String"); (1)

strcpy(one_str, "A very long test string"); (3)

● strncpy that takes an argument specifying the number of characters to copy (call this
number n). (1)

● The effect is the same as the call

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, "Test string", 20); (2)

strcpy(one_str, "Test string"); (3)

● when the source string is longer than n characters, only the first n characters are
copied.

● In general,

● Both strcpy and strncpy mimic the assignment operator in that the value they return
is the string assigned. (3)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, “A very long test string”, 20); (1)

strncpy(dest, source, dest_len - 1); (2)

dest[dest_len - 1] = '\0';

➢ For example, we might want to examine
 the “133" in the string “Comp133"
 or the "Jan" in the string "Jan. 30, 1996”.

➢ Assuming that the prototype of strncpy is (1)

SUBSTRING
S

char *strncpy(char *dest, const char *source, size_t n);

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0';

➢ Figure 8.5

SUBSTRING
S

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0'; (1)

➢ If we wish to use strncpy to extract a middle substring, we must call the function
with the address of the first character to copy.

 Fig. 8.6

SUBSTRING
S

strncpy(result, &s1[5], 2);

result[2] = '\0'; (1)

strcpy(result, &s1[9]); (2)

➢ EXAMPLE 8.2 (1)
➢ 1st Solution (2)

➢ 2nd Solution: (3)

SUBSTRING
S

char *last, *first, *middle;

char pres[20] = "Adams, John Quincy";

char pres_copy[20];

strcpy(pres_copy, pres);

last = strtok(pres_copy, ", ");

first = strtok(NULL, ", ");

middle = strtok(NULL, ", ");

➢ EXAMPLE 8.3, Figure 8.7

 used to display the last
 component.

➢ Instead of: (1)
 Since strcpy returns as its value the
starting address
 of the string it has just stored in elem

➢ The use of CMP_LEN and strlen(compound): the declared size of the array is no
longer the effective size once data have been stored in the array (2)

SUBSTRING
S

printf("%s\n", strcpy(elem, &compound[first]));

strcpy(elem, &compound[first]);

printf("%s\n", elem);

● Concatenation: String library functions strcat and strncat modify their first string
argument by adding all or part of their second string argument at the end of the first
argument.

● Both functions assume that sufficient space is allocated for the first argument to allow

addition of the extra characters.

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 15 EXAMPLE 8.4

char f1[STRSIZ] = "John ", f2[STRSIZ] = "Jacqueline ",

last[STRSIZ] = "Kennedy";

strcat(f1, last); => “John Kennedy” 12 characters + “\0”

strcat(f2, last);=> “Jacqueline Kennedy” 18 characters + “\0” /* invalid overflow of f2 */

//As an alternative to the second call to strcat (2)

strncat(f2, last, 3); /*Jacqueline Ken*/

● Concatenation:
● Take note that the call to strcat modifies the value of s1 even when embedded in other function

calls:

● Both strcat and strncat return as the function value the modified first argument.

● If s1 and s2 are both character strings
declared to hold STRSIZ characters (1)

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

if (strlen(s1) + strlen(s2) < STRSIZ) {

strcat(s1, s2);

} else {

strncat(s1, s2, STRSIZ - strlen(s1) - 1);

s1[STRSIZ - 1] = '\0';

}

printf("%s\n", strncat(f2, last, 3));

● String Length: function strlen returns the length of the value of its string argument, not counting
the '\0' character.

● For example: this code fragment displays the numbers 8 and 18 followed by the phrase Birzeit
University .

● Notice that the blank at the end of the initial value of s1 is counted in s1’s length.
● Two critical questions that must always be in the mind when working with strcpy, strncpy , strcat

, and strncat:
1. Is there enough space in the output parameter for the entire string being created?
2. Does the created string end in '\0' ?

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 20

char s1[STRSIZ] = “Birzeit ",

s2[STRSIZ] = “University";

printf("%d %d\n", strlen(s1), strlen(strcat(s1, s2)));

printf("%s\n", s1);

➢ A type char value is not a valid argument for a function with a corresponding
parameter of type char * (1)

➢ Note the difference internally between the representations of the character 'Q' and the

string "Q" .

● View the string as an array and use assignment to subscripted elements for access. (2)

● Be sure to include the null character at the end of the string.

DISTINCTION BETWEEN CHARACTERS AND
STRINGS

● Although blanks are natural separators to place between numeric data values, viewing
them as delimiters (1) when processing strings may not make sense (2)

➢ The stdio library provides the function gets for interactive input of one complete line

of data

 (3)

SCANNING A FULL LINE

char line[80];

printf("Type in a line of data.\n> ");

gets(line);

Type in a line of data.

> Here is a short sentence.

Loading…

● The \n character representing the <return> or <enter> key pressed at the end of the
sentence is not stored.

● Like scanf , gets can overflow its string argument if the user enters a longer data line
than will fit.

● Function fgets takes three arguments: (1)

1. The output parameter string,
2. A maximum number of characters to store (n) (2)
3. And the file pointer to the data source

● The next to last character may or may not be '\n' :
4. If fgets has room to store the entire line of data it will include '\n' before '\0' .
5. If the line is truncated, no '\n' is stored.

SCANNING A FULL LINE

● fgets stores the string created in its first argument and returns this string argument (i.e.,
its address) as its value (1)

● When a call to fgets encounters the end of file, the value returned is the address 0,

which is considered the null pointer.

● FIGURE 8.8 (2)

SCANNING A FULL LINE

➢ We studied the fact that characters are represented by numeric codes, and we used
relational and equality operators to compare characters.

➢ Unfortunately, these operators cannot be used for comparison of strings. (1)

➢ if str1 and str2 are string variables, the condition
is not checking whether str1 precedes str2 alphabetically (2)

● The standard string library provides the int function strcmp for comparison of two
strings that we will refer to as str1 and str2.

8.4 STRING COMPARISON

letter == 'C' ch1 < ch2

str1 < str2

➢ Function strcmp separates its argument pairs into three categories:

➢ str1[n] < str2[n] if:

8.4 STRING COMPARISON

OR

➢ The string library also provides an analogous function strncmp that bases its
comparison on only the first n characters of the two strings, where n is the third
argument.

➢ if str1 is “cabinet" and str2 is “cable " , the function calls

strncmp(str1, str2, 1) = 0
strncmp(str1, str2, 2) = 0
strncmp(str1, str2, 3) = 0 (1)

➢ strncmp(str1, str2, 4) would return a negative integer (2)

8.4 STRING COMPARISON

➢ EXAMPLE 8.5

➢ EXAMPLE 8.6, FIGURE 8.10

8.4 STRING COMPARISON

Figure 8.12

8.5 ARRAYS OF POINTERS

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to

8.5 ARRAYS OF POINTERS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 08

Strings

Loading…

Chapter Objectives:
1. Understand how a string constant is stored in an array of characters.

2. Learn about the placeholder %s and how it is used in printf and scanf operations.

3. Learn some of the operations that can be performed on strings. (1)

4. Understand how C compares two strings to determine their relative order.

5. Learn some of the operations that can be performed on individual characters using

functions from the library ctype.

6. How to write your own functions that perform some of the basic operations of a text

editor program

● A string: is a grouping of characters, a data structure.

● C implements the string data structure using arrays of type char (1)

● Strings are important in computer science (2)

● Strings play an important role in science as well (3)

● We need strings as the vehicle for communication between the computer system
and the human user.

STRING
S

Loading…

• We have already used string constants in our earlier work with printf and scanf (1)

● The first argument is the string constant "Average = %.2f", a string of 14 characters

● Notice that the blanks in the string are characters.

● A string constant can be associated with a symbolic name using the #define directive
(2)

8.1 STRING BASICS

printf("Average = %.2f", avg);

#define ERROR "*****Error - "

#define STD_NAME "Student Name"

➢ A string in C is implemented as an array, so declaring a string variable is
the same as declaring an array of type char .

➢ The variable string_var will hold strings from 0 to 29 characters long (1)

➢ C permits initialization of string variables using a string constant

DECLARING AND INITIALIZING STRING VARIABLES

char string_var[30];

char str[20] = "Initial value";

➢ str in memory after this declaration with initialization.

➢ str[13] contains the character ‘\0' , the null character that marks the end of

a string. (1)

DECLARING AND INITIALIZING STRING VARIABLES

char str[20] = "Initial value";

char str[20] = “Numbers and strings"; (2)

● Because one string is an array of characters, an array of strings is a two-dimensional
array of characters in which each row is one string.

● We can initialize an array of strings at declaration in the following manner:

ARRAYS OF
STRINGS

#define NUM_PEOPLE 30

#define NAME_LEN 25

. . .

char names[NUM_PEOPLE][NAME_LEN]; (1)

char month[12][10] = {"January", "February", "March", "April",

"May", "June", "July", "August", "September", "October", "November",

"December"};

● Use the placeholder %s in the format string with printf and scanf to handle string
argument.

● The printf function, depends on finding a null character in the character array to mark the
end of the string. (1)

● When we write our own string-building functions, we must be sure that a null character is

inserted at the end of every string. (2)

● This inclusion of the null character is automatic for constant strings.

● The %s placeholder in a printf format string can be used with a minimum field width (3)

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("Topic: %s\n", string_var);

printf ("%8s%3s***\n", "Short", "Strings");

➢ Placing a minus sign prefix on a placeholder’s field width causes left justification of
the value displayed.

● Scanf Function:

● Remember: when we call scanf with a string variable as an argument, we must

remember that array output arguments are always passed to functions by sending the
address of the initial array element. (2)

● Figure 8.2 p. 457

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("%-20s\n", “Name”); (1)

Loading…

 Figure 8.3

➢ scanf skips leading whitespace characters such as blanks, newlines, and tabs.(1)

➢ Starting with the first nonwhitespace character, scanf copies the characters it encounters into

successive memory cells of its character array argument.

➢ When it comes across a whitespace character, scanning stops, scanf places the null character at

the end of the string in its array argument.

INPUT/OUTPUT WITH PRINTF AND
SCANF

• For example, the data could have been entered one value per line with extra whitespace.

• or two values per line:

● But: (1)

●

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH

 1270

 TR

 1800

> MATH 1270

 TR 1800

> MATH1270 TR 1800 (2)

➢ => 17 characters

Figure 8.4

● EXAMPLE 8.1 p.459

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH,1270,TR,1800 (1)

➢ Using the assignment symbol in a declaration of a string variable with initialization,
is the only one in which the operator means to copy the string that is the right operand
into the variable that is the left operand.

➢ Array address is constant and cannot be changed through assignment (1)

➢

➢ a compiler error

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

one_str = "Test string"; /* Does not work */

Invalid target of assignment :

char one_str[20] = "Test String");

● C Library Functions:

➢ Along with assignment functions, the library string.h provides functions for
substring, concatenation, string length, string comparison, and whole line input
operations [See Table 8.1 p.461]

➢ The data type of the value returned by each string-building function is the pointer

type char * .

➢ Reminder: An array is being represented by the address of its initial value.

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

● String Assignment:

➢ Function strcpy copies the string that is its second argument into its first argument

➢ Like a call to scanf with a %s placeholder, a call to strcpy can easily overflow the
space allocated for the destination variable (2)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

strcpy(one_str, "Test String"); (1)

strcpy(one_str, "A very long test string"); (3)

● strncpy that takes an argument specifying the number of characters to copy (call this
number n). (1)

● The effect is the same as the call

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, "Test string", 20); (2)

strcpy(one_str, "Test string"); (3)

● when the source string is longer than n characters, only the first n characters are
copied.

● In general,

● Both strcpy and strncpy mimic the assignment operator in that the value they return
is the string assigned. (3)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, “A very long test string”, 20); (1)

strncpy(dest, source, dest_len - 1); (2)

dest[dest_len - 1] = '\0';

➢ For example, we might want to examine
 the “133" in the string “Comp133"
 or the "Jan" in the string "Jan. 30, 1996”.

➢ Assuming that the prototype of strncpy is (1)

SUBSTRING
S

char *strncpy(char *dest, const char *source, size_t n);

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0';

➢ Figure 8.5

SUBSTRING
S

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0'; (1)

➢ If we wish to use strncpy to extract a middle substring, we must call the function
with the address of the first character to copy.

 Fig. 8.6

SUBSTRING
S

strncpy(result, &s1[5], 2);

result[2] = '\0'; (1)

strcpy(result, &s1[9]); (2)

➢ EXAMPLE 8.2 (1)
➢ 1st Solution (2)

➢ 2nd Solution: (3)

SUBSTRING
S

char *last, *first, *middle;

char pres[20] = "Adams, John Quincy";

char pres_copy[20];

strcpy(pres_copy, pres);

last = strtok(pres_copy, ", ");

first = strtok(NULL, ", ");

middle = strtok(NULL, ", ");

➢ EXAMPLE 8.3, Figure 8.7

 used to display the last
 component.

➢ Instead of: (1)
 Since strcpy returns as its value the
starting address
 of the string it has just stored in elem

➢ The use of CMP_LEN and strlen(compound): the declared size of the array is no
longer the effective size once data have been stored in the array (2)

SUBSTRING
S

printf("%s\n", strcpy(elem, &compound[first]));

strcpy(elem, &compound[first]);

printf("%s\n", elem);

● Concatenation: String library functions strcat and strncat modify their first string
argument by adding all or part of their second string argument at the end of the first
argument.

● Both functions assume that sufficient space is allocated for the first argument to allow

addition of the extra characters.

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 15 EXAMPLE 8.4

char f1[STRSIZ] = "John ", f2[STRSIZ] = "Jacqueline ",

last[STRSIZ] = "Kennedy";

strcat(f1, last); => “John Kennedy” 12 characters + “\0”

strcat(f2, last);=> “Jacqueline Kennedy” 18 characters + “\0” /* invalid overflow of f2 */

//As an alternative to the second call to strcat (2)

strncat(f2, last, 3); /*Jacqueline Ken*/

● Concatenation:
● Take note that the call to strcat modifies the value of s1 even when embedded in other function

calls:

● Both strcat and strncat return as the function value the modified first argument.

● If s1 and s2 are both character strings
declared to hold STRSIZ characters (1)

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

if (strlen(s1) + strlen(s2) < STRSIZ) {

strcat(s1, s2);

} else {

strncat(s1, s2, STRSIZ - strlen(s1) - 1);

s1[STRSIZ - 1] = '\0';

}

printf("%s\n", strncat(f2, last, 3));

● String Length: function strlen returns the length of the value of its string argument, not counting
the '\0' character.

● For example: this code fragment displays the numbers 8 and 18 followed by the phrase Birzeit
University .

● Notice that the blank at the end of the initial value of s1 is counted in s1’s length.
● Two critical questions that must always be in the mind when working with strcpy, strncpy , strcat

, and strncat:
1. Is there enough space in the output parameter for the entire string being created?
2. Does the created string end in '\0' ?

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 20

char s1[STRSIZ] = “Birzeit ",

s2[STRSIZ] = “University";

printf("%d %d\n", strlen(s1), strlen(strcat(s1, s2)));

printf("%s\n", s1);

➢ A type char value is not a valid argument for a function with a corresponding
parameter of type char * (1)

➢ Note the difference internally between the representations of the character 'Q' and the

string "Q" .

● View the string as an array and use assignment to subscripted elements for access. (2)

● Be sure to include the null character at the end of the string.

DISTINCTION BETWEEN CHARACTERS AND
STRINGS

● Although blanks are natural separators to place between numeric data values, viewing
them as delimiters (1) when processing strings may not make sense (2)

➢ The stdio library provides the function gets for interactive input of one complete line

of data

 (3)

SCANNING A FULL LINE

char line[80];

printf("Type in a line of data.\n> ");

gets(line);

Type in a line of data.

> Here is a short sentence.

Loading…

● The \n character representing the <return> or <enter> key pressed at the end of the
sentence is not stored.

● Like scanf , gets can overflow its string argument if the user enters a longer data line
than will fit.

● Function fgets takes three arguments: (1)

1. The output parameter string,
2. A maximum number of characters to store (n) (2)
3. And the file pointer to the data source

● The next to last character may or may not be '\n' :
4. If fgets has room to store the entire line of data it will include '\n' before '\0' .
5. If the line is truncated, no '\n' is stored.

SCANNING A FULL LINE

● fgets stores the string created in its first argument and returns this string argument (i.e.,
its address) as its value (1)

● When a call to fgets encounters the end of file, the value returned is the address 0,

which is considered the null pointer.

● FIGURE 8.8 (2)

SCANNING A FULL LINE

➢ We studied the fact that characters are represented by numeric codes, and we used
relational and equality operators to compare characters.

➢ Unfortunately, these operators cannot be used for comparison of strings. (1)

➢ if str1 and str2 are string variables, the condition
is not checking whether str1 precedes str2 alphabetically (2)

● The standard string library provides the int function strcmp for comparison of two
strings that we will refer to as str1 and str2.

8.4 STRING COMPARISON

letter == 'C' ch1 < ch2

str1 < str2

➢ Function strcmp separates its argument pairs into three categories:

➢ str1[n] < str2[n] if:

8.4 STRING COMPARISON

OR

➢ The string library also provides an analogous function strncmp that bases its
comparison on only the first n characters of the two strings, where n is the third
argument.

➢ if str1 is “cabinet" and str2 is “cable " , the function calls

strncmp(str1, str2, 1) = 0
strncmp(str1, str2, 2) = 0
strncmp(str1, str2, 3) = 0 (1)

➢ strncmp(str1, str2, 4) would return a negative integer (2)

8.4 STRING COMPARISON

➢ EXAMPLE 8.5

➢ EXAMPLE 8.6, FIGURE 8.10

8.4 STRING COMPARISON

Figure 8.12

8.5 ARRAYS OF POINTERS

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to

8.5 ARRAYS OF POINTERS

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 08

Strings

Loading…

Chapter Objectives:
1. Understand how a string constant is stored in an array of characters.

2. Learn about the placeholder %s and how it is used in printf and scanf operations.

3. Learn some of the operations that can be performed on strings. (1)

4. Understand how C compares two strings to determine their relative order.

5. Learn some of the operations that can be performed on individual characters using

functions from the library ctype.

6. How to write your own functions that perform some of the basic operations of a text

editor program

● A string: is a grouping of characters, a data structure.

● C implements the string data structure using arrays of type char (1)

● Strings are important in computer science (2)

● Strings play an important role in science as well (3)

● We need strings as the vehicle for communication between the computer system
and the human user.

STRING
S

Loading…

• We have already used string constants in our earlier work with printf and scanf (1)

● The first argument is the string constant "Average = %.2f", a string of 14 characters

● Notice that the blanks in the string are characters.

● A string constant can be associated with a symbolic name using the #define directive
(2)

8.1 STRING BASICS

printf("Average = %.2f", avg);

#define ERROR "*****Error - "

#define STD_NAME "Student Name"

➢ A string in C is implemented as an array, so declaring a string variable is
the same as declaring an array of type char .

➢ The variable string_var will hold strings from 0 to 29 characters long (1)

➢ C permits initialization of string variables using a string constant

DECLARING AND INITIALIZING STRING VARIABLES

char string_var[30];

char str[20] = "Initial value";

➢ str in memory after this declaration with initialization.

➢ str[13] contains the character ‘\0' , the null character that marks the end of

a string. (1)

DECLARING AND INITIALIZING STRING VARIABLES

char str[20] = "Initial value";

char str[20] = “Numbers and strings"; (2)

● Because one string is an array of characters, an array of strings is a two-dimensional
array of characters in which each row is one string.

● We can initialize an array of strings at declaration in the following manner:

ARRAYS OF
STRINGS

#define NUM_PEOPLE 30

#define NAME_LEN 25

. . .

char names[NUM_PEOPLE][NAME_LEN]; (1)

char month[12][10] = {"January", "February", "March", "April",

"May", "June", "July", "August", "September", "October", "November",

"December"};

● Use the placeholder %s in the format string with printf and scanf to handle string
argument.

● The printf function, depends on finding a null character in the character array to mark the
end of the string. (1)

● When we write our own string-building functions, we must be sure that a null character is

inserted at the end of every string. (2)

● This inclusion of the null character is automatic for constant strings.

● The %s placeholder in a printf format string can be used with a minimum field width (3)

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("Topic: %s\n", string_var);

printf ("%8s%3s***\n", "Short", "Strings");

➢ Placing a minus sign prefix on a placeholder’s field width causes left justification of
the value displayed.

● Scanf Function:

● Remember: when we call scanf with a string variable as an argument, we must

remember that array output arguments are always passed to functions by sending the
address of the initial array element. (2)

● Figure 8.2 p. 457

INPUT/OUTPUT WITH PRINTF AND
SCANF

printf("%-20s\n", “Name”); (1)

Loading…

 Figure 8.3

➢ scanf skips leading whitespace characters such as blanks, newlines, and tabs.(1)

➢ Starting with the first nonwhitespace character, scanf copies the characters it encounters into

successive memory cells of its character array argument.

➢ When it comes across a whitespace character, scanning stops, scanf places the null character at

the end of the string in its array argument.

INPUT/OUTPUT WITH PRINTF AND
SCANF

• For example, the data could have been entered one value per line with extra whitespace.

• or two values per line:

● But: (1)

●

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH

 1270

 TR

 1800

> MATH 1270

 TR 1800

> MATH1270 TR 1800 (2)

➢ => 17 characters

Figure 8.4

● EXAMPLE 8.1 p.459

INPUT/OUTPUT WITH PRINTF AND
SCANF

> MATH,1270,TR,1800 (1)

➢ Using the assignment symbol in a declaration of a string variable with initialization,
is the only one in which the operator means to copy the string that is the right operand
into the variable that is the left operand.

➢ Array address is constant and cannot be changed through assignment (1)

➢

➢ a compiler error

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

one_str = "Test string"; /* Does not work */

Invalid target of assignment :

char one_str[20] = "Test String");

● C Library Functions:

➢ Along with assignment functions, the library string.h provides functions for
substring, concatenation, string length, string comparison, and whole line input
operations [See Table 8.1 p.461]

➢ The data type of the value returned by each string-building function is the pointer

type char * .

➢ Reminder: An array is being represented by the address of its initial value.

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

● String Assignment:

➢ Function strcpy copies the string that is its second argument into its first argument

➢ Like a call to scanf with a %s placeholder, a call to strcpy can easily overflow the
space allocated for the destination variable (2)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

char one_str[20];

strcpy(one_str, "Test String"); (1)

strcpy(one_str, "A very long test string"); (3)

● strncpy that takes an argument specifying the number of characters to copy (call this
number n). (1)

● The effect is the same as the call

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, "Test string", 20); (2)

strcpy(one_str, "Test string"); (3)

● when the source string is longer than n characters, only the first n characters are
copied.

● In general,

● Both strcpy and strncpy mimic the assignment operator in that the value they return
is the string assigned. (3)

8.2 STRING LIBRARY FUNCTIONS: ASSIGNMENT AND SUBSTRINGS

strncpy(one_str, “A very long test string”, 20); (1)

strncpy(dest, source, dest_len - 1); (2)

dest[dest_len - 1] = '\0';

➢ For example, we might want to examine
 the “133" in the string “Comp133"
 or the "Jan" in the string "Jan. 30, 1996”.

➢ Assuming that the prototype of strncpy is (1)

SUBSTRING
S

char *strncpy(char *dest, const char *source, size_t n);

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0';

➢ Figure 8.5

SUBSTRING
S

char result[10], s1[15] = "Jan. 30, 1996";

strncpy(result, s1, 9);

result[9] = '\0'; (1)

➢ If we wish to use strncpy to extract a middle substring, we must call the function
with the address of the first character to copy.

 Fig. 8.6

SUBSTRING
S

strncpy(result, &s1[5], 2);

result[2] = '\0'; (1)

strcpy(result, &s1[9]); (2)

➢ EXAMPLE 8.2 (1)
➢ 1st Solution (2)

➢ 2nd Solution: (3)

SUBSTRING
S

char *last, *first, *middle;

char pres[20] = "Adams, John Quincy";

char pres_copy[20];

strcpy(pres_copy, pres);

last = strtok(pres_copy, ", ");

first = strtok(NULL, ", ");

middle = strtok(NULL, ", ");

➢ EXAMPLE 8.3, Figure 8.7

 used to display the last
 component.

➢ Instead of: (1)
 Since strcpy returns as its value the
starting address
 of the string it has just stored in elem

➢ The use of CMP_LEN and strlen(compound): the declared size of the array is no
longer the effective size once data have been stored in the array (2)

SUBSTRING
S

printf("%s\n", strcpy(elem, &compound[first]));

strcpy(elem, &compound[first]);

printf("%s\n", elem);

● Concatenation: String library functions strcat and strncat modify their first string
argument by adding all or part of their second string argument at the end of the first
argument.

● Both functions assume that sufficient space is allocated for the first argument to allow

addition of the extra characters.

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 15 EXAMPLE 8.4

char f1[STRSIZ] = "John ", f2[STRSIZ] = "Jacqueline ",

last[STRSIZ] = "Kennedy";

strcat(f1, last); => “John Kennedy” 12 characters + “\0”

strcat(f2, last);=> “Jacqueline Kennedy” 18 characters + “\0” /* invalid overflow of f2 */

//As an alternative to the second call to strcat (2)

strncat(f2, last, 3); /*Jacqueline Ken*/

● Concatenation:
● Take note that the call to strcat modifies the value of s1 even when embedded in other function

calls:

● Both strcat and strncat return as the function value the modified first argument.

● If s1 and s2 are both character strings
declared to hold STRSIZ characters (1)

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

if (strlen(s1) + strlen(s2) < STRSIZ) {

strcat(s1, s2);

} else {

strncat(s1, s2, STRSIZ - strlen(s1) - 1);

s1[STRSIZ - 1] = '\0';

}

printf("%s\n", strncat(f2, last, 3));

● String Length: function strlen returns the length of the value of its string argument, not counting
the '\0' character.

● For example: this code fragment displays the numbers 8 and 18 followed by the phrase Birzeit
University .

● Notice that the blank at the end of the initial value of s1 is counted in s1’s length.
● Two critical questions that must always be in the mind when working with strcpy, strncpy , strcat

, and strncat:
1. Is there enough space in the output parameter for the entire string being created?
2. Does the created string end in '\0' ?

8.3 LONGER STRINGS: CONCATENATION AND WHOLE-LINE INPUT

#define STRSIZ 20

char s1[STRSIZ] = “Birzeit ",

s2[STRSIZ] = “University";

printf("%d %d\n", strlen(s1), strlen(strcat(s1, s2)));

printf("%s\n", s1);

➢ A type char value is not a valid argument for a function with a corresponding
parameter of type char * (1)

➢ Note the difference internally between the representations of the character 'Q' and the

string "Q" .

● View the string as an array and use assignment to subscripted elements for access. (2)

● Be sure to include the null character at the end of the string.

DISTINCTION BETWEEN CHARACTERS AND
STRINGS

● Although blanks are natural separators to place between numeric data values, viewing
them as delimiters (1) when processing strings may not make sense (2)

➢ The stdio library provides the function gets for interactive input of one complete line

of data

 (3)

SCANNING A FULL LINE

char line[80];

printf("Type in a line of data.\n> ");

gets(line);

Type in a line of data.

> Here is a short sentence.

Loading…

● The \n character representing the <return> or <enter> key pressed at the end of the
sentence is not stored.

● Like scanf , gets can overflow its string argument if the user enters a longer data line
than will fit.

● Function fgets takes three arguments: (1)

1. The output parameter string,
2. A maximum number of characters to store (n) (2)
3. And the file pointer to the data source

● The next to last character may or may not be '\n' :
4. If fgets has room to store the entire line of data it will include '\n' before '\0' .
5. If the line is truncated, no '\n' is stored.

SCANNING A FULL LINE

● fgets stores the string created in its first argument and returns this string argument (i.e.,
its address) as its value (1)

● When a call to fgets encounters the end of file, the value returned is the address 0,

which is considered the null pointer.

● FIGURE 8.8 (2)

SCANNING A FULL LINE

➢ We studied the fact that characters are represented by numeric codes, and we used
relational and equality operators to compare characters.

➢ Unfortunately, these operators cannot be used for comparison of strings. (1)

➢ if str1 and str2 are string variables, the condition
is not checking whether str1 precedes str2 alphabetically (2)

● The standard string library provides the int function strcmp for comparison of two
strings that we will refer to as str1 and str2.

8.4 STRING COMPARISON

letter == 'C' ch1 < ch2

str1 < str2

➢ Function strcmp separates its argument pairs into three categories:

➢ str1[n] < str2[n] if:

8.4 STRING COMPARISON

OR

➢ The string library also provides an analogous function strncmp that bases its
comparison on only the first n characters of the two strings, where n is the third
argument.

➢ if str1 is “cabinet" and str2 is “cable " , the function calls

strncmp(str1, str2, 1) = 0
strncmp(str1, str2, 2) = 0
strncmp(str1, str2, 3) = 0 (1)

➢ strncmp(str1, str2, 4) would return a negative integer (2)

8.4 STRING COMPARISON

➢ EXAMPLE 8.5

➢ EXAMPLE 8.6, FIGURE 8.10

8.4 STRING COMPARISON

Figure 8.12

8.5 ARRAYS OF POINTERS

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to

8.5 ARRAYS OF POINTERS
➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to

our sorting problem.

 (1)

 (2)

for (i = 0; i < 5; ++i)

printf("%s\n", alphap[i]);

➢ When printf sees a %s specifier, it always expects to receive the starting address of a string as the
corresponding input argument, so alphap[i] is just as legitimate an argument as original[i] .

➢ Declaring the array of pointers alphap (1)

➢ EXAMPLE 8.7, FIGURE 8.14 (2)

● Advantages of this approach: (3)

1. A pointer (an integer address) requires less storage space than a full copy of a character string.

2. The sorting function executes faster when it copies only pointers and not complete arrays of characters

3. Because the strings themselves are stored only once, a spelling correction made in the original list would
automatically be reflected in the other orderings as well.

8.5 ARRAYS OF POINTERS

char *alphap[5];

➢ C also permits the use of an array of pointers to represent a list of string constants.

➢ Two alternatives for representing the list of month names (1)

➢ Note: Actually, the number of rows (12) is optional in both of these declarations since the
initialization list also implies this value.

ARRAYS OF STRING
CONSTANTS

char month[12][10] = {"January", "February", "March", "April", "May",

"June", "July", "August", "September", "October", "November", "December"};

char *month[12] = {"January", "February", "March", "April", "May",

"June", "July", "August", "September", "October", "November", "December"};

➢ When we develop programs that involve string processing, often we must work with the
individual characters that make up the string.

➢ C provides character input/output routines as part of the <stdio.h> library, and an extensive

collection of facilities for character analysis and conversion is available in the library we #include
as <ctype.h>.

● Character Input/Output
o The stdio library includes a routine named getchar that is used to get the next character from the

standard input source (1).
o getchar takes no arguments and returns the character as its result. (2)

8.6 CHARACTER
OPERATIONS

scanf("%c", &ch) ch = getchar() (3)

➢ There is, a difference between the two fragments: (1)
● scanf returns an integer representing the number of values read or EOF. (2)
● The call to getchar returns an integer values representing the character that getchar found (3).

● What if there were no characters for getchar to take? What if getchar came across the end of the

data? (4)

• We use a type int variable to store the result of a call to getchar , at least until we verify that
getchar did not return EOF . (5)

➢ To get a single character from a file, use the facility getc
➢ getc is comparable to a call to getchar , except that the character returned is obtained from the

file accessed by file pointer inp .

● EXAMPLE 8.8, FIGURE 8.15

8.6 CHARACTER
OPERATIONS

getc(inp)

● The standard library’s single-character output facilities are:
1. putchar (for display on the standard output device)

2. putc (for files). (1)

● Character Analysis and Conversion:

● The library we #include as <ctype.h> : (2)

3. Helps us decide if a character is a letter? a digit? A punctuation mark?.

4. It also provides routines to do common character conversions like uppercase to lowercase or

lowercase to uppercase.

● Table 8.3 p.485: lists a number of these routines (3)
● EXAMPLE 8.9, FIGURE 8.16

8.6 CHARACTER
OPERATIONS

putchar('a');

putc('a', outp);

➢ Common conversions done by scanf and prinft: (1)

8.7 STRING-TO-NUMBER AND NUMBER-TO-STRING
CONVERSIONS

"3.14159" 3.14159 −36 “−36”

➢ The stdio library also give us sprintf and sscanf functions:

● The sprintf function requires space for a string as its first argument.
● Instead of printing the result, sprintf stores it in the character array accessed by its initial

argument. (1)

o assume that s has been declared as char s[100]

8.7 STRING-TO-NUMBER AND NUMBER-TO-STRING
CONVERSIONS

➢ The sscanf function takes data from the string that is its first argument (1)

stores values from the first string.

● EXAMPLE 8.10, figure 8.17

● Read EXAMPLE 8.11 p.490

8.7 STRING-TO-NUMBER AND NUMBER-TO-STRING
CONVERSIONS

sscanf(“ 85 96.2 hello", "%d%lf%s", &num, &val, word);

CASE STUDY (Homework)
P.495 - 503

Text Editor

8.8 STRING PROCESSING ILLUSTRATED

➢ String functions do not actually return a string value in the same way that an int function returns
an integer value.

➢ Another error is the misuse or neglect of the & operator with string use (1).

➢ Another problem with string use is the overflow of character arrays allocated for strings

➢ A relatively minor error that can lead to difficult bugs is forgetting that all strings end with the

null character.

➢ It is easy to slip and use equality or relational operators when comparing strings or the
assignment operator for copying them.

➢ Read details of handling these errors p.504

8.9 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to
our sorting problem.

 (1)

 (2)

for (i = 0; i < 5; ++i)

printf("%s\n", alphap[i]);

➢ When printf sees a %s specifier, it always expects to receive the starting address of a string as the
corresponding input argument, so alphap[i] is just as legitimate an argument as original[i] .

➢ Declaring the array of pointers alphap (1)

➢ EXAMPLE 8.7, FIGURE 8.14 (2)

● Advantages of this approach: (3)

1. A pointer (an integer address) requires less storage space than a full copy of a character string.

2. The sorting function executes faster when it copies only pointers and not complete arrays of characters

3. Because the strings themselves are stored only once, a spelling correction made in the original list would
automatically be reflected in the other orderings as well.

8.5 ARRAYS OF POINTERS

char *alphap[5];

➢ C also permits the use of an array of pointers to represent a list of string constants.

➢ Two alternatives for representing the list of month names (1)

➢ Note: Actually, the number of rows (12) is optional in both of these declarations since the
initialization list also implies this value.

ARRAYS OF STRING
CONSTANTS

char month[12][10] = {"January", "February", "March", "April", "May",

"June", "July", "August", "September", "October", "November", "December"};

char *month[12] = {"January", "February", "March", "April", "May",

"June", "July", "August", "September", "October", "November", "December"};

➢ When we develop programs that involve string processing, often we must work with the
individual characters that make up the string.

➢ C provides character input/output routines as part of the <stdio.h> library, and an extensive

collection of facilities for character analysis and conversion is available in the library we #include
as <ctype.h>.

● Character Input/Output
o The stdio library includes a routine named getchar that is used to get the next character from the

standard input source (1).
o getchar takes no arguments and returns the character as its result. (2)

8.6 CHARACTER
OPERATIONS

scanf("%c", &ch) ch = getchar() (3)

➢ There is, a difference between the two fragments: (1)
● scanf returns an integer representing the number of values read or EOF. (2)
● The call to getchar returns an integer values representing the character that getchar found (3).

● What if there were no characters for getchar to take? What if getchar came across the end of the

data? (4)

• We use a type int variable to store the result of a call to getchar , at least until we verify that
getchar did not return EOF . (5)

➢ To get a single character from a file, use the facility getc
➢ getc is comparable to a call to getchar , except that the character returned is obtained from the

file accessed by file pointer inp .

● EXAMPLE 8.8, FIGURE 8.15

8.6 CHARACTER
OPERATIONS

getc(inp)

● The standard library’s single-character output facilities are:
1. putchar (for display on the standard output device)

2. putc (for files). (1)

● Character Analysis and Conversion:

● The library we #include as <ctype.h> : (2)

3. Helps us decide if a character is a letter? a digit? A punctuation mark?.

4. It also provides routines to do common character conversions like uppercase to lowercase or

lowercase to uppercase.

● Table 8.3 p.485: lists a number of these routines (3)
● EXAMPLE 8.9, FIGURE 8.16

8.6 CHARACTER
OPERATIONS

putchar('a');

putc('a', outp);

➢ Common conversions done by scanf and prinft: (1)

8.7 STRING-TO-NUMBER AND NUMBER-TO-STRING
CONVERSIONS

"3.14159" 3.14159 −36 “−36”

➢ The stdio library also give us sprintf and sscanf functions:

● The sprintf function requires space for a string as its first argument.
● Instead of printing the result, sprintf stores it in the character array accessed by its initial

argument. (1)

o assume that s has been declared as char s[100]

8.7 STRING-TO-NUMBER AND NUMBER-TO-STRING
CONVERSIONS

➢ The sscanf function takes data from the string that is its first argument (1)

stores values from the first string.

● EXAMPLE 8.10, figure 8.17

● Read EXAMPLE 8.11 p.490

8.7 STRING-TO-NUMBER AND NUMBER-TO-STRING
CONVERSIONS

sscanf(“ 85 96.2 hello", "%d%lf%s", &num, &val, word);

CASE STUDY (Homework)
P.495 - 503

Text Editor

8.8 STRING PROCESSING ILLUSTRATED

➢ String functions do not actually return a string value in the same way that an int function returns
an integer value.

➢ Another error is the misuse or neglect of the & operator with string use (1).

➢ Another problem with string use is the overflow of character arrays allocated for strings

➢ A relatively minor error that can lead to difficult bugs is forgetting that all strings end with the

null character.

➢ It is easy to slip and use equality or relational operators when comparing strings or the
assignment operator for copying them.

➢ Read details of handling these errors p.504

8.9 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to
our sorting problem.

 (1)

 (2)

for (i = 0; i < 5; ++i)

printf("%s\n", alphap[i]);

➢ When printf sees a %s specifier, it always expects to receive the starting address of a string as the
corresponding input argument, so alphap[i] is just as legitimate an argument as original[i] .

➢ Declaring the array of pointers alphap (1)

➢ EXAMPLE 8.7, FIGURE 8.14 (2)

● Advantages of this approach: (3)

1. A pointer (an integer address) requires less storage space than a full copy of a character string.

2. The sorting function executes faster when it copies only pointers and not complete arrays of characters

3. Because the strings themselves are stored only once, a spelling correction made in the original list would
automatically be reflected in the other orderings as well.

8.5 ARRAYS OF POINTERS

char *alphap[5];

➢ C also permits the use of an array of pointers to represent a list of string constants.

➢ Two alternatives for representing the list of month names (1)

➢ Note: Actually, the number of rows (12) is optional in both of these declarations since the
initialization list also implies this value.

ARRAYS OF STRING
CONSTANTS

char month[12][10] = {"January", "February", "March", "April", "May",

"June", "July", "August", "September", "October", "November", "December"};

char *month[12] = {"January", "February", "March", "April", "May",

"June", "July", "August", "September", "October", "November", "December"};

➢ When we develop programs that involve string processing, often we must work with the
individual characters that make up the string.

➢ C provides character input/output routines as part of the <stdio.h> library, and an extensive

collection of facilities for character analysis and conversion is available in the library we #include
as <ctype.h>.

● Character Input/Output
o The stdio library includes a routine named getchar that is used to get the next character from the

standard input source (1).
o getchar takes no arguments and returns the character as its result. (2)

8.6 CHARACTER
OPERATIONS

scanf("%c", &ch) ch = getchar() (3)

➢ There is, a difference between the two fragments: (1)
● scanf returns an integer representing the number of values read or EOF. (2)
● The call to getchar returns an integer values representing the character that getchar found (3).

● What if there were no characters for getchar to take? What if getchar came across the end of the

data? (4)

• We use a type int variable to store the result of a call to getchar , at least until we verify that
getchar did not return EOF . (5)

➢ To get a single character from a file, use the facility getc
➢ getc is comparable to a call to getchar , except that the character returned is obtained from the

file accessed by file pointer inp .

● EXAMPLE 8.8, FIGURE 8.15

8.6 CHARACTER
OPERATIONS

getc(inp)

● The standard library’s single-character output facilities are:
1. putchar (for display on the standard output device)

2. putc (for files). (1)

● Character Analysis and Conversion:

● The library we #include as <ctype.h> : (2)

3. Helps us decide if a character is a letter? a digit? A punctuation mark?.

4. It also provides routines to do common character conversions like uppercase to lowercase or

lowercase to uppercase.

● Table 8.3 p.485: lists a number of these routines (3)
● EXAMPLE 8.9, FIGURE 8.16

8.6 CHARACTER
OPERATIONS

putchar('a');

putc('a', outp);

➢ Common conversions done by scanf and prinft: (1)

8.7 STRING-TO-NUMBER AND NUMBER-TO-STRING
CONVERSIONS

"3.14159" 3.14159 −36 “−36”

➢ The stdio library also give us sprintf and sscanf functions:

● The sprintf function requires space for a string as its first argument.
● Instead of printing the result, sprintf stores it in the character array accessed by its initial

argument. (1)

o assume that s has been declared as char s[100]

8.7 STRING-TO-NUMBER AND NUMBER-TO-STRING
CONVERSIONS

➢ The sscanf function takes data from the string that is its first argument (1)

stores values from the first string.

● EXAMPLE 8.10, figure 8.17

● Read EXAMPLE 8.11 p.490

8.7 STRING-TO-NUMBER AND NUMBER-TO-STRING
CONVERSIONS

sscanf(“ 85 96.2 hello", "%d%lf%s", &num, &val, word);

CASE STUDY (Homework)
P.495 - 503

Text Editor

8.8 STRING PROCESSING ILLUSTRATED

➢ String functions do not actually return a string value in the same way that an int function returns
an integer value.

➢ Another error is the misuse or neglect of the & operator with string use (1).

➢ Another problem with string use is the overflow of character arrays allocated for strings

➢ A relatively minor error that can lead to difficult bugs is forgetting that all strings end with the

null character.

➢ It is easy to slip and use equality or relational operators when comparing strings or the
assignment operator for copying them.

➢ Read details of handling these errors p.504

8.9 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to
our sorting problem.

 (1)

 (2)

for (i = 0; i < 5; ++i)

printf("%s\n", alphap[i]);

➢ When printf sees a %s specifier, it always expects to receive the starting address of a string as the
corresponding input argument, so alphap[i] is just as legitimate an argument as original[i] .

➢ Declaring the array of pointers alphap (1)

➢ EXAMPLE 8.7, FIGURE 8.14 (2)

● Advantages of this approach: (3)

1. A pointer (an integer address) requires less storage space than a full copy of a character string.

2. The sorting function executes faster when it copies only pointers and not complete arrays of characters

3. Because the strings themselves are stored only once, a spelling correction made in the original list would
automatically be reflected in the other orderings as well.

8.5 ARRAYS OF POINTERS

char *alphap[5];

➢ C also permits the use of an array of pointers to represent a list of string constants.

➢ Two alternatives for representing the list of month names (1)

➢ Note: Actually, the number of rows (12) is optional in both of these declarations since the
initialization list also implies this value.

ARRAYS OF STRING
CONSTANTS

char month[12][10] = {"January", "February", "March", "April", "May",

"June", "July", "August", "September", "October", "November", "December"};

char *month[12] = {"January", "February", "March", "April", "May",

"June", "July", "August", "September", "October", "November", "December"};

➢ When we develop programs that involve string processing, often we must work with the
individual characters that make up the string.

➢ C provides character input/output routines as part of the <stdio.h> library, and an extensive

collection of facilities for character analysis and conversion is available in the library we #include
as <ctype.h>.

● Character Input/Output
o The stdio library includes a routine named getchar that is used to get the next character from the

standard input source (1).
o getchar takes no arguments and returns the character as its result. (2)

8.6 CHARACTER
OPERATIONS

scanf("%c", &ch) ch = getchar() (3)

➢ There is, a difference between the two fragments: (1)
● scanf returns an integer representing the number of values read or EOF. (2)
● The call to getchar returns an integer values representing the character that getchar found (3).

● What if there were no characters for getchar to take? What if getchar came across the end of the

data? (4)

• We use a type int variable to store the result of a call to getchar , at least until we verify that
getchar did not return EOF . (5)

➢ To get a single character from a file, use the facility getc
➢ getc is comparable to a call to getchar , except that the character returned is obtained from the

file accessed by file pointer inp .

● EXAMPLE 8.8, FIGURE 8.15

8.6 CHARACTER
OPERATIONS

getc(inp)

● The standard library’s single-character output facilities are:
1. putchar (for display on the standard output device)

2. putc (for files). (1)

● Character Analysis and Conversion:

● The library we #include as <ctype.h> : (2)

3. Helps us decide if a character is a letter? a digit? A punctuation mark?.

4. It also provides routines to do common character conversions like uppercase to lowercase or

lowercase to uppercase.

● Table 8.3 p.485: lists a number of these routines (3)
● EXAMPLE 8.9, FIGURE 8.16

8.6 CHARACTER
OPERATIONS

putchar('a');

putc('a', outp);

➢ Common conversions done by scanf and prinft: (1)

8.7 STRING-TO-NUMBER AND NUMBER-TO-STRING
CONVERSIONS

"3.14159" 3.14159 −36 “−36”

➢ The stdio library also give us sprintf and sscanf functions:

● The sprintf function requires space for a string as its first argument.
● Instead of printing the result, sprintf stores it in the character array accessed by its initial

argument. (1)

o assume that s has been declared as char s[100]

8.7 STRING-TO-NUMBER AND NUMBER-TO-STRING
CONVERSIONS

➢ The sscanf function takes data from the string that is its first argument (1)

stores values from the first string.

● EXAMPLE 8.10, figure 8.17

● Read EXAMPLE 8.11 p.490

8.7 STRING-TO-NUMBER AND NUMBER-TO-STRING
CONVERSIONS

sscanf(“ 85 96.2 hello", "%d%lf%s", &num, &val, word);

CASE STUDY (Homework)
P.495 - 503

Text Editor

8.8 STRING PROCESSING ILLUSTRATED

➢ String functions do not actually return a string value in the same way that an int function returns
an integer value.

➢ Another error is the misuse or neglect of the & operator with string use (1).

➢ Another problem with string use is the overflow of character arrays allocated for strings

➢ A relatively minor error that can lead to difficult bugs is forgetting that all strings end with the

null character.

➢ It is easy to slip and use equality or relational operators when comparing strings or the
assignment operator for copying them.

➢ Read details of handling these errors p.504

8.9 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to
our sorting problem.

 (1)

 (2)

for (i = 0; i < 5; ++i)

printf("%s\n", alphap[i]);

➢ When printf sees a %s specifier, it always expects to receive the starting address of a string as the
corresponding input argument, so alphap[i] is just as legitimate an argument as original[i] .

➢ Declaring the array of pointers alphap (1)

➢ EXAMPLE 8.7, FIGURE 8.14 (2)

● Advantages of this approach: (3)

1. A pointer (an integer address) requires less storage space than a full copy of a character string.

2. The sorting function executes faster when it copies only pointers and not complete arrays of characters

3. Because the strings themselves are stored only once, a spelling correction made in the original list would
automatically be reflected in the other orderings as well.

8.5 ARRAYS OF POINTERS

char *alphap[5];

➢ C also permits the use of an array of pointers to represent a list of string constants.

➢ Two alternatives for representing the list of month names (1)

➢ Note: Actually, the number of rows (12) is optional in both of these declarations since the
initialization list also implies this value.

ARRAYS OF STRING
CONSTANTS

char month[12][10] = {"January", "February", "March", "April", "May",

"June", "July", "August", "September", "October", "November", "December"};

char *month[12] = {"January", "February", "March", "April", "May",

"June", "July", "August", "September", "October", "November", "December"};

➢ When we develop programs that involve string processing, often we must work with the
individual characters that make up the string.

➢ C provides character input/output routines as part of the <stdio.h> library, and an extensive

collection of facilities for character analysis and conversion is available in the library we #include
as <ctype.h>.

● Character Input/Output
o The stdio library includes a routine named getchar that is used to get the next character from the

standard input source (1).
o getchar takes no arguments and returns the character as its result. (2)

8.6 CHARACTER
OPERATIONS

scanf("%c", &ch) ch = getchar() (3)

➢ There is, a difference between the two fragments: (1)
● scanf returns an integer representing the number of values read or EOF. (2)
● The call to getchar returns an integer values representing the character that getchar found (3).

● What if there were no characters for getchar to take? What if getchar came across the end of the

data? (4)

• We use a type int variable to store the result of a call to getchar , at least until we verify that
getchar did not return EOF . (5)

➢ To get a single character from a file, use the facility getc
➢ getc is comparable to a call to getchar , except that the character returned is obtained from the

file accessed by file pointer inp .

● EXAMPLE 8.8, FIGURE 8.15

8.6 CHARACTER
OPERATIONS

getc(inp)

● The standard library’s single-character output facilities are:
1. putchar (for display on the standard output device)

2. putc (for files). (1)

● Character Analysis and Conversion:

● The library we #include as <ctype.h> : (2)

3. Helps us decide if a character is a letter? a digit? A punctuation mark?.

4. It also provides routines to do common character conversions like uppercase to lowercase or

lowercase to uppercase.

● Table 8.3 p.485: lists a number of these routines (3)
● EXAMPLE 8.9, FIGURE 8.16

8.6 CHARACTER
OPERATIONS

putchar('a');

putc('a', outp);

➢ Common conversions done by scanf and prinft: (1)

8.7 STRING-TO-NUMBER AND NUMBER-TO-STRING
CONVERSIONS

"3.14159" 3.14159 −36 “−36”

➢ The stdio library also give us sprintf and sscanf functions:

● The sprintf function requires space for a string as its first argument.
● Instead of printing the result, sprintf stores it in the character array accessed by its initial

argument. (1)

o assume that s has been declared as char s[100]

8.7 STRING-TO-NUMBER AND NUMBER-TO-STRING
CONVERSIONS

➢ The sscanf function takes data from the string that is its first argument (1)

stores values from the first string.

● EXAMPLE 8.10, figure 8.17

● Read EXAMPLE 8.11 p.490

8.7 STRING-TO-NUMBER AND NUMBER-TO-STRING
CONVERSIONS

sscanf(“ 85 96.2 hello", "%d%lf%s", &num, &val, word);

CASE STUDY (Homework)
P.495 - 503

Text Editor

8.8 STRING PROCESSING ILLUSTRATED

➢ String functions do not actually return a string value in the same way that an int function returns
an integer value.

➢ Another error is the misuse or neglect of the & operator with string use (1).

➢ Another problem with string use is the overflow of character arrays allocated for strings

➢ A relatively minor error that can lead to difficult bugs is forgetting that all strings end with the

null character.

➢ It is easy to slip and use equality or relational operators when comparing strings or the
assignment operator for copying them.

➢ Read details of handling these errors p.504

8.9 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to
our sorting problem.

 (1)

 (2)

for (i = 0; i < 5; ++i)

printf("%s\n", alphap[i]);

➢ When printf sees a %s specifier, it always expects to receive the starting address of a string as the
corresponding input argument, so alphap[i] is just as legitimate an argument as original[i] .

➢ Declaring the array of pointers alphap (1)

➢ EXAMPLE 8.7, FIGURE 8.14 (2)

● Advantages of this approach: (3)

1. A pointer (an integer address) requires less storage space than a full copy of a character string.

2. The sorting function executes faster when it copies only pointers and not complete arrays of characters

3. Because the strings themselves are stored only once, a spelling correction made in the original list would
automatically be reflected in the other orderings as well.

8.5 ARRAYS OF POINTERS

char *alphap[5];

➢ C also permits the use of an array of pointers to represent a list of string constants.

➢ Two alternatives for representing the list of month names (1)

➢ Note: Actually, the number of rows (12) is optional in both of these declarations since the
initialization list also implies this value.

ARRAYS OF STRING
CONSTANTS

char month[12][10] = {"January", "February", "March", "April", "May",

"June", "July", "August", "September", "October", "November", "December"};

char *month[12] = {"January", "February", "March", "April", "May",

"June", "July", "August", "September", "October", "November", "December"};

➢ When we develop programs that involve string processing, often we must work with the
individual characters that make up the string.

➢ C provides character input/output routines as part of the <stdio.h> library, and an extensive

collection of facilities for character analysis and conversion is available in the library we #include
as <ctype.h>.

● Character Input/Output
o The stdio library includes a routine named getchar that is used to get the next character from the

standard input source (1).
o getchar takes no arguments and returns the character as its result. (2)

8.6 CHARACTER
OPERATIONS

scanf("%c", &ch) ch = getchar() (3)

➢ There is, a difference between the two fragments: (1)
● scanf returns an integer representing the number of values read or EOF. (2)
● The call to getchar returns an integer values representing the character that getchar found (3).

● What if there were no characters for getchar to take? What if getchar came across the end of the

data? (4)

• We use a type int variable to store the result of a call to getchar , at least until we verify that
getchar did not return EOF . (5)

➢ To get a single character from a file, use the facility getc
➢ getc is comparable to a call to getchar , except that the character returned is obtained from the

file accessed by file pointer inp .

● EXAMPLE 8.8, FIGURE 8.15

8.6 CHARACTER
OPERATIONS

getc(inp)

● The standard library’s single-character output facilities are:
1. putchar (for display on the standard output device)

2. putc (for files). (1)

● Character Analysis and Conversion:

● The library we #include as <ctype.h> : (2)

3. Helps us decide if a character is a letter? a digit? A punctuation mark?.

4. It also provides routines to do common character conversions like uppercase to lowercase or

lowercase to uppercase.

● Table 8.3 p.485: lists a number of these routines (3)
● EXAMPLE 8.9, FIGURE 8.16

8.6 CHARACTER
OPERATIONS

putchar('a');

putc('a', outp);

➢ Common conversions done by scanf and prinft: (1)

8.7 STRING-TO-NUMBER AND NUMBER-TO-STRING
CONVERSIONS

"3.14159" 3.14159 −36 “−36”

➢ The stdio library also give us sprintf and sscanf functions:

● The sprintf function requires space for a string as its first argument.
● Instead of printing the result, sprintf stores it in the character array accessed by its initial

argument. (1)

o assume that s has been declared as char s[100]

8.7 STRING-TO-NUMBER AND NUMBER-TO-STRING
CONVERSIONS

➢ The sscanf function takes data from the string that is its first argument (1)

stores values from the first string.

● EXAMPLE 8.10, figure 8.17

● Read EXAMPLE 8.11 p.490

8.7 STRING-TO-NUMBER AND NUMBER-TO-STRING
CONVERSIONS

sscanf(“ 85 96.2 hello", "%d%lf%s", &num, &val, word);

CASE STUDY (Homework)
P.495 - 503

Text Editor

8.8 STRING PROCESSING ILLUSTRATED

➢ String functions do not actually return a string value in the same way that an int function returns
an integer value.

➢ Another error is the misuse or neglect of the & operator with string use (1).

➢ Another problem with string use is the overflow of character arrays allocated for strings

➢ A relatively minor error that can lead to difficult bugs is forgetting that all strings end with the

null character.

➢ It is easy to slip and use equality or relational operators when comparing strings or the
assignment operator for copying them.

➢ Read details of handling these errors p.504

8.9 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to
our sorting problem.

 (1)

 (2)

for (i = 0; i < 5; ++i)

printf("%s\n", alphap[i]);

➢ When printf sees a %s specifier, it always expects to receive the starting address of a string as the
corresponding input argument, so alphap[i] is just as legitimate an argument as original[i] .

➢ Declaring the array of pointers alphap (1)

➢ EXAMPLE 8.7, FIGURE 8.14 (2)

● Advantages of this approach: (3)

1. A pointer (an integer address) requires less storage space than a full copy of a character string.

2. The sorting function executes faster when it copies only pointers and not complete arrays of characters

3. Because the strings themselves are stored only once, a spelling correction made in the original list would
automatically be reflected in the other orderings as well.

8.5 ARRAYS OF POINTERS

char *alphap[5];

➢ C also permits the use of an array of pointers to represent a list of string constants.

➢ Two alternatives for representing the list of month names (1)

➢ Note: Actually, the number of rows (12) is optional in both of these declarations since the
initialization list also implies this value.

ARRAYS OF STRING
CONSTANTS

char month[12][10] = {"January", "February", "March", "April", "May",

"June", "July", "August", "September", "October", "November", "December"};

char *month[12] = {"January", "February", "March", "April", "May",

"June", "July", "August", "September", "October", "November", "December"};

➢ When we develop programs that involve string processing, often we must work with the
individual characters that make up the string.

➢ C provides character input/output routines as part of the <stdio.h> library, and an extensive

collection of facilities for character analysis and conversion is available in the library we #include
as <ctype.h>.

● Character Input/Output
o The stdio library includes a routine named getchar that is used to get the next character from the

standard input source (1).
o getchar takes no arguments and returns the character as its result. (2)

8.6 CHARACTER
OPERATIONS

scanf("%c", &ch) ch = getchar() (3)

➢ There is, a difference between the two fragments: (1)
● scanf returns an integer representing the number of values read or EOF. (2)
● The call to getchar returns an integer values representing the character that getchar found (3).

● What if there were no characters for getchar to take? What if getchar came across the end of the

data? (4)

• We use a type int variable to store the result of a call to getchar , at least until we verify that
getchar did not return EOF . (5)

➢ To get a single character from a file, use the facility getc
➢ getc is comparable to a call to getchar , except that the character returned is obtained from the

file accessed by file pointer inp .

● EXAMPLE 8.8, FIGURE 8.15

8.6 CHARACTER
OPERATIONS

getc(inp)

● The standard library’s single-character output facilities are:
1. putchar (for display on the standard output device)

2. putc (for files). (1)

● Character Analysis and Conversion:

● The library we #include as <ctype.h> : (2)

3. Helps us decide if a character is a letter? a digit? A punctuation mark?.

4. It also provides routines to do common character conversions like uppercase to lowercase or

lowercase to uppercase.

● Table 8.3 p.485: lists a number of these routines (3)
● EXAMPLE 8.9, FIGURE 8.16

8.6 CHARACTER
OPERATIONS

putchar('a');

putc('a', outp);

➢ Common conversions done by scanf and prinft: (1)

8.7 STRING-TO-NUMBER AND NUMBER-TO-STRING
CONVERSIONS

"3.14159" 3.14159 −36 “−36”

➢ The stdio library also give us sprintf and sscanf functions:

● The sprintf function requires space for a string as its first argument.
● Instead of printing the result, sprintf stores it in the character array accessed by its initial

argument. (1)

o assume that s has been declared as char s[100]

8.7 STRING-TO-NUMBER AND NUMBER-TO-STRING
CONVERSIONS

➢ The sscanf function takes data from the string that is its first argument (1)

stores values from the first string.

● EXAMPLE 8.10, figure 8.17

● Read EXAMPLE 8.11 p.490

8.7 STRING-TO-NUMBER AND NUMBER-TO-STRING
CONVERSIONS

sscanf(“ 85 96.2 hello", "%d%lf%s", &num, &val, word);

CASE STUDY (Homework)
P.495 - 503

Text Editor

8.8 STRING PROCESSING ILLUSTRATED

➢ String functions do not actually return a string value in the same way that an int function returns
an integer value.

➢ Another error is the misuse or neglect of the & operator with string use (1).

➢ Another problem with string use is the overflow of character arrays allocated for strings

➢ A relatively minor error that can lead to difficult bugs is forgetting that all strings end with the

null character.

➢ It is easy to slip and use equality or relational operators when comparing strings or the
assignment operator for copying them.

➢ Read details of handling these errors p.504

8.9 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to
our sorting problem.

 (1)

 (2)

for (i = 0; i < 5; ++i)

printf("%s\n", alphap[i]);

➢ When printf sees a %s specifier, it always expects to receive the starting address of a string as the
corresponding input argument, so alphap[i] is just as legitimate an argument as original[i] .

➢ Declaring the array of pointers alphap (1)

➢ EXAMPLE 8.7, FIGURE 8.14 (2)

● Advantages of this approach: (3)

1. A pointer (an integer address) requires less storage space than a full copy of a character string.

2. The sorting function executes faster when it copies only pointers and not complete arrays of characters

3. Because the strings themselves are stored only once, a spelling correction made in the original list would
automatically be reflected in the other orderings as well.

8.5 ARRAYS OF POINTERS

char *alphap[5];

➢ C also permits the use of an array of pointers to represent a list of string constants.

➢ Two alternatives for representing the list of month names (1)

➢ Note: Actually, the number of rows (12) is optional in both of these declarations since the
initialization list also implies this value.

ARRAYS OF STRING
CONSTANTS

char month[12][10] = {"January", "February", "March", "April", "May",

"June", "July", "August", "September", "October", "November", "December"};

char *month[12] = {"January", "February", "March", "April", "May",

"June", "July", "August", "September", "October", "November", "December"};

➢ When we develop programs that involve string processing, often we must work with the
individual characters that make up the string.

➢ C provides character input/output routines as part of the <stdio.h> library, and an extensive

collection of facilities for character analysis and conversion is available in the library we #include
as <ctype.h>.

● Character Input/Output
o The stdio library includes a routine named getchar that is used to get the next character from the

standard input source (1).
o getchar takes no arguments and returns the character as its result. (2)

8.6 CHARACTER
OPERATIONS

scanf("%c", &ch) ch = getchar() (3)

➢ There is, a difference between the two fragments: (1)
● scanf returns an integer representing the number of values read or EOF. (2)
● The call to getchar returns an integer values representing the character that getchar found (3).

● What if there were no characters for getchar to take? What if getchar came across the end of the

data? (4)

• We use a type int variable to store the result of a call to getchar , at least until we verify that
getchar did not return EOF . (5)

➢ To get a single character from a file, use the facility getc
➢ getc is comparable to a call to getchar , except that the character returned is obtained from the

file accessed by file pointer inp .

● EXAMPLE 8.8, FIGURE 8.15

8.6 CHARACTER
OPERATIONS

getc(inp)

● The standard library’s single-character output facilities are:
1. putchar (for display on the standard output device)

2. putc (for files). (1)

● Character Analysis and Conversion:

● The library we #include as <ctype.h> : (2)

3. Helps us decide if a character is a letter? a digit? A punctuation mark?.

4. It also provides routines to do common character conversions like uppercase to lowercase or

lowercase to uppercase.

● Table 8.3 p.485: lists a number of these routines (3)
● EXAMPLE 8.9, FIGURE 8.16

8.6 CHARACTER
OPERATIONS

putchar('a');

putc('a', outp);

➢ Common conversions done by scanf and prinft: (1)

8.7 STRING-TO-NUMBER AND NUMBER-TO-STRING
CONVERSIONS

"3.14159" 3.14159 −36 “−36”

➢ The stdio library also give us sprintf and sscanf functions:

● The sprintf function requires space for a string as its first argument.
● Instead of printing the result, sprintf stores it in the character array accessed by its initial

argument. (1)

o assume that s has been declared as char s[100]

8.7 STRING-TO-NUMBER AND NUMBER-TO-STRING
CONVERSIONS

➢ The sscanf function takes data from the string that is its first argument (1)

stores values from the first string.

● EXAMPLE 8.10, figure 8.17

● Read EXAMPLE 8.11 p.490

8.7 STRING-TO-NUMBER AND NUMBER-TO-STRING
CONVERSIONS

sscanf(“ 85 96.2 hello", "%d%lf%s", &num, &val, word);

CASE STUDY (Homework)
P.495 - 503

Text Editor

8.8 STRING PROCESSING ILLUSTRATED

➢ String functions do not actually return a string value in the same way that an int function returns
an integer value.

➢ Another error is the misuse or neglect of the & operator with string use (1).

➢ Another problem with string use is the overflow of character arrays allocated for strings

➢ A relatively minor error that can lead to difficult bugs is forgetting that all strings end with the

null character.

➢ It is easy to slip and use equality or relational operators when comparing strings or the
assignment operator for copying them.

➢ Read details of handling these errors p.504

8.9 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to
our sorting problem.

 (1)

 (2)

for (i = 0; i < 5; ++i)

printf("%s\n", alphap[i]);

➢ When printf sees a %s specifier, it always expects to receive the starting address of a string as the
corresponding input argument, so alphap[i] is just as legitimate an argument as original[i] .

➢ Declaring the array of pointers alphap (1)

➢ EXAMPLE 8.7, FIGURE 8.14 (2)

● Advantages of this approach: (3)

1. A pointer (an integer address) requires less storage space than a full copy of a character string.

2. The sorting function executes faster when it copies only pointers and not complete arrays of characters

3. Because the strings themselves are stored only once, a spelling correction made in the original list would
automatically be reflected in the other orderings as well.

8.5 ARRAYS OF POINTERS

char *alphap[5];

➢ C also permits the use of an array of pointers to represent a list of string constants.

➢ Two alternatives for representing the list of month names (1)

➢ Note: Actually, the number of rows (12) is optional in both of these declarations since the
initialization list also implies this value.

ARRAYS OF STRING
CONSTANTS

char month[12][10] = {"January", "February", "March", "April", "May",

"June", "July", "August", "September", "October", "November", "December"};

char *month[12] = {"January", "February", "March", "April", "May",

"June", "July", "August", "September", "October", "November", "December"};

➢ When we develop programs that involve string processing, often we must work with the
individual characters that make up the string.

➢ C provides character input/output routines as part of the <stdio.h> library, and an extensive

collection of facilities for character analysis and conversion is available in the library we #include
as <ctype.h>.

● Character Input/Output
o The stdio library includes a routine named getchar that is used to get the next character from the

standard input source (1).
o getchar takes no arguments and returns the character as its result. (2)

8.6 CHARACTER
OPERATIONS

scanf("%c", &ch) ch = getchar() (3)

➢ There is, a difference between the two fragments: (1)
● scanf returns an integer representing the number of values read or EOF. (2)
● The call to getchar returns an integer values representing the character that getchar found (3).

● What if there were no characters for getchar to take? What if getchar came across the end of the

data? (4)

• We use a type int variable to store the result of a call to getchar , at least until we verify that
getchar did not return EOF . (5)

➢ To get a single character from a file, use the facility getc
➢ getc is comparable to a call to getchar , except that the character returned is obtained from the

file accessed by file pointer inp .

● EXAMPLE 8.8, FIGURE 8.15

8.6 CHARACTER
OPERATIONS

getc(inp)

● The standard library’s single-character output facilities are:
1. putchar (for display on the standard output device)

2. putc (for files). (1)

● Character Analysis and Conversion:

● The library we #include as <ctype.h> : (2)

3. Helps us decide if a character is a letter? a digit? A punctuation mark?.

4. It also provides routines to do common character conversions like uppercase to lowercase or

lowercase to uppercase.

● Table 8.3 p.485: lists a number of these routines (3)
● EXAMPLE 8.9, FIGURE 8.16

8.6 CHARACTER
OPERATIONS

putchar('a');

putc('a', outp);

➢ Common conversions done by scanf and prinft: (1)

8.7 STRING-TO-NUMBER AND NUMBER-TO-STRING
CONVERSIONS

"3.14159" 3.14159 −36 “−36”

➢ The stdio library also give us sprintf and sscanf functions:

● The sprintf function requires space for a string as its first argument.
● Instead of printing the result, sprintf stores it in the character array accessed by its initial

argument. (1)

o assume that s has been declared as char s[100]

8.7 STRING-TO-NUMBER AND NUMBER-TO-STRING
CONVERSIONS

➢ The sscanf function takes data from the string that is its first argument (1)

stores values from the first string.

● EXAMPLE 8.10, figure 8.17

● Read EXAMPLE 8.11 p.490

8.7 STRING-TO-NUMBER AND NUMBER-TO-STRING
CONVERSIONS

sscanf(“ 85 96.2 hello", "%d%lf%s", &num, &val, word);

CASE STUDY (Homework)
P.495 - 503

Text Editor

8.8 STRING PROCESSING ILLUSTRATED

➢ String functions do not actually return a string value in the same way that an int function returns
an integer value.

➢ Another error is the misuse or neglect of the & operator with string use (1).

➢ Another problem with string use is the overflow of character arrays allocated for strings

➢ A relatively minor error that can lead to difficult bugs is forgetting that all strings end with the

null character.

➢ It is easy to slip and use equality or relational operators when comparing strings or the
assignment operator for copying them.

➢ Read details of handling these errors p.504

8.9 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to
our sorting problem.

 (1)

 (2)

for (i = 0; i < 5; ++i)

printf("%s\n", alphap[i]);

➢ When printf sees a %s specifier, it always expects to receive the starting address of a string as the
corresponding input argument, so alphap[i] is just as legitimate an argument as original[i] .

➢ Declaring the array of pointers alphap (1)

➢ EXAMPLE 8.7, FIGURE 8.14 (2)

● Advantages of this approach: (3)

1. A pointer (an integer address) requires less storage space than a full copy of a character string.

2. The sorting function executes faster when it copies only pointers and not complete arrays of characters

3. Because the strings themselves are stored only once, a spelling correction made in the original list would
automatically be reflected in the other orderings as well.

8.5 ARRAYS OF POINTERS

char *alphap[5];

➢ C also permits the use of an array of pointers to represent a list of string constants.

➢ Two alternatives for representing the list of month names (1)

➢ Note: Actually, the number of rows (12) is optional in both of these declarations since the
initialization list also implies this value.

ARRAYS OF STRING
CONSTANTS

char month[12][10] = {"January", "February", "March", "April", "May",

"June", "July", "August", "September", "October", "November", "December"};

char *month[12] = {"January", "February", "March", "April", "May",

"June", "July", "August", "September", "October", "November", "December"};

➢ When we develop programs that involve string processing, often we must work with the
individual characters that make up the string.

➢ C provides character input/output routines as part of the <stdio.h> library, and an extensive

collection of facilities for character analysis and conversion is available in the library we #include
as <ctype.h>.

● Character Input/Output
o The stdio library includes a routine named getchar that is used to get the next character from the

standard input source (1).
o getchar takes no arguments and returns the character as its result. (2)

8.6 CHARACTER
OPERATIONS

scanf("%c", &ch) ch = getchar() (3)

➢ There is, a difference between the two fragments: (1)
● scanf returns an integer representing the number of values read or EOF. (2)
● The call to getchar returns an integer values representing the character that getchar found (3).

● What if there were no characters for getchar to take? What if getchar came across the end of the

data? (4)

• We use a type int variable to store the result of a call to getchar , at least until we verify that
getchar did not return EOF . (5)

➢ To get a single character from a file, use the facility getc
➢ getc is comparable to a call to getchar , except that the character returned is obtained from the

file accessed by file pointer inp .

● EXAMPLE 8.8, FIGURE 8.15

8.6 CHARACTER
OPERATIONS

getc(inp)

● The standard library’s single-character output facilities are:
1. putchar (for display on the standard output device)

2. putc (for files). (1)

● Character Analysis and Conversion:

● The library we #include as <ctype.h> : (2)

3. Helps us decide if a character is a letter? a digit? A punctuation mark?.

4. It also provides routines to do common character conversions like uppercase to lowercase or

lowercase to uppercase.

● Table 8.3 p.485: lists a number of these routines (3)
● EXAMPLE 8.9, FIGURE 8.16

8.6 CHARACTER
OPERATIONS

putchar('a');

putc('a', outp);

➢ Common conversions done by scanf and prinft: (1)

8.7 STRING-TO-NUMBER AND NUMBER-TO-STRING
CONVERSIONS

"3.14159" 3.14159 −36 “−36”

➢ The stdio library also give us sprintf and sscanf functions:

● The sprintf function requires space for a string as its first argument.
● Instead of printing the result, sprintf stores it in the character array accessed by its initial

argument. (1)

o assume that s has been declared as char s[100]

8.7 STRING-TO-NUMBER AND NUMBER-TO-STRING
CONVERSIONS

➢ The sscanf function takes data from the string that is its first argument (1)

stores values from the first string.

● EXAMPLE 8.10, figure 8.17

● Read EXAMPLE 8.11 p.490

8.7 STRING-TO-NUMBER AND NUMBER-TO-STRING
CONVERSIONS

sscanf(“ 85 96.2 hello", "%d%lf%s", &num, &val, word);

CASE STUDY (Homework)
P.495 - 503

Text Editor

8.8 STRING PROCESSING ILLUSTRATED

➢ String functions do not actually return a string value in the same way that an int function returns
an integer value.

➢ Another error is the misuse or neglect of the & operator with string use (1).

➢ Another problem with string use is the overflow of character arrays allocated for strings

➢ A relatively minor error that can lead to difficult bugs is forgetting that all strings end with the

null character.

➢ It is easy to slip and use equality or relational operators when comparing strings or the
assignment operator for copying them.

➢ Read details of handling these errors p.504

8.9 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to
our sorting problem.

 (1)

 (2)

for (i = 0; i < 5; ++i)

printf("%s\n", alphap[i]);

➢ When printf sees a %s specifier, it always expects to receive the starting address of a string as the
corresponding input argument, so alphap[i] is just as legitimate an argument as original[i] .

➢ Declaring the array of pointers alphap (1)

➢ EXAMPLE 8.7, FIGURE 8.14 (2)

● Advantages of this approach: (3)

1. A pointer (an integer address) requires less storage space than a full copy of a character string.

2. The sorting function executes faster when it copies only pointers and not complete arrays of characters

3. Because the strings themselves are stored only once, a spelling correction made in the original list would
automatically be reflected in the other orderings as well.

8.5 ARRAYS OF POINTERS

char *alphap[5];

➢ C also permits the use of an array of pointers to represent a list of string constants.

➢ Two alternatives for representing the list of month names (1)

➢ Note: Actually, the number of rows (12) is optional in both of these declarations since the
initialization list also implies this value.

ARRAYS OF STRING
CONSTANTS

char month[12][10] = {"January", "February", "March", "April", "May",

"June", "July", "August", "September", "October", "November", "December"};

char *month[12] = {"January", "February", "March", "April", "May",

"June", "July", "August", "September", "October", "November", "December"};

➢ When we develop programs that involve string processing, often we must work with the
individual characters that make up the string.

➢ C provides character input/output routines as part of the <stdio.h> library, and an extensive

collection of facilities for character analysis and conversion is available in the library we #include
as <ctype.h>.

● Character Input/Output
o The stdio library includes a routine named getchar that is used to get the next character from the

standard input source (1).
o getchar takes no arguments and returns the character as its result. (2)

8.6 CHARACTER
OPERATIONS

scanf("%c", &ch) ch = getchar() (3)

➢ There is, a difference between the two fragments: (1)
● scanf returns an integer representing the number of values read or EOF. (2)
● The call to getchar returns an integer values representing the character that getchar found (3).

● What if there were no characters for getchar to take? What if getchar came across the end of the

data? (4)

• We use a type int variable to store the result of a call to getchar , at least until we verify that
getchar did not return EOF . (5)

➢ To get a single character from a file, use the facility getc
➢ getc is comparable to a call to getchar , except that the character returned is obtained from the

file accessed by file pointer inp .

● EXAMPLE 8.8, FIGURE 8.15

8.6 CHARACTER
OPERATIONS

getc(inp)

● The standard library’s single-character output facilities are:
1. putchar (for display on the standard output device)

2. putc (for files). (1)

● Character Analysis and Conversion:

● The library we #include as <ctype.h> : (2)

3. Helps us decide if a character is a letter? a digit? A punctuation mark?.

4. It also provides routines to do common character conversions like uppercase to lowercase or

lowercase to uppercase.

● Table 8.3 p.485: lists a number of these routines (3)
● EXAMPLE 8.9, FIGURE 8.16

8.6 CHARACTER
OPERATIONS

putchar('a');

putc('a', outp);

➢ Common conversions done by scanf and prinft: (1)

8.7 STRING-TO-NUMBER AND NUMBER-TO-STRING
CONVERSIONS

"3.14159" 3.14159 −36 “−36”

➢ The stdio library also give us sprintf and sscanf functions:

● The sprintf function requires space for a string as its first argument.
● Instead of printing the result, sprintf stores it in the character array accessed by its initial

argument. (1)

o assume that s has been declared as char s[100]

8.7 STRING-TO-NUMBER AND NUMBER-TO-STRING
CONVERSIONS

➢ The sscanf function takes data from the string that is its first argument (1)

stores values from the first string.

● EXAMPLE 8.10, figure 8.17

● Read EXAMPLE 8.11 p.490

8.7 STRING-TO-NUMBER AND NUMBER-TO-STRING
CONVERSIONS

sscanf(“ 85 96.2 hello", "%d%lf%s", &num, &val, word);

CASE STUDY (Homework)
P.495 - 503

Text Editor

8.8 STRING PROCESSING ILLUSTRATED

➢ String functions do not actually return a string value in the same way that an int function returns
an integer value.

➢ Another error is the misuse or neglect of the & operator with string use (1).

➢ Another problem with string use is the overflow of character arrays allocated for strings

➢ A relatively minor error that can lead to difficult bugs is forgetting that all strings end with the

null character.

➢ It is easy to slip and use equality or relational operators when comparing strings or the
assignment operator for copying them.

➢ Read details of handling these errors p.504

8.9 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to
our sorting problem.

 (1)

 (2)

for (i = 0; i < 5; ++i)

printf("%s\n", alphap[i]);

➢ When printf sees a %s specifier, it always expects to receive the starting address of a string as the
corresponding input argument, so alphap[i] is just as legitimate an argument as original[i] .

➢ Declaring the array of pointers alphap (1)

➢ EXAMPLE 8.7, FIGURE 8.14 (2)

● Advantages of this approach: (3)

1. A pointer (an integer address) requires less storage space than a full copy of a character string.

2. The sorting function executes faster when it copies only pointers and not complete arrays of characters

3. Because the strings themselves are stored only once, a spelling correction made in the original list would
automatically be reflected in the other orderings as well.

8.5 ARRAYS OF POINTERS

char *alphap[5];

➢ C also permits the use of an array of pointers to represent a list of string constants.

➢ Two alternatives for representing the list of month names (1)

➢ Note: Actually, the number of rows (12) is optional in both of these declarations since the
initialization list also implies this value.

ARRAYS OF STRING
CONSTANTS

char month[12][10] = {"January", "February", "March", "April", "May",

"June", "July", "August", "September", "October", "November", "December"};

char *month[12] = {"January", "February", "March", "April", "May",

"June", "July", "August", "September", "October", "November", "December"};

➢ When we develop programs that involve string processing, often we must work with the
individual characters that make up the string.

➢ C provides character input/output routines as part of the <stdio.h> library, and an extensive

collection of facilities for character analysis and conversion is available in the library we #include
as <ctype.h>.

● Character Input/Output
o The stdio library includes a routine named getchar that is used to get the next character from the

standard input source (1).
o getchar takes no arguments and returns the character as its result. (2)

8.6 CHARACTER
OPERATIONS

scanf("%c", &ch) ch = getchar() (3)

➢ There is, a difference between the two fragments: (1)
● scanf returns an integer representing the number of values read or EOF. (2)
● The call to getchar returns an integer values representing the character that getchar found (3).

● What if there were no characters for getchar to take? What if getchar came across the end of the

data? (4)

• We use a type int variable to store the result of a call to getchar , at least until we verify that
getchar did not return EOF . (5)

➢ To get a single character from a file, use the facility getc
➢ getc is comparable to a call to getchar , except that the character returned is obtained from the

file accessed by file pointer inp .

● EXAMPLE 8.8, FIGURE 8.15

8.6 CHARACTER
OPERATIONS

getc(inp)

● The standard library’s single-character output facilities are:
1. putchar (for display on the standard output device)

2. putc (for files). (1)

● Character Analysis and Conversion:

● The library we #include as <ctype.h> : (2)

3. Helps us decide if a character is a letter? a digit? A punctuation mark?.

4. It also provides routines to do common character conversions like uppercase to lowercase or

lowercase to uppercase.

● Table 8.3 p.485: lists a number of these routines (3)
● EXAMPLE 8.9, FIGURE 8.16

8.6 CHARACTER
OPERATIONS

putchar('a');

putc('a', outp);

➢ Common conversions done by scanf and prinft: (1)

8.7 STRING-TO-NUMBER AND NUMBER-TO-STRING
CONVERSIONS

"3.14159" 3.14159 −36 “−36”

➢ The stdio library also give us sprintf and sscanf functions:

● The sprintf function requires space for a string as its first argument.
● Instead of printing the result, sprintf stores it in the character array accessed by its initial

argument. (1)

o assume that s has been declared as char s[100]

8.7 STRING-TO-NUMBER AND NUMBER-TO-STRING
CONVERSIONS

➢ The sscanf function takes data from the string that is its first argument (1)

stores values from the first string.

● EXAMPLE 8.10, figure 8.17

● Read EXAMPLE 8.11 p.490

8.7 STRING-TO-NUMBER AND NUMBER-TO-STRING
CONVERSIONS

sscanf(“ 85 96.2 hello", "%d%lf%s", &num, &val, word);

CASE STUDY (Homework)
P.495 - 503

Text Editor

8.8 STRING PROCESSING ILLUSTRATED

➢ String functions do not actually return a string value in the same way that an int function returns
an integer value.

➢ Another error is the misuse or neglect of the & operator with string use (1).

➢ Another problem with string use is the overflow of character arrays allocated for strings

➢ A relatively minor error that can lead to difficult bugs is forgetting that all strings end with the

null character.

➢ It is easy to slip and use equality or relational operators when comparing strings or the
assignment operator for copying them.

➢ Read details of handling these errors p.504

8.9 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

➢ C’s use of pointers to represent arrays presents us with an opportunity to develop an alternate approach to
our sorting problem.

 (1)

 (2)

for (i = 0; i < 5; ++i)

printf("%s\n", alphap[i]);

➢ When printf sees a %s specifier, it always expects to receive the starting address of a string as the
corresponding input argument, so alphap[i] is just as legitimate an argument as original[i] .

➢ Declaring the array of pointers alphap (1)

➢ EXAMPLE 8.7, FIGURE 8.14 (2)

● Advantages of this approach: (3)

1. A pointer (an integer address) requires less storage space than a full copy of a character string.

2. The sorting function executes faster when it copies only pointers and not complete arrays of characters

3. Because the strings themselves are stored only once, a spelling correction made in the original list would
automatically be reflected in the other orderings as well.

8.5 ARRAYS OF POINTERS

char *alphap[5];

➢ C also permits the use of an array of pointers to represent a list of string constants.

➢ Two alternatives for representing the list of month names (1)

➢ Note: Actually, the number of rows (12) is optional in both of these declarations since the
initialization list also implies this value.

ARRAYS OF STRING
CONSTANTS

char month[12][10] = {"January", "February", "March", "April", "May",

"June", "July", "August", "September", "October", "November", "December"};

char *month[12] = {"January", "February", "March", "April", "May",

"June", "July", "August", "September", "October", "November", "December"};

➢ When we develop programs that involve string processing, often we must work with the
individual characters that make up the string.

➢ C provides character input/output routines as part of the <stdio.h> library, and an extensive

collection of facilities for character analysis and conversion is available in the library we #include
as <ctype.h>.

● Character Input/Output
o The stdio library includes a routine named getchar that is used to get the next character from the

standard input source (1).
o getchar takes no arguments and returns the character as its result. (2)

8.6 CHARACTER
OPERATIONS

scanf("%c", &ch) ch = getchar() (3)

➢ There is, a difference between the two fragments: (1)
● scanf returns an integer representing the number of values read or EOF. (2)
● The call to getchar returns an integer values representing the character that getchar found (3).

● What if there were no characters for getchar to take? What if getchar came across the end of the

data? (4)

• We use a type int variable to store the result of a call to getchar , at least until we verify that
getchar did not return EOF . (5)

➢ To get a single character from a file, use the facility getc
➢ getc is comparable to a call to getchar , except that the character returned is obtained from the

file accessed by file pointer inp .

● EXAMPLE 8.8, FIGURE 8.15

8.6 CHARACTER
OPERATIONS

getc(inp)

● The standard library’s single-character output facilities are:
1. putchar (for display on the standard output device)

2. putc (for files). (1)

● Character Analysis and Conversion:

● The library we #include as <ctype.h> : (2)

3. Helps us decide if a character is a letter? a digit? A punctuation mark?.

4. It also provides routines to do common character conversions like uppercase to lowercase or

lowercase to uppercase.

● Table 8.3 p.485: lists a number of these routines (3)
● EXAMPLE 8.9, FIGURE 8.16

8.6 CHARACTER
OPERATIONS

putchar('a');

putc('a', outp);

➢ Common conversions done by scanf and prinft: (1)

8.7 STRING-TO-NUMBER AND NUMBER-TO-STRING
CONVERSIONS

"3.14159" 3.14159 −36 “−36”

➢ The stdio library also give us sprintf and sscanf functions:

● The sprintf function requires space for a string as its first argument.
● Instead of printing the result, sprintf stores it in the character array accessed by its initial

argument. (1)

o assume that s has been declared as char s[100]

8.7 STRING-TO-NUMBER AND NUMBER-TO-STRING
CONVERSIONS

➢ The sscanf function takes data from the string that is its first argument (1)

stores values from the first string.

● EXAMPLE 8.10, figure 8.17

● Read EXAMPLE 8.11 p.490

8.7 STRING-TO-NUMBER AND NUMBER-TO-STRING
CONVERSIONS

sscanf(“ 85 96.2 hello", "%d%lf%s", &num, &val, word);

CASE STUDY (Homework)
P.495 - 503

Text Editor

8.8 STRING PROCESSING ILLUSTRATED

➢ String functions do not actually return a string value in the same way that an int function returns
an integer value.

➢ Another error is the misuse or neglect of the & operator with string use (1).

➢ Another problem with string use is the overflow of character arrays allocated for strings

➢ A relatively minor error that can lead to difficult bugs is forgetting that all strings end with the

null character.

➢ It is easy to slip and use equality or relational operators when comparing strings or the
assignment operator for copying them.

➢ Read details of handling these errors p.504

8.9 COMMON PROGRAMMING
ERRORS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

