Chapter 10 Lecture

Essential University Physics Richard Wolfson 2nd Edition

Rotational Motion

STUDENESSHUB.COM Inc.

Uploaded By: Ayham Slepani1

In this lecture you'll learn

- To describe the rotational motion of rigid bodies
 - You'll use an analogy between new quantities describing rotational motion and familiar quantities from one-dimensional linear motion
- To calculate the rotational inertias of objects made of discrete and continuous distributions of matter
 - Rotational inertia is the rotational analog of mass
- To handle problems involving both linear and rotational motion
- To describe rolling motion

Uploaded By: Ayharslide baaai

Angular Velocity

• Angular velocity ω is the rate of change of angular position.

Average:
$$\overline{\omega} = \frac{\Delta \theta}{\Delta t}$$

Instantaneous: $\omega = \frac{d\theta}{dt}$

- Angular and linear velocity
 - The linear speed of a point on a rotating body is proportional to its distance from the rotation axis:

$$\omega = \frac{d\theta}{dt} = \frac{1}{r}\frac{ds}{dt} = \frac{v}{r}$$

 $v = \omega r$

The arm rotates through the angle $\Delta \theta$ in time Δt , so its average angular velocity is $\overline{\varpi} = \Delta \theta / \Delta t$.

Uploaded By: Ayharsiidebasi

Angular Acceleration

• Angular acceleration α is the rate of change of angular velocity.

Average: $\overline{\alpha} = \frac{\Delta \omega}{\Delta t}$ Instantaneous: $\alpha = \frac{d\omega}{dt}$

- Angular and tangential acceleration
 - The linear acceleration of a point on a rotating body is proportional to its distance from the rotation axis:

$$a_{t} = r \alpha$$

A point on a rotating object also has radial acceleration:

STUDENESSHUBIGOM Inc.

$$a_{\rm r} = \frac{v^2}{r} = \omega^2 r$$

Uploaded By: Ayharslide boani

Constant Angular Acceleration

- Problems with constant angular acceleration are exactly analogous to similar problems involving linear motion in one dimension.
 - The same equations apply, with the substitutions

 $x \to \theta, \quad v \to \omega, \quad a \to \alpha$

Table 10.1 Angular and Linear Position, Velocity, and Acceleration

Linear Quantity		Angular Quantity		
Position <i>x</i>		Angular position θ		
Velocity $v = \frac{dx}{dt}$		Angular velocity $\omega = \frac{d\theta}{dt}$		
Acceleration $a = \frac{dv}{dt} = \frac{d^2x}{dt^2}$		Angular acceleration $\alpha = \frac{d\omega}{dt} = \frac{d^2\theta}{dt^2}$		
Equations for Constant Linear Acceleration		Equations for Constant Angular Acceleration		
$\overline{\overline{v} = \frac{1}{2}(v_0 + v)}$	(2.8)	$\overline{\pmb{\omega}} = rac{1}{2}(\pmb{\omega}_0 + \pmb{\omega})$	(10.6)	
$v = v_0 + at$	(2.7)	$\omega = \omega_0 + \alpha t$	(10.7)	
$x = x_0 + v_0 t + \frac{1}{2}at^2$	(2.10)	$ heta= heta_0+\omega_0t+rac{1}{2}lpha t^2$	(10.8)	
$v^2 = v_0^2 + 2a(x - x_0)$	(2.11)	$\omega^2 = \omega_0^2 + 2lpha(heta - heta_0)$	(10.9)	

© 2012 Pearson Education, Inc.

STUDENESSHUBICOM Inc.

Uploaded By: Ayharside basi

Torque

- Torque τ is the rotational analog of force, and results from the application of one or more forces.
- Torque is relative to a chosen rotation axis.
- Torque depends on:
 - the distance from the rotation axis to the force application point.
 - the magnitude of the force \ddot{F} .
 - the orientation of the force relative to the displacement \ddot{r} from axis to force application point: $\tau = rF\sin\theta$

The same force is applied at different points on the wrench.

Farthest away, τ becomes greatest.

Uploaded By: Ayharsiidebaaai

Rotational Inertia and the Analog of Newton's Law

- Rotational inertia *I* is the rotational analog of mass.
 - Rotational inertia depends on mass and its distance from the rotation axis.
 Rotating the Farther away,
- Rotational acceleration, torque, and rotational inertia combine to give the rotational analog of Newton's second law:

 $\tau = I\alpha$

STUDENESSHUBLOOM Inc.

Finding Rotational Inertia

- For a single point mass *m*, rotational inertia is the product of mass with the square of the distance *R* from the rotation axis: $I = mR^2$.
- For a system of discrete masses, the rotational inertia is the sum of the rotational inertias of the individual masses:

$$I = \sum m_i r_i^2$$

 For continuous matter, the rotational inertia is given by an integral over the distribution of matter:

$$I = \int r^2 dm$$

STUDENESSHUBIGOM Inc.

Rotational Inertias of Simple Objects

Table 10.2 Rotational Inertias

© 2012 Pearson Education, Inc.

STUDENESSHUBICERM Inc.

Uploaded By: Ayharslide base

Parallel-Axis Theorem

- If we know the rotational inertia I_{cm} about an axis through the center of mass of a body, the parallel-axis theorem allows us to calculate the rotational inertia I through any parallel axis.
- The parallel-axis theorem states that

$$I = I_{\rm cm} + Md^2$$

where *d* is the distance from the center-of-mass axis to the parallel axis and *M* is the total mass of the object.

Uploaded By: Ayharsiide bano

Combining Rotational and Linear Dynamics

- In problems involving both linear and rotational motion:
 - **IDENTIFY** the objects and forces or torques acting.
 - DEVELOP your solution with drawings and by writing Newton's law and its rotational analog. Note physical connections between the objects.
 - EVALUATE to find the solution.
 - **ASSESS** to be sure your answer makes sense.

A bucket of mass *m* drops into a well, its rope unrolling from a cylinder of mass *M* and radius *R*.

What's its acceleration?

STUDENESSHUB GOM Inc.

Free-body diagrams for bucket and cylinder

Rope tension T provides the connection

デ

Newton's law, bucket:

$$F_{\rm net} = mg - T = ma$$

Rotational analogy of Newton's law, cylinder:

RT = Ia/R

Here $I = \frac{1}{2}MR^2$

Solve the two equations to get $m\alpha$

$$a = \frac{mg}{m + \frac{1}{2}M}$$

Uploaded By: Ayharside bani

Rolling Motion

- Rolling motion combines translational (linear) motion and rotational motion.
 - The rolling object's center of mass undergoes translational motion.
 - The object itself rotates about the center of mass.
 - In true rolling motion, the object moves without slipping and its point of contact with the ground is instantaneously at rest.
 - Then the rotational speed ω and linear speed v are related by $v = \omega R$, where R is the object's radius.

STUDENESSHUB COM Inc.

Uploaded By: Ayharsiide boanz

Rotational Energy

- A rotating object has kinetic energy $K_{rot} = \frac{1}{2}I\omega^2$ associated with its rotational motion alone.
 - It may also have translational kinetic energy: $K_{\text{trans}} = \frac{1}{2} M v^2$.
- In problems involving energy conservation with rotating objects, both forms of kinetic energy must be considered.
 - For rolling objects, the two are related:
 - The relation depends on the rotational inertia.

Example: A solid ball rolls down a hill. How fast is it moving at the bottom?

Equation for energy conservation $Mgh = \frac{1}{2}Mv^{2} + \frac{1}{2}I\omega^{2}$ $= \frac{1}{2}Mv^{2} + \frac{1}{2}\left(\frac{2}{5}MR^{2}\right)\left(\frac{v}{R}\right)^{2} = \frac{7}{10}Mv^{2}$

Solution:

$$v = \sqrt{\frac{10}{7}gh}$$

Uploaded By: Ayharsike bans

Summary

- Rotational motion in one dimension is exactly analogous to linear motion in one dimension.
 - Linear and angular motion:

position, 6

Rotation

Analogies between rotational and linear quantities:

Linear Quantity or Equation	Angular Quantity or Equation	Relation Between Linear and Angular Ouantities	axis
Position <i>x</i>	Angular position θ		
Speed $v = dx/dt$	Angular speed $\omega = d\theta/dt$	$v = \omega r$	
Acceleration a	Angular acceleration α	$a_t = \alpha r$	
Mass <i>m</i>	Rotational inertia I	$I = \int r^2 dm$	
Force F	Torque $ au$	$\tau = rF\sin\theta$	
Kinetic energy $K_{\text{trans}} = \frac{1}{2}mv^2$	Kinetic energy $K_{\rm rot} = \frac{1}{2}I\omega^2$		
Newton's second law (constant	mass or rotational inertia):		
F = ma	au = I lpha		
© 2012 Pearson Education, Inc.	otational inertia, I		
		Torque, $ au$	
•	$) (\cdot)$	Rotation axis	
Mass of to avis	closer Same mass,	\vec{r}	
lower	greater I		$J_{\theta}^{}$
I =	$m_i r_i^2 \longrightarrow \int r^2 dm$	$\tau = rF\sin\theta \vec{F}$	
Disci	ete Continuous		
Mont Inc. mass	es matter	Opioade	u dy. Aynaisiice) qoeni4

STUDENESSHUBLOOM Inc.