\

e Cor .«11)

5 2
Chapter 4 S |
Lexical Analysis(Scanner) W“L
GroLL:\'C:LI j

N
Tyyeet SEACNT O
a Lexical Analyzer? \°;‘;’; S*ﬁm

_»isen W Wi recoqprtes He Sek & Askar
al Analyzer or\Scannerﬂis an algorithm that groups the characters of the'n “m\s‘g—_

code to form the \1'okans.‘: Afterwards, it returns the@lntemal

o At i Y

ion Number of these tokens which is an ID that matches ‘the'
: ‘word fetched from a mords table Wthh the implementer of the

ompil rpredefnes m
B, DA

ens are dlwded mto 3 klnds

-..-a-‘

:‘:Which is any name we have in a program. These in turn are
nto 2 types: a.
Jf ords/Reserved, which are words such as if/else/while. These names

can't be used as variable names. They have a specific place and function

r Defined Names, Which are the names declared by the user.
(-) Vaxiabhle NoInes | (oovkank (ines, LonchEn Ayaes --=-

S {;such as integers(1, 2, 3, 4) or floating point(1.1, 2.34, 5234.123)etc

SBecial Symbols/Tokens : And these are the logical(==,
Da darlthmetlc operatlons(+, , *, /), parenthesis([l, {}, ()), or

er tokens that are not from the first or second kind. L.\ Corommnts arast Pax

)] % Ae sate Cede
pply the scanner to this short segment of code: S0 Hay oreY

C@S@.\Q\ﬂa AW k—Q‘S

STUDENTS-HUB.com SHaAREE Wity CAmS&mrmat

Internal Representation
Number

33
84
100
67
200
85
92
100
77
100
81
100
75
81
93

Ntax analyzer, it doesn
a Variable there.

[ype Checking implementation
3 ;_. o 7| B S

e

Table
ame
egment of code would be:

STUDENTS-HUB.com

:Ei this process of analysis, The Compiler builds what is called the
le. The Symbol Table is a table of the name of each user
(mostly variables), its type, and

=% ¥he Goopller Wainkolne o Alie
e teserned werds (Satedd)

W F
23

o B T T TN

2] | el

FHA Hhe Gsex AT ned BN
a’:— AN e S TOGOAYD
Came He Ky X e v

% Ve vk c@&w& AL

IOy 5 \Reck P SyekoX .

at all user defined names have the same number. This is because to the
't matter what the variable is, it just matters that there

Symbol
defined

its values. The Symbol table for this

?

StplvaeE Wity CmSeant@inat

_pute(lnt int);

G’ =5 LFaary 5L e L Ve \MQSV&\Q\Q;—X

\.
ntm 10:;

pﬁ\‘e_ Cwy iy _ Lrar Ll WS gt e \";x(—_;j

Type Value
te function-name 0
~ Integer 0
jﬂoat 0 U - de iped DORES .
float 0
* const-int 10

Wy)
pe checkmg, the_compiler takes the name, and checks the

S able Eﬂﬁ_got In the keywords table, it is a user defi ned variable. if it

; v.'f -_—
5.8 user defined-variable, it then goes to check the symbol table. If it is not
1 l) the symba l-table, it returns that the variable is not def’ ned (unknown

e operation being performed on the variable is not compat|ble with the
e variable, it returns that the operation is not compatible(type error).

A\

STUDENTS-HUB.com SHaAREE Wity CAmS&mrmat

, since we use them to defi

i ne and generate tokens. This Class of
ges is defined recursively., : '

efining a Language as a Set

that :

Alphabet is a Set of Symbols..

ample, our alphabet is the setV ={ap,...y,z.
V=317 Bioany odrhadd

ing is a Sequence of Symbols Taken From the Alphabet.

fV is our alphabet, then :

\

[N When we desiqg ¥o R,
Man ¥ is 0 Qivaxy
e definedy €0 R

Are all strings defined on V.

Note: we can define an infinite number of strings on an alphabet.

: g ally, we define:

._ ;;}fﬂif;_ e set of all strings over some alphabet V. ,v%&“ =) M

= \ll_w_ﬁhidef ned over it, let us define a bmary operation on S

e —

n that X,y € S, then we can define a%‘coneatenatlmq

aiiu onxandy as follows:

i he set of strings formed ‘by following x with y}. RIS _}_\.& N
XY # YX;We say that the:’_bbﬁdéienéﬁbﬁ operatlonlsnotcommutatw
mf&’@ﬁmusekﬁ-ﬁ\n S eV maﬁmmm\m
@Pem*m (=) eny S on SMeS:
N = _X‘{ i’ﬁ.‘{ ‘a\xcﬁrﬂ-\w‘itﬁ(s %\\mt}gl}

) ASNES B,
STUDENTS-HUB.com SHaAREE Wity CAmS&mrmat

S

fine. T str e
:;2 e t:}\x pack 5 ing, called the empty string, which we denote with{£}
Formally, we cansay:

the dentlty element of therconcatenatlon operatlon

———

G&‘\&R\Lbj Tefs We

fing all of this t ther, W x%aquh\\\hi E’Bmw e
':‘-.fu' ng all of this together, We can defi . AN Q0 YWaen -
“‘ 9 Ine a language as : COY- N Do, X

ef ev‘e'ﬂ‘?n alg_ffli)ei V. a language L over V Is a set of strings formed

ﬂ; ere the Identity element is formally defned as:

l"‘

T aB,c
S—
:y; definition, these sets Are al/ languages: 1 - 1 X4 '—LE

Wit §

, g 'i_‘)\,} 7\ A 0\%\&) oy - DS Nl
| asdasd qwe, asd} lg = g 1‘73. S‘Wg Stogy
o} o Q.. WQ\AC&\ Q\Qf) o
fhis definition also leads us to the conclusion : WMS = Qwphy Lanspuoag
“"-3‘,:' are an = number of languages defined on an alphabet.
Se of Operations On Languages \\g \ =

3 \»ww 3= 4

n an Alphabet V, assume that : Aoxnants <X S

{set of all languages defined on V}
[:{L1, L2, L3,....Ln}

| define a 3 operations on L , ie, the operands are languages belonging to L.

!

' _.,‘ atenation O eration: "2INARY OPERATION

en \thatL, M are languages over an alphabetV,then ., |, M Cé
£ concatenated with M" = {xy | xs L,y € M};

.fif
i

[Example let L={a,b,c} and M={aa,bb}, then :
aa.abb,baa,bbb.caa,Cbb}

'-i.‘f aa ,aab,aac,bba,bbb,bbc} { - NOTE
Ote that &

LLM # ML (Concatenation on‘languages is not commutative). ‘)

&
sf

{A} {)\}L L. (‘IS the identity for concatenation). @

3

A1
STUDENTS-HUB.com SHaAREE Wity CAmS&mrmat

E‘xamp\c. oo Y OF oporahd -
quen L=fab b€ § M= 1)”@%}

LM = LOM -'ia\,.\,c.\axa. Acec§
MiL = MWLL :1'}\|CCC—,Q\0|\DC.,\9\)}

[x m\\q\\ a M e LQQ\U\\\(\\ \

c:ﬂ““*‘\\- 1 aab, \)} SWRY ”\]‘ _{QQI)
_*___ U\-A\)\.L Mg & U \— | ‘3’

\: S\?\} U {qu,bE U iquqq b 90 O bady &}“
=100 saboot s caldl | oo, Mo

= _ _‘*‘__{ }

e - \h TEQUS N, Al

V 1(\1‘0 L?;:::h\

Emm\

whan \ Hm \W\Qﬁ_

Q@ QS
Q%‘“ Vet dapsiisy \po Lesnspo®

09 albye \)‘t\)& Q)/ R\S% S+ (o) al, - =3a% RS PN Lol ’
T % © R*Q\\‘j‘?\m AP/ é\ﬁm\c\(\& LR =

Ge) alab - M“’i&hg

= To g O (3 ViuEY - &acm\;‘f
1\0\\010@‘\0\\0 \DQ\\0\0|,-f<S

i "
STUDENTS-HUB.com SHaAREE Wity CAmS&mrmat

3.L{) = ()L = (- J
‘ﬁ! "|" Operation B\NHRN OPER,W\'\QN

_ <’;_' A operatlon in set theory
7 nen B

Sive n that L, Mare languages over an alphabet V, then

; ‘~?
L

LORM"={x|xeL orxéﬂ}'?fﬁ“ﬁ_:{
te that

LIM MIL. (OR on language is commutative)

- El{} ={}IL =L. (The empty set is the identity element for the OR operation)
c I osure "*" Operation (A U'nam Ogeratlog) __} uM W)é(_,g.h dande, Ywis

: &‘ 2 s Tovidy, *M“
2n t at L is a language over an alphabet V then L* is:

he Recurswe Definition of Regular Lanquaqges

en a n alphabet V then :

={}=empty language is a ggwr language denoting the language {
’ : s T e

- ?_ = {A}is a regular language denoting the language A

3For every element a € V , a= {a} is a regular language denqtrrlg the
‘anguage {a}

iven Rand s are regular Ianguages denotlng the regular |a nguag
3 and Ls respectively, then : o

@)RS is a regular language denoting LRLS
@»RIS is a regular language denoting LR|LS
@)R* is a regular language denoting LR* \
m
STUDENTS-HUB.com SHalmaete dity CaRiseamemnat

;ets say we took (RS)* then

_1'{,\,ab,abab,ababab,abababab,....}

= A string that consists of any number of "ab"s
Lets say we took (a|b)* , then :

(alo)* = (aigbd)* = (¢a} U {o)*
9 {a,b})* = Any string of a's and b's

]. us say we took (0[1)*00, then By the definitions above, this results in any

i?-__ string that ends with 00, such as [_\ any shing <% Os £ 15 Hak c,\\&fb
{100,000,1100,0000,...} with 00.

us say we took (a]b)*bbb(a|b)*, then By the definitions above, this results
INany string of a's and b's that contains at least 3 _consecutive b's such as
{bbb,abbb,bbba,bbbbb....}

STUDENTS-HUB.com SHaAREE Wity CAmS&mrmat

ake

K] QG}AD"
’\.-\. Al »\&aﬁs W Hie SNt N
Sy (wronoxe) W \NYIRE

e vesplax SRR

STUDENTS-HUB.com SHAGEE ity CARISEAMm@mat

“;,_ okens Using Reular Lan ua-éﬁs iy
‘ =T

| ave 3 types of tokens:
| Symbols’

e SC2 nner must recognize these and be able to distinguish them. lk

.;:'l‘.' 'ramming languages, names are: letter followed by letters or

.-
s

Jic oy The regular language for names is :

‘ er[digit)* =L(L|d)*

»fnming languages, there are multiple types of values, and th?ay can all be
ing a regular language
\&w

1. Integers: \w(é‘
P! \)J“'g,

: igit(digit)*=[+|-]dd:=[+‘l-]d’f B

; oSl QS ;\'2
[x] means we take x zero or one time only. £

ltin Point Numbers :

: : 50,50
d+.d+ —)F.xed:?gg / E_w%'g*@ﬁ/\q 0.5U

| d.d*E +[)d+o_9\'-;xpsr\eﬁ

WO o YeE
ymbois;1) Weene Lipckad
W* 6-— -
Set of special symbols {+,- -,<=,...} are each given by its own regular

Jages. For example, the symbol + has its own regular languages given by :

o))
*\Lx\s“ I

Ny K&

”1 I- {:} = {<=}
J ich is given by S5)[
Jhc = —
ate Automata FSA ’\@\ @

STUDENTS-HUB.com SHaAREE Wity CAmS&mrmat

Th e Question remains: How do we :
Whose languages are regular languages? gorithm to recognize(accept) strings

B
s

Tokens in._source codes are strings of re

'_'ni,Ze—s‘ _L{Ese_ﬁlﬂﬂgw
State Machine or the Finite State
contains :

1. A Setof states. Q= {S A 'G}

b

gular languages. The algorithm that
Finite State Automata or the Finite,

System. The Finite State Automata

S 5 X > A
2. Transitions between states, *M’Wﬂ Soaf
Input string to be examined. Z-‘?-’—a %

L]
L]

Siven that we have this Finite State Automata(FSA) :

'he set of states Q={S,A,B,G,H}

| Siis called the Starting State.
- His called the Final(Halt) State.

i transitions between the states are given by{+, -, d, .}

Given the input string is "-ddd.dd" eg "-511.32".

r king through the states on this string, we start at state S :

B W gl e m‘ﬁ"tﬁ-\u‘ -acs:\m\(\g‘\\u'\(\gmﬁmm&mw
o 4p in o Fdbo/ Rl shals v

8€f: A string is accepted or recognized if after scanning the

i

STUDENTS-HUB.com SHaAREE Wity CAmS&mrmat

AW E \PEN '\\3 %\\\w D

: ralbe S Yok —
L’%C\\\\\w\c ER (‘l___ff_'“’ “__....-;,-._,-—:::.'::tm_-

arp— -
e ————— e ——
s ——————— RS (D

——

E\;C\(\\\\\C . \\' x = %

e —

R W

D O=—®

S

(D) 1F Bare ore A -ondiions n e FSA

STUDENTS-HUB.com SHaAREE Wity CAmS&mrmat

-' g we end up with a final state,

s machine L(M) is given by

3 i o lu\\s\tpnc

| __[+|.]{d+,, iy d*‘ d+} =3 (& accepis o) Vlooking ok nunfores W W
' Thed pont ondoks).

-ar examples of finite state machines are :

T -‘,' '!'es of Finite State Automata
‘1 re 2 types of Finite State Automata

=..w} Non Deterministic Finite State Automata EMDFSF\j

onthm is non-deterministic or fuzzy if there are options(choices) in the
rithm. An example of a non-deterministic algorithm is the solution of the

ght Tour Problem, which is based on Backtracking Techniques.
State Automata is non-deterministic if N

There are A-transitions\(moves) in the FSA :

—

'O There is more than one transition from the same state on the same input

oth cases, There is a chOIceS (tnal and error) to make ii-he'bﬁl‘fWéy td"
e\backtracking This is practical in a

on-deterministic machines is to
piler, because backtracking is a very compute-heavy method and is

ren ely slow.
Unately, There are algorithms to transform any NDFSA to a DFSA.

efore, we can assume always in the assumption that our machine is

2rMinistic

(A

STUDENTS-HUB.com SHaAREE Wity CAmS&mrmat

{. There are NO A-moves(transitions)

“- . =T
1 ;(@ There is NO more than one transitio

input. T

n from the same state on the same

nly Deterministic Finite State Automata are used for compilers.

sformation of NDFSA to DFSA

Removal of A transitions,

Removal of non-determinism.

3. Removal of inaccessible states.

Merging equivalent states.

Y ‘;;the following NDFSA :

ie

atis L(G) = 7. .o X2
7 _ﬂ‘.vat & ‘\

o

[".
S[+|-] (d* |at.dt | d*. | .dF
‘11(o] di-|) @

STUDENTS-HUB.com SHaAREE Wity CAmS&mrmat

tate\ + - d A
A A A/
i BC ‘B
B F
D C
D F
G E
H
H F

- :-:3. q
moval Lambda Transitions | ®&) @
1. | \‘A

Consider S-A->A

Add all transition in Row A to S. %@

Repeat Step(1) for all States with A Transitions

@

J}} Mark all states from which there is a A Transition to a final State. Mark

it as the final State. B30, N are axkad os el Srakin

Delete the A Column This results in this table:

ate\ + . d
A A G BCE
G BCE

B

D C

D

G E

H

H

STUDENTS-HUB.com SHaAREE Wity CAmS&mrmat

ean not having more than 1 transition on 1 input.

———————

- :,_’Insider [B.C.E]. Lets add this and treat it as a new state in the table.

at least one of the states [B,C,E] is a final state, then we make it a final

Repeat step (2) for all marked states,

Safe Neeh Wmﬁ@&m
e Quxeey Sde -

fesults in this table :

A
STUDENTS-HUB.com SHaAREE Wity CAmS&mrmat

State\ + .

VT B
S A A G BCE
7A G BCE
% B
X C D

'S now a Deterministic Machine That accepts the same languages as the
#13l NDFSA . For Clarity, Let.s rename [B,C,E] to X, [D,G] to Y, [D,H] to Z.)

STUDENTS-HUB.com SHaAREE Wity CAmS&mrmat

Q'l—) [\\U’:&\(\a EQ\)UN Ry Sraken

-~
-
—

Y Cg:\\\'\ e

Yo Sokes P, n Wa FOR ore s Yo e

Cepvinalont \ 2 N
P accepts e Stviosy K 1§, %Qcca,p\-s. e St X
TG erq A K

|

s— /_) \ D > _Q,d) acCept
o eyl
Modified)

N Sreng\(y &

QQ\S\S\ an

A Shle g o adane M R State D Wﬂidnlm\

oxe oyl N :

ada ia Q’.e EC\)U\\N&QX\\“ \R_ Qk\\\mf\ Q%\'V'\Y%X ¢ Yhat
AN l“\\a XY Stake Q oCCag, X G \

(\(\\ N Shatye acleptg L R‘ “\Q\Q&\"(\\'\.ﬁa

IP=9% TR sy g

STUDENTS-HUB.com Stalmastedity Cafiseameinat

+
|]
-3

NNXTITIT XX

; graph now looks like this :

ethod in merging equivalent states.

feasible o |

PR < *o % - "‘ & I _

Hp.q}cF OR {p,q}cQ-F ie, elther both {p.q} are final states or both {p,q} are
ot final states.

for every token(symbol) aeVT, either both {p,q} have transitions on "a", or
20th {p,q} don't have transitions on "a".

=i P7q; <yohe ¥ dome't o (;
ciCCﬂ?\" %\\) ki% " k\ ‘e')
' oot Feosille -

STUDENTS-HUB.com SHaAREE Wity CAmS&mrmat

Denhian _ QP:Q\;B e rw\(u\{ﬂs&} i} ’\:: H‘?f
A \:ee\%&:\ﬁ S (¢ L\}) 10 O POAY QY 35 WS Tag
et A WV Cp amang) e yesdhle

'\\l\\ .‘%ﬁ an —_— ————

PN \ 9 })
i "‘-‘-._::;”

i
- g™

STUDENTS-HUB.com SHaAREE Wity CAmS&mrmat

amP'e' given the followinévﬁbl-‘-éi

‘re
\ Presenteq by the following transition

el a b ¢ (N12) cot Seanlle
:‘(‘:% ;i“’% ons: hanko
= 2 5 o 4 "
3 4 (1 Yo 0y T e b
5 2
6 1
1 4 1
4 1
3 5 3 oble, ¥4

; . feasible pairs, fi

” rst we must Separate the set of final states from the
of non-final states. ther

efore, we have these 2 sets :

4 (12357 " Nen-Fiad,’

: ' J \\
46} T

| E A, -"""' :- 4 “ha._“‘.
esults in this_‘%;l\’easible-pairs tabie‘j

€asible a b ¢) “mm:\(,\z Pk
Rairs\VT® (& (o (9 (5,2) =(2.%) }

'(,3) 2,5)\ 5,27‘
(2,5) 31, 44y 1,1x Tisee PAS Q\QSQ&\N&)\@ to Be

o 10X [CQUNNENT
1,3y 4,5 1,3

6.4, 1,1% &W@hmm e Ware,
e s

Nen mark all feasible pairs (p,q) where There is a transition to a pair (r,s)

I,s) is either marked OR not among the feasible pairs.

| ®©
®sults in this feasible-pairs table :

o - t
STUDENTS-HUB.com SHaAmREE Wity CAmSEiema

25 , 52

31 44 11
3.3 45 13
1,3 45 13
6,4 14

rough the table once more, in case we marked something later on in the
would effect the pairs in the top of the table.

p.q) remains_unmarked, that means that p is equival P
p and q, choosing one of TR P quivalent to q. therefore,

R .
g then merge, replacing every 3 with a 1, every 5 with a 2, and every 6 with a 4,
ulting in this state table :

‘State\ a b ¢

Fvr
1 22 s . % ,
— Woline in Talhle #A.
B2 1.4 1 — e
@ 4 1

7 1:2.1

S the machine with the minimum number of states.
S go back to our example Last time, we reached this state table :

B

NNXIIXX

duickly apply what we learned on this table. @D

STUDENTS-HUB.com SHaAREE Wity CAmS&mrmat

e the final from the
- S(SAG) non-
: thZ} j

INal stateg -

cting the feasible pairs tablg -

+ - . d

XTI XX

STUDENTS-HUB.com

i)
$Gamaee ity cCamseameinat

nachine accepts the language.

#|-1{ dddd, ddd.dd, dddd., .dddd }
- | — v

1is the same language of our original machine.

STUDENTS-HUB.com SHaAREE Wity CAmS&mrmat

for h, XA->Y-

for a, X-2->Y.0—=20

‘aressions R1, R2 respectively, N1 accepts R1 & N2 accepts R2, then
: N4 (973
Rz
Y
N1 _

REz

STUDENTS-HUB.com SHaAREE Wity CAmS&mrmat

]

ch represents R + jg -

vhic

iple: Given the regular expression

L
d)* Noves ’\J@Lﬂ
1 has this transition table

3,9
4,6

NOFSR —>
LCuio*

STUDENTS-HUB.com SHaAREE Wity CAmS&mrmat

7 3,9,8,6
7 4.6;8,3‘3\ L
2 8,3,9.4.6
7

7 83,946
7 3,9,8,4.6
d

7

7

7

7

7

7

A Wity CAmSEAF@inat
STUDENTS-HUB.com Sea

, Scannax | texicad, Aoodsgcor) Nqathm , Gnkins o set

-—%Q\‘CS*\Q{_(CQ\) TOken -
Bt @ Vo
L—-)CP+ ® ++ X+s
. X4+ =534
.‘\ O
o

STUDENTS-HUB.com SHaAREE Wity CAmS&mrmat

Chapter 5
Syntax Analysis(Parser)

tax analyzer is formally defined as :
ASYN

i Algof“hm that Groups the Set of Tokens Sent by the Scanner to Form
tax Structures Such As Expressions, Statements, Blocks, etc.

Syn

the parser examines if the source code written follows the

simply: ; VS the
| i mar(prod les) of the language.

gyntax structure <_Jf programming languages and even spoken languages can
t ggixgressed in what is called BNF Beee

notation, which stands for Bakus Naur Form.

For example, in spoken English, we can say the following:

| centence —> noun-phrase verb-phrase._g 4 Figey NotoMen
noun-phrase --> article noun

aticle->THE | A | ...

noun --> STUDENT | BOOK | ...

verb-phrase --> verb noun-phrase

verb--> READS | BUYS |

- Note : The BNF Notation uses different symbols, for example, a sentence is
defined as :

<sentence > ::= < noun-phrase > < verb-phrase >~ detad; N

- Z
But this jg very cumbersome, so we use the first

notati ; .))
Otatlon, since it is easier to use. Now, let us derive

| 3Sentence -

*entence - [&Qumph rasel@bm
v v

=-> article noun verb-phrase

‘ > THE noun verb-phrase @

u
L > THE STUDENT verb-phrase

STUDENTS-HUB.com SHalmaee Wilthy Camsearieinat

¥y

, THE STUDENT verb noun-phrase
- TT— | .
£ STUDENT READS noun-phrase '\ STEP RY STEP

¥\ A
STUDENT READS article noun
THE e e 2P
UDENT READS A noun
_» THE STUDENT READS A nour

>THE STUDENT ’READS A BOOK
> THE S -
e way,

-7

|

he sam the parser tries to derive your source program
In '

om the startind symbol of the grammar. Let us say we have these

THE BOOK BUYS A STUDENT
4E BOOK WRITES A DISH

Syntax-wise, all of these sentences are correct. However, their meaning is not
correct, and they are not useful. What differentiates 2 sentences that are

eir meaning or their semantics. You and | can agree

grammatically correct is th
t how

that the meaning of a grammatically correct sentence is not correct, bu

does the computer do it?

STUDENTS-HUB.com SHalmaee Wilthy Camsearieinat

ammar O pregmming QO“WAN&&(
G/r\ grammér G=(Vpe Y+ - P) where:

A

1 \}N : Aﬂﬂite set of nonterminals(nonterminals set)

) VT A/ﬁm'tﬁ set of terminals(terminals set).

$

geVN: The Starting symbol of the grammar. !
. e AT TITNELF,

P =_;5__s_(_a_'g_Of_Fj[‘Eﬁti"-'_“_"UI“35(Droduc’tions).<__
\whole grammatr. —

Note -
y WNNVT =2

) UNUVT= @ocabulary of the grammar). ‘

- We will use:
Note : W

1. Uppercase Letters A,B,...,Z for non-terminals. 1
9 Lowercase Letters a,b,...,z for terminals. T
3. Greek letters a,By,.. for strings 1

formed from VN OR VT =V,
VU Ve

eg, if VN = {S,A,B} , VT ={0,1}

then
| a=A11B
| B=S1108B
I yY=0010 \’&'\9/
| G
' Production PRSIV
| S T

A I:’foduction (alpha derives beta) is a rewriting rule such that the
0ccurrence of a can be substituted by B in any string.

Note that a must contain at least one

"onterminal from Vy, i.e. eVN. For

e -
Xample, Assume we have the string
Yag,

| Yao @

wshy YEU
A

STUDENTS-HUB.com SHaaéE ditly Camseanminat

' ~_.-nis a sequence of strings q
A Denvatlon g 0: CI11 02,,Qn, then.

2' , a1__> az--> aie "'>an
o~ .
noa grammar & e ;
e
Gl Language Generated By the Grammar.,
L(G) z
i Grammar, G = ({S
le, Given the » G=({SB,Cl{a,b,c}S
orexamP N ot {‘—’VT P,
,:__7 aSBC ° (oS ak \xt}zﬁ\ Qe nah-resmned) ; .
Ve abC

() T A G\ al)
5> BC Qs 2 hetely

W
Lt us do sOME derivations: DorNe Sentyenten™

g-->abC - [ab& all terminals) € L(G) <--- A sentence
S
5->aSBC > agbCBC --> aabbcBC --> blocked, so we try another path

5-->aSBC-->aabCBC --> aabBCC --> aabbCC --> aabbcC

{aabbede L(G) <--- A sentence

S--> asz‘C > -T%aabbbccd\.e L(G) <--- A sentence

\
Nl o, S 19 oy

[T

Therefore, L(G)={a,b",cN| n =1}

As another Example, we have these productions

H E"> E+-|}$— we can write the productions 1 and 2 as a single productioniE —>E+T|T [
s 5
3y
I-T F}Q_\T_» TF [F
S(E -
}f :(E - We can write the productions 5 and 6 as a single production|F --> (E) | n
- n . s y
Vg = 1\:—: T }
ot ‘
H Eus follow through some derivations VT: 1_\(y ¥) ()) | (\3—
PT>F.>pe L(E) S ':_Eq
S BAT 5 T4 o> T4F o> T4 --> F+n > n#n € L(E) ®
AN E+T o> T+T --> F+T > n+T —->n+tF—>n* (E) == br#(T) —=)=

o W '
> nH(n*F) > n+nn) e LE) LG &- ‘g‘gcmi%\:%@& el

4 | A+ & ¥ operoiens- J

STUDENTS-HUB.com SHaaéE ditly Camseanminat

\)é.QQ&J 0 Yhe
[‘_&m At W o ereaing M
. " O CB % %

DeﬁN@“ ﬁ‘ ¢ VAL VS Wen-D eV Cnip 3\-\‘%‘?‘\"

STUDENTS-HUB.com SHaAREE Wity CAmS&mrmat

' ore. L(G) = {Any arithmetic expression with * T T N
lons}, nis an

€

T::rraﬂd el

0 y - add the productions

ke ;
p:;E*T | E-T IT

T%F !

51',-7 T*F l T/F , °
J ' language to express all arithmetic exore.
b, Jould have a languag press all arithmetic expressions with 7 A

tions- ey
opefa

et uS Take another Example (Tokens between double quotes are terminals)

program = block "#"

bock " stmt-List "}"

stmt-List > statement ";" stmt-List | A

statement == if-stmt | while-stmt | read-stmt | write-stmt | assignment-stmt | block if-

> "if" condition....
while-stmt --> "while" condition.....

read-stmt —> "read"

7 write-stmt --> "write"
THOSE TOKEAS XOVT QTR WO THD SOURE: (ODE .

= {Program, block, stmt-List, statement, if-stmt, while-stmt,

read-stmt, write-stmt, assignment-stmt}

e, e ngn w wien wyhile”, "read”, "write” }—

1 THOSE TOKENS AFERR TV TwE COWRCE (B«
Lus Follow through some derivations :

Program > block # --> { stmt-list } # > {A) # .

ogram ~> block # --> {stmtlist} # > (statement ; stmt-list} # -

{;‘atement ; statement ; stmt-list} # —>

St atement; statement : A} # --> {statement ; sta
atement ;} # ->(READ ; statement ;} # >

READ ; write-statement 3} # >

tement ;} # == {READ-statement .

R0 R 4 4

STUDENTS-HUB.com SHalmaee Wilthy Camsearieinat

_ |

guage of this language is defined as

The lan . :
t of all programs that can be written in this language}.

L(G) = {Séi‘r & ol CRERIS ALK W) 20 Wig Gt

- only a simple example, of a simple language. For something more

This ;Sx such as C o Pascal, there are hundreds of productions.

comp'é

ithms for Derivation

Algor
Leftmost derivation is_a_derivation in_which we replace the leftmost
ﬁonterminal in each derivation step.
Rightmost derivation is_a derivation in which we replace the rightmost
‘:ontermina! in each derivation step. i}
DEFINITIONS

For example, given

the grammar

v->SRE) N AP St -

S-—>+|-|A
R->.dN | dN.N
N->dN | A

VN ={V,R,S,N}

VT={+-,.d, §}
Let us follow through on the leftmost derivation

V --> SR$ --> -R$ --> -dN.N$ --> -ddN.N$ --> -dddN.N$ --> -ddd.N$ --> -
ddd.dN$ --> -ddd.d$ <-- A sentence.

Let us follow through on the rightmost derivation

V> SR$ --> SAN.N§-> SdN.dN$ —> SdN.d$ > sddN.d§ —> sdddN.d§ >
Sddd.d$ --> -ddd.d$ <-- A sentence.

Derivation Trees

A Derivation Tree is a Tree that displays the derivation of some sentence in the
Ianguage. For example, let us look at the tree for the previous example

©

| —

STUDENTS-HUB.com SHaaéE ditly Camseanminat

|= xrm\\a\c S an Leb oy & ‘f‘\%\\\“(\m A Dﬁ\\lcﬁm‘(\b

Y_%[—ﬂ _Y
L PPy ol - I
F— (®) In

\E@ET»}E—)_\Z&\ Ty e, (\—\T@' L
\ e L a € 1LEGY)

> \LL‘Y‘T\\;\QST

— Mg

E-“ E-\-FN E_\.‘(\-%T—‘r%
F—ﬂ\ arn € LW(G)

\’ \&GHTM O ST

Cﬂt\s Aax! \ MNM\ e, IMQ}RBEQ
\ \ an .
5%\%&“.& = 1 We chraia e
\\\‘«ugw TRE /\:\?%‘ER%\T\DN TREE
E oy E 4+ 7T
/ ¥ \ \
p \ 1 =
\ \ \
?2
\ o v 0
n \
0N
1\ Sorne. Do Toee e 4

' ' at
STUDENTS-HUB.com SHANFEE Wity CARISEAT @

Note that if we traverse the tree in order, recording onl

y the leaves, we obtain the
sentence.

Classes of Grammars

According to Chomsky, There are 4 classes of grammars :

[S

1. Unrestricted Grammars : No restrictions whatsoever except the restriction
by definition that the left side of the production contains at least one
nonterminal from \ﬁThisgrammar is not practical and we cannot work with

£ g v o ek WO
2 Context-Sensitive Grammars : For each production a --> 8, |a] = |B|, i.e.,
e length of alpha(a) is less than or equal to the length of Beta(B). This
Means that in this class of grammar, §here are no A productions in the form A
= 8&lambda, since [Al=0and Ax1. (A=A L _
S COn'Eext-Frc—:-e Grémmar(CFG) - Each production in this grammar class is

Tthe form A --> o .where Ae VNandae V*

Patis o say, the left hand side is only one nonterminal.

' ramming
Mis i the most important class of grammar. Most prog

i stly be working
languages structures are context-free. We will mo y

i e have taken @ J
"ih i class of grammar. Most Of the examples W -

g CFg_ . _ ‘f

STUDENTS-HUB.com SHalmaee Wilthy Camsearieinat

r Grammar (Regular Expressions) 3

ula
4. Re9 lass is of the form A - > aB or A

rammar ¢
v, with the exception of S -->)\
€ ' .tb ‘

Srocooy Sumady.

_ given the grammar:

Each production in this
-=>a, Where AB e VN and a

5,

j A > aA

= ° & B

- : CONDIIY
Therefore, we.get L(G)=a _ D Wosek X (mntexy
However, adding the production A --> A Free

Results in the grammar

G(L)=a"

p— T T,

Kéarsing Techniques

There are 2 main parsing techniques used by a compiler. ' _
" (D) WSt dextvaliem vl §o daxien Ve seokerio

\

Top-Down Parsing . °. . A Qsadiec- : '
: = sy sdusy rs% QXMW Sieps

In Top-Down Parsing, the parser builds the derivation tree from the

100l(S : the starting symbol) down to the leaves(sentence).

A

I Simple words, the parser tries to derive the sentence using |eftmost\e. ‘

derivation. For example, say we have this grammar : V --> SR$

S-->+|-|)\ \
| NS 9. 4&
R->dN[dNN L(GY = L 31 a*'f)*

N->dN|A

 Letus examine if the sentencé dd.d$ if it is derived from this grammar.

V> $R§ .>AR$ > dN.N§ -> ddN.N$ >

NS > dd 4NS —-> dd.d$

i . lect in each
b -+ oroduction it should_se
~0blem, Wwﬁﬁ_&/ tl‘:R-/la';er in the course.

; issues
Wt' We will learn how to solve these 1SS ,
: ®

STUDENTS-HUB.com SHalmaee Wilthy Camsearieinat

DEF
2EFEAETION N
PRRIER T Sypten Aradoxees 37 [

. ST
'S an dpgsiNem i S Yakes WEss
(ol andy Mien Ao t-

(&:\ Buld M dedivaiae Yres %«-W S Godo,

6&% Dottge s Deor Codo {earn Ya Bradudng,
Wl 24 e @ ramenps- (U508 o il

Oex '\\‘1’33)&3\\3
TOP- DN PIRAING,
PRORLEN

E->1
TAE

=~ _@ W @\\‘5 Stbeng

[S No\’&-m.nﬂ mutple Podudians means ek we
AW Qas e <entence

STUDENTS-HUB.com SHaAREE Wity CAmS&mrmat

—
Y i

om-UP -

L antt _
'5.80 m-Up Parsing, the Parser ' builds the derivation tree from the
! Bozinten ce) up to the root(S : Stary

Ng Symbol), This type of tree, built from
\ ves to the root, is called a B-Tree,
he led

starts with the
; words, the parser

simple

In

given Sentence, does
tion(opposite of derivation) steps, until the starti

NG symbol is reacheq.
t the string A is present everywhere in the string,
ha
Note

n use it wherever we like. Let us follow the
e Ca
and W

duction of the example given above.
re

d$ --> +ddA.d$ --> +ddN.d$ --> +dN.d$ --> +dN.dA$
+dd.dd -- X

-2
i t the
--> SR$ --> V Which means tha
-> +dN.N$ --> +R$ --> S
+dN.AN$ --> +
iS i rammar.
sentence is in the g | | |
th instead :
te that we can run into deadlocks here. say we took this pa
Note tha

> +dN.dN§ -->
$ ddA.d$ --> +ddN.d$ --> +dN.d$ --> +dN.dAS --> +d
+dd.d$ —> +ddA.d$ --

- R$ — Deadl

[h reduction
bstring should we select to reduce in eac
problem : Which substr | ,
N

step?
S~

how do we solve this?

eices.
(¢ = 1§ Yheeore

N | Delern@mistic = [\

Brbigious = Ne

oy
‘ . Y%\‘XB““‘

' eXminishic

Ven the following grammar :

XK -
"> num g }%\ma\ox 1o raslec AT

um s, d

‘-‘.Ambiguity

13
sentence
s draw the gerivation tree for the

@

' mamat
SHalastE dildy CAmseaa i
STUDENTS-HUB.com

?’

.,

\ UM .
i\\?-u_r’n/) :M CQ-’ —=> DU & (‘E\
QN Add s, ddold BLE)
N =
. num ,‘x‘ (d)
/z\\/_k/ N)
(@)

£ /d\; : A e Sentenca = g dixialic®
Qulrj'\/.- fk/ ky Unam b‘uc}\ QS .
TN
W/
_',/

Question : is there another derivation tree that
represents the sentence? The answer is no.
* If there is only one derivation tree representing the sentence, this means

there is only one way to derive the sentence. Based on this, we can say that
s Uwan’lrl\b'ucfxim i
ok - Qoaust

'_D;e_f: A Grammar G is said to be ambiguous if there isfone

sentence with more than one derivation tree. That is, there

———

is i
w one way to derive the sentence.

This means that our algorithm is non-deterministic.

EX: given the grammar:

E->E+E |
E-sp» =

GIE

Ta
ke the sentence - a+a*a

Let us draw the derivation tree @

-—

STUDENTS-HUB.com SHaaéE ditly Camseanminat

’ Spie Sy =>Qy Ext ——BQ*\—Q-‘Y:E'%‘Q\—\'Q-%Q!&KG)‘

o

& a
&/}

/E\
AT
E®t é

I\ Qe Sententa, oli \Fexent
AN QTR e -

QSSHNLY

pue to the fact that we have 2 trees that give the same result, we

can say that this grammar is ambiguous. In this case, to enforce the

sociativity rule, this grammar can be re-written as :

;E"> E+E | T _(\\“b"\%_\ﬁ'_\ﬁ s Y
iT—>T*T | F T Pre cadwNQ) . T
F>(E) | 2

~agsadevvivy
I, ta

' Now, Take the sentence 2 + a * a and find the derivation tree now.

/—\

)

-

4

/
)

C

&€

i
STUDENTS-HUB.com

>j

m
&

"~

-

o

SRl ity Camseaminat

-z

ly possible derivation trees now. This solves the associativity problem
. on . -
fher® 4+of the grammar before with the operations.

wimwﬂ
ve the sentence:a+a+a

 Letus SBY W ha

pu

to find the derivation tree and any alternative trees.
try
et US

aroQu G40 +0

We can see here that there is more than 1 derivation tree, and the language is still

ambiguous. g

. — e '
We can solve this if we rewrite the grammar with the left-associative rulej :
E>E+T | T

T-->T*FlF
| F-—>(E)|a

| ; blems of : '
' The grammar now is left-associative. This grammar solves the pro \

* ambiguity.

'i

s

3

* precedence. |
i

{

* associativity. @

STUDENTS-HUB.com SHalmaee Wilthy Camsearieinat

us 1Y rewriting it with the right-associative rufe
Let

¢ ST+E| T
‘ r>F TIF

F~> (E)|a
etustry creating the derivation tree of g + 5 * a

;\

© @

Now let us check the derivation tree ofa + a + a

" however it does not solve the fact

©

STUDENTS-HUB.com SHAGEE ity CARISEAMm@mat

This new grammar is not ambiguous,

That associativity issue according to our standard.

S

s causes problems when it comes to Top-down parsing techniques(see why later).
grammar is said to be left recursive if there is 3 production of the form:

Ad
con verSeW- a grammar is right-recursive if there is a productlon of the form:

recursive Grammar
le

————— ———————

—

A->0A
pich causes no problems in top-down parsing.

The solution is t0 transform the grammar to a grammar which is not left-recursive.

Algorithm-

Given that:

A->Ad4 | Aaz |] Aa, ™

A->B1| B2l -l B \:

To do this, we must introduce a new non-terminal, say A, y

The grammar now becomes :

A>BA | BoA || BoA To . ’_J

A=y Al G A | ... lan AT | A < INPUT: Lt Recursine |
’&1 "Q\\&(! \ %’(U\Y“'\QX‘- I 7

i \ o QUTPUT: B eqpivadont y
o =

For example, say we have o, - \

A—>A®") oy \ %\'C\mm ‘

A=)~y $a \ - - —

L(G)=ab*

Then according to the above
A-ap’

A=>bA* 1)

Which results in the same grammar.
®tus apply thls to the grammar : S ESET La=bh ©

>E+®|®91 o Lebl-—Recsssien-
ToTe “FIF

F = \
F“>(E)Ia @

‘_%
ha
f

4

STUDENTS-HUB.com SHaaéE ditly Camseanminat

Then the neW grammar -
g->T E

g >+ TE |A
RESFT

B> *F T A

E_> (E) | a

S G . .
This grammar is now perfect. It solves all our ambiguity issues, and this is a grammar

we can use to construct the production rules for our programming language.
Another ambiguity in programming languages is the if...else statement.

stmt —> if-stmt | while-stmt |

if-stmt --> IE_condition stmt
if-stmt --> I_E\ condition stmt ELSE stmt
condition --> C

stmt--> S RESERV EQ_\%P\D‘S

This grammar is ambiguous.

Let us take the following nested if...else statement :

IFC
IFC
S .
ELSE \
S

This statement results in 2 derivations trees.

Draw the two derivation Trees

s i L 1K s |
o ELSE Tsters | // \\\

Gl g ERE ST

Candi

\
" S) |
(é ! 1B

STUDENTS-HUB.com SHaaéE ditly Camseanminat

_—

——
1 i
oy

he firs results in the ELSE belonging to the first IF , while the second results in th
in the

ELSE pelonging to the second IF .

The second tree is the correct one since we know that the ELSE statement follows th
s the

nearest =

gut how can the compiler behaves in this case?

There are @ bunch of solutions to this problem:

1. Add a delimiter to the IF statement, such as ENDIF or END or FI to the end of the

statement, resulting in these

productions :

if.stmt --> IF condition stmt ENDIF
if-stmt > IF condition stmt ELSE stmt ENDIF

Resulting in this statement :

IF C
IFC
S
ELSE
S
ENDIF
ENDIF

LS RY

rly state whenan IFT

The grammar is nNow unambiguous, since we have to clea

statement ends.
However, this is not a pretty solution,
and is extra work for both the programmer a

nd compiler, and result in less readable

code.
E when it sees the ELSE in the

2. Make the compifé? always prefers 0 shift the ELS

{ |
source code.

®

@ ————

STUDENTS-HUB.com SHAMAEE Wity CARISEANTH @
| iat

V '—
 |oft Factoring

gonsider the productions :

A 7 GB

A~ OY
 Note how the first part of the productions is the same. This

_ . grammar can be
rmed by introducing a new non-termina| B, -

tranSfO
go what happens Now is:

A-> 0B

5 Bl

For our grammar, this results in
it.stmt --> [F condition stmt

if-stmt --> IF condition stmt ELSE stmt

becomes:
if-stmt --> IF conditon stmt else-part
else-part --—> ELSE stmt | A

- Does this solve the ambiguity? No, but it helps in removing choices, since the if-stmt is
| now one production. If we look at the
i statement :

. IFC |
IFC
S
ELSE
\ S
 ltstill has 2 derivation trees

i\Extended-BNF Notation

; languages.
So far, we have been using BNF Notation(Production rules) to express [ang

However, there is another form to

Express a language, which is Extended BNF Notation

: ' the grammar
Fthere is repetition in the grammar, say in the example of he 9

2
E>EsT|T &

T->T«p|F

F->(E)|a - ——
STUDENTS-HUB.com SHalaete dily cams&amiaimat

‘'t ¢) &
Ir C C @ N
l Ir’ C‘ _
| = ‘
| ELSEJ 1
|
R, By, e e
I?-s\-m\-
\‘hm 5\1’5\\' EBE-?QF\'

A‘““\ S’\’m‘\' Bre-quty
‘ S&m’v

STUDENTS-HUB.com Stalmastedity Cafiseameinat

sa derivation in the form of j

gnoan 9Ve
| T__>E+T+T->E+T+T+T—>T+T+T+T oT

E +
e line,
o in the sam
s T PF->T F*F*F->T"F*F'F... F
1~ T
express this grammar as .
T T{* T}
1>F{ F}
c>(E)|2
We know that [x] means that we take x 0 or 1 time only.
However, { X } means we take x zero or any number of times. This is equivalent to (x)*
We can also express this grammar as:

. F\
E>THT) E—aE-F\’lT —T_;rs.. =
T->F(*F)* E T
F->(E)|a ' ’\:3

Syntax Diagrams
Syntax D Diagrams. These are used only with

______._______-——-"

Ancther way to express languages are
Extended-BNF notation.

A square shape represents a

nonterminal and an oval shape represents a terminal.

DRAW

®

STUDENTS-HUB.com
' $HaaéE ditty CARsemmnat

in Techniques
pat®

The parser is an algorithm which accepts or rejects a sentence in the

I
gec? ming language.

rogra here are 2 kinds of parsers :

.pown Parsers - In This parsing technique, The parser starts with S using
0
. on to derive the sentence.

ge

;, To
tdenvau

Wajor problem with this parsing technique is that the parser doesn't know which
The a

hducuon it should select in each derivation step.

pro

; Bottom-Up Parsers : The parser in this parsing technique starts from the sentence,

doing reduction steps, until it reaches the starting symbol S of the grammar.

The Major problem with this technique is that the parser doesn't know which

substring the parser should select in each reduction step.

InTop-Down parsing, we have 2 available algorithms for parsing :
1.Recursive Descent Parsing. { ~¥ We @ QWL derermiiioric
R\PDC\’ ‘%{‘ _q_ C%Q(ﬂ“m‘\
F e Slrds e Cowrepl -
Shessin 40 Adine O PRy ORISR

InBottom-Up parsing, we have 2 available algorithms for parsing :

2.LL(1) Predictive Parsing.

I.LR Parsers. = we @n WO SRS
2.0 A fowses v e et
-Uperator Precedence Parsers --> Uses matrix manipulation.

Before we continue, we need to define a few functions

1

he FIRST!) Function £« é@@ |
Gi
F"’en astring a € v*, then \)'\\é e

I

RST() {a | a-- --> aw, aEVT, WE > 0\ \'\N’\Q‘S

addltmn if o --> A, then we add A to FIRST(a), thatis A € FIRST(a).

hat . ; .
Wis to say, FIRST(a) = Set of all terminals that may begin strings derived from a. \
- S

STUDENTS-HUB.com SHalmaee Wilthy Camsearieinat

| 48

le
| por examP
: *__7 CBX
fa~
. s>ayD
a-
I «>ab
fa~

| __>ddd
ad

' Then
pRsT() = {c:2.d)

i pssume as well that

g A

then
That is to say, A appears in the FIRST() function.

The FOLLOW() Function

We define the FOLLOW() function for only non-terminals. That is to say
FOLLOW(A), AEVN, then . @D

/\\’\'ex\“"“&) : et
FOLLOW(A)={a|$S 'be> B)where a eFIRST(B)}

Thatis, S -*-3uAB[ueVT*, AeVN, BeV* and EOLLOW(A)=FIRST(B)
Sententials Feom _
That is to say, FOLLOW(A) = The set of all terminals that may appear after A in the
any derivation. anh @Q&J o |
i ¢ ‘ Fandieh -
S > aaXdd A\AN] & ’A : CI.OGSF‘ b a,Fngr n 4lm'PAl§N \
AT RE eIt
Ne¥o g Xa _BS\\&I_) gje > o
S-—*..> BXc
- The 2’y
FO ; "'(‘3;\\}; S—=* G
- N e
* oL R X® &Y
- — oy, Neg\ SN

STUDENTS-HUB.com SHalmaee Wilthy Camsearieinat

Y e

es 70 compute FIRST() and FOLLow) Sets
qu

X) |t FIRST

(
, FIRSTC
, FIRST(@A)

A)"'{’\}'
a)={a }.O'GVT

{a}. a€Vq » AE V¥
. FIRST(XY) =3/FIRST(FIRST(X).FIRST(Y)) OR
oV ¥ FIRST(X.FIRST(Y)) OR
" FIRST(FIRST(X).Y).
5, Given the production A --> aX, Then :
a. FIRST(B) € FOLLOW(X) if B # A.
b. FOLLOW(A) € FOLLOW(X) if B = A.

Note that the FIRST() and FOLLOW() sets are made of terminals only i

Notes :

1.Amay appear in FIRST() but it doesn't appear in FOLLOW(). We will see this when
we define augmented grammars.

2. Generally, we start computing the FIRST() from bottom to top, But FOLLOW() from

top to bottom.
3. When we compute FOLLOW(X), we search for X in the right side of any production.

———— I —

Augmented Grammars

DEFENETWON o
Given the grammar(@k(VN,VT,S,P), then the augmented grammaLr@=(VN VT,8'PY)

®@n be obtained from G as follows:
LW =Vyu (s Y
2Vr =vyu g $J.0 '5\15?"‘“%5%%
38" = new starting point.
4P=py {8\ ->59)

For €xample :

> E#T)T |

T>TeRF @

P> (E)a

STUDENTS-HUB.com SHalmaee Wilthy Camsearieinat

gecomes -
G- ES
SEXTIT
1->T*F|F

F--> (E)|a

This is because we want to create a FOLLOW() set for S.

Example 1 :
g -->S$

5-->AB
A->al|A
B->b|A

Let us compute the FIRST() sets for this grammar :
FIRST(A) = {a,A} |

FIRST(B) = {b,A} .
FIRST(S) = FIRST(AB) =

FIRST(FIRST(A).FIRST(B))

| =FIRST({a,A}.{b,A}) {
| =FIRST(32k a1b 'q"g.) } \
‘ :{a!bA} . ;

 FIRST(S") = FIRST(S$) = FIRST(FIRST(S).FIRST($))

 “FIRST({a,b,AL.$)= FIRST(a$ bs,§

. 1-9) (a)Aﬁ{\\(@é\;)m?\,

| &wc ?o\\WL .

Now Let yg COmpute the FOLLOW() sets for this grammar : 3
ononD ™8 WY ouy= B (8) * B A" Rl R
; FOLLOW(A) = {b,$} .

@3 #

| : . Hesth) :7,}» + aPpOc i

FOLLOW(B) = {$) : Kbﬁ‘;amﬁg o

| 3 oL\ () ¥ Flim)

‘ Follaw (A) =Fiear(®) Uk . \ * N
Stample 5 =365 V1T e
LTS = b 8§ P e,
SERN aAch
A~-> b | c I)\

|-

i ' Mginat
STUDENTS-HUB.com SHAMaEE Wity CAMSER

s take the FIRST() for this grammar :

Let
{b,c.A}

F:RST(A) =

FIRST(S) = FIRST(aAcb)UFIRST(Abc) = {a} U{b,c}
~{a.b.c}

515" = FIRST(S8) = FIRST(FIRST(S).FIRST(S)
6l rST({a.b.c}-{3})

z{a,b.c}

Now let us take the FOLLOW() :

FOLLOW(S) = {$}
FOLLOW(A)= {c.b}

Example 3:

G->ES$
E->E+T|T
T->T*F|F
F->(E)|a

Let us calculate FIRSTY() :
FIRST(F) = {(,a} 1 o
FIf_iST(’T")’ = FIRST(T#F)UFIRST(F) = FIRST(RF)U{(.a} %
£{(a} (Because every T will eventually become an F)

_EISST(E) 2 FIRST(E + T) U FIRST(T) = {(;a} U {(:a}

3la)
FRST(G) = FIRST(ES) = {(,a}

Now let us Calculate FOLLOW() :
FOLLOW(E) - {$’+,)}
F *
FOLLOW(T) _ FOLLOW(E) U) = 8+
BOLLOW(F) — FOLLOW(T) = {8+
| “Uwhat makes all this sO important? .
i ill heavily on
Well, All of the parsing techniques we are going t© depend will heavily

FoLLow().

FIRST() and

STUDENTS-HUB.com SHaaéE ditly Camseanminat
mna

<y

i K OX l\r) [
FIRST (gt <5 VL) _.?
Ly since s cloesn 1= Gankew) =

We i%m ‘k
rm——— [O\(\DIC— %g%
F\ES-\‘ (‘{Cu\o/C I’___A:i' Ui/&?) ——?' -

b A exishs Sare SewWe
toke 4 hConcaderartidh

STUDENTS-HUB.com SHAGEE ity CARISEAMm@mat

A 4

escent Parsin ‘{\‘\ §<<
iVO D 9 Wil Q\\S\ \ ' \‘l\\\\ @%
A Kx‘& \“\ \J:ﬂ"
sive Descent Parsing is very simple. It works like this -
;ivﬂ'd o the grammar into primitive/simple components
. For the token "a" :
ff(token == "a")
e get-next() ADKSL\C\.NM\\QQAQ_;
e ;
report-error() Slow Becawne &
apendy & funchen
2- For X=a;0;2...0,
R—> X\ A g
code(X):
Code(ay);
Code(ay);
Code(an);
1
3-For X=a; | az| ... | an, If none of the a's =A
K=t oy) — lon
Code(X):
{ If (token € FIRST(a1))
Code(ay);
Else
If (token € F IRST(02))
Code(ay);
Else
Else
If (token € FIRST(an))
Code(ay); mﬂ‘/*
o o \ Report—error()'l
g?‘\" sl p——— s
}

STUDENTS-HUB.com

$Gamaee ity cCamseameinat

p

N

;
F

y =

pFor X=01] 2| o] o=
o bl B T 1 o LK =
Gode(x):
If (token € FIRST(q,))
Code(a,);
Else

If (token € FIRST(a,))
COdE(Gz)
Else

Else

If (token ¢ FIRST(q,.,))
Code(a,.)

1

Else

» If one of the a's = A, say a,= A

If (token is not e FOLLOW(X))

}
5- ForX=ao
Code(X):

While (token e FIRST(a))
Code(a);

oles :

=

1. Every nonterminal has a code(a function).

Report—error();

2. S" in augmented grammar is represented by the function "main”.
3. We only start with calling "get-token" in function "main”.

Example:

G->E$
B> T(+T)*

___>F(*F)*
->(E)|a

STUDENTS-HUB.com

fe

Saladete il Camseaeinat

{ /Irepresents G
en; an v Ve ssine

in()
mat.ltok

)
ni="$")

nction E({ HEST Ty

call TO: | [l\ Hete we deont necd Yet Akan

jle(token == "+"{ R :
;‘;-tokeﬂ()i *smw e olrady :

call TO)

| WhileGroken € Firsr(40))

! X =%V [} fei(ee)="F
mnction T(){ I[T-->F (* F)*

call F();

ile(token == ")

get-token();

call F();

}
}

function F(){ IIF->(E) | a ‘,
iftoken == "(") i
(:
get-token();
call E();
if(token ==")")
get-token();
else
ERROR;

Else
if(token=="a")
get-token();
else
! ERROR;

Note that ERROR is a function we should write.

STUDENTS-HUB.com SHalmaee Wilthy Camsearieinat

STUDENTS-HUB.com

Tﬂémp'e:
: the grammar:
3""3:;”1 > body .
F"’g _> Begin stmt (; stmt)* End
D;ﬂdt _> Read | Write | body | A
§
ond d
=1 program, body, stmt, block}
=i Begin, ;, End, Read, Write}
Wg of programs of this language would be:
Begirl
Read;
Write;
Read;
Write;
End.
or
Begin
Read;
End.
Or
Begin
Read;
Begin
Read;
Write; . k.
Endy_ o9 B/OR" g
Write;
End.
Or
Begin;
End.

SHaloaete iy camseamemat

! 2 e the recursive descent code for this programming language

in({

token(:

5" pody():

o —

call stmt();
while(token ™ *;")
{ get-token();
call stmt();
}
if(token == "End")
get-token();

else
ERROR;

}

glse
ERROR;

]
function stmt()
(
fitoken == "Read")
get-token();
dse if (token == "Write")
get-token();
else if(token == "Begin”)
call body();

else &
if(token !="" token I="End")

ERROR();

STUDENTS-HUB.com SHaAREE Wity CAmS&mrmat

4
ing method is a table-driven parsing method. The LL(1) parsing table
ars

s which production to choose for the next derivation step.
S.i“,cts

al Dernition of LL(1)
nition of LL(1) grammars is given by :

r‘,.7(11 i)
-~ 02
| 4

A"> On
gen thebrammar is LL(1) i :
| F|RST(a)ﬂFIRST(aJ) @ for all i,j
2_ if one of a; is A\, a, = A, in addition to 1

FIRST(a)Nfollow(A) =@, for, Vi<n

for example, Given the grammar :
F.> 5%

5->aABC

4->a|bbD

B->a| A

->b|A

= %" | A

e (]

etus see if it is LL(1)

FRST(a)FIRST(bbD) = @ |
|FRST(2)"FOLLOW(B) = @
FRST(b)NFOLLOW(C) = @
FIRST(c)NFOLLOW(D) = @
Then this grammar is LL(1).

A

STUDENTS-HUB.com SHalmaee Wilthy Camsearieinat

N

other Grammar :
a

i/
|, [A
P [A
7! paFOLLOWIS) = {aln(s,a) < por .

.‘:rammar is not LL(1).
50

; parsing Table Building Algorithm

ume that we have a grammar g4t ;
5 855 S LL(1). How do we bui
: uild the LL(1) parsin
g

7

 For each production A —-> g in the grammar G
Add to the table entry T[A a] the Production A —-> g, where a € FIRST(a)
: a

ifA € FIRST(a), Add to the table entry T[A,b] the production A
7 —_—
v b € FOLLOW(A). .

2 All Remaining Entries are Error Entries,

>SR $ S
1 , ddd . ddy,
AT £ L(&) = C+1-] ddd .
]3] aa ; - ddq
>dN.Ns | .dNg |
0 dN}'! Ag
lethat the superscript denotes the production number. .
i
i'RST(SR $) ={+,-4d,.} % Pk (50 H) = Fesk (FirsW(D . Fies ¢(R) 52.—“})

= Fest ({-1" I‘:'l_;\} .2:},..7] b%._.*;i)
-‘({—\“CX ¢ —dl!’.) 1%+, —-'}:‘i'sn‘.ﬁ);
= %_-\‘1—-134'-,-’} |

{RST(+) = f.;.}
{ULow(s) = d,.}
[®TR) = (g, }
[T = {a}
Lowiny=¢ . ¢

y

STUDENTS-HUB.com SHaaéE ditly Camseanminat

JN + - d $
| “(,T £ =) 1 7

s 2 3 4 4

R 5.6

N 7.18:8

- should be no conﬂict(mu.ltiple entries) in the LL(1) table.
i() of this grammar = all floating point numbers.

parser works like this

me
Stack Remaining Input Action
'V ddd$ | Production 1

SR$ ddd$ Production3
-R$ -dd.d$ | Pop & advance input
R§ | ddds . Production 5
dN.N$! dd.d$. ' Pop & advance inpﬁt . |
N.N$: d.d$ o Production 7 : , ‘
dN.N$ | d.d$ Pop & advance input |
N.N$.d$ Production 8

] N$ ds Pop & advance input
NG d$ Production 7
dN$ ds$ " | F7>'op & advance
N$ $ Production.S
$ $ 7 o Pop and Advance
A A Accept

lat dny point the parser reaches a place where the input and the stack have 2
iferent terminal symbols, it throws a syntax error.

STUDENTS-HUB.com SHalmaee Wilthy Camsearieinat

[\ T% e Poxsing ‘able Comtoins Mo Mulriple '

Sntexieg (ConSlicks) A ~he Fromreras 1

LLCY) Grammar.
I\ Wit LLCD Hase ore TLO deodlodks.

)

@ T =
{E‘ e—— [13-ext Acken
ok

\-;t\cb\da\v \o L& |

* lev Runcinng npuk.

@ R
1> B
T \olis o 0N
% eSS
© 3 Ackhan: POP L RDVANCE
K
® IL:\c\\°\d\,$>T o
Y PR
5 =t
| AN
I Rasasnas inpols
¥ - - & R&EP‘_

STUDENTS-HUB.com SHaAREE Wity CAmS&mrmat

¢ another example. Let the Grammar be :

5 TaK
i,et”ram 5, blqc‘f$1 " L
fogk__,{decbs' 5. Stmnts } , . ' Q Bt o lock) = { 3 ?
%,>5:dec's3|A4 Pk (Rrsyesw) -‘.3‘3:?

t =~ statement ; stmts s | A g
ynts =

ament=> 17 | while g | @ss g | scan 4o | print,, | block 12} s
(=16 {},D.;.if while,ass,scan,print}
VNWT if while ass scan print { } p .
Program A 9
block ‘ ‘ 7 | : 2 =
decls 4 4 4 - 4 . 4 4 4 3 4
stmts 5 5 5. 5y by o w lgls LgilE ‘
statement 7 '8 9 10 11 2 13

inother example is the If..else statement with a delimiter. the grammar looks like this :

§->8%

5->iCSE /A
E->eS | A

§-> E‘-b Else

b i c

VNWVT i a re c $
S 1 1
S 2 5
. | 4
; ¢ -
c 6

& OLR 1F /€ LSE
GRAOOR
SNT LL (1) L

STUDENTS-HUB.com SHaaéE ditly Camseanminat

o T

» is a conflict. To solve this, we can add a delimiter.

e
57 S$
57 iCSEd
E,? es I A
5,?8
G,-?C
VNWT i a e c d $
S 1 1
S 2 5
c 8

The grammar is now unambiguous.

Mtematively, we can just remove out the production 4 in the conflict entry from the LL(1) table.

The New table is:

VNWVT i a e c d $
S 1 1

S 2 5

E 3 4

(o 6

lote: -
if a grammar is LL(1)
"cessarily true.

= Another thing to note is that in Top-Down parsi '
that is not LL(1). Parsing, we should avoid a grammar

» then it is unambiguous. However, the opposite is not

STUDENTS-HUB.com SHaaéE ditly Camseanminat

b

gaﬂom'Up Parsing

| that in Bottom-Up parsing, the parser starts from the given sentence, applying
,gd Jctions until it reaches the starting symbol of the grammar or a deadlock.

e maj
g0 reduction step.

or problem with Bottom-Up parsing is which substring we should select in

answer to the above question is :

fhe
neach reduction step, we select what is called the handle. Qw Se\u o ber Yo
Prbem
: : _ ottown - VP
e Handle is obtained by a rightmost derivation in reverse. Poxs"Y -

o example, Given the grammar :

(->SR$

3> +|-|A
R->.dN | dN.N
N—>dN | A

and the sentence
4d.d$

fist, we derive the sentence rightmost.
Verm--> SR$ --rm—> SAN.N$ —rm--> SdN. dN$ --rm--> SdN.dd$ --rm--> SddN.d$ -

m-> Sdd.d$ --rm-> -dd.d$

$0 our handles would be :

I<- SRS <. SAN.N$<-- SAN.AN$ < SAN.dA$ <-- SddN.d$ <-- SddA.d$ <--=dd.d$

But Compilers do not work like this. We already derived the sentence, why would we

loback and do it again?

STUDENTS-HUB.com SHalmaee Wilthy Camsearieinat

l sould not build a Bottom-Up parser for every Context-Free Grammar. However

are fortunate enough that there exist subsets of the Context-
p'oh we can build a deterministic Bottom-Up parser e,

Free Grammar for

the parser can
[rmme[declde precisely where the handle is in each reduction step. p

o of these subsets are:

parsers .
SLR(Simple-LR).

- LALR(Look-Ahead LR).
- LR.

ecedence. "
perator Precedence. "depandn an nabiin soripulatian”

e

{e will only be talking about the LR parsers, just to get an idea of how Bottom-Up
grsing works.

sLR Parsing

s|R parsing, and LR parsing in general, is a table driven parsing method.

{ILR parsers contains :

.A parsing table.
LA stack. —e » Push
3. The input string.

Dowm %\t‘ﬂk -

is a reminder, the LL(1) parser contains :
\
A - A Quankien:
A parsing table. I s
2 A stack. \Q W‘““% _\(&\)\O_?\

{3 The input string.

However, the way we build it is different.

STUDENTS-HUB.com SHalmaee Wilthy Camsearieinat

; 4ilding the SLR Parsing Table

. An LR(0) item of a grammar G |
pet is a production i -
Posjtion in the right side. on in G with a dot(.) at some

of example, the production

A,—? aBY

(his production generates the following LR(0) items -

A_—> aBY MMSMC\
BY S\‘fﬂ\ac\ﬂ\v@.&m\

4> a. " NaaB.Y

A aB.Y - X0
Y. --> : See ON ‘“Pu‘r

A-> aBY. --> complete item asking <

Leen Y-

Note that for A --> A, this generates only A —> A,

generally speaking, if the right side of the production is of length n, then there are n+1

0) items. ’
LR()' Fd:?(‘ Q—)Q(,D(;‘:'}
The LR(O) item ,LRCO) %Qnekq\-% L
p->aBY dems .

Means that the parser has scanned on the input a string derived from aB and expects

b see a string derived from Y .

We need to define the following 2 functions.
The CLOSURE function

fnction CLOSURE(l) /Nlis aset of LR(0)items '
N TessodaL

{ Repeat AstQ @\Q»

For (every LR(0) item in |, and for every production B--> 5inG,

Add the LR(0) item B-->.5tol)

Until no more items to be added;

STUDENTS-HUB.com SHaaéE ditly Camseanminat

AT‘“ Yrarnena 3wy
E-"T K LLC) |

aT>Tr | Getanme Mare vl
b T=*1F | B crobney |

his grammar is not LL(1) because
RST(TFINFIRST(F) = {(a} # 0 B

we will need to build the LR(0) sets of items.
westart with 2 lo: E* --> .E
cLOSURE(lo)

LE->.E
E-—>.E+T
E->.T
T-->.T*F
T-->.F
F-->.(E)

F-->.a
The GOTO function -

finction GOTO(I,X) = 13 e
(LOSURE(all items A—>aX.p Where A-->a.XB in 1) 3

EVy

st us apply this to the grammar above. groups:

IR E-—>.E, E-->.E+T
R:E->T,T->.T'F
B:T->F

4:F-> (E)

STUDENTS-HUB.com SHaAREE Wity CAmS&mrmat

A S Mot LLGD Becase Mo
are Canfilichs

STUDENTS-HUB.com SHaaéE ditly Camseanminat

| :F,.>.a
dtake the CLOSURE for all these sets. The resultant is -
f

-_>{E!
= >C <inte ’“’U‘ﬂ eive Al sabae

g T """“-(‘j Jo +o A <dave .

. EM>E } ke
Iy E"'>E‘+T @‘P

J EaeT. ,
b T--> T.*F}G\DPIQ‘L'-

5 Q®““>Fp' ke

E-(J*F ~PR(0) Sers & ams
F-->.(E) jﬂ o Tada— ,T’r?l

STUDENTS-HUB.com SHaAREE Wity CAmS&mrmat

| =2 3 Eﬁ(E) ‘{'
X: i I’li i-:

—>E-—\~TIQ

E R —
Ty Vol g

I?;Z T B &w[aﬂ)

Teie,ee) 14
E—. E+T Lg

E—= S § IQ
T .T«F Ia

r‘—-b-(‘.E) Iy
\:—>o(q) IS

Ige Fﬁ Q. CGM-LP\ ™
i¢: Ese, o ‘—-_;1._._
Jj cTyE I
Tos .
Bty) I;’;
F~'>0Cb IB
F“%’ (E) Ty
‘%r.q; I 5

STUDENTS-HUB.com

E BBt

(@\\wﬁ
T_S g . Pl

Iy
T

I;\.O ". T—%—T—%& ¥ Q:WLP\ <,
k

R P—> (e). C(s'\\\\s\&:

—
—_—

| R(0) sers Xl
%’ic Tz e flm}

SRl ity Camseaminat

nstructing the SLR table

4t LR(0) sets of items
j‘,{put SLR(1) parsing table
. For every item A—>a.aB in: I

,For item A—>a.(complete item) in I,
OLLOW(A).

ACTION [/}

@a + ()
(0 S5 .S |
- 5

: S6

2 R2 7 R2
3 R4 R4 R4
4 S5 sS4

5 R6 R6 R6
6 S5 4

R R S4

8 S6 s11
9 R1 S7 R1
10 R3 R3 R3
11 R5 RS R5

No conflict --> SLR(1) grammar

STUDENTS-HUB.com

A f GOTO(li,A) = lj then set,\GOTO(j,A) =j.
s Al remaining entries are error entries;

-

o

L

R2

"R6

‘R1

R3

ACTIONI[i b]=Reduce by A-~>q FOR ALLé@E

a € V¢ , and GOTO(l;,a)=l,, then set:
GT|ON[i,a]=Sj(shift and push j on top stack).

Tominadn

#tus apply this to the example above and generate the table

Ve (83,2, 4%

7
GOTO [Vyg) 0 €1 o, ’\’ﬁ

E T F
1]2 3
8 2 3
9 3
et
p\-amm
IR -

B“&N(F):SL-\"*’S-; *?}

(D—§-$\\\Q\'%-c§;\'o

SHaaéE ditly Camseanminat

F

’rsmg The SLR Table
f

';E-D-T
[>T

c >T'F
. >F
:J(E)
;> a

gt us examine the sentence a+a$

stack Remaining Action
0 a+a$ S5
D& A +a3 R6 R:FL

Q) 2% +a$ Lo,
0T2 W +a$ R2
0E1 “+a$ - S6
0E1+6 3 a$ S5 A
0E1+6a5 $ R6

H N

0OE1+6F3 $ R4
0E1+6T9 $ R1
0E1 : $ Accept

STUDENTS-HUB.com SHaaéE ditly Camseanminat

{ o parsing Techniques

P _p DSinitiso
| o mein difierence between LR and SLR s the CLOSURE function,
otion CLOSURE() /llis a set of LR(1)items

Repeat . .
for(every LR(1) !tem [A-->a.BB, a] in |, and for every production B—> 8 in G,
Add the LR(1)item [B-->, 5, b] where b belongs to FIRST(Ba)to 1)
Until no more items to be added;

l
shere AN LR(1) item is an LR(0) item with a Look-ahead Symbol.

| or example [A —> a., a] where a is the look-ahead. The look-ahead symbol "a" has
0 effect whatsoever on an item [A --> a. ,a] g # A.

oot complete item) However, if the item is a complete [A —> a.,a), this means we
educe by the production A —> a on token "a".

ror example, Give the grammar :

Ssg
(1)s—->CC
2)C->cC
(3)C > d
*|0: S—y &
A X B 9 -5
s> % 4 Ry .S E S . ec

(C>cClcd s
'c->.cCi cd b
IEC"> d | cd ls

-~ e}

STUDENTS-HUB.com SHaaéE ditly Camseanminat

R N

Dq&n\h@ﬂ . .
== o LA T > on LRO) Tum with (sok Aheaq) Symb,

(dskome Y S e By B s an LR(O) tam , Wan
1R dmm st LA B al),o eV,

We Stark with LRID T Toil sty ,S 7

LA X.B %, 6&]
* R
[R—>-¥,h] be Fer(Ba)

& % (ot -Aneeds Doy o e§Fect T Ave Tom sk
- Gemplefe .

3N Q_Gb’k Rhem&;ﬂ&%&dﬁ ~\’\M pParsex \S—MM
15 Qmmple\.

STUDENTS-HUB.com SHalmaee Wilthy Camsearieinat

lC -2 CC

——

ACTION
V.

"_v -

,b.A.SS §4.”_h

S6
S3
R3

S6

s

d

S7

c,d Complete

$

9 & &

Complete

Complete

cd Complete

$

s4

R3

S7
 R3

T

Complete
GOTO
Vx
$ s ¥eC
o
> | ,
5
8
e
ol .
R2

No confiict, the grammar is an LR grammar.

ANt ?\ﬁ
Lo NS

STUDENTS-HUB.com

$Gamaee ity cCamseameinat

» look at the above example, we can see that some sets of jtems have the
e COTE items(LR(0) items), but the look-ahead is different.

?
; o example (17, 14), (13,16). (18 , 19). Let us say we merge the states.

ACTION GOTO
‘ V c d $ s C g "5
, s3 S4 12
' |
1 A ; | & Some oF Fhe LR Sebs
72 S3 S4 5 ot ttemns | e (ore items
ore Y daxvicaly .
3 S3 -S4 8 | - '_?3 it
. i Wiz
4 R3 R3 R3 * S B
5 R1 ka
i | \\}e Werde Yne ‘
§ R2 R2 R2 | S>& 5% Tems. !

e ——————

{his is now a S|mp|n‘“ ied table |f the parsnng table after merging has no conﬂicts(hke in the

fove examp!e) then the grammar is an LALR(1) Grammar~ "

éd

STUDENTS-HUB.com SHalmaee Wilthy Camsearieinat

gwen S(smfr) - 2 (Rodnice)

ﬂpcsﬂ.‘i‘i\\itcs oF Canflhels »~

({) T) = \._ 3\‘\\\\ -1\\\\‘ \) ‘, —
| 1o one 8 the LRCO) sefs o
0

A > Oﬁ‘g _-}:G
B >0 S 5
Lh _'\:mpo‘;‘.‘{\%\e to ha Wcﬁ

=ine .0 both Shouldr go 1o A Some
Skoxe .

% S Conflict Impcs):j\

(2) SR il - Redece)

i3 L
© y ! =
H‘-%’O(-C‘& IJ b,\ RB]
B%bv Q. o J

e o \ \
ﬂ,..)()(_w a c .

Ppax
Pate @

= L \ R j,,

[

=5

STUDENTS-HUB.com

Stamaet Wity CamSeariFeinal

wmr\s ka&)'%'*hﬂmg
W,

BarYY %95{} L
@,T*&\\Q.\’ W Y LALR § ’-htsm\% N

Sh&V' ,,,,,,
5. % coekiet in X LAVRAD | i<

~ Qe

cz“‘:;\\::n‘:ﬂ o0e & Yrne LALRAD SeAs & refos Wrexey
ar {
o1 3 T w | | w
égﬂﬁsﬂe c 13 \t \
T4 a 84 :
E%;)TG

Bur Aha Narhs kB> QLORE ©
ey, -

Cate Nem e LRA) porssiny fdole S0
S oY L@(Q

* s Contpdichs oux QASKUND Q*\(S(\ .

STUDENTS-HUB.com SHaAREE Wity CAmS&mrmat
ina

