Building a RESTful
Web Service with Spring

A hands-on guide to building an enterprise-grade, scalable
RESTful web service using the Spring Framework

PACKT

vww .allitebooks.con

http://www.allitebooks.org
https://students-hub.com

Building a RESTful Web
Service with Spring

A hands-on guide to building an enterprise-grade,
scalable RESTful web service using the Spring
Framework

Ludovic Dewailly

open source

community experience distilled

PUBLISHING

BIRMINGHAM - MUMBAI

STUDENTS-HUB.com

https://students-hub.com

Building a RESTful Web Service with Spring

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2015
Production reference: 1081015

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78528-571-4

www . packtpub. com

[FM-2]

STUDENTS HUB com www .allitebooks.conf

www.packtpub.com
http://www.allitebooks.org
https://students-hub.com

Credits

Author
Ludovic Dewailly

Reviewers
Fabricio Silva Epaminondas

Greg L. Turnquist

Commissioning Editor
Pratik Shah

Acquisition Editor
Ruchita Bhansali

Content Development Editor
Nikhil Potdukhe

Technical Editor
Menza Mathew

Copy Editor
Angad Singh

STUDENTS-HUB.com

[FM-3]

Project Coordinator
Izzat Contractor

Proofreader
Safis Editing

Indexer
Rekha Nair

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

https://students-hub.com

About the Author

Ludovic Dewailly is a senior, hands-on software engineer and development
manager with over 12 years of experience in designing and building software
solutions on platforms ranging from resource-constrained mobile devices to
cloud-computing systems. He is currently helping FancyGiving.com (a social
shopping, wishing, and gifting platform) design and build their system. Ludovic's
interests lie in software architecture and tackling the challenges of web scale.

I would like to thank my fiancée, Gaia, for helping me find the
time to work on this book, and for dealing with my testiness after
late-night writing sessions. I would also like to thank Neil Emerick
from NightsBridge (http://www.nightsbridge.co.za) for
providing me with the idea and concepts behind the sample
RESTful web service that outlines this book.

Also, would like to give gratitude to Chris Laffra and Michael Van
Meekeren from the defunct Object Technology International, who
gave me my first taste of commercial software development.

Finally, I wish to thank Nikhil Potdukhe and Menza Mathew from
Packt Publishing for guiding me and helping me convert the original
concept of this project into an actual book.

[FM-4]

STUPENTSiUB com www.allitebooks.cor

http://www.nightsbridge.co.za
http://www.allitebooks.org
https://students-hub.com

About the Reviewers

Fabricio Silva Epaminondas has a degree in computer science and a solid
background in software development, testing, and engineering. He has been an agile
and quality enthusiast for more than 10 years with working experience in the field,
having held several roles in fields ranging from project management to software
architecture and team leadership.

Fabricio has also worked with mobile, web, and cloud technologies for research
institutes and big companies in Brazil and other countries. There, he developed
fast and scalable software solutions in the segments of e-commerce, enterprise
integration, corporate governance, and innovative solutions.

Fabricio is the technical author of the blog, fabricioepa.wordpress.com. You can
find out more about his professional profile at br.linkedin.com/in/fabricioepa.

I would like to thank my blessed wife, Buna Suellen, who fully
supported me during the production of this book.

Greg L. Turnquist (egregturn) has developed software professionally since
1997. From 2002-2010, he was the lead developer for Harris's $3.5 billion FAA
telecommunications program, architecting mission-critical enterprise apps while
managing a software team.

In 2010, he joined the Spring team that is now a key part of the start-up company,
Pivotal. As a test-bitten script junky, Spring Pro, and JavaScript padawan, Greg
works on the Spring Data team while also running the Nashville JUG.

In 2014, he wrote his most recent technical book, Learning Spring Boot, for Packt
Publishing. He is passionate about application development, writing (fiction and
non-fiction), and coffee.

You can read his blog at http://blog.GregLTurnquist . com, and also sign up for
his newsletter.

[FM-5]

STUDENTS-HUB.com

fabricioepa.wordpress.com
http://blog.GregLTurnquist.com
br.linkedin.com/in/fabricioepa
https://students-hub.com

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www. PacktPub. com.
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www . PacktPub.com

and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at serviceepacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

[@]PACKT

https://www2.packtpub.com/books/subscription/packtlib

@

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
* Fully searchable across every book published by Packt

* Copy and paste, print, and bookmark content

¢ On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

[FM-6]

STUDENTSHUB.com lvww.allitebooks.con

www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/
http://www.allitebooks.org
https://students-hub.com

Table of Contents

Preface

Chapter 1: A Few Basics
REST principles
Uniform interface
Client-Server
Stateless
Cacheable
Layered system
Code on demand
The Spring Framework and REST
Our RESTful web service
Architecture
Data model
Summary
Chapter 2: Building RESTful Web Services with Maven
and Gradle
Apache Maven
Dependency management in Apache Maven
Gradle
Dependency management in Gradle
The structure of our sample web service 1

The anatomy of a Service Module 12
Local versus Remote Service Invocations 14

Developing RESTful web services 14
Working with your favorite IDE 14
Making services executable 15
Starting services with Maven 16

Summary 17

OGP BWWWNNNN== L

-_—
O © 0o NIN

[i]

STUDENTS-HUB.com

https://students-hub.com

Table of Contents

Chapter 3: The First Endpoint 19
The Inventory service 19
REST and the MVC pattern 21

Request mapping 22
Path mapping 22
HTTP method mapping 22
Request parameter mapping 23
Running the service 24
A few words on data representation 25
Summary 25

Chapter 4: Data Representation 27
The Data-Transfer-Object design pattern 27
The API response format 29

The envelope format 29
Error management 30
Pagination support 30

Customizing JSON responses 31

API evolutions 33

HATEOAS 33

Versioning strategies 33
URI versioning 33
Representation versioning 34
Other approaches 35

Summary 35

Chapter 5: CRUD Operations in REST 37
Mapping CRUD operations to HTTP methods 37
Creating resources 39

Quickly testing endpoints 40
JSON versus form data 41
Updating resources 42
The update endpoint 43
Testing update requests 43
Deleting resources 44
Overriding the HTTP method 45
Summary 46

Chapter 6: Performance 47

HTTP compression 47
Content negotiation 48
gzip or deflate? 48
gzip compression in RESTful web services 48

Spring Boot 49

Lii]

STUDENTS-HUB.com lNWW allitebooks. CO[ﬂ

http://www.allitebooks.org
https://students-hub.com

Table of Contents

HTTP caching 49
Cache-Control 49
Private/Public caching 49

No caching 50
ETags 51
Last-Modified/If-Modified-Since headers 51
Room availability 51
An overview of implementation 51
The REST resource 52
Adding HTTP caching 54
Caching with ETags 56
Summary 57
Chapter 7: Dealing with Security 59
The booking service 59
The REST resource 60
Authentication 61
HTTP Basic authentication 61
Using Basic authentication with Spring 61
HTTP Digest authentication 63
Token-based authentication 64
Other authentication methods 65
Authorization 65
Authorization with Spring 65
URL mapping 66
Resource annotations 67
Input validation 68
Java Bean annotations 68
Regular expressions 69
Validating bookings 69
Encryption 70
Storing sensitive data 70
Summary 71
Chapter 8: Testing RESTful Web Services 73
Unit testing Spring controllers 73
Mocking 74
Simple mocking 75
Implementation stubbing with a mocking library 76
Mockito and Spring 77
Testing security 78
Integration testing 79
Continuous delivery 80

Integration tests with Spring Boot 81

[iii]

STUDENTS-HUB.com

https://students-hub.com

Table of Contents

Postman 82
Postman and security 82
Other forms of testing 83
User Acceptance Testing 83
Load testing 83
Summary 84
Chapter 9: Building a REST Client 85
The basic setup 85
Declaring a client 86
Remote versus local clients 87
Availability and booking services 88
Handling security 89
The Basic authentication 90
The Digest authentication 90
HTTP public key pinning 91
Exception handling 92
Summary 93
Chapter 10: Scaling a RESTful Web Service 95
Clustering 95
Scaling up versus scaling out 95
The benefits of clustered systems 96
Load balancing 96
Linear scalability 98
Distributed caching 98
Data-tier caching 98
First-level caching 98
Second-level caching 99
Application-tier caching 99
Asynchronous communication 100
Summary 102
Index 103

[iv]

STUDENTS-HUB.com lNWW allitebooks. CO[ﬂ

http://www.allitebooks.org
https://students-hub.com

Preface

In today's connected world, APIs have taken a central role on the Web. They

provide the fabric on which systems interact with each other. And REST has become

synonymous with APIs. REpresentational State Transfer, or REST, is an architectural

style that lends itself well to tackling the challenges of building scalable web services.

In the Java ecosystem, the Spring Framework is the application framework of choice.
It provides a comprehensive programming and configuration model that takes away
the "plumbing" of enterprise applications.

It will, therefore, come as no surprise that Spring provides an ideal framework for
building RESTful web services. In this book, we will take a hands-on look at how
to build an enterprise-grade RESTful web service with the Spring Framework.

As an underlying theme, we will illustrate the concepts in each chapter with the
implementation of a sample web service that deals with managing rooms in a hotel.

By the end of this book, readers will be equipped with the necessary techniques
to create a RESTful web service and sufficient knowledge to scale and secure their
web service to meet production readiness requirements.

What this book covers

Chapter 1, A Few Basics, discusses the REST architecture approach and its underlying
principles.

Chapter 2, Let's Get Started, enables us to put the scaffolding together, before building
a RESTful web service.

Chapter 3, Building RESTful Web Services with Maven and Gradle, looks at the building
blocks of creating RESTful endpoints.

[v]

STUDENTS-HUB.com

https://students-hub.com

Preface

Chapter 4, Data Representation, discusses how to manage data representation before
we proceed further with building more endpoints. This chapter also offers advice
on creating common response formats and error handling.

Chapter 5, CRUD Operations in REST, expands on the previous chapters and takes
a look at how you can map CRUD operations to RESTful endpoints.

Chapter 6, Performance, explains that for a web service to be production-ready, it
needs to be performant. This chapter discusses performance optimization techniques.

Chapter 7, Dealing with Security, looks at how to ensure a web service is secure by
delving into steps that designers need to take. This chapter looks at how to deal
with authentication and authorization, as well as input validation techniques.

Chapter 8, Testing Restful Web Services, looks at how to guarantee that a web service
delivers the expected functionality, and the testing strategies that designers need
to consider. This chapter offers readers the approaches for creating comprehensive
test plans.

Chapter 9, Building a REST Client, tells us how for a web service to be of any use, it
must be consumed. This penultimate chapter focuses on how to build a client for
RESTful web services.

Chapter 10, Scaling a Restful Web Service, explains that scalability is a vast topic and
encompasses many aspects. In this last chapter, we discuss what API designers can
put in place to help the scaling of their service.

What you need for this book

Readers will need the version 8 of the Java Development Kit (JDK) and Apache
Maven to build the code samples in this book. In addition, readers who wish to delve
into creating their own service, or simply look at the code samples in more detail,
should equip themselves with their preferred IDE.

Who this book is for

This book is intended for those who want to learn to create RESTful web services with
the Spring Framework. It goes beyond the use of Spring and explores approaches

to tackling resilience, security, and scalability concerns that will prove useful to any
service designer. To make the best use of the code samples included in this book,
readers should have basic knowledge of the Java language. Any previous experience
with the Spring Framework would also help in getting up and running quickly.

[vi]

STUDENTS-HUB.com lNWW allitebooks. CO[ﬂ

http://www.allitebooks.org
https://students-hub.com

Preface

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

import org.springframework.web.bind.annotation.*;

@RestController
public class HelloWorldResource

@RequestMapping (method = RequestMethod.GET)
public String helloWorld() {
return "Hello, world!";

}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<dependencys>
<groupIds>com.packtpub.rest-with-spring</groupId>
<artifactId>rest-with-spring-billing</artifactIds>
<version>1.0.0-SNAPSHOT</version>
<classifier>classes</classifier>

</dependency>

Any command-line input or output is written as follows:

mvn jetty:start

[vii]

STUDENTS-HUB.com

https://students-hub.com

Preface

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "For
example, with Intelli] IDEA, our sample web service project can be imported
by selecting the menu options File | Open."

% Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedbackepacktpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub. com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files from your account at http: //www.
packtpub. com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http: //www.packtpub.com/support
and register to have the files e-mailed directly to you.

[viii]

STUDENTS-HUB.com lNWW allitebooks. CO[ﬂ

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.allitebooks.org
https://students-hub.com

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyrighte@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questionse@packtpub.com, and we will do our best to address the problem.

[ix]

STUDENTS-HUB.com

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://students-hub.com

STUDENTSHUB.com lvww.allitebooks.con

http://www.allitebooks.org
https://students-hub.com

A Few Basics

With the prominence of the Internet and the ubiquity of HTTP in today's world, web
services have become the main means for web-based systems to interoperate with
each other. A web service is an interface that provides access to a web-facing system
for clients and other services to consume.

Simple Object Access Protocol (SOAP) used to be the de facto choice for building
such services. SOAP is an XML-based communication protocol, leveraging open
standards. However, in recent years Representational State Transfer (REST) has
become a very popular alternative to traditional SOAP web services. So, let's take a
look at the principles behind REST. This chapter will cover the following topics:

* Discussions of the REST principles

* How the Spring Framework can help in the building of RESTful web
services

* A sample RESTful web service that will provide the backdrop for the rest of
this book

REST principles

REST is a software architecture approach for creating scalable web services. The term
REST was coined by Roy Fielding in his PhD dissertation, and revolves around a
number of principles. These principles underpin the architecture of RESTful web
services and are described in the following sections.

[11]

STUDENTS-HUB.com

https://students-hub.com

A Few Basics

Uniform interface

At the core of REST are resources, and resources are identified using Uniform
Resource Identifiers (URIs). Conceptually, resources are separate from their
representation (that is, the format in which they are provided to clients). REST does
not mandate any specific format, but typically includes XML and JSON (which will
be discussed in Chapter 4, Data Representation).

In addition, resource representations are self-descriptive. In more concrete terms,
this means that sufficient information must be returned for the successful processing
of responses.

Another distinctive property of REST is that clients interact entirely through
hypermedia, which is dynamically provided by the application servers. Apart
from endpoints, clients need no prior knowledge of how to interact with a RESTful
service. This constraint is referred to as Hypermedia as the Engine of Application
State (HATEOAS).

Client-Server

The client-server model that REST embraces enables the separation of client
concerns, such as user interaction or user state management, from that of server
concerns such as data storage and scalability.

This decoupling ensures that, provided an interface that is agreed upon, the
development of client and server can be done independently. It also helps
reduce complexity and improve the effectiveness of performance tuning.

Stateless

REST advocates statelessness. No client state is stored on the server. All
the information needed to perform operations is contained in the requests
(as part of the URL, request body, or as HTTP headers).

Cacheable

RESTful web services must provide caching capabilities. Servers can indicate how
and for how long to cache responses. Clients can use cached responses instead of
contacting the server.

a1

~ This principle has significant advantages for scalability. Caching
techniques will be discussed in Chapter 6, Performance.

[2]

STUDENTS-HUB.com lNWW allitebooks. CO[ﬂ

http://www.allitebooks.org
https://students-hub.com

Chapter 1

Since REST typically leverages HTTP, it inherits all the caching properties that
HTTP offers.

Layered system

Given the style of communication between clients and servers, clients are not
aware of which specific server they are interacting with. This property allows the
introduction of intermediate servers that can, for example, handle security or offer
load-balancing capabilities. These architectural concepts are discussed in more
detail in Chapter 10, Scaling a RESTful Web Service.

Code on demand

Even though it's part of the REST architecture, this principal is optional. Servers can
temporarily extend the functionality of clients by transferring executable code. For
example, JavaScript can be provided to web-based clients to customize functionality.

For a service to be considered RESTful, it should abide by the preceding principles.

The Spring Framework and REST

It is assumed that the reader is familiar with the Spring Framework (referred to as
Spring from here on). We will therefore focus on the specificities of building RESTful
web services with Spring, in this section.

Since REST hinges on URISs, the Spring Web MVC framework provides all

the necessary tools for building RESTful endpoints. Annotations, such as
org.springframework.web.bind.annotation.RequestMapping and
org.springframework.web.bind.annotation.RequestParam for mapping URLs
and parameters form the basis for creating such endpoints. Chapter 3, The First
Endpoint, will discuss these annotations and offer code samples to illustrate their use.

Reference documentation about the Spring Web MVC can be found
athttp://docs.spring.io/spring/docs/current/spring-

framework-reference/html/mvc.html.

With the technological context laid out, let's now look at one such RESTful service.
Throughout this book, we will be building a sample web service that helps manage
hotels and B&Bs.

[31]

STUDENTS-HUB.com

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html
https://students-hub.com

A Few Basics

Our RESTful web service

One common piece of software in use in the hospitality industry is a property
management system (careful readers will notice the unfortunate acronym for these
systems). It allows automating the operations of hotels and B&Bs. For the purpose of
this book, we will build such a system using Spring. Each component of this system
will expose a RESTful API that will be consumed by a simple web interface.

Designing effective Application Programming Interfaces is a topic that
M deserves its own treaty. It is beyond the scope of this book to discuss
Q these concerns in detail. The main characteristics that one should bear in
mind when designing APlIs are: ease of use, consistency, exposing as little
as necessary, extensibility, and forward compatibility.

Architecture

Our property management system will be formed of the four components, as
illustrated in the following figure:

Inventory Availability Booking Billing
Service Service Service Service
Lk 4 . 1

[4]

STUPENTSiUB com www.allitebooks.cor

http://www.allitebooks.org
https://students-hub.com

Chapter 1

The four components are explained as follows:

* Inventory Service: This component provides the necessary functionality to
manage and describe rooms and room types.

* Availability Service: This component lets users see what rooms are available
on specific dates.

* Booking Service: This component will be responsible for taking bookings.
It will rely on the Inventory Service and Availability Service components to
validate bookings.

* Billing Service: Once a booking is made, this component will offer the ability
to generate an invoice.

Data model

In this section, we will look at the data model that will support our web service. The
following entity relationship diagram provides an overview of this model:

Room RoomCategory
id 1.% [~
— id
name name
gﬁz(t:gpt'on description
TL.* !
Booking Pricing -
<<enumerations>
id id 1* PricingModel
from priceGuest1 o— -
. . fixed
until priceGuest2 sliding
guestName priceGuest3+
guestEmail
guestPhone
Tl..l
Invoice
id
uri

STUDENTS-HUB.com

[51]

https://students-hub.com

A Few Basics

The entities that constitute our model are as follows:
* Room: This object represents the physical rooms that are part of our hotel.
Rooms have a name and a description as well as photos.

* RoomCategory: Each room belongs to a category (for example, double
room). Categories provide a description, and are linked to a pricing model.

* Pricing: This object encapsulates how rooms are priced (for example, a fixed
price, or a sliding price based on the number of guests).

* Booking: The reservation of rooms is modeled on bookings. Bookings will
capture the reserved room, dates, and contact details for guests.

* Invoice: This provides invoices to guests upon booking. They contain the
relevant information regarding the booking, and the amount to be settled.

The data access layer will be implemented using Object-Relational Mapping (ORM)
with Hibernate 4.3.8.

M We will not delve into the specificities of Hibernate ORM in this
Q book. However, documentation is available on Hibernate.org at
http://hibernate.org/orm/.

In addition, for the purpose of simplifying the development and testing of our web
service, we will use an embedded H2 database.

Documentation about H2 can be found at
o http://www.h2database.com.

Hibernate supports H2 out of the box, so no specific setup is required to use it as our
embedded database.

3 While an embedded database is great for development, it is not fit
for a production deployment.

Summary

Now that we had a look at the topics that we will cover in this book, and what our
RESTful web service will do, let's discuss how we are going to build it.

In the next chapter, we will see the description of several tools available to help us
create our sample web service.

[6]

STUDENTS-HUB.com lNWW allitebooks. CO[ﬂ

http://hibernate.org/orm/
http://www.h2database.com
http://www.allitebooks.org
https://students-hub.com

Building RESTful
Web Services with
Maven and Gradle

As mentioned in the previous chapter, we will build a sample property management
system as a RESTful web service. Before we dig into the implementation, let's first
take a look at how the service will be put together. In this chapter, we will discuss
the following topics:

* Building a RESTful web service with Apache Maven
* Building a RESTful web service with Gradle
* Structuring our property management web service

* Running and debugging a Spring-based web service

Apache Maven

Maven is an open-source software project management tool. It was born out of the
need to simplify Ant-based builds and it favors convention over configuration. In
more concrete terms, it offers out of the box support for typical workflows, such as
building Java web applications, provided one follows its conventions. However,
customizing the build process can prove challenging, and many of its detractors
point this design choice out as the main motivation for not using Maven.

More information on Maven can be found at
s https://maven.apache.org.

[71

STUDENTS-HUB.com

https://maven.apache.org
https://students-hub.com

Building RESTful Web Services with Maven and Gradle

While Maven offers many features, they are beyond the scope of this chapter. We
will focus on its support for building Java web applications.

The following POM (Project Object Model) file illustrates how a project can be
declared with Maven (in a file called pom.xml):

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.0rg/2001/XMLSchema-instance"

Xsi:schemalLocation="http://maven.apache.org/POM/4.0.0 http://
maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupIds>com.packtpub.rest-with-spring</groupIld>
<artifactId>rest-with-spring</artifactIds>
<version>1.0.0-SNAPSHOT</version>
<packagings>war</packaging>

</project>

This pom.xml file defines a project with a group identifier, artifact identifier, and
version. It also describes how the resulting application will be packaged (as a WAR
file in this case).

M Maven artifacts belong to a group (typically com. company .
Q application), and must have a unique identifier (typically the
application's name).

Developers are free to choose their versioning schemes. However, Maven works best
with a version of the form x .y, where x is the major version number and y the minor
version number.

_ The SNAPSHOT version suffix tells Maven that this project
% is currently in development. It has implications for the way
X— artifacts are handled by the dependency resolution, as explained
in the following section.

Dependency management in Apache Maven

One build feature that makes development much easier is dependency management.
It alleviates the need to manually download third-party libraries and package them
with the application. Maven has robust dependency management based on artifact
repositories.

[8]

STUDENTS HUB com www .allitebooks.conf

http://www.allitebooks.org
https://students-hub.com

Chapter 2

1
‘Q The main repository for Maven is called the Central Repository

and can be searched on at http://maven.org.

To declare dependencies, the sample POM file that was presented in the previous
section can be amended in the following fashion:

// content omitted for readability purposes
<version>1.0.0-SNAPSHOT</versions>
<packagings>war</packaging>
<dependencies>

<dependency>
<groupId>org.hibernate</groupId>
<artifactId>hibernate-core</artifactId>
<version>4.1.9.Final</version>

</dependency>

<!-- Test Dependencies -->

<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.ll</version>
<scope>test</scope>

</dependency>

</dependencies>
</projects>

The <dependencies> element in the amended POM file declares two dependencies:

* Hibernate: This is a standard dependency that Maven will automatically
fetch before compiling the project

* JUnit: With this dependency, Maven will alter the classpath used to compile
and execute the unit tests

Another build tool that has gathered a lot of popularity is Gradle and it is discussed
in the next section

Gradle

Gradle is a project automation tool that borrows a lot of concepts from Maven. It
differs from Maven in using a Groovy-based declarative syntax instead of XML.

Read more about Gradle at https://gradle.org. And, head over
s tohttp://www.groovy-lang.org for an introduction to Groovy.

[o]

STUDENTS-HUB.com

http://maven.org
https://gradle.org
http://www.groovy-lang.org
https://students-hub.com

Building RESTful Web Services with Maven and Gradle

Gradle has become a popular alternative to Maven for its flexibility and neater
declarative syntax, while still offering powerful dependency management. We
will take a quick look at dependency management in the next section.

Dependency management in Gradle

Gradle offers dependency resolution. It can be set up to use Maven's Central
Repository. Let's consider a sample Gradle build (in a file called build.gradle):

apply plugin: 'java'

repositories ({
mavenCentral ()

}

We instructed Gradle that we want to build a Java project and that the dependencies
should be fetched from Maven's Central Repository. Now, we can simply declare the
dependencies we require as follows:

dependencies {
runtime group: 'org.hibernate', name: 'hibernate-core',
version: '4.1.9.Final'

testCompile group: 'junit', name: 'junit', version: '4.+'

}

The following Gradle build file declares two dependencies:

* Hibernate: This is a runtime dependency that will be used during the
project compilation and will be packaged with the application

* JUnit: This dependency is added to the classpath that is used while
running the tests. This type of dependency does not get included in
the final application

Downloading the example code

K You can download the example code files from your account at
Ny http://www.packtpub.com for all the Packt Publishing books you
Q have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the
files e-mailed directly to you.

[10]

STUDENTS HUB com www .allitebooks.conf

http://www.packtpub.com
http://www.packtpub.com/support
http://www.allitebooks.org
https://students-hub.com

Chapter 2

It is possible to use a remote Maven repository by adding the following to
the build file:

s repositories {

~
Q maven {

url "http://repo.mycompany.com"
}

Maven and Gradle both offer excellent support for building our sample RESTful
service, and the full build scripts can be downloaded along with all the source
code of this book. Now, let's turn our attention to the structure of our property
management system.

The structure of our sample web service

In Chapter 1, A Few Basics, we decomposed this application into four components:

* Inventory Service

* Availability Service
* Booking Service

* Billing Service

One approach would be to build our project as a single module and have the code of
these four services together.

While it makes the setup quite straightforward, it might impede our ability to deploy
these components individually, should it be required for scalability purposes (refer
to Chapter 10, Scaling a RESTful Web Service, for discussions on scalability). Instead,
we will organize each service into its own individual module.

For the purpose of this section, we will focus on Maven. Our project will be made up
of six separate Maven modules:

* common: This module contains common code and the Hibernate setup that is
to be used

* inventory: This is the inventory service implementation

* availability: This is the availability service implementation

* Dbooking: This is the booking service implementation

* billing: This is the billing service implementation

[11]

STUDENTS-HUB.com

https://students-hub.com

Building RESTful Web Services with Maven and Gradle

* all: This is a module that constructs a single web application using the four
services for development and single deployment purposes

Refer to the documents found at https://maven.apache.org/

guides/mini/guide-multiple-modules.html for more

information on working with Maven modules.

Our parent POM file will therefore look like this:

<project ... // omitted for readability
<modelVersion>4.0.0</modelVersion>

<groupId>com.packtpub.rest-with-spring</groupIds>
<artifactIds>rest-with-spring</artifactId>
<version>1.0.0-SNAPSHOT</versions>
<packagings>pom</packaging>

<modules>
<module>common</module>
<module>inventory</module>
<module>availability</module>
<module>booking</module>
<module>billing</module>
<module>all</module>

</modules>

</projects>

As listed previously, our modules are declared in this top-level pom.xml. The common
module is a simple JAR module, whereas inventory, availability, booking,
billing, and all are declared as WAR modules.

a1

Q The complete Maven setup can be downloaded TODO.

The anatomy of a Service Module

With the overall project structure defined, we can now focus on how each module
(for example, booking) is declared.

Some of the service modules have runtime dependencies on other services modules.
For instance, billing relies on the booking service defined in booking.

[12]

STUDENTS HUB com www .allitebooks.conf

https://maven.apache.org/guides/mini/guide-multiple-modules.html
https://maven.apache.org/guides/mini/guide-multiple-modules.html
http://www.allitebooks.org
https://students-hub.com

Chapter 2

Out of the box, Maven provides support for packaging a module as a WAR (Web
Application Archive). However, it doesn't expose the Java code as an artifact.
To do so, our service modules must contain the following configuration:

<projects>
<modelVersion>4.0.0</modelVersion>

<parent>
<groupId>com.packtpub.rest-with-spring</groupIlds>
<artifactIdsrest-with-spring</artifactId>
<version>1.0.0-SNAPSHOT</versions>

</parent>

<artifactIds>rest-with-spring-billing</artifactId>
<packagings>war</packaging>

<builds>
<plugins>
<plugin>
<artifactIds>maven-war-plugin</artifactId>
<versions>2.6</version>
<configuration>
<attachClasses>true</attachClasses>
</configurations>
</plugin>
</plugins>
</build>
</projects>

The plugin responsible for building the WAR file is instructed to attach the Java code
as a separate artifact that can then be referenced elsewhere. The snippet that follows
illustrates how to reference this artifact:

<dependencys>
<groupIds>com.packtpub.rest-with-spring</groupIld>
<artifactId>rest-with-spring-billing</artifactIds>
<version>1.0.0-SNAPSHOT</version>
<classifier>classes</classifier>

</dependency>

This is a fairly standard dependency declaration except for the classifier element,
which refers to the Java code for the service.

[13]

STUDENTS-HUB.com

https://students-hub.com

Building RESTful Web Services with Maven and Gradle

Local versus Remote Service Invocations

At this point, you may be wondering how, if each service is deployed separately,
they will call each other.

In the context of a single deployment, these invocations would be simple Java calls.
However, in a distributed system, the RESTful API will be leveraged.

To make the code agnostic of the mode of operation, we will declare our services
as interfaces, and with Spring, either inject the actual implementation in a single
deployment mode, or inject a client implementation (Chapter 9, Building a REST

Client, discusses how to build service clients) in a distributed mode of operation.

Developing RESTful web services

In this section, we will provide a few tips to effectively develop Spring-based
RESTful web services.

Working with your favorite IDE

Maven and Gradle are well-supported tools and most integrated development
environments, or IDEs, provide a way to import such projects. For example, with
Intelli] IDEA, our sample web service project can be imported by selecting the
menu options File | Open. Once imported, the project will be shown as follows:

vith-spring-all]
st-with-spring-availability]
~spring-billing]
th-spring-booking]
th-spring-common]
rest-with-spring-inventory]

[14]

STUDENTS HUB.com vww allitebooks.conl

http://www.allitebooks.org
https://students-hub.com

Chapter 2

With the project imported, we can start implementing our property management
system web service. Before we do so, however, let's discuss how to execute our service.

Both Eclipse and NetBeans also offer support for Maven and Gradle
s (via plugins).

Making services executable

With Maven or Gradle, it is possible to package the service in a WAR format.
However, to quickly start and debug the application during development, we are
going to implement an executable Java class. With Spring Boot it is easily achieved
via the following class:

package com.packtpub.restspring.app;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class WebApplication

public static void main(String[] args) {
SpringApplication.run (WebApplication.class, args);

}

This class bootstraps our application by discovering all the web components and
loading them.

Add the following Maven dependency to access
org.springframework.boot.SpringApplication:

~\' <dependency>
Q <groupld>org.springframework.boot</groupIld>

<artifactId>spring-boot-starter-web</artifactId>
<version>1.2.3.RELEASE</version>
</dependency>

[15]

STUDENTS-HUB.com

https://students-hub.com

Building RESTful Web Services with Maven and Gradle

The good thing about Spring Boot is that it requires no setup or configuration. Once
this class is executed, the service will be available on port 8080 via an embedded
Tomcat server.

Information on Spring Boot can be found at http://projects.
s spring.io/spring-boot/

Starting services with Maven

Another approach to start a web service (without an IDE) during development is by
using the Jetty Maven plugin. The following POM extract illustrates the necessary
configuration:

<builds>
<pluginss>

<plugins>
<groupIds>org.mortbay.jetty</groupIlds>
<artifactIds>jetty-maven-plugin</artifactId>
<configurations>
<useTestScopes>true</useTestScope>
<stopPort>8005</stopPort>
<stopKey>DIE!</stopKey>
<systemProperties>
<systemProperty>
<name>jetty.port</name>
<value>8080</value>
</systemProperty>
</systemProperties>
</configurations>
</plugin>
</plugins>
</builds>

With this plugin element added to the POM file, it is now possible to start the service
by running the following command:

mvn jetty:start

The service will then be available at http://localhost:8080.

[16]

STUPENTSiUB com www.allitebooks.cor

http://projects.spring.io/spring-boot/
http://projects.spring.io/spring-boot/
http://www.allitebooks.org
https://students-hub.com

Chapter 2

Note that while the service is running, the application does not expose any
endpoints. The next chapter will look at how to create RESTful endpoints, but for
now, developers can create the following controller to quickly test the service:

import org.springframework.web.bind.annotation.*;

@RestController
public class HelloWorldResource

@RequestMapping (method = RequestMethod.GET)
public String helloWorld() {
return "Hello, world!";

}
}

With this controller in place, invoking http://localhost:8080 will display
the following;:

Hello, world!

Summary

We saw how to set up a Maven or Gradle build to support the implementation of a
RESTful web service. It is now time to start implementing our sample web service.
The next chapter will introduce the first REST endpoint.

[17]

STUDENTS-HUB.com

https://students-hub.com

STUDENTSHUB.com lvww.allitebooks.con

http://www.allitebooks.org
https://students-hub.com

The First Endpoint

In the previous chapter, we looked at how to set up the scaffolding required to
build a RESTful web service. We can now start implementing our first endpoint. As
introduced in Chapter 1, A Few Basics, Spring Web MVC provides the necessary tools
to create controllers in a RESTful manner. To illustrate their use, we will lean on our
sample web service. More specifically, we will start implementing the Inventory
component of our service.

This chapter will go over the following topics:

* The Inventory component of our sample web service
* Spring constructs to build RESTful endpoints
* Running our first endpoint

* A brief discussion on data presentation

The Inventory service

At the heart of our property management service lies rooms that are the
representations of physical rooms that guests can reserve. They are organized in
categories. A room category is a logical grouping of similar rooms. For example, we
could have a Double Rooms category for all rooms with double beds. Rooms exhibit
properties as per the code snippet that follows:

@Entity (name = "rooms")
public class Room

private long id;

private RoomCategory roomCategory;
private String name;

private String description;

[19]

STUDENTS-HUB.com

https://students-hub.com

The First Endpoint

@Id

@GeneratedvValue

public long getId() ({
return id;

}

@ManyToOne (cascade = {CascadeType.PERSIST,
CascadeType.REFRESH}, fetch = FetchType.EAGER)
public RoomCategory getRoomCategory () {
return roomCategory;

}

@Column (name = "name", unique = true, nullable = false,
length = 128)

public String getName () {
return name;

}

@Column (name = "description")
public String getDescription() {
return description;

}
}

With the use of the Java Persistence API (JPA) and Hibernate, rooms have an
auto-generated identifier (thanks to the @javax.persistence.Id and @javax.
persistence.GeneratedvValue annotations): a unique and mandatory name
along with an optional description.

JPA is not in the scope of this book. Information on it can be found at
i http://en.wikipedia.org/wiki/Java Persistence API

Additionally, a one-to-many relationship is established between categories and
rooms with the use of the @javax.persistence.ManyToOne annotation.

The Inventory service provides access to rooms and their categories. Several
operations are made available by this component. However, we are only interested
in one of the operations in this chapter. Therefore, let's consider the following Java
interface:

public interface InventoryService {
public Room getRoom(long roomId) ;

// other methods omitted for clarity

[20]

STUDENTS HUB.com vww allitebooks.conl

http://en.wikipedia.org/wiki/Java_Persistence_API
http://www.allitebooks.org
https://students-hub.com

Chapter 3

This service interface gives us the ability to look up a room by its identifier.
Assuming that we have an implementation for this interface, the next step is
to expose this operation through our RESTful interface. The following section
describes how to go about doing just that.

REST and the MVC pattern

The Spring Web MVC module provides an implementation of the traditional Model
View Controller pattern. While REST does not mandate the use of any specific
pattern, using the MVC pattern is quite a natural fit whereby the RESTful resource
or model is exposed through a controller. The view in our case will be a JSON
representation of the model.

Without further ado, let's take a look at our first endpoint:

@RestController
@RequestMapping ("/rooms")
public class RoomsResource

private final InventoryService inventoryService;

public RoomsResource (InventoryService inventoryService) {
this.inventoryService = inventoryService;

}

@RequestMapping (value = "/{roomId}", method = RequestMethod.GET)
public RoomDTO getRoom(@PathVariable ("roomId") String roomId) {
RoomDTO room =
// omitted for sake of clarity
return room;
}
}

With the use of @org. springframework.web.bind.annotation.RestController,
we instruct Spring that RoomsResource is a controller.

u Traditionally, one would expect this controller class to be called
~ RoomController. However, in the RESTful architectural style, the
Q core concept revolves around resources. Therefore, using the Resource
suffix embodies the REST principles more appropriately.

[21]

STUDENTS-HUB.com

https://students-hub.com

The First Endpoint

The other annotation of note in this code is @org. springframework.web.bind.
annotation.RequestMapping. This is discussed in the next section.

. The Data Transfer Object (DTO) pattern is referenced here

% (RoomDTO), but we will look at it in more detail in Chapter 4,

= Data Representation. It provides a useful decoupling between
the persistence and presentation layers.

Request mapping

The @org. springframework.web.bind.annotation.RequestMapping annotation
provides the glue for mapping incoming requests to classes and methods within
the code.

Path mapping

Typically, at the class level, the @org. springframework.web.bind.annotation.
RequestMapping annotation allows routing requests for a specific path to a resource
(or controller) class. For example, in the previous code extract, the RoomsResource
class declares the top-level request mapping, @RequestMapping (" /rooms"). With
this annotation, the class will handle all requests to the path, rooms.

HTTP method mapping

It is possible to map specific HTTP methods to classes or Java methods. Our
RoomsResource class exposes a method for retrieving a Room by identifier. It is
declared as follows:

@RequestMapping (value = "/{roomId}", method = RequestMethod.GET)

In combination with the class-level annotation, GET requests with the following
/rooms/{roomId} value will be mapped to RoomsResource.getRoom ().

Requests with any other methods (say, PUT or DELETE) will not be mapped to this
Java method.

[22]

STUDENTS HUB com www .allitebooks.conf

http://www.allitebooks.org
https://students-hub.com

Chapter 3

Request parameter mapping

Besides path parameters, request parameters can also be referenced in a
RestController class. The eorg. springframework.web.bind.annotation.
RequestParam parameter provides the means to map an HTTP query parameter

to a Java method attribute. To illustrate parameter mapping, let's add a new lookup
method to our resource:

@RequestMapping (method = RequestMethod.GET)
public List<RoomDTO> getRoomsInCategory (@RequestParam (
"categoryId") long categoryId) {
RoomCategory category = inventoryService.getRoomCategory (
categoryId) ;
return inventoryService.getAllRoomsWithCategory (category)
.stream() .map (RoomDTO: :new) .collect (Collectors.toList()) ;

}

Requests to URLs, such as http://localhost:8080/rooms?categoryId=1, will
be handled by this method, and the category1d method attribute will be set to 1.
The method will return a list of rooms for the given category in the JSON format,
as follows:

[

llidll: 1’

"name": "Room 1",

"roomCategoryId": 1,

"description": "Nice, spacious double bed room with usual
amenities™"

}

Service designers could also declare this endpoint without using
a parameter. For example, the URL pattern could be /rooms/
~ categories/{categoryId}. This approach has the added
Q benefit of improving caching, since not all browsers and proxies
cache query parameters. Refer to Chapter 6, Performance, for more
details on caching techniques.

As we continue implementing our property management system in the rest of the
book, we will put into practice these mapping constructs. Chapter 5, CRUD Operations
in REST, will especially highlight how to map CRUD (Create, Read, Update, and
Delete) operations in REST with these annotations.

[23]

STUDENTS-HUB.com

https://students-hub.com

The First Endpoint

o The preceding code snippet makes use of Java's new Stream AP]I,
~ which is some functional programming goodness introduced in Java
Q 8. Read more aboutitat https://docs.oracle.com/javase/8/
docs/api/java/util/stream/Stream.html.

Running the service

Building upon Chapter 2, Building RESTful Web Services with Maven and Gradle, we can
quickly get our service up and running by using Spring Boot. For this purpose, we
need to create a main class, as follows:

package com.packtpub.springrest.inventory;
// imports omitted

@SpringBootApplication

public class WebApplication

public static void main(String[] args) {
SpringApplication.run(new Object[] {WebApplication.class,
"inventory.xml"}, args);
InventoryService inventoryService = context.getBean (
InventoryService.class) ;

}

Running this class in your favorite IDE will start an embedded Tomcat instance and
expose your resources. The service will be accessible at http://localhost:8080.
For example, accessing http://localhost:8080/rooms/1 will return the following;:

{

nidv: 1,

"name": "Room 1",

"roomCategoryId": 1,

"description": "Nice, spacious double bed room with usual
amenities"

We depart from Chapter 2, Building RESTful Web Services with Maven
* and Gradle, in this example by mixing auto detection and XML-based
% strategies. By passing both the application class and the name of our
T XML Spring wiring (inventory.xml), Spring Boot will load all the
annotated beans it can find, along with the ones declared in XML.

[24]

STUPENTSiUB com www.allitebooks.cor

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
http://www.allitebooks.org
https://students-hub.com

Chapter 3

A few words on data representation

Without us doing anything, our DTO objects are magically converted to JSON by
Spring. This is thanks to Spring's support for data binding with Jackson. The Jackson
JSON processor provides a fast and lightweight library for mapping Java objects to
JSON objects.

Summary

In this chapter, we discussed the Inventory component of our sample RESTful
web service and worked on our first endpoint. We explored how to quickly run
and access this endpoint, and we even threw in a bonus endpoint to list rooms
by categories.

In the next chapter, we will explore in more detail how to control the JSON format
of responses, along with the DTO pattern and why it is useful for decoupling the
different layers of a system.

[25]

STUDENTS-HUB.com

https://students-hub.com

STUDENTSHUB.com lvww.allitebooks.con

http://www.allitebooks.org
https://students-hub.com

Data Representation

We looked at how to build a RESTful endpoint in the previous chapter. We also
briefly discussed how the data is represented in REST responses. In this chapter,
we will expand on these discussions and cover the following topics:

* The Data-Transfer-Object design pattern

* Controlling the responses format in JSON

* Tips on formatting responses

* APl evolutions

Before we delve into the specifics of how to control our JSON responses, let's first
take a look at the DTO design pattern.

The Data-Transfer-Object design pattern

A data transfer object is a simple wrapper around properties, which is passed
between layers of an application. This pattern offers a good abstraction level
between how the data is stored and managed internally and how it is represented.

Such objects typically define no business logic, and simply fulfill the role of a data
container. In the context of our sample property management web service, we
declare, for example, a DTO class for Rooms. The following code snippet illustrates
this DTO class:

public class RoomDTO implements Serializable {
private static final long serialVersionUID = 2682046985632747474L;
private long id;

private String name;
private long roomCategoryId;

[27]

STUDENTS-HUB.com

https://students-hub.com

Data Representation

private String description;

public RoomDTO (Room room) {
this.id = room.getId() ;
this.name = room.getName () ;
this.roomCategoryId = room.getRoomCategory () .getId() ;
this.description = room.getDescription() ;

public long getId()
return id;

public String getName () {
return name;

public long getRoomCategoryId() {
return roomCategoryId;

public String getDescription() {
return description;

}

In this example, we defined the attributes of a room that we wanted to make
available to the data layer of our service (in this case, the JSON responses of our
API). Our data layer object was passed as a constructor parameter so that the DTO
object can be easily initialized.

DTO objects do not need to implement java.io.Serializable. It can, however,

be useful to do so, in order to run the different layers of an application in separate
JVMs.

You can read further about this pattern on Wikipedia at http://
i en.wikipedia.org/wiki/Data transfer object

[28]

STUDENTS HUB.com vww allitebooks.conl

http://en.wikipedia.org/wiki/Data_transfer_object
http://en.wikipedia.org/wiki/Data_transfer_object
http://www.allitebooks.org
https://students-hub.com

Chapter 4

Readers might also know this pattern as the Value-Object design pattern. Early
Java EE literature mistakenly used this term to describe the notion of a data transfer
object. Semantically, the VO pattern is quite different from the DTO design pattern.
Where DTO objects are customized versions of model objects, VO objects represent
fixed sets of data, similar to a Java enum. They are usually identified by their values
and are immutable.

u When using the Java Persistence API (as we did in our sample
~ web service with Hibernate), DTOs become very useful. Mixing
Q persistence and presentation concerns in one class is quite
tricky and often leads to clashes.

The API response format

It is up to API designers to decide which format best suits their use case. That being
said, it is good practice to settle on a common response envelope format. With this
approach, a RESTful web service provides a uniform interface, enabling the client
developers to handle responses in a consistent manner, regardless of the operation
being invoked.

The next section offers a sample envelope format.

The envelope format

The first piece of information that is relevant to any operation is whether it was
successful. We can encapsulate that information with a status. Secondly, most
requests will return data. Therefore, a field in our envelope could provide generic
access to the response payload. The following format will form the base of any
responses returned by the API:

{

"status": "OK",
"data": {..}

}

With this response format, we ensured that client developers will have a consistent
way to check if a request was successful and access the payload.

[29]

STUDENTS-HUB.com

https://students-hub.com

Data Representation

Error management

Knowing that a request failed is important, but on the face of it, not very useful.
Ideally, we should provide some details about why the request failed. For example,
a request could have an invalid parameter value, or the requester may not be
authorized to perform the operation.

Error handling is an important aspect of designing a robust and well-documented
API. Since most RESTful web services are accessed over HTTP/HTTPS, we can
leverage HTTP status codes to categorize errors and provide clues as to what is
wrong with a request.

For example, servers should return a 403 HTTP error code if an

operation is not permitted, or a 400 HTTP error code if a request
g parameter is invalid.

Beyond HTTP response codes, API developers may wish to provide their own error
codes in responses to provide service consumers with more clues about why an
operation is failing. To facilitate this, we can modify our suggested envelope format
to include an error property:

{

"status": "ERROR",
"data": null,
"error": ({

"errorCode": 999,
"description": "Email address is invalid"

}
}

In this example, the operation could not be successfully completed because an
invalid e-mail address was passed. Our response contained an error property
specifying an application-specific error code and description.

Pagination support

For operations returning a list of resources to be scalable, they must provide some
form of pagination. In our sample web service, for instance, we provide an endpoint,
listing all the rooms in a given category, as described in Chapter 3, The First Endpoint.
We could therefore extend our suggested envelope format to include pagination
information in this situation. Let's consider the following JSON response:

{

"status": "OK",
"data": [...1,

[30]

STUDENTS HUB com www .allitebooks.conf

http://www.allitebooks.org
https://students-hub.com

Chapter 4

"error": null,

"pageNumber": 1,

"nextPage": "http://localhost:8080/rooms?categoryIld=1&page=2",
"total": 13

}

In addition to the standard properties, we include the page number returned
along with the total number of resources available, and a reference to the next
page of resources.

Customizing JSON responses

To adhere to guidelines or requirements, API designers may want to control how
JSON responses are formatted. As mentioned in Chapter 3, The First Endpoint, Spring
Web makes use of Jackson to perform JSON serialization. Therefore, to customize
our JSON format, we must configure the Jackson processor. Spring Web offers XML-
based or Java-based approaches to handling configuration. In the following, we will
look at the Java-based configuration.

Let's pretend that we are required to have property names in lower case with
underscore, instead of camel case. In order to reduce the size of responses, we
are also asked not to include properties with null values.

By default, responses are formatted as follows:

{

"status": "OK",
"data": {

llidll: 1[

"name": "Room 1",

"roomCategoryId": 1,

"description": "Nice, spacious double bed room with usual
amenities"

b

"error": null

}

If we create a webMvcConfigurerAdapter extension, then we are provided with the
ability to instruct Jackson on how to format JSON messages:

@Configuration
@EnableWebMvc
public class JsonConfiguration extends WebMvcConfigurerAdapter

@Override

[31]

STUDENTS-HUB.com

https://students-hub.com

Data Representation

public void configureMessageConverters (
List<HttpMessageConverter<?>> converters) {

converters.add (new MappingJackson2HttpMessageConverter (
new Jackson20bjectMapperBuilder ()

.propertyNamingStrategy (PropertyNamingStrategy.
CAMEL CASE TO LOWER CASE WITH UNDERSCORES)

.serializationInclusion(Include.NON NULL)
build())) ;

}

When the application is started, Spring will discover this class

(thanks to the eConfiguration annotation), and add our converter,
MappingJackson2HttpMessageConverter. We configure this converter to format
property names in lower case with underscore, as well as tell Jackson to ignore null
properties. The resulting JSON format will be as follows:

{

"status": "OK",
"data": {

llidll: 1[

"name": "Room 1",

"room category id": 1,
"description": "Nice, spacious double bed room with usual
amenities"

}

We can see that the error property is now gone, and the room category ID property
name is in the format we were asked to use.

org.springframework.http.converter.json.
_ Jackson20bjectMapperBuilder offers many more options
% to control the JSON format. The Javadoc is available at http: //
L docs.spring.io/spring/docs/current/javadoc-
api/org/springframework/http/converter/json/
Jackson20bjectMapperBuilder.html

This section has given the reader the basic tools to control the formatting of
responses. These response formats should be considered parts of the service API, and
therefore modifications to existing responses should be managed with care. The next
section discusses how such concerns can be managed with versioning.

[32]

STUPENTSiUB com www.allitebooks.cor

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/http/converter/json/Jackson2ObjectMapperBuilder.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/http/converter/json/Jackson2ObjectMapperBuilder.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/http/converter/json/Jackson2ObjectMapperBuilder.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/http/converter/json/Jackson2ObjectMapperBuilder.html
http://www.allitebooks.org
https://students-hub.com

Chapter 4

API evolutions

Systems evolve over time, and the functionality that they expose changes along with
these evolutions. APIs, be it in the form of a library or a RESTful API, must adapt to
these changes while maintaining some form of backward compatibility.

It is therefore a good idea to consider evolutions when designing APIs. The next
section describes how HATEOAS (Hypermedia As The Engine Of Application
State) can be leveraged to manage evolutions.

HATEOAS

This REST principle provides a method for self-discovery for service consumers.
Let's consider the following response to a RESTful endpoint:

{
nidv: 1,
"category": "http://myservice.com/categories/33",

This response includes a hypermedia link to a related resource, so consumers do not
need prior knowledge of where to fetch the resource from.

With this approach, service designers can manage evolutions by introducing new
hypermedia links as changes occur, and retiring old links without requiring service
consumers to be modified. It is a powerful mechanism that can help effectively
manage service evolutions.

Versioning strategies

While the purists will disagree with the use of versioning in RESTful web services,
in real world situations, versioning provides a useful mechanism to manage major
evolutions of an API. With resources being at the center of REST, a natural place for
versioning is in the URI.

URI versioning

Let's consider the following URI /rooms/{roomId} that provides access to a room
resource, as described in The Data-Transfer-Object design pattern section. We want to
add a new field containing a URL pertaining to a picture of the room (pictureurl).
Such a change is forward-compatible and does not require specific treatment for
clients to continue consuming the service.

[33]

STUDENTS-HUB.com

https://students-hub.com

Data Representation

Now, we realize that having more than one picture would improve user
engagement. We could simply add a new field along with the existing picture URL.
However, it makes more sense to just replace the picture URL field with a list of
URLSs (pictureurls). This change is not backward compatible. Therefore, we need
to create a new version of our service to ensure that existing clients will continue
working. To do so, we include the version in resource URIs.

With this approach, /rooms/{roomId} becomes /v{versionNumber}/rooms/
{room1d}. For example, the URI for a room with ID #1 in our first APlis /v1.0/
rooms/1, and it will contain the pictureUrl field. The room in our new version
will be accessible with /v1.1/rooms/1 and return the list of picture URLs.

M A good practice with URI-based versions is to alias non-version
Q URIs to the latest API version. So, if the latest version of our API is
2.0, /rooms/1 should be an alias of /v2.0/rooms/1.

Representation versioning

In the previous example, we produced different representations of our Rooms. We
could therefore consider managing versioning with MIME type versioning. The
following code snippet illustrates how we can achieve this with Spring Web:

@RequestMapping (value = "/{roomId}", method = RequestMethod.GET)
public RoomDTO getRoom(@PathVariable ("roomId") long id) {

Room room = inventoryService.getRoom(id) ;

return new RoomDTO (room) ;

}

@RequestMapping (value = "/{roomId}", method = RequestMethod.GET,
consumes = "application/json;version=2")

public RoomDTOv2 getRoomV2 (@PathVariable ("roomId") long id)
Room room = inventoryService.getRoom(id) ;
return new RoomDTOvV2 (room) ;

}

With this setup, getRoomv2 () will be invoked when requests have their Content -
Type headers set to application/json;version=2. Otherwise, getRoom () will
handle requests for the access of rooms.

[34]

STUPENTSiUB com www.allitebooks.cor

http://www.allitebooks.org
https://students-hub.com

Chapter 4

Other approaches

Besides the two approaches described previously, one could consider using other
solutions. For example, a dedicated header, such as Xx-API-Version, could be used to
specify which API version should be used. The following code will handle requests
to get rooms for version 3 of our API:

@RequestMapping (value = "/{roomId}", method = RequestMethod.GET,
headers = {"X-API-Version=3"})

public RoomDTOv3 getRoomV3 (@PathVariable ("roomId") long id) {
Room room = inventoryService.getRoom(id) ;
return new RoomDTOvV3 (room) ;

}

In this example, we instructed Spring to map requests to /rooms/{roomId}
containing the header, X-API-Version, with a value of 3 for this method.

Whichever technique one chooses to employ, API designers should bear the
following principles in mind:

* Expose only what is required; maintaining backward compatibility is
hard work.

* Favor forward-compatible changes over breaking ones. It is not always
possible to force clients to upgrade to new API versions.

* From the onset, design APIs with support for evolutions. Depending on
the selected approach, back-porting such support into an API might not be
straightforward.

Summary

Over the course of this chapter, we found out about the Data-Transfer-Object design
pattern. We looked at good practices for designing responses, and how to control
their format. Finally, we discussed versioning and how it can be used in practice

to manage API evolutions.

It is now time to move on with the implementation of our sample property
management system web service. In the next chapter, we will delve into how
CRUD operations can be handled in a RESTful web service with Spring Web.

[35]

STUDENTS-HUB.com

https://students-hub.com

STUDENTSHUB.com lvww.allitebooks.con

http://www.allitebooks.org
https://students-hub.com

CRUD Operations in REST

In Chapter 3, The First Endpoint, we created our first RESTful endpoint to access rooms
in our sample property management system. Requests to retrieve data are typically
mapped to the HTTP GET method in RESTful web services.

Now, we will expand on this previous example and implement the remaining
endpoints to support all CRUD (Create, Read, Update, and Delete) operations.

In this chapter, we will cover the following topics:

Mapping CRUD operations to HTTP methods
Creating resources

Updating resources

Deleting resources

Testing RESTful operations

Emulating PUT and DELETE methods

Mapping CRUD operations to HTTP
methods

The HTTP 1.1 specification defines the following methods:

opTIONS: This method represents a request for information about the
communication options available to the requested URI. This is, typically, not
directly leveraged with REST. However, this method can be used as part of
the underlying communication. For example, this method may be used when
consuming web services from a web page (as part of the cross-origin resource
sharing mechanism).

STUDENTS-HUB.com

[37]

https://students-hub.com

CRUD Operations in REST

GET: This method retrieves the information identified by the requested
URI. In the context of RESTful web services, this method is used to retrieve
resources. As illustrated in Chapter 3, The First Endpoint, this is the method
used for read operations (the R in CRUD).

HEAD: These requests are semantically identical to GET requests except

that the body of the response is not transmitted. This method is useful for
obtaining meta-information about resources. Similar to the opTIONS method,
this method is usually not used directly in REST web services.

posST: This method is used to instruct the server to accept the entity enclosed
in the request as a new resource. Create operations are typically mapped to
this HTTP method.

pUT: This method requests the server to store the enclosed entity under

the request URI. To support updating REST resources, this method can be
leveraged. As per the HTTP specification, the server can create the resource
if the entity does not exist. It is up to the web service designer to decide
whether this behavior should be implemented, or if resource creation should
only be handled by POST requests.

DELETE: The last operation not yet mapped is for the deletion of resources.
The HTTP specification defines a DELETE method that is semantically aligned
with the deletion of RESTful resources.

TRACE: This method is used to perform actions on web servers. These actions
are often aimed at aiding the development and testing of HTTP applications.
TRACE requests aren't usually mapped to any particular RESTful operations.

coNNECT: This HTTP method is defined to support HTTP tunneling through
a proxy server. Since it deals with transport layer concerns, this method has
no natural semantic mapping to RESTful operations.

The RESTful architecture does not mandate the use of HTTP as the communication
protocol. Furthermore, even if HTTP is selected as the underlying transport,

no provisions are made regarding the mapping of RESTful operations to HTTP
methods. Developers could feasibly support all operations through POST requests.

That being said, the following CRUD to HTTP method mapping is commonly used
in REST web services:

STUDENTS-HUB.com

Operation HTTP Method
Create POST
Read GET
Update PUT
Delete DELETE
[38]

[vww allitebooks.cond

http://www.allitebooks.org
https://students-hub.com

Chapter 5

Our sample web service will use these HTTP methods for supporting CRUD
operations. The rest of this chapter will illustrate how to build such operations.

Creating resources

The inventory component of our sample property management system deals with
rooms. In Chapter 3, The First Endpoint, we built an endpoint to access rooms. Let's
take a look at how to define an endpoint for creating new resources:

@RestController
@RequestMapping ("/rooms")
public class RoomsResource

@RequestMapping (method = RequestMethod.POST)
public ApiResponse addRoom(@RequestBody RoomDTO room) {
Room newRoom = createRoom(room) ;

return new ApiResponse (Status.OK, new RoomDTO (newRoom)) ;

}
}

We've added a new method to our RoomsResource class to handle the creation of
new rooms. As described in Chapter 3, The First Endpoint, @RequestMapping is used
to map requests to the Java method. Here, we map POST requests to addrRoom ().

1

~J Not specifying a value (path) in @RequestMapping
is equivalent to using "/".

We pass the new room as a @RequestBody annotation. This annotation instructs

Spring to map the body of the incoming web request to the method parameter.
Jackson is used here to convert the JSON request body to a Java object.

With this new method, POSTing requests to http://localhost:8080/rooms with
the following JSON body will result in the creation of a new room:

{

name: "Cool Room",
description: "A room that is very cool indeed",
room category id: 1

[39]

STUDENTS-HUB.com

https://students-hub.com

CRUD Operations in REST

Our new method will return the newly created room:

"status":"OK",
"data": {
" idu . 2 ,
"name" :"Cool Room",
"room category id":1,
"description":"A room that is very cool indeed"

We could decide to only return the ID of the new resource in responses to resource
creation. However, since we may sanitize or otherwise manipulate the data sent
over, it is good practice to return the full resource.

Quickly testing endpoints

Chapter 8, Testing RESTful Web Services, will cover at length how to effectively test
a RESTful web service, but for the purpose of quickly testing our newly created
endpoint, let's take a look at testing how we can create new rooms using Postman.

Postman (https://www.getpostman. com) is a Google Chrome
s plugin extension that provides tools to build and test web APIs.

The following screenshot illustrates how Postman can be used to test this endpoint:

http://localhost:8080/rooms IE’
W

URL Params (0}

Headers (1) -
Content-Type application/json
/=
Body Authorization Pre-request script Tests T
form-data x-www-form-urlencoded @) raw binary JSOM {application/json] w
49 {"name": "Anothor Cool Room", "description”: "A Toom that is very cool indeed”, "room_category id": 13
[40]

STUDENTS HUB.com vww allitebooks.conl

https://www.getpostman.com
http://www.allitebooks.org
https://students-hub.com

Chapter 5

In Postman, we specify that we send the PoST request to the URL (http://
localhost:8080/rooms) with the content type header (application/json)and
the body of the request. Sending this request illustrated as follows will result in a
new room being created and returned:

Body Cookies Headers (4) Tests Status 2000K Time 180ms
Raw Preview JSON E O Q
o
"status": "OK",
"data": {
"id": 4,
5 "mame": "Anothor Cool Room",
"room_category_id": 1,
7 "description": "A room that is very cool indeed"
g 3

We have successfully added a room to our inventory service, using Postman. It is
equally easy to create incomplete requests to ensure that our endpoint performs any
necessary sanity checks before persisting data into the database.

Chapter 8, Testing RESTful Web Services, will discuss other approaches for testing
RESTful web services.

JSON versus form data

Posting forms is the traditional way of creating new entities on the web, and it could
easily be used to create new RESTful resources. We could change our method to the
following;:

@RequestMapping (method = RequestMethod.POST, consumes =
MediaType.APPLICATION FORM URLENCODED VALUE)

public ApiResponse addRoom (String name, String description,
long roomCategoryId) {

Room room = createRoom(name, description, roomCategoryId) ;
return new ApiResponse (Status.OK, new RoomDTO (room)) ;

}

[41]

STUDENTS-HUB.com

https://students-hub.com

CRUD Operations in REST

The main difference with the previous method is that we tell Spring to map form
requests (that is, with the content type, application/x-www-form-urlencoded)
instead of JSON requests. In addition, rather than expecting an object as a parameter,
we receive each field individually.

o By default, Spring will use the Java method attribute names to
~ map incoming form inputs. Developers can change this behavior
Q by annotating an attribute with @RequestParam("..") to
specify the input name.

In situations where the main web service consumer is a web application, using form
requests may be more applicable. In most cases, however, the former approach

is more in line with RESTful principles and should be favored. Besides, when
complex resources are handled, form requests will prove cumbersome to use. From a
developer's standpoint, it is easier to delegate object mapping to a third-party library
such as Jackson.

Now that we have created a new resource, let's see how we can update it.

Updating resources

Choosing URI formats is an important part of designing RESTful APIs. As seen
earlier, rooms are accessed using the path, /rooms/{room1d}, and created under
/rooms. And you might recall that as per the HTTP specification, PUT requests can
result in creating entities if they do not exist. The decision to create new resources
on update requests is up to the service designer. It does, however, affect the choice
of path to use for such requests.

Semantically, PUT requests update entities stored under the supplied request URI.
This means that update requests should use the same URI as GET requests: /rooms/
{roomId}. However, this approach hinders the ability to support resource creation
on update, since no room identifier is available.

The alternative path we can use is /rooms, with the room identifier passed in
the body of the request. With this approach, pPUT requests can be treated as POST
requests when the resource does not contain an identifier.

Given that the first approach is semantically more accurate, we will choose not to
support resource creation on update, and we will use the following path for puT
requests: /rooms/{roomId}.

[42]

STUDENTS-HUB.com lNWW allitebooks. CO[ﬂ

http://www.allitebooks.org
https://students-hub.com

Chapter 5

The update endpoint

The following method provides the necessary endpoint to modify rooms:

@RequestMapping (value = "/{roomId}", method = RequestMethod.PUT)
public ApiResponse updateRoom(@PathVariable long roomId,
@RequestBody RoomDTO updatedRoom) {

try {
Room room = updateRoom (updatedRoom) ;
return new ApiResponse (Status.OK, new RoomDTO (room)) ;
} catch (RecordNotFoundException e) {
return new ApiResponse (Status.ERROR, null, new ApiError (999,
"No room with ID " + roomId)) ;
}

}

As discussed at the beginning of this chapter, we map update requests to the HTTP
PUT verb. Annotating this method with @rRequestMapping (value = "/{roomId}",
method = RequestMethod.PUT) instructs Spring to direct PUT requests here.

The room identifier is part of the path and mapped to the first method parameter.
In similar fashion to resource creation requests, we map the body to our second
parameter with the use of @RequestBody.

Testing update requests

With Postman, we can quickly create a test case to update the room that we created
earlier. To do so, we send a PUT request with the following body:

{
id: 2,
name: "Cool Room",
description: "A room that is really very cool indeed",
room_ category id: 1

}

And the resulting response will be the updated room:

{

"status": "OK",
"data": {

nidn: 2[

"name": "Cool Room",

"room category id": 1,
"description": "A room that is really very cool indeed."

[43]

STUDENTS-HUB.com

https://students-hub.com

CRUD Operations in REST

Should we attempt to update a non-existent room, the server will generate the
following response:

{

"status": "ERROR",
"error": {
"error code": 999,
"description": "No room with ID 3"

}

Since we do not support resource creation on update, the server returns an error
indicating that the resource cannot be found.

Refer to Chapter 4, Data Representation, for discussions on error
%~ handling and response formats.

Deleting resources

It will come as no surprise that we use the DELETE verb to delete REST resources.
Also, you will have already figured out that the path to delete requests is /rooms/
{room1d}.

The Java method that deals with room deletion is shown as follows:

@RequestMapping (value = "/{roomId}", method = RequestMethod.DELETE)
public ApiResponse deleteRoom(@PathVariable long roomId)
try {
Room room = inventoryService.getRoom (roomId) ;

inventoryService.deleteRoom(room.getId()) ;
return new ApiResponse (Status.OK, null) ;
} catch (RecordNotFoundException e) {
return new ApiResponse (Status.ERROR, null,
new ApiError (999, "No room with ID " + roomId)) ;

}

By declaring the request mapping method to be RequestMethod.DELETE, Spring will
make this method handle DELETE requests.

[44]

STUPENTSiUB com www.allitebooks.cor

http://www.allitebooks.org
https://students-hub.com

Chapter 5

Since the resource is deleted, returning it in the response would not make a lot of
sense. Service designers may choose to return a Boolean flag to indicate that the
resource was successfully deleted. In our case, we leverage the status element of
our response to carry that information back to the consumer (see Chapter 4, Data
Representation, for more details on response formats). The response to deleting a
room will be as follows:

{

"status": "OK"

}

With this operation, we now have a full-fledged CRUD API for our Inventory
Service. Before we conclude this chapter, let's discuss how REST developers
can deal with situations in which not all HTTP verbs can be utilized.

Overriding the HTTP method

In certain situations (for example, when the service or its consumers are behind an
overzealous corporate firewall, or if the main consumer is a web page), only the GET
and posT HTTP methods might be available. In such a case, it is possible to emulate
the missing verbs by passing a custom header in the requests.

For example, resource updates can be handled using POST requests by setting a
custom header (for example, Xx-HTTP-Method-Override) to PUT to indicate we
are emulating a PUT request via a POST request. The following method will handle
this scenario:

@RequestMapping (value = "/{roomId}", method = RequestMethod.POST,
headers = {"X-HTTP-Method-Override=PUT"})

public ApiResponse updateRoomAsPost (@PathVariable ("roomId") long
id, @RequestBody RoomDTO updatedRoom) {
return updateRoom(id, updatedRoom) ;

}

By setting the headers attribute on the mapping annotation, Spring request routing
will intercept POST requests with our custom header and invoke this method.
Normal poST requests will still map to the Java method that we put together

to create new rooms.

[45]

STUDENTS-HUB.com

https://students-hub.com

CRUD Operations in REST

Summary

In this chapter, we continued the implementation of our sample RESTful web
service by adding all the CRUD operations necessary for managing room resources.
We discussed how to organize URIs to best embody the REST principles, and

also looked at how to quickly test endpoints using Postman. Now that we have

a fully functioning component of our system, we can take some time to discuss
performance.

In the next chapter, we will look at how to manage the performance of RESTful
endpoints, which techniques can be employed, and the things to watch out for.

[46]

STUDENTS HUB.com vww allitebooks.conl

http://www.allitebooks.org
https://students-hub.com

Performance

In order to deploy a RESTful web service in a commercial environment, a number of
criteria must be met. One of these criteria is performance. Besides yielding the correct
result, RESTful endpoints must do so in a timely manner. This chapter discusses how
these concerns can be addressed in real world web services. Performance optimization
techniques can be applied to different aspects of a web application. However, in

this chapter, we will focus on the RESTful (web) layer. Chapter 10, Scaling a RESTful
Web Service, explores techniques that apply to other aspects of web applications. The
following topics will be covered in the next few pages:

* Using HTTP compression

* Using HTTP Cache-Control directives

* Using HTTP ETag headers

* Using HTTP Last-Modified/If-Modified-Since headers

To illustrates these techniques, we will build the room availability component of our
sample property management system web service

HTTP compression

While communicating with a remote service, an unavoidable amount of time is spent
sending and receiving data over the network. To reduce the network latency from an
application's point of view, service designers can ensure that the number of round
trips is kept to a minimum. This is the subject of the remainder of this chapter. For
now, however, let's take a look at another technique that can be employed to reduce
the amount of data that is sent across the wire. The HTTP specification defines

a mechanism for applying compression algorithms over responses before being
transmitted to clients.

[47]

STUDENTS-HUB.com

https://students-hub.com

Performance

Content negotiation

HTTP compression revolves around content negotiation between the two parties
(the server and the client). The client must notify the server about what compression
algorithms it supports. Typically, these would be deflate and gzip. Clients do so by
adding the following header to requests:

"Accept-Encoding": "gzip, deflate"

If the server supports one of these compression schemes, it can apply the scheme
to the outgoing data. If the data is compressed, the server should add the following
header to responses:

"Content-Encoding": "gzip"

With that information, the client is able to process response data appropriately.

gzip or deflate?

Other compression schemes can be used with HTTP, but gzip and deflate are the
most common. So, the question is which one should service designers prefer?
Unfortunately, there is some confusion about namings in the HTTP specification.
Deflate and gzip actually use the same compression algorithm. gzip is a data format
that leverages deflate (the algorithm) for compression. In the context of HTTP,
deflate refers to Zlib, which is another data format that uses deflate. In technical
terms, the deflate scheme offers better performance but is less widely supported
than gzip. Therefore, gzip is the more prevalent choice for HTTP compression.

gzip compression in RESTful web services

Now that we know gzip is the more prevalent choice for HITP compression, we
want to support gzip compression in our RESTful web service. Let's take a look at
how this can be achieved.

In general, it falls under the responsibility of the servlet container (for example,
Tomcat, Jetty, JBoss, and so on) to deal with compression. You should refer to the
documentation of these containers for details on enabling compression.

[48]

STUDENTS-HUB.com lNWW allitebooks. CO[ﬂ

http://www.allitebooks.org
https://students-hub.com

Chapter 6

Spring Boot

If the web service uses Spring Boot and runs on either Tomcat or Jetty, enabling gzip
compression is as easy as adding the following two properties in application.
properties:

server.compression.enabled=true
server.compression.mime-types=application/json

The former property turns compression on, whereas the latter ensures that
compression is applied to the JSON content.

o gzip compression works best when applied to uncompressed content.
~ Indeed, applying gzip compression to already compressed content,
Q such as images, is unlikely to yield any data size reduction, while
wasting CPU cycles.

HTTP caching

When the topic of performance optimization is evoked, caching is often the first
technique that comes to mind. Such a technique can be applied to different layers of
a web service. In this section, we will focus on leveraging HTTP caching to improve
performance. Chapter 10, Scaling a RESTful Web Service, discusses other forms of
caching.

Cache-Control

Cache-Control directives are supported by HTTP to prevent unnecessary round trips
between clients and servers. After all, the best way to reduce request latency is to
not have to contact the server to fetch the response. These directives define who can
cache responses, under which conditions, and for how long.

Private/Public caching

If, for example, a resource can safely be cached on the client for a period of time,
service designers can choose to set the Cache-Control header to indicate such
behavior.

Service designers must select if the caching is either private or public. They can do so
by setting the appropriate value in the Cache-Control header:

"cache-control": "public"

[49]

STUDENTS-HUB.com

https://students-hub.com

Performance

Public indicates that the response may be cached by any intermediate cache. It also
implies that content that is normally non-cacheable, for example, responses with
HTTP authentication, may be cached.

On the other hand, private responses can be cached by web browsers, but they
are typically only relevant to single users. In this mode, intermediates do not
cache the content.

To specify how long the content should be cached, the max-age directive can be
specified:

"cache-control": "private, max-age=300"

Responses containing this header can be cached by the user's web browser for up
to 5 minutes (300 seconds).

No caching

For dynamic resources, caching might not be appropriate. In such circumstances,
responses should contain the following header:

"cache-control": "no-cache"

This will instruct the browser/client to check with the server every time a request
is issued. This header is often used in combination with the ETag header, as will be
discussed later in this chapter.

In situations where caching must altogether be disabled, the no-store value should
be used:

"cache-control": "no-store"

This header notifies proxies and clients not to keep a cache of responses and always
go back to the server when new requests are issued.

o The Cache-Control header is part of the HTTP/1.1 specification.
~ Older browsers and proxies might not fully support it. A common
Q workaround is to use the Pragma header (part of the HTTP/1.0
spec), instead of Cache-Control.

While disabling HTTP caching is relevant in some circumstances, when, for example,
sensitive data is included in the response, it should be enabled wherever applicable.
Besides using the max-age directive, a more sophisticated solution can be created
using ETag headers. The next section discusses the use of this header.

[50]

STUDENTS HUB com www .allitebooks.conf

http://www.allitebooks.org
https://students-hub.com

Chapter 6

ETags

ETags provide a mechanism for validating cached responses. This makes caches
more efficient and ultimately improves service response times. Upon issuing a
response, the server generates a token that encapsulates the state of the resource:

"ETag": "xyzl23"

When clients need to re-issue a new request for a cached response, they can include
the ETag in the form of an If-None-Match header:

"If-None-Match": "xyzl23"

The server can then compare this header with the current state of the resource. If
the resource has changed, the server can issue a response with a new resource.
Otherwise, the server can return a 304 Not Modified response.

Last-Modified/If-Modified-Since headers

These headers offer a mechanism similar to ETags in the way that it allows clients
to validate the state of cached responses. Instead of generating a hash of a resource,
a time stamp is used and compared to work out whether cached responses are valid.

Now that we have introduced the technical concepts behind HTTP caching, let's put
them into practice in the availability component of our sample RESTful web service.

Room availability

In previous chapters, we discussed the inventory component of our property
management service. The next component we will implement is the availability
service.

An overview of implementation

The aim of this component is to provide end users and third-party systems with a
way to query whether rooms are available during a given period.

[51]

STUDENTS-HUB.com

https://students-hub.com

Performance

We will implement this functionality by looking up all the rooms in our sample
property, and overlaying the existing bookings for a given period so as to work
out availability. In real systems used in large hotels, more sophisticated algorithms
are used to optimize room allocations. In our case, however, a simpler approach is
sufficient. So, let's consider the following service interface:

public interface AvailabilityService {

/**
* Answers the availability status for the given query.

*

* @param query the availability query

*

* @return the availability status for each day in the requested
period.

*/

public List<AvailabilityStatus> getAvailableRooms (
AvailabilityQuery query) ;

}

This service takes an availability query and returns the rooms that are available for
a given period. Users will be able to query availability for the period of time and
optional room category.

The implementation of this service and associated classes can be
L downloaded from the Packt Publishing website.

The REST resource

Let's now consider the endpoint that we need to create to expose this functionality
through a RESTful API. One fundamental question to answer, before proceeding
with the implementation of this endpoint, is what URL will this resource be made
available under? One possible approach would be to add a new endpoint to our
existing rooms resource (see Chapter 3, The First Endpoint). However, since we

will not be just returning a list of rooms, it isn't the most logical solution. Besides,
for scalability purposes, we might want to deploy this component on a separate
architecture from the Inventory Service (these concerns are discussed in Chapter 10,
Scaling a RESTful Web Service). Therefore, we will use a new resource exposed under
anew URL:

@RestController
@RequestMapping ("/availability")

[52]

STUDENTS HUB com www .allitebooks.conf

http://www.allitebooks.org
https://students-hub.com

Chapter 6

public class AvailabilityResource {

@RequestMapping (method = RequestMethod.GET)

public ApiResponse getAvailability(
@RequestParam("from") String from,
@RequestParam("until") String until,

@RequestParam(value = "roomCategoryId", required = false) String
categoryId) {
// omitted

}
}

With this new Spring RestController, room availability can be retrieved
with URLs such as http://localhost:8080/availability?from=2016-12-
0l&until=2016-12-01.

This URL will return the list of available rooms on December 1, 2016.

It is up to the developer to decide in which format to represent
_ dates. For example, dates can be accepted in UNIX times
% (https://en.wikipedia.org/wiki/Unix_time). In
I our case, we chose to represent dates in the ISO 8601 format
(https://en.wikipedia.org/wiki/ISO_8601), asitis
more human-readable.

Also, we have defined a query parameter called roomCategory1d, which is optional.
With Spring, we can do so with the following annotation:

@RequestParam(value = "roomCategoryId", required = false)

As we have seen in Chapter 5, CRUD Operations in REST, this annotation instructs
Spring to map, if present, the query parameter, roomCategoryId, to our Java method
parameter.

generate an error response with the HTTP status 400, if the parameter

M Without declaring this request parameter as not required, Spring will
Q is not present in the URL.

[53]

STUDENTS-HUB.com

https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/ISO_8601
https://students-hub.com

Performance

Requesting availability for a given day will return data as follows:

{

"status": "OK",
"data": [{
"date": "2016-12-01",
"rooms": [{
llidll . 1[
"name": "Room 1",

"roomCategoryId": 1,
"description": "Nice, spacious double bed room with usual
amenities"

1
}
}

As per our brief, this response lists the available rooms per date for the requested
time period. In this case, the room with ID 1 is available on December 1, 2016.

With the RESTful endpoint defined, let's look at how we can add support for
HTTP caching.

Adding HTTP caching

As discussed at the beginning of this chapter, there are several caching approaches
available with HTTP. In this section, we will use the Last-Modified/If-Modified-
Since headers to prevent sending unnecessary data across the wire. To do so, we
need access to the HTTP response. Let's modify our endpoint:

@RequestMapping (method = RequestMethod.GET)
public ApiResponse getAvailability(
@RequestParam("from") String from,

@RequestParam("until") String until,

@RequestParam(value = "roomCategoryId", required = false) String
categoryId, WebRequest request) {

// omitted

}

Spring will map the new attribute to the org. springframework.web.context.
request . WebRequest object that represents the request.

The next step is to be able to work out a date that captures the current state of the
response. In our case, we can use the update date of the booking that was most
recently updated in the requested period.

[54]

STUPENTSiUB com www.allitebooks.cor

http://www.allitebooks.org
https://students-hub.com

Chapter 6

Then, in the method body of our endpoint, we can leverage Spring's support for
caching, which is shown as follows:

AvailabilityQuery query = new AvailabilityQuery (dateRange,
categoryld) ;
// we use the last updated booking date as our Last Modified value
Date lastUpdatedBooking = getLastModified (query) ;
if (request.checkNotModified (lastUpdatedBooking.getTime())) {
return null;

}

// perform the query and return the availability status

With the use of WebRequest.checkNotModified (), we compare the If-Modified-
Since request header value with the one we computed. If the values match, we do
not need to process the request, and Spring will return a 304 response. Otherwise, we
can carry on and process the availability request and include our generated Last -
Modified header.

Invoking checkNotModified () will ensure that the relevant
HTTP headers are set on the response. Therefore, if the data has

not changed, no further processing is required and developers
g can safely return null, instead of manually constructing a 304

response.

For example, if a new user requests availability for the first time, the server will
respond with the following headers:

HTTP/1.1 200 OK

Server: Apache-Coyote/1.1

Last-Modified: Sun, 14 Jun 2015 22:00:00 GMT
Content-Type: application/json;charset=UTF-8
Transfer-Encoding: chunked

Date: Mon, 15 Jun 2015 12:12:32 GMT

Upon re-issuing the same request, the user's browser will include the following
headers:

GET /availability?from=2016-12-01&until=2016-12-01 HTTP/1.1
// omitted
If-Modified-Since: Sun, 14 Jun 2015 22:00:00 GMT

The server will then be able to compare the time stamp provided in the request with
our last modified date and issue a 304 response:

HTTP/1.1 304 Not Modified
Server: Apache-Coyote/1.1
Date: Mon, 15 Jun 2015 12:16:03 GMT

[55]

STUDENTS-HUB.com

https://students-hub.com

Performance

This approach reduces both the amount of processing required on the server
(assuming that generating the last modified date is not as expensive as processing
the request) and the amount of data sent to the server, resulting in improved
performance.

Caching with ETags

When generating a last modified date is not suitable, ETags can be used

instead. Spring has transparent support for ETags in the form of a filter (org.
springframework.web.filter.ShallowEtagHeaderFilter) that can be added to
the REST servlet. This filter automatically generates an MD5 hash of the response.

The filter can be added in the web application descriptor (web.xml):

<filters>
<filter-name>etagFilter</filter-name>
<filter-class>

org.springframework.web.filter.ShallowEtagHeaderFilter

</filter-class>

</filter>

<filter-mapping>
<filter-name>etagFilter</filter-name>
<url-pattern>/*</url-patterns

</filter-mapping>

Alternatively, when using Spring Boot, the filter can be added with a configuration
class:

@Configuration
@EnableWebMvc
@ComponentScan

public class WebApplicationConfiguration extends
WebMvcAutoConfiguration {

@Bean
public Filter etagFilter() {
return new ShallowEtagHeaderFilter () ;

}

[56]

STUPENTSiUB com www.allitebooks.cor

http://www.allitebooks.org
https://students-hub.com

Chapter 6

When a client issues a first availability request, the server returns the following
headers:

HTTP/1.1 200 OK

Server: Apache-Coyote/1.1

ETag: "09f4ab0b7ca5d8280fbb890a6a5elc220"
Content-Type: application/json;charset=UTF-8
Content-Length: 463

Date: Mon, 15 Jun 2015 12:40:31 GMT

Upon re-issuing the same request, the web browser will include the following
headers:

GET /availability?from=2016-12-01&until=2016-12-01 HTTP/1.1
// omitted
If-None-Match: "09f4ab0b7ca5d8280fbb890a6a5elc220"

The server will issue the following response:

HTTP/1.1 304 Not Modified

Server: Apache-Coyote/1.1

ETag: "09f4ab0b7ca5d8280fbb890a6a5elc220"
Date: Mon, 15 Jun 2015 12:50:00 GMT

The actual response body is not sent and the browser is instructed to use its local
cached copy instead. While this approach offers a transparent mechanism for caching
data that has not changed, it does not help with improving performance on the
server side.

Summary

This chapter has given us the chance to look at how one can leverage HTTP
optimization methods to improve the performance of RESTful web services. In
reducing round trips between clients and servers, as well as the amount of data
sent across the wire, service designers can ensure request latencies are kept to a
minimum. Other benefits of HTTP optimizations include lower operating expenses
due to the reduction in bandwidth and lower power consumption for consumers of
the service. This last point is quite important when consumers are mobile devices
with a limited battery life.

Beyond HTTP-related optimizations, other techniques discussed in Chapter 10,
Scaling a RESTful Web Service, can be employed to further manage web service
performances. The next topic of importance when creating RESTful services is
security. In the next chapter, we will take a look at how security can be handled
with Spring.

[571]

STUDENTS-HUB.com

https://students-hub.com

STUDENTSHUB.com lvww.allitebooks.con

http://www.allitebooks.org
https://students-hub.com

Dealing with Security

Security crosses every boundary of IT systems; from physical access to data centers
and server racks, to encrypting communications, and all the way to validating inputs
of web services endpoints. In this chapter, we will focus on the security measures
that directly affect web services. We will cover the following topics:

* The booking component of our sample RESTful web service being used to
illustrate how security concerns can be addressed with Spring

* Authentication techniques
* Authorization techniques
* Input validation

* The use of encryption

The booking service

Before we delve into how to handle security with Spring, let's first discuss the
component of our sample property management system that we will use in this
chapter: the booking service.

As the name suggests, this component will provide the necessary functionality
to take and manage bookings in our sample property management system. Let's
consider the following Java interface:

public interface BookingService {
/**
* Looks up the booking with the given identifier.
*

* @param bookingId the booking identifier to look up
* @return the booking with the given ID
*/

[59]

STUDENTS-HUB.com

https://students-hub.com

Dealing with Security

public Booking getBooking(long bookingId) ;

/**
* Answers all bookings for the given date range.

*

* @param dateRange the date range to retrieve bookings for
* @return the bookings in the given date range

*/

public List<Booking> getBookings (DateRange dateRange) ;

/**
* Processes the given booking
*

* @param request the booking request

* @return the result of the request

*/

public BookingResponse book (BookingRequest request) ;

}

This abstraction allows us to make and retrieve bookings. Assuming that an
implementation of this interface is available, we can now turn our attention to
building the necessary RESTful endpoints to expose this functionality.

The REST resource

As we have seen in Chapter 2, Building RESTful Web Services with Maven and Gradle,
we can expose the ability to retrieve a booking by identifier with the following code:

@RestController
@RequestMapping (" /bookings")
public class BookingsResource

@Autowired
private BookingService bookingService;

@RequestMapping (value = "/{bookingId}",
method = RequestMethod.GET)

public BookingDTO getBooking(@PathVariable ("bookingId") long
bookingId) {
return new BookingDTO (bookingService.getBooking (bookingId)) ;

}

In the following sections, we will learn how security can be applied to this endpoint.

[60]

STUDENTS HUB.com vww allitebooks.conl

http://www.allitebooks.org
https://students-hub.com

Chapter 7

Authentication

Authentication deals with ensuring that users are who they say they are. There are
several approaches to authenticate users. This section will describe a few of the
mechanisms provided by HTTP.

HTTP Basic authentication

This is the simplest form of authentication in the HTTP specification. It relies on a
username and password combination being passed as an Authorization header
to any HTTP request that mandates authentication.

When a client issues a request to an endpoint that requires authentication, the server
will respond with a HTTP 401 Not Authorized response. The response will include
the following header:

WWW-Authenticate: Basic realm="myRealm"

This header instructs the client that the user must be authenticated using the Basic
scheme. Modern browsers will automatically prompt users for their credentials upon
receiving such a response, and re-issue the request with the Authorization header.
This header should contain the scheme followed by the username and password
combination (in the format, username : password) encoded in Base64. For example,
let's consider a request that contains the following header:

Authorization: Basic cmVzdDpyb2Nrcw==

Once decoded, the server will need to check for a user with the username, rest,
and password, rocks.

While this scheme is easy to put in place, no confidentiality measures
M are provided to protect the credentials. Indeed, the credentials are
Q merely encoded, not encrypted, and can be quite easily accessed.
Therefore, this scheme must be used with HTTPS to be considered
secure.

Using Basic authentication with Spring

Let's take a look at how we can set up a Spring RESTful web service to support Basic
authentication. First, we need to add a few new dependencies to our project:

<dependencys>
<groupIds>org.springframework.security</groupIds>
<artifactIds>spring-security-config</artifactId>
<version>4.0.1.RELEASE</version>

[61]

STUDENTS-HUB.com

https://students-hub.com

Dealing with Security

</dependency>

<dependency>
<groupld>org.springframework.security</groupIds>
<artifactIds>spring-security-web</artifactIds>
<version>4.0.1.RELEASE</version>

</dependency>

This will import Spring's web security module, as well as its configuration support.
The next step is to configure security. We can do so in Java by declaring the
following class:

@EnableWebSecurity
public class SecurityConfig extends WebSecurityConfigurerAdapter

@Autowired

public void configureGlobal (AuthenticationManagerBuilder auth)
throws Exception {
auth.inMemoryAuthentication ()
.withUser ("rest") .password ("rocks") .roles ("USER") ;

}

@Override

protected void configure (HttpSecurity http) throws Exception
http.authorizeRequests ()
.anyRequest () .authenticated ()
.and () .httpBasic() ;

}

This is a very simple configuration that is not production-ready but is simple
enough to illustrate the configuring of Spring Security. We define one user with the
username, rest, and password, rocks. We also instruct Spring to authenticate all
requests using the HTTP Basic authentication scheme.

In a real world system, users would not be stored in
M memory (as instructed in this example with auth.
Q inMemoryAuthentication ()), butin a database with
passwords encrypted using, for example, Berypt encryption
(https://en.wikipedia.org/wiki/Bcrypt).

[62]

STUDENTS HUB.com vww allitebooks.conl

https://en.wikipedia.org/wiki/Bcrypt
http://www.allitebooks.org
https://students-hub.com

Chapter 7

The last step remaining is to get our web service to use this security configuration.
We can do so by extending org. springframework.security.web.context.
AbstractSecurityWebApplicationInitializer as follows:

public class SecurityWebApplicationInitializer extends
AbstractSecurityWebApplicationInitializer {

public SecurityWebApplicationInitializer() {
super (SecurityConfig.class) ;

}

Passing our security configuration class to the super class will ensure that all
requests to our sample web service will be secured.

HTTP Digest authentication

Similar to the HTTP Basic authentication scheme, the HTTP Digest authentication
scheme uses a username and password to authenticate users. However, unlike the
previous scheme, the credentials are not sent over the network in an easy-to-decode
format. Instead, an MD5 hash of the username, password, and a few extra pieces

of information are sent. When the server receives the request, it generates another
hash using the same algorithm and compares the two values. If they match, the
user has entered the correct password. If not, the authentication has failed and the
appropriate status code will be returned.

To set up Digest authentication in Spring, a org. springframework.security.web.
authentication.www.DigestAuthenticationFilter filter must be configured.
This filter will issue authentication headers such as:

WWW-Authenticate: Digest realm="My Realm", gop="auth",

nonce="MTQzNDUzMj IyNTE3MDplZjRmYzFmYzZkNDZkNDE4NZE2ZmRkNZzAzMmM2 YmM
0ZQ=="

The filter will also handle any Authorization headers in requests. For example:
Authorization: Digest username="rest", realm="My Realm",

nonce="MTQzNDUzMjM0OTk2MzoyNjQwOTAOMDIOMTEzZN2E2Z]j IzOGMxZDU0OZT1k
Y2MxYQ==", uri="/bookings/3",
response="1bc4974dd8cal56568149£3944cf42c8", gop=auth,
nc=00000001, cnonce="6ae950660ea%900bf"

[63]

STUDENTS-HUB.com

https://students-hub.com

Dealing with Security

Upon accessing a secure resource, the service sends a Www-Authenticate header
with the scheme, realm, and extra information in a 401 response. Browsers will
handle this by prompting the user and re-issuing the request with an Authorization
header containing the MD5 hash of the user's credentials.

To enable Digest authentication, let's modify our SecurityConfig class:

@EnableWebSecurity
public class SecurityConfig extends WebSecurityConfigurerAdapter

@Override
protected void configure (HttpSecurity http) throws Exception
http.authorizeRequests ()
.anyRequest () .authenticated ()
.exceptionHandling ()
.authenticationEntryPoint (digestEntryPoint ())
.and ()
.addFilter (digestAuthenticationFilter()) ;

}

// rest of the code omitted for clarity

}

With this updated implementation, we swap Basic authentication for the more secure
Digest authentication scheme.

While HTTP Digest authentication provides a mechanism to
. send encrypted credentials over an otherwise non-secure network,
% the reader should be aware that the MD5 algorithm has known
s limitations and should be considered carefully. More information
can be found athttps://en.wikipedia.org/wiki/Digest
access_authentication

Token-based authentication

The last scheme we will briefly discuss is token-based authentication. This approach
is not part of the HTTP specification but is a common method of authentication. This
scheme relies on an encrypted token being issued by the server and subsequently
sent over on every request by the client. The token can be encrypted using modern,
robust encryption algorithms. Spring offers good support for such a scheme with
the use of org. springframework.security.core.token.TokenService and org.
springframework.security.core.token.Token.

[64]

STUDENTS-HUB.com lNWW allitebooks. CO[ﬂ

https://en.wikipedia.org/wiki/Digest_access_authentication
https://en.wikipedia.org/wiki/Digest_access_authentication
http://www.allitebooks.org
https://students-hub.com

Chapter 7

For example, service developers can take a look at org. springframework.
security.core.token.KeyBasedPersistenceTokenService for a sample
use of this authentication approach.

Other authentication methods

If the previous authentication approaches are not a good fit, web service designers
may be interested in investigating the use of the following:

* OAuth2: This is an open source standard of authorization that provides
client applications with secure access to server resources on behalf of users.
This is especially popular when users want to log in to services through third
party apps. Take a look at http://ocauth.net/2/ for more details.

* JWT:JSON Web Token is a simple mechanism used to check whether
information sent in requests can be verified and trusted using a digital
signature. More information on JWT can be found at http://jwt.io.

Having covered authentication, we can now focus on how to manage authorization.

Authorization

The corollary to authentication is authorization. These two concepts are often
handled together, but they refer to two different requirements for securing web
services. Authentication validates the identity of users, whereas authorization
manages which operations users are entitled to perform. Authorization often relies
on associating users with roles and controlling which user roles are allowed to
perform specific operations.

Authorization with Spring

There are two approaches to manage authorization with Spring;:

* URL mapping

e Resource annotations

The following sections provide illustrations of these two approaches.

[65]

STUDENTS-HUB.com

http://oauth.net/2/
http://jwt.io
https://students-hub.com

Dealing with Security

URL mapping

Expanding on our previous example, we can modify securityConfig to declare
fine-grain URL mappings as follows:

@EnableWebSecurity
public class SecurityConfig extends WebSecurityConfigurerAdapter {
@Override
protected void configure (HttpSecurity http) throws Exception {
http.authorizeRequests ()
.antMatchers (HttpMethod.GET, "/bookings/**").hasRole ("ADMIN")
.anyRequest () .authenticated() ;

}

With this new version, we instruct Spring to only allow administrators access to read
bookings. All other endpoints accept requests from authenticated users with any
role. To be able to test this security configuration, let's add an administrator user. We
can do so by modifying our class as follows:

@EnableWebSecurity
public class SecurityConfig extends WebSecurityConfigurerAdapter ({
@Autowired
public void configureGlobal (AuthenticationManagerBuilder auth)
throws Exception {
auth.inMemoryAuthentication ()
.withUser ("rest") .password ("rocks") .roles ("USER")
.and ()
.withUser ("admin") .password("admin") .roles ("ADMIN") ;

}

Along with our rest user, we have now declared an administrator user with the
username, admin, and password, admin.

With this new configuration, if we log in as a USER and try to access a booking,
the server will generate a 403 Forbidden response. Locally, you can test this with
behavior by opening http://localhost:8080/bookings/1 in a web browser.

[66]

STUPENTSiUB com www.allitebooks.cor

http://www.allitebooks.org
https://students-hub.com

Chapter 7

Because the browser caches credentials with HTTP Basic or
HTTP Digest authentication schemes, logging out is a bit tricky
& and often requires closing the browser. Thankfully, modern
Y= . . .
browsers allow private browsing. This feature can help speed up
development and test the security of web services.

This approach helps secure web services globally, but might prove cumbersome
when fine-grain authorization is required. Indeed, the configuration (either in Java,
or XML) may become hard to maintain. A more scalable approach is described in
the next section.

Resource annotations

Unlike a centralized configuration, such as the one discussed in the previous section,
using annotations allows the controlling of resource access directly in the resource
classes. Spring offers an expression-based access control mechanism with the use

of org.springframework.security.access.prepost.PreAuthorize.

Let's modify the endpoint that we described at the beginning of this chapter:

@RestController
@RequestMapping (" /bookings")
public class BookingsResource

@PreAuthorize ("hasRole ('ROLE ADMIN')")

@RequestMapping (value = "/{bookingId}",
method = RequestMethod.GET)
public BookingDTO getBooking(@PathVariable ("bookingId") long

bookingId) {

// omitted

}

}

Adding ePreAuthorize ("hasRole ('ADMIN') ") to our endpoint declaration
instructs Spring Security to only grant access of this resource to administrators.

If a user attempts to invoke this endpoint, the server will generate a 403 Forbidden
response.

A\l

~ If the resource has to be accessible to multiple roles, the following
expression can be used: hasAnyRole ('rolel, role2').

[67]

STUDENTS-HUB.com

https://students-hub.com

Dealing with Security

Let's now turn our attention to another aspect of security that also plays an
important part: input validation. The next section looks at how input validation
can be implemented with Spring.

Input validation

Besides authentication and authorization, one area of importance in building secure
web services is to ensure that inputs are always validated. In addition to maintaining
data integrity, doing so prevents security vulnerabilities such as a SQL injection.

Java Bean annotations

To implement input validation, we can use Java Bean validation annotations that
were introduced with JavaEE 6. To illustrate their use, let's implement the endpoint
to take bookings in our sample web service. Our booking service accepts requests in
the form of the following Java class:

public class BookingRequest {

@Min (1)
private final long roomId;

@NotNull
private final DateRange dateRange;

@Size(min = 1, max = 128)
private final String customerName;

@NotNull
private CreditCardDetails creditCardDetails;

}

You can see here the use of @javax.validation.constraints.Min, @javax.
validation.constraints.NotNull and @javax.validation.constraints.Size.
The @Min annotation allows the defining of the minimum valid value for roomId.
The @eNotNull annotation ensures that the field has a value. Finally, the @esize
annotation helps make sure that the customer's name is not larger than the size

of the database field.

[68]

STUDENTS HUB com www .allitebooks.conf

http://www.allitebooks.org
https://students-hub.com

Chapter 7

Regular expressions

Another very useful validation annotation is @javax.validation.constraints.
pattern. This annotation allows the validation of fields, based on regular
expressions. For example, let's have a look at the CreditCardDetails class:

public class CreditCardDetails {

@NotNull

private String cardOwner;

@Pattern(regexp = "\\b(?:4[0-9]1{12}(?:[0-91{3})?|" +
"5[12345] [0-91{14}|3[47]1[0-91{13}|" +
"3(?:0[012345] | [68]1 [0-9]1) [0-9]{11}|" +
"6(2:011|5[0-91{2}) [0-91{12}|" +
"(?:2131|1800|35[0-91{3}) [0-91{11})\\b")

private String cardNumber;

@Pattern(regexp = "[0-9]1{2}/[0-91{2}")
private String expiration;
@Pattern(regexp = "[0-91{3,4}")

private String cvv;

}

We've declared each field in this class with validation annotations. For example, the
CVV number is validated against a regular expression that checks that the value is
made of three or four digits.

o In systems with large volumes of requests, using regular
~ expressions for input validation may add unwanted latency.
Q Therefore, service designers should consider the pros and cons
when using regular expressions.

Validating bookings
Our BookingsResource class should validate incoming booking requests before
processing them. Let's add the following endpoint:

@RestController
@RequestMapping (" /bookings")
public class BookingsResource
@RequestMapping (method = RequestMethod.POST)
public ApiResponse book (@Valid @RequestBody BookingRequest
request) {
BookingResponse response = bookingService.book (request) ;
return new ApiResponse (Status.OK, response);

}

[69]

STUDENTS-HUB.com

https://students-hub.com

Dealing with Security

This method will be invoked when a POST request is sent to /bookings/. By simply
adding the @valid annotation to the method, Spring will ensure that the incoming
booking requests are run through our defined validation rules first.

For instance, using Postman, we can send a POST request like the following:

{

"roomId":1,

"dateRange": {"from":"2017-01-01","to":"2017-01-02"},
"customerName" : "Jane Doe",

"creditCardDetails": {

"cardNumber": "0111-1111-1111-1111",
"cardOwner": "John Doe",
"expiration": "01/20",

"CVV" . I|O2OI|

}
}

Since the credit card number is not valid (it starts with 0), the server will respond
with a 400 Bad Response error.

Encryption

The most common form of encryption used to secure web services and the web in
general is HTTPS. Unlike HTTP, which exchanges data between servers and clients
in plain text, HTTPS encrypts the content of requests and responses so that they
appear opaque to anyone listening on the network.

The literature on HTTPS is vast and readily available. In addition, support for
HTTPS in software packages and hardware that is typically used in web services
deployments is abundant. For these reasons, this section will not delve further into
the details of using HTTPS. With the exception of building URLSs for redirection,
the use of a secure communication protocol has little impact on the implementation
of a RESTful web service.

Storing sensitive data

In the event of a system being compromised, another point of encryption that
is essential is in the persistence layer. As mentioned earlier in this chapter, it is
good practice to encrypt passwords in the database, so that even if the database
gets accessed by unauthorized individuals with malicious intentions, the most
sensitive information remains (somewhat) safe.

[70]

STUDENTS HUB com www .allitebooks.conf

http://www.allitebooks.org
https://students-hub.com

Chapter 7

Spring offers very good support for encrypting data in databases. API designers can
leverage org.springframework.security.crypto.password.PasswordEncoder.
For instance, org. springframework.security.crypto.bcrypt.
BCryptPasswordEncoder is a good choice for hashing passwords in the database.

Summary

The breadth of security measures that service designers may need to implement is
much wider than what this chapter covers. From authenticating users, to authorizing
their actions, and the use of encryption to prevent eavesdropping on sensitive
information, we have covered the basic principles of securing web services with
Spring.

Having considered security concerns in this chapter, another critical attribute to
assess the production-readiness of a RESTful web service is testing.

In the next chapter, we will investigate which tools and techniques can be leveraged
to verify that our sample RESTful web service exhibits the expected behavior.

[71]

STUDENTS-HUB.com

https://students-hub.com

STUDENTSHUB.com lvww.allitebooks.con

http://www.allitebooks.org
https://students-hub.com

Testing RESTful Web Services

Testing is an inherent aspect of building commercial software solutions. Indeed,
testing should be considered at every step of the development process, and a
software package should only be considered ready when the complete test suite
is successful.

In this chapter, we will apply the following testing strategies to our sample RESTful
web service:

* Unit testing Spring controllers
* Mocking

* Testing security

* Integration strategies

* Other forms of testing to consider

Unit testing Spring controllers

Since we declared RESTful endpoints as Java methods with annotations, normal unit
testing techniques can be employed. The de facto unit testing library for Java is JUnit.
(http://www.junit.org). JUnit is a simple framework used for writing repeatable
tests. The following code snippet illustrates how one can test a RESTful endpoint:

public class AvailabilityResourceTest
@Test
public void testGetAvailability() throws Exception
AvailabilityService service = ...
AvailabilityResource resource = new
AvailabilityResource (service) ;

WebRequest request = ...
// invalid from date

[73]

STUDENTS-HUB.com

http://www.junit.org
https://students-hub.com

Testing RESTful Web Services

ApiResponse response = resource.getAvailability(null,
"2017-01-02", "1", request);

assertEquals (Status.ERROR, response.getStatus()) ;

assertEquals (17, response.getError () .getErrorCode()) ;

// from is after until

response = resource.getAvailability("2017-01-03",
"2017-01-02", "1", request);

assertEquals (Status.ERROR, response.getStatus()) ;

assertEquals (17, response.getError () .getErrorCode()) ;

}

Most readers will be familiar with these types of tests. Here, we verified that the
availability component of our sample property management system does not
accept invalid dates. What isn't covered in this code snippet is how an instance
of com.packtpub.springrest.availability.AvailabilityService and
org.springframework.web.context.request .WebRequest is obtained. These
two interfaces are dependencies for which we don't really want to use the real
implementations. We're only interested in testing the code in our resource class.
The next section discusses mocking techniques for dealing with this situation.

Mocking

We have built our sample property management system by decoupling the RESTful
layer from the service implementation with the use of Java interfaces. Besides
helping structure the code base and preventing tight coupling, this process also
benefits unit testing. Indeed, instead of using concrete service implementations when
testing the web tier of our application, we can rig mocked implementations in. For
instance, consider the following unit test:

public class RoomsResourceTest {

@Test

public void testGetRoom() throws Exception {
RoomsResource resource = new RoomsResource () ;
InventoryService inventoryService =
ApiResponse response = resource.getRoom(1l) ;
assertEquals (Status.OK, response.getStatus());
assertNotNull (response) ;

RoomDTO room = (RoomDTO) response.getDataf() ;
assertNotNull (room) ;
assertEquals ("Rooml", room.getName ()) ;

[74]

STUPENTSiUB com www.allitebooks.cor

http://www.allitebooks.org
https://students-hub.com

Chapter 8

When invoking RoomResource.getRoom () for an existing room, we expect non-
null, successful responses containing a payload that represents that room. Rather
than using the real com.packtpub.springrest.inventory.InventoryService
implementation, which has dependencies on the database, we can create a mock
implementation. This mock must exhibit predefined behavior that allows us to test
for different use cases handled by com.packtpub.springrest.inventory.web.
RoomsResource. This can be achieved in two different ways, as illustrated in the
next sections.

Simple mocking

In order to provide the necessary behavior, we can simply create an anonymous
implementation of the Inventory Service:

InventoryService inventoryService = new InventoryService() ({
@Override
public Room getRoom(long roomId) {
if (roomId == 1) {
Room room = new Room() ;
room. setName ("Rooml") ;
room.setDescription ("Room description") ;
RoomCategory category = new RoomCategory () ;
category.setName ("Categoryl") ;
category.setDescription("Category description") ;
room. setRoomCategory (category) ;
return room;
} else {
throw new RecordNotFoundException ("") ;

}

// rest of code omitted

bi

With this approach, we manually implement the InventoryService interface and
insert the code that we need. Also, we return a value of Room for the roomId value, 1,
and throw a RecordNotFoundException otherwise.

We have omitted the stubs for all the other methods exposed in this code snippet for
the purpose of readability. But this is where the challenge lies in simple mocking.
Developers have to write a lot of code that provides no value to the unit test but
requires maintenance whenever new functionality is to be added to the service. This
is where mocking libraries come into the picture. The next section discusses the use
of such a library.

[75]

STUDENTS-HUB.com

https://students-hub.com

Testing RESTful Web Services

Implementation stubbing with a mocking
library

There are several options when it comes to mocking libraries in Java, such as jMock
(http://www.jmock.org) or EasyMock (http://easymock.org). One of the most
popular is Mockito. Mockito is a mocking framework that lets developers write clean
tests and offers a simple APIL. Developers can add Mockito to their Maven project by
adding the following dependency to the project descriptor:

<dependencys>
<groupIds>org.mockito</groupId>
<artifactId>mockito-core</artifactIds>
<version>1.9.5</versions>
<scope>test</scope>

</dependency>

To illustrate how to use Mockito, take a look at the following test:

@Test

public void testUpdateRoom() {
InventoryService service = mock(InventoryService.class);
RoomCategory category = ... // skipped for clarity
Room room = ... // skipped for clarity
when (service.getRoom(1l)) . thenReturn (room) ;
when (service.getRoomCategory (anyLong ()))
.thenReturn (category) ;
Room updatedRoom = ... // skipped for clarity
updatedRoom.setDescription("It's an awesome room!") ;
ApiResponse response = resource.updateRoom (1,

new RoomDTO (updatedRoom)) ;

assertEquals (Status.OK, response.getStatus());
assertEquals("It's an awesome room!", ((RoomDTO)
response.getData ()) .getDescription()) ;

}

This test validates that it is possible to update an existing room. Instead of
implementing InventoryService ourselves, we use Mockito to create a mock
implementation with mock (InventoryService.class). The next step is to instruct
our mock to return a room and room category when invoked. This is achieved with
when (..) . thenReturn (...) . This pattern adds behavior to our mock. For instance,
when (service.getRoom (1)) .thenReturn (room) will make our mock service
return a room when InventoryService.getRoom () is invoked for the room ID 1.

[76]

STUDENTS HUB com www .allitebooks.conf

http://www.jmock.org
http://easymock.org
http://www.allitebooks.org
https://students-hub.com

Chapter 8

Mockito and Spring

Spring offers a mechanism to automatically inject beans into classes with the use of
@org.springframework.beans.factory.annotation.Autowired. This annotation
can be used as follows:

@RestController
@RequestMapping (" /bookings")
public class BookingsResource

@Autowired
private BookingService bookingService;

}

At startup, Spring will look up any declared bean of the type, InventoryService,
and inject it. This mechanism reduces the amount of boilerplate code that needs to
be implemented. However, it makes testing a little trickier, as with this code, we do
not have direct access to the bookingService instance variable. Thankfully, Mockito
provides several useful annotations to circumvent this limitation. We can declare our
test class as follows:

@RunWith (MockitoJdUnitRunner.class)
public class BookingsResourceTest

@InjectMocks
private BookingsResource resource;

@Mock
private BookingService bookingService;

}

The first annotation (@org. junit.runner.RunWith) allows us to substitute the
standard JUnit runner for Mockito's. With @org.mockito. InjectMocks, we mark
fields for injection. In addition, we annotate bookingService with @org.mockito.
Mock. This will automatically generate a mock that will be injected into our instance
of BookingsResource. We can then run our test with both the resource and service
classes instantiated for us.

Read more about Mockito on their website at
L http://mockito.org.

[771]

STUDENTS-HUB.com

http://mockito.org
https://students-hub.com

Testing RESTful Web Services

Testing security

Spring has good support for unit testing. Developers can add new dependencies
to their Maven project to include Spring testing support as follows:

<dependency>
<groupld>org. springframework</groupIlds>
<artifactId>spring-test</artifactIds>
<version>4.1.6 .RELEASE</version>
<scope>test</scope>

</dependency>

<dependency>
<groupld>org.springframework.security</groupIlds>
<artifactIds>spring-security-test</artifactIds>
<version>4.0.1.RELEASE</version>
<scope>test</scope>

</dependency>

Because we don't want these dependencies to be included in the released product,
we specify test as the scope. Doing so will only make the libraries available on the
classpath during testing.

In Chapter 7, Dealing with Security, we added security to the booking component
of our sample property management system. For reference, we limited the access
to the RESTful endpoint to retrieve bookings as follows:

@PreAuthorize ("hasRole ('ADMIN') ")
@RequestMapping (value = "/{bookingId}", method =
RequestMethod.GET)
public ApiResponse getBooking(@PathVariable ("bookingId") long
bookingId) {
// omitted

}

With standard unit tests, we cannot validate that only administrators can access this
endpoint. Using Spring's testing support, we can write unit tests for this endpoint
as follows:

@RunWith (SpringJdUnit4ClassRunner.class)
@ContextConfiguration("classpath:booking-test.xml")
public class BookingsResourceTest

@Autowired

private BookingService bookingService;
@Autowired

private BookingsResource resource;

[78]

STUPENTSiUB com www.allitebooks.cor

http://www.allitebooks.org
https://students-hub.com

Chapter 8

@Test (expected =
AuthenticationCredentialsNotFoundException.class)

public void testGetBookingNotLoggedIn() throws Exception {
resource.getBooking (1) ;

@Test (expected = AccessDeniedException.class)

@WithMockUser

public void testGetBookingNotAdmin () throws Exception {
resource.getBooking (1) ;

@Test

@WithMockUser (roles = {"ADMIN"})

public void testGetBookingValidUser () throws Exception {
when (bookingService.getBooking (1)) .thenReturn (new Booking()) ;
assertNotNull (resource.getBooking (1)) ;

}

By annotating the test class with @org. junit.runner.Runwith, we substitute the
standard JUnit runner with Spring's.

Because no authentication is defined in testGetBookingNotLoggedIn (), we expect
an exception to be thrown.

Our second test method declares a user, thanks to @org. springframework.
security.test.context.support.WithMockUser. However, since the user
has the role, USER, by default, we also expect an exception to be thrown.

Finally, the third test method (testGetBookingValiduUser ()) declares a user with
the correct role, and therefore can proceed with retrieving the booking with ID 1.

Integration testing

Where unit testing helps with ensuring correct behavior is exhibited by the
individual classes; integration testing focuses on the interaction between the different
components of a system. The larger the system is, the more importance this form

of testing takes on. The following two sections offer techniques to create effective
integration strategies.

[79]

STUDENTS-HUB.com

https://students-hub.com

Testing RESTful Web Services

Continuous delivery

Continuous delivery is a software engineering practice that advocates the production
of software in short cycles that can be reliably released. Traditionally, once changes
are committed to the code base, a server builds the software and runs the full

test suite. If successful, the software can be deployed automatically to a staging
environment. Integration tests can then be executed against the new version of

the software.

With Maven, we can define a simple means to separate unit tests from integration
tests by their naming conventions; integration tests should have the suffix,
IntegrationTest. The following can then be added to the project descriptor:

<plugins>
<grouplds>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactIds>
<configurations>
<excludes>
<exclude>**/*IntegrationTest.java</exclude>
</excludes>
</configurations>
<executionss>
<execution>
<ids>integration-test</id>
<goals>
<goal>test</goals>
</goals>
<phase>integration-test</phase>
<configurations>
<excludes>
<exclude>none</exclude>
</excludes>
<includes>
<include>**/*IntegrationTest.java</include>
</includes>
</configurations>
</executions>
</executions>
</plugin>

[80]

STUDENTS HUB.com vww allitebooks.conl

http://www.allitebooks.org
https://students-hub.com

Chapter 8

With this configuration, unit tests can be run first. Integration tests can be run once
the software has been deployed to a staging environment.

\ Deployments occur very frequently throughout the lifetime of a software
~ project. It is, therefore, a very good investment to spend time automating
Q the deployment process. It will save the developer's time and facilitate
continuous delivery.

Integration tests with Spring Boot

Spring Boot offers good support for integration testing using handy annotations,
as illustrated in the following code snippet:

@RunWith (SpringJdUnit4ClassRunner.class)
@SpringApplicationConfiguration(classes = WebApplication.class)
@WebAppConfiguration

@IntegrationTest ("integration server:9000")

public class BookingsResourcelntegrationTest

@Test
public void runTests() {
//
}
}

As described previously in this chapter, the @org. junit.runner.RunWith
annotation allows the use of an alternative test runner. In this case, we substitute
JUnit's default runner for Spring's. In addition, we specify what address to connect to
via @org. springframework.boot . test.IntegrationTest. With these annotations,
we can connect to a server that is running our sample booking service and run a suite
of integration tests against it.

M You should refer to the next chapter for code samples to invoke RESTful
web services remotely. The same techniques can be used to implement
integration tests.

[81]

STUDENTS-HUB.com

https://students-hub.com

Testing RESTful Web Services

Postman

As we have briefly discussed in Chapter 5, CRUD Operations in REST, we can leverage
Postman (https://www.getpostman. com) to write test suites in order to validate

our RESTful web service. This type of testing is, effectively, integration testing. For
example, if we write a test that checks room availability through our REST API, we will
be testing the availability, inventory, and booking components of our system. Postman
offers the ability to define collections of tests, as illustrated by the following screenshot:

B\ -

X

listory Collections

%L 8- Rest with Spring
Modified Tuesday June 2, 2015 3:06:146pm

Rest with Spring
Last medified 2 Jun = 3:06PM E('
5requests MNew Room
New Room

Update Room
Update Room
Get Room Get Room
Delete Room

Delete Room

Book
Book

We can quickly run the entire collection of calls to a staging environment and ensure
that the expected responses are returned.

In its free version, Postman does not offer complete support for testing.
/— Developers must obtain a license to add assertions to their calls.

Postman and security

For secure calls, such as the ones described in Chapter 7, Dealing with Security, we
need to instruct Postman to send the correct headers. For HTTP Basic authentication,
we first need to generate a Base64-encoded username and password pair

(for example, cmvVzdDpyb2Nrcw== for rest :rocks), and add the Authorization
header to secure calls:

[82]

STUDENTS HUB.com vww allitebooks.conl

https://www.getpostman.com
http://www.allitebooks.org
https://students-hub.com

Chapter 8

Book
Enter asample description here
“ https://mystagingenv.com/bookings/
URL Params (0} v
Headers (2) ~
Content-Type application/json
Authorization Basic cmVzdDpyb2Nrows==
/=

With this header added, the call will be authenticated on the server and able
to proceed.

Other forms of testing

Besides unit and integration testing, other forms of testing should be considered.
They are described in the next sections.

User Acceptance Testing

User Acceptance Testing (UAT) looks at testing from a user's point of view. In the case
of an AP], the user is a piece of software consuming the service. Regardless of the type
of user, this form of testing is important to ensure that a RESTful web service exposes

a consistent and feature-complete API. UAT tends to be less automated than other
types of testing. However, UAT test managers should ultimately have the final say in
whether a software solution is ready for general availability.

Load testing

Another important criterion in measuring the production readiness of a RESTful
web service is whether it will perform in line with the expected Service Level
Agreements (SLAs) under load. For example, during peak times, the service might
be expected to handle 1,000 requests per second, with an average response time of
no more than 250 milliseconds.

[83]

STUDENTS-HUB.com

https://students-hub.com

Testing RESTful Web Services

There are a number of commercial and open source products to test whether a web
service can handle such load. The most common is the open source software, Apache
JMeter (http://jmeter.apache.org). With JMeter, developers can create test plans
that can be executed at defined rates and capture response times. The screenshot that
follows shows the result of running a test plan that contains one call to our sample
property management system to retrieve the room with ID, 1:

[] [] Graph Results.jmx (/Users/Idewailly/Desktop/Graph Results.jmx) - Apache JMeter (2.13 r1665067)
. 1 -~ I 1 i I = I - | |
Blal ol @ X TIO+[=[%[[r][» @6 %|%[% «d ot
¥ O Restwith Spring
o
v [Main User Summary Report

i HTTP Authorization M
4§ HTTP Request Default;

Name: Summary Report

;-’ Get Room Comments:
=] Graph Results Write results to file / Read from file
=l Filename Browse... Log/Display Only: Errors Successes Configure
75| WorkBench
Label # Samples Average Min Max Std. Dav. Error % Throughput KB/sec Avg. Bytes
Get Room 1000 11 1 63 7.43 0.00% 252.5/sec 141.15 572.4
TOTAL 1000 11 1 63 7.43 0.00% 252.5/sec 141.15 572.4

We executed http://localhost:8080/rooms/1 1,000 times concurrently (with 10
threads), and the average response time was 11 ms. By increasing the number of
threads, we can simulate more load on the service.

Simulating real production load is not easy to achieve. Therefore, service
designers may see discrepancies between performance under simulated
% load and real load. This fact does not take away the value of load testing.
’ It merely suggests that service designers should not rely solely on load
testing results to ensure that SLAs are met.

Summary

In this chapter, we discussed how developers can go about thoroughly testing
RESTful web services. Beyond traditional unit testing, we covered security testing,
integration testing, and briefly touched upon other types of testing such as UAT
and load testing.

So far in this book, we have looked at web services from the server's side. However,
for any such service, and indeed any piece of software, to be useful, it needs to be
used. In our context, a RESTful web service is useful only if it is consumed by clients.

In the next chapter, we will look at how to build a client using Spring.

[84]

STUDENTS HUB.com vww allitebooks.conl

http://jmeter.apache.org
http://www.allitebooks.org
https://students-hub.com

Building a REST Client

Having focused on the server side of RESTful web services so far, let's turn the tables
and look at how we can build a client for our sample property management system
with Spring. In this chapter, we will discuss the following topics:

* The basic setup for building a RESTful service client with Spring
* Invoking service endpoints

* Remote versus local clients

* Handling security

* Exception handling

Spring offers useful tools to quickly and efficiently build clients, as we will see
throughout this chapter.

The basic setup

Client libraries should be self-contained and portable, so that consumers of RESTful
web services may use them. It would be tempting to share code between the server
side and client side. Doing so would, however, make the client and server code
tightly coupled and hinder the portability of the client library.

In the context of our sample property management service, we will build the client
library as a new Maven module. This module will need the following dependencies:

<dependencys>
<groupIds>org.springframework</groupIld>
<artifactId>spring-web</artifactIds>
<version>4.1.6.RELEASE</version>

</dependency>

<dependencys>
<groupIds>commons-logging</grouplds>

[85]

STUDENTS-HUB.com

https://students-hub.com

Building a REST Client

<artifactId>commons-logging</artifactIds>
<version>1.1.3</version>

</dependency>

<dependency>
<groupId>com. fasterxml.jackson.core</groupId>
<artifactId>jackson-databind</artifactId>
<version>2.3.2</version>

</dependency>

To build a RESTful client with Spring, we need, at minimum, a dependency on
Spring's web module. In addition, Spring requires the Apache commons-logging
library at runtime. And finally, we will leverage Jackson to perform the data
binding between our Java classes and their JSON representations.

Declaring a client

With these dependencies in place, let's jump right into building a client for
our sample property management system. We will start with the Inventory
component, using the following (simplified) client interface:

public interface InventoryServiceClient
public Room getRoom(long roomId) ;

}

This interface allows the retrieving of a room by its identifier.

The next section discusses why it is a good idea to declare our
—"client as an interface.

We can now start implementing our client:

public class RemotelInventoryServiceClient implements
InventoryServiceClient ({

private final String serviceUrl;
private final RestTemplate template;

public RemoteInventoryServiceClient (String serviceUrl) {
this.serviceUrl = serviceUrl;
template = new RestTemplate() ;

}

@Override
public Room getRoom(long roomId)
ParameterizedTypeReference<ApiResponse<Room>> typeReference =
new ParameterizedTypeReference<ApiResponse<Rooms>>() {};

[86]

STUPENTSiUB com www.allitebooks.cor

http://www.allitebooks.org
https://students-hub.com

Chapter 9

return (Room) ResponseHandler.handle (
() -> template.exchange (serviceUrl + "/rooms/" + roomId,
HttpMethod.GET, null, typeReference) .getBody()) ;

}
}

The main class Spring provides us with is org. springframework.web.client.
RestTemplate. This class lets us make HTTP calls to our backend server by using
RestTemplate.exchange ().

As discussed in Chapter 4, Data Representation, our service responses are wrapped in
a common envelope format that includes information about the status of the request.
Since all responses will possess the same format, we can create a utility method

to handle them in a consistent manner. This is the purpose of ResponseHandler.
handle ().

Since we use generic types to specify the type of payload responses to be contained,
we need to pass that information to Spring so that it can extract the data correctly.
This is achieved by declaring a ParameterizedTypeReference.

Note that no particular setup is required for JSON marshaling. It will
= happen automatically thanks to having Jackson on the classpath.

Remote versus local clients

As we have previously seen in this chapter, our clients were defined by using
interfaces. The main motivation for this added level of abstraction is so that we

can substitute a remote implementation for a local one. Let's say that component A
depends on component B. If these components were deployed on separate servers,
we would want to use an implementation of B's client that makes remote calls to the
component. If, however, both components co-existed within the same JVM, using

a remote client would incur unnecessary network latency. Substituting the client
for one that directly invokes component B's Java implementation ensures that no
networking takes place, thus reducing latency.

. This pattern is commonly used in Microservice architectures (https://
% en.wikipedia.org/wiki/Microservices), which are becoming
~— very popular. This style of architecture advocates the breaking up of
complex applications into small, independent components.

[87]

STUDENTS-HUB.com

https://en.wikipedia.org/wiki/Microservices
https://en.wikipedia.org/wiki/Microservices
https://students-hub.com

Building a REST Client

Availability and booking services

Let's look at the availability and booking components of our sample property
management system. The availability service is dependent on the booking service.
To deal with this, we define a simple client interface for the booking service,

as shown here:

public interface BookingServiceClient

/**
* Looks up the booking with the given identifier.

*

* @param bookingId the booking identifier to look up

*
* @return the booking with the given ID
*/

public Booking getBooking (long bookingId) ;

}

This client interface defines a single method to look up a booking by its identifier.

Our first deployment approach is to have both components running in separate
JVMs. Therefore, we implement a remote client that the availability service can
leverage:

public class RemoteBookingServiceClient implements
BookingServiceClient

private final String serviceUrl;
private final RestTemplate template;

public RemoteBookingServiceClient (String serviceUrl)

if (serviceUrl == null) {
throw new IllegalArgumentException ("serviceUrl cannot
be null");
this.serviceUrl = serviceUrl;

template = new RestTemplate() ;

@Override

public Booking getBooking(long bookingId)
//omitted to clarity
return (Booking) ResponseHandler.handle (

[88]

STUPENTSiUB com www.allitebooks.cor

http://www.allitebooks.org
https://students-hub.com

Chapter 9

() -> template.exchange (serviceUrl + "/bookings/" +
bookingId, HttpMethod.GET, null, typeReference) .getBody()) ;

}

In previous sections of this chapter, we've covered how to use
org.springframework.web.client.RestTemplate to remotely invoke the service.

Now, to reduce latency, we decide to run both components in the same JVM. Using
this client implementation will negate any benefit of hosting both services in the
same process. Therefore, we need a new implementation:

public class LocalBookingServiceClient implements BookingServiceClient

{

@Autowired
private BookingService bookingService;

@Override
public Booking getBooking(long bookingId) {

com.packtpub.springrest.model.Booking booking =
bookingService.getBooking (bookingId) ;

Booking clientBooking = new Booking() ;
clientBooking.setId(booking.getId()) ;

// omitted setting other fields for clarity
return clientBooking;

}

With this new implementation, we simply delegate the booking retrieval to the
actual service, bypassing any networking. We then need to transform the data into
what the client invoker is expecting.

Handling security

In Chapter 7, Dealing with Security, we learned to apply security to RESTful endpoints.
For instance, we discussed how to set up the HTTP Basic authentication for the
booking service. We can expand on the previous section's example and add security
handling. The next two sections illustrate how to handle both the Basic and Digest
authentications.

[89]

STUDENTS-HUB.com

https://students-hub.com

Building a REST Client

The Basic authentication

This authentication scheme requires the Authorization header to contain the
username/ password pair encoded in Base64. This is easily achieved by modifying
the client as follows:

public RemoteBookingServiceClient (String serviceUrl,
String username, String password) {

template = new RestTemplate() ;

String credentials = Base64.getEncoder () .encodeToString((username +
":" + password) .getBytes());

template.getInterceptors() .add((request, body, execution) -> {

request.getHeaders () .add ("Authorization", "Basic " +
credentials);

return execution.execute (request, body) ;
DE

This new constructor takes the username and password to authenticate the

client. It then generates the Base64-encoded credentials and, in order to add the
Authorization token to every request, defines a new org. springframework.http.
client.ClientHttpRequestInterceptor. The interceptor adds the header in the
appropriate format and allows the request to be executed.

The Digest authentication

For this authentication scheme, let's look at how developers can choose Apache's
HttpClient (https://hc.apache.org) as the underlying HTTP client framework.
For this purpose, we need to add the following dependency to our project:

<dependencys>
<groupIds>org.apache.httpcomponents</groupIld>
<artifactId>httpclient</artifactIds>
<version>4.3.4</versions>

</dependency>

And, we change the way we create our RestTemplate instance:

CredentialsProvider provider = new BasicCredentialsProvider () ;

CloseableHttpClient client = HttpClientBuilder.create().
setDefaultCredentialsProvider (provider) .build () ;

UsernamePasswordCredentials credentials = new
UsernamePasswordCredentials (username, password) ;

[90]

STUDENTS HUB com www .allitebooks.conf

https://hc.apache.org
http://www.allitebooks.org
https://students-hub.com

Chapter 9

provider.setCredentials (AuthScope.ANY, credentials);

RestTemplate template = new RestTemplate (new DigestAuthHttpRequestFact
ory (host, client));

By passing a request factory to our template, we are able to leverage HttpClient
to manage the Digest authentication. We need to create an extension of
HttpComponentsClientHttpRequestFactory as follows:

public class DigestAuthHttpRequestFactory extends
HttpComponentsClientHttpRequestFactory {

@Override
protected HttpContext createHttpContext (HttpMethod httpMethod,
URI uri) {

AuthCache authCache = new BasicAuthCache() ;
authCache.put (host, new DigestScheme()) ;
BasicHttpContext localcontext = new BasicHttpContext () ;
localcontext.setAttribute (AUTH CACHE, authCache) ;
return localcontext;

}

This class creates an HTTP context that is set up to store the Digest credentials. We
instruct HttpClient to handle authentication with the Digest scheme by creating a
new instance of org.apache.http.impl.auth.DigestScheme. With this setup, our
client class transparently deals with authentication in the same way that it did with

the Basic authentication scheme in the previous section.

HTTP public key pinning

HTTP public key pinning (HPKP) is a Trust on First Use security technique that
prevents impersonations of fraudulent SSL certificates. Responses from RESTful web
services supporting HPKP will include the header, Public-Key-Pins, containing

a hash of their SSL certificate's Subject Public Key Information (SPKI). Client
applications should cache this value when they first receive it, and validate any
subsequent responses with the previously cached header value. If the values

do not match, client applications can prevent further communication with the
fraudulent server.

While the Spring Framework does not provide support for HPKP out of the box,
it would be quite straightforward to implement this security feature by using a
request filter.

[91]

STUDENTS-HUB.com

https://students-hub.com

Building a REST Client

You can read more about HTTP public key signing at
s https://en.wikipedia.org/wiki/HTTP_Public Key Pinning.

Exception handling

Chapter 3, The First Endpoint, touched upon defining a consistent response format
including error codes and error descriptions. The corollary on the client side is to
define an exception that encapsulates information about why a particular call failed.
We could, therefore, define the following exception:

public class ClientException extends RuntimeException

private final int errorCode;
private final String errorDescription;

public ClientException (ApiError error) {
super (error.getErrorCode() + ": " + error.getDescription());
this.errorCode = error.getErrorCode () ;
this.errorDescription = error.getDescription() ;

}

public int getErrorCode() {
return errorCode;

public String getErrorDescription() {
return errorDescription;

}
}

Clients consuming a RESTful web service with such exception handling will have

a consistent way to manage and report errors. There are, however, a few situations
where generic exception handling requires more work on the client side. For example,
the server might generate a specific error when it's unable to handle the current load
and requires clients to re-issue their requests after a delay of a few seconds.

In such a situation, it would make the service consumer's job easier if they were able
to catch a specific exception, rather than have to introspect the generic exception. The
client implementation could declare an extension of ClientException called, for
example, ServerOverloadedClientException, and throw this exception instead

of the generic one where relevant.

[92]

STUPENTSiUB com www.allitebooks.cor

https://en.wikipedia.org/wiki/HTTP_Public_Key_Pinning
http://www.allitebooks.org
https://students-hub.com

Chapter 9

The attentive reader will have noticed that we declared ClientException as an
unchecked exception. This gives us the ability to manage our exception handling
without exposing it.

The decision of using checked or unchecked exceptions is often more of a
. personal preference than a technically motivated choice. Being required
to catch an exception on every method of a client library might prove
% rather cumbersome. Equally, not having to catch exceptions might lead
consumers to not handle error situations that they could, otherwise,
recover from.

Summary

With this penultimate chapter, you have learned to build a RESTful web service
client, work with authentication, as well as deal with exception handling. This nicely
completes the story of building RESTful web services using the Spring Framework.

In the last and final chapter of this book, we will look at how such services can be
deployed and scaled to handle large volumes of requests.

[93]

STUDENTS-HUB.com

https://students-hub.com

STUDENTSHUB.com lvww.allitebooks.con

http://www.allitebooks.org
https://students-hub.com

10

Scaling a RESTHul
Web Service

In today's world, the Internet has taken a central role. And with popular web services,
such as Facebook or Twitter, handling billions of requests daily, scalability is a major
challenge that service designers are facing. This chapter aims at providing ideas and
techniques that can be applied by service designers to deal with scalability concerns.

In this chapter, we will discuss the following topics:

* The benefits of clustering
* Load balancing
* Distributed caching

* Asynchronous communications

Clustering

Before we look at clustering techniques, let's discuss the concepts and differences
between scaling up and scaling out.

Scaling up versus scaling out

One way to deal with increased traffic is to scale a web service's underlying
infrastructure vertically, or up. By leveraging the latest server architectures

with powerful CPUs and sufficient memory, service designers can improve the
throughput of their systems. However, this approach is bounded by the servers'
physical limitations. Once these limitations are reached, throughput can no longer be
improved. In addition, this approach may not make economic sense. Indeed, the cost
of the latest generation of servers might prove to be prohibitive.

[95]

STUDENTS-HUB.com

https://students-hub.com

Scaling a RESTful Web Service

\ This technique is often used in data-tiers. Due to the deployment
~ complexity of database sharding, it often makes more sense to scale up
Q the persistence infrastructure. This allows you to delay the addition of
this extra complexity until it is no longer avoidable.

By contrast, scaling horizontally, or out, a system revolves around leveraging
commodity servers in large numbers. Instead of having one server handling all the
traffic, a clustered infrastructure will rely on multiple servers, each handling only
a fraction of the incoming traffic. This is what we refer to as clustering.

This approach is only possible with the use of a load balancing solution, which will
be discussed later in this chapter.

The benefits of clustered systems

The obvious and main advantage of a clustered system is its ability to scale as traffic
increases. That said, other benefits include the following:

* Fault tolerance: Because a clustered architecture relies on multiple servers,
hardware failure does not (necessarily) result in a loss of service. A cluster
should be provisioned to cater for the loss of at least one node.

* High Availability: Since multiple servers form a cluster, it is possible to
perform maintenance operations, such as restarts or deployments, without
downtime. Rolling restarts, for example, rely on restarting each node one at
a time, moving on to the next one only when the node is back online. This
means that no loss of service needs to be incurred during normal operation.

On the other hand, one of the challenges that service designers face with clustering
is state management. If a system is stateless, then clustering is straightforward. If
the system is stateful, however, some form of state sharing must be devised, and the
complexity of clustering significantly increases. It is therefore no surprise that one of
REST's principles is statelessness.

Load balancing

The most useful tool at the disposition of service designers to support clustering
is a load balancer. Using a variety of algorithms (for example, round robin or
least connection), a load balancer component distributes incoming requests to
multiple backend servers for processing. The following diagram illustrates such
an infrastructure:

[96]

STUDENTS-HUB.com lNWW allitebooks. CO[ﬂ

http://www.allitebooks.org
https://students-hub.com

Chapter 10

4
m

Load Balancer

i

i
i

Application Server Application Server Application Server

Load balancing solutions range from enterprise-grade commercial appliances,

such as F5's BIG-IP (https://£5.com/products/big-ip), to open source software
packages such as HAProxy (http://www.haproxy.org). At its core, load balancing
plays a straightforward (albeit critical) role of distributing load across a fleet of
backend servers. It usually does so with a form of health monitoring, so as to only
forward traffic to healthy backend servers. This dynamicity has the added benefit
of allowing quick scaling, up or down, of the backend infrastructure based on the
volume of requests.

Besides distributing the incoming traffic, load balancers provide a level of insulation
between the frontend and backend infrastructures. The frontend servers only need
to know about the load balancer to pass the traffic through.

Load-balancing solutions typically offer a form of clustering for High
% Availability purposes. The load-balancing infrastructure is the entry point
"~ of the entire system and must not become a single point of failure.

[97]

STUDENTS-HUB.com

https://f5.com/products/big-ip
http://www.haproxy.org
https://students-hub.com

Scaling a RESTful Web Service

Linear scalability

Linear scalability refers to the idea that adding nodes to a cluster will increase the
capacity at a constant rate. In other words, linear scalability implies that cluster
management overheads are negligible. It is an ideal situation, but it is difficult to
achieve in real world deployments. Indeed, maintaining a cluster of servers may
require some form of coordination between the servers. The more the servers
added to the cluster, the more the management required. In large deployments,
this coordination could lead to network saturation.

Another side effect of scaling the application-tier is that the performance bottlenecks
can move down to the data-tier. For example, let's consider that one external
request to the service results in two database queries: one query to validate security
credentials and one to retrieve the requested data. Now, let's assume an application
server can handle 100 requests per second. At full capacity, the data-tier will need to
handle 200 queries per second. Clustering the application-tier will result in higher
throughput for that tier. If the cluster is composed of five nodes, the database will
need to handle 1,000 queries per second for the overall system to scale linearly.
Scaling databases is, however, not a simple exercise.

Fortunately, caching techniques can be applied to the data-tier (as well as to the
application-tier) to help reduce load on the persistence layer. These techniques
are discussed in the next section.

Distributed caching

Beyond the caching techniques that we discussed in Chapter 6, Performance, which
help improve the overall latency of a RESTful web service, other caching approaches
can be employed to improve the scalability of such a service.

Data-tier caching

Service designers can choose to add a caching layer on top of the database. This
is a common strategy for improving (read) throughput. In our sample property
management system, we use Hibernate to access the database. Hibernate offers
two different levels of caching. They are discussed next.

First-level caching

This level is built into Hibernate as a means of reducing SQL update statements
being issued. This is an in-memory cache that requires no specific setup.

[98]

STUDENTS-HUB.com lNWW allitebooks. CO[ﬂ

http://www.allitebooks.org
https://students-hub.com

Chapter 10

Second-level caching

The second level of caching is optional and fully configurable. The caching strategy
to employ can be defined per entity and multiple providers are supported out of
the box:

* Ehcache (http://ehcache.org): This is a Java open source cache that
supports caching data in memory and on disk. Ehcache can be set up as
a distributed cache. It is a popular choice for second-level caching with
Hibernate.

* OSCache (https://java.net/projects/oscache): This is a lesser-known
Java caching framework. This framework is no longer under development
and is listed here for the sake of completion.

* JBoss Cache (http://jbosscache. jboss.org): The aim of this caching
framework is to provide enterprise-grade clustering solutions. It is based
on the JGroups multicast library. It is fully transactional and clustered.

Application-tier caching

In addition to the data-tier caching discussed previously, API designers may also
choose to apply some caching in the application-tier. For instance, the result of time-
consuming computations could be stored in a cache, rather than performed on every
request. For this purpose, a number of popular options exist:

* Memcached (http://memcached.org): This is the most common choice
when it comes to distributed caching. Memcached is a free, open source, high
performance object caching solution that is used in many large-scale systems.
It offers a simple, generic API as well as bindings in most popular languages.

* Redis (http://redis.io): This is a new, more modern alternative
to Memcached. It is an advanced key-value cache. Besides its caching
capabilities, Redis also offers computational features. It is often preferred
to Memcached for its speed and advanced capabilities.

* Hazelcast (http://hazelcast.org): This an open source in-memory data
grid. It simplifies distributed computing by providing a simple APl and a
straightforward deployment strategy. Hazelcast also offers a Memcached
client library, so applications using a Memcached cluster can easily write
to a Hazelcast cluster.

* Ehcache: As described in the previous section, Ehcache provides clustered
caching capabilities. It is a popular solution for small to medium scale
deployments.

[99]

STUDENTS-HUB.com

http://ehcache.org
https://java.net/projects/oscache
http://jbosscache.jboss.org
http://memcached.org
http://redis.io
http://hazelcast.org
https://students-hub.com

Scaling a RESTful Web Service

* Riak (http://basho.com/products/#riak): This is a distributed NoSQL
key-value data store that offers high availability and fault tolerance. Data
can be stored in memory, disk, or a combination of both. Riak is written in
Erlang. It trades off performance for strong data integrity guarantees.

* Aerospike (http://www.aerospike.com): This is an open source, real-time
NoSQL database and key-value store. This flash-optimized in-memory
caching solution that is written in C, offers a good compromise between
performance and cost.

Which solution you should choose depends on many factors such as performance
requirements, data integrity, fault tolerance, and cost. Regardless of the solution,
however, adding an effective distributed caching layer to the application-tier of

a web service will give designers the necessary tools to cluster their services.

Asynchronous communication

Another method to help with scalability is using an asynchronous form of
communication between the components of a system. Asynchronous communication
is a form of communication where a measurable amount of time passes between

a request being issued and the availability of the response. For instance, a
photographer's portfolio system typically requires generating thumbnails of photos,
as well as watermarking originals. These processes can be time consuming, and
therefore a synchronous style of communication isn't suitable. The image-processing
component of this system would benefit from providing a callback mechanism that
notifies you of the tasks' completion.

In addition, by adding this level of abstraction between components, we enable
service designers to deal with scalability concerns independently. In the preceding
example, we might require computation-optimized servers to handle image-
processing tasks, while other components might only require general-purpose
commodity servers.

Some possible asynchronous communication approaches include:

* Database polling: This technique uses a database table as a queue. The
consumers poll the database at regular intervals to retrieve messages
from the table.

[100]

STUDENTS-HUB.com lNWW allitebooks. CO[ﬂ

http://basho.com/products/#riak
http://www.aerospike.com
http://www.allitebooks.org
https://students-hub.com

Chapter 10

* Message Oriented Middleware (MOM): This is an infrastructure,
supporting the sending and receiving of messages between distributed
systems, as illustrated by the following diagram:

Component A Messaging Component B
Provider

RabbitMQ (https://www.rabbitmg.com) and Apache ActiveMQ
(http://activemg.apache.org) are good examples of MOMs.

* Asynchronous RESTful API: By annotating an endpoint with
@org.springframework.scheduling.annotation.Async and returning
ajava.util.concurrent.Future package, it is possible to build an
asynchronous RESTful operation.

Now, let's look into each of the techniques in detail.

Database polling is mentioned here because this technique is used in real-world
(small-scale) systems. While this technique works for low volume, small-scale
systems, it is a very limited messaging approach and will perform poorly under
heavy load (for example, with many consumers). It also lacks the sophistication
of MOM solutions.

MOM's purpose is to provide a dedicated infrastructure for the exchange of
messages between the components of a system. Such a system typically offers
different communication patterns, such as producer/consumer, where consumers
compete with each other for messages, and publisher/subscriber, where all the
subscribers receive their own copies of messages. A MOM solution will also typically
provide durability guarantees (messages are not lost in the event of a crash) and
offer some administration tools.

While an asynchronous RESTful API provides some asynchronicity, it lacks many
advantages that MOM-based solutions offer. Furthermore, making asynchronous
calls over what is essentially a synchronous protocol (HTTP) is somewhat clunky
and should only be considered if using a MOM is not an option.

[101]

STUDENTS-HUB.com

https://www.rabbitmq.com
http://activemq.apache.org
https://students-hub.com

Scaling a RESTful Web Service

In addition to helping with scalability, asynchronous communication is a great
mechanism for ensuring loose coupling between components. In the case of a
messaging middleware solution, each component only needs to know about where
to publish messages to or where to consume them from. They do not require prior
knowledge of another component's topology. Furthermore, if one component is
down, messages can sit in a queue until the consuming component is available again.

Summary

Hopefully, this chapter has given the reader food for thought and techniques to
apply to scale a RESTful web service. Ultimately, scaling a system is a complex
exercise and no one solution fits all needs. The most important aspects for designers
to bear in mind are that they should avoid single points of failure and prefer stateless
systems over stateful ones to the extent that it is possible to do so (not all applications
lend themselves to statelessness). Avoiding tight coupling between the components
of a system through well-defined interfaces and asynchronous communication
should also be high on the agenda.

This chapter also concludes our tour of building performant, secure, and scalable
RESTful web services with the Spring Framework. You should now be armed with
sufficient knowledge to build such a service in a commercial environment. This book
will make you realize that REST is a software architecture approach that has become
very popular because of its portability, simplicity, and non-reliance on heavy and
complex frameworks, which is more common with SOAP-based web services.

[102]

STUDENTS HUB com www .allitebooks.conf

http://www.allitebooks.org
https://students-hub.com

A

Aerospike
URL 100
Apache ActiveMQ
URL 101
Apache Maven
about 7,8
Central Repository, URL 9
dependency management 8,9
URL 7
API evolutions
about 33
HATEOAS 33
versioning strategies 33
API response format
about 29
envelope format 29
JSON Responses, customizing 31, 32
application-tier caching
Aerospike 100
Ehcache 99
Hazelcast 99
Memcached 99
Redis 99
Riak 100
architecture, RESTful web service
about 4
Availability Service 5
Billing Service 5
Booking Service 5
Inventory Service 5
asynchronous communication
about 100-102
asynchronous RESTful API 101

Index

database polling 100

Message Oriented Middleware (MOM) 101
authentication

about 61

HTTP Basic authentication 61

HTTP Digest authentication 63, 64

JWT 65

methods 65

OAuth2 65

token-based authentication 64
authorization 65
authorization, with Spring

about 65

resource annotations 67

URL mapping 66, 67

B

Base64 61

Berypt encryption
URL 62

BIG-IP
URL 97

booking service
about 59, 60
REST resource 60

C

Cache-Control
about 49
ETags 51
Last-Modified /If-Modified-Since
headers 51
no caching 50
private/public caching 49, 50

STUDENTS-HUB.com

[103]

https://students-hub.com

clustered systems, benefits
fault tolerance 96
High Availability 96
clustering
about 95
clustered systems, benefits 96
linear scalability 98
load balancing 96, 97
scaling up, versus scaling out 95, 96
CONNECT method 38
CRUD operations
mapping, to HTTP methods 37-39

D

data model
about 5
booking 6
invoice 6
pricing 6
room 6
RoomCategory 6
data representation 25
data-tier caching
about 98
first-level caching 98
second-level caching 99
Data-Transfer-Object design pattern
about 27-29
URL 28
Data Transfer Object (DTO) pattern 22
deflate format 48
DELETE method 38
distributed caching
about 98
application-tier caching 99, 100
data-tier caching 98

E

EasyMock
URL 76
Ehcache
URL 99
encryption
about 70
sensitive data, storing 70, 71

envelope format
about 29
error management 30
pagination support 30
ETags 51
exception handling 92

G

GET method 38
Gradle
about 9,10
dependency management 10, 11
URL 10
Groovy-based declarative syntax 9
GZIP compression, in RESTful
web services
about 48
Spring Boot 49
gzip format 48

H

H2 database
URL 6
HAProxy
URL 97
Hazelcast
URL 99
HEAD method 38
Hibernate 98
HTTP 1
HTTP Basic authentication
about 61
using, with Spring 61-63
HTTP caching
about 49
Cache-Control directives 49
HttpClient
URL 90
HTTP compression
about 47
content negotiation 48
deflate format 48
GZIP compression, in RESTful
web services 48
gzip data format 48

STUDENTS-HUB.com

[104]

[vww allitebooks.cond

http://www.allitebooks.org
https://students-hub.com

HTTP Digest authentication
about 63, 64
URL 64
HTTP method mapping 22
HTTP methods
CONNECT 38
CRUD operations, mapping to 37
DELETE 38
GET 38
HEAD 38
OPTIONS 37
overriding 45
POST 38
PUT 38
TRACE 38
HTTP public key pinning (HPKP)
about 91
URL 92
HTTPS 70
Hypermedia as the Engine of Application
State (HATEOAS) 2, 33

IDEs 14
input validation
about 68
Java Bean annotations 68
integration testing
about 79
continuous delivery 80, 81
Postman 82
using, with Spring Boot 81
Intelli] IDEA 14
Inventory service
about 19-21
running 24
ISO 8601 format
URL 53

J

Java Bean annotations
about 68
bookings, validating 69, 70
regular expressions 69

Javadoc
URL 32
Java new stream API
URL 24
Java Persistence API (JPA)
about 20
URL 20
JBoss Cache
URL 99
jMock
URL 76
JUnit
URL 73
JWT
about 65
URL 65

L

load testing 83, 84

Maven modules

all 12

availability 11

billing 11

booking 11

common 11

inventory 11

URL 12
MDS5 hash 63
Memcached

URL 99
Microservice architectures

URL 87
mocking

about 74,75

simple mocking 75
mocking library

implementation stubbing 76
Mockito

about 76

URL 77

using, with Spring 77

STUDENTS-HUB.com

[105]

https://students-hub.com

Model View Controller pattern endpoint, updating 43
about 21 JSON, versus form data 41

and REST 21 update requests, testing 43
HTTP method mapping 22 updating 42

path mapping 22 REST

request mapping 22 about 1

and Model View Controller pattern 21
principles 1

request parameter mapping 23

0 XML 2
REST Client setup

OAuth2 about 85, 86

about 65 client, declaring 86, 87

URL 65 RESTful API 4
Object-Relational Mapping (ORM) 6 RESTful web service
OPTIONS method 37 about 4
OSCache architecture 4,5

URL 99 data model 5, 6

developing 14

P favorite IDE, working from 14, 15

making executable 15, 16

path mapping 22 starting, with Maven 16, 17

Postman

about 82 REST principles

i about 1
security 82 Soring F "3
URL 82 and Spring Framewor

cacheable 2
client/server model 2
code on demand 3
layered system 3
stateless 2

POST method 38

Pragma header 50

Project Object Model (POM) 8
PUT method 38

R uniform interface 2
Riak
RabbitMQ URL 100
URL 101 room availability service
Redis about 51
URL 99 caching, with ETags 56, 57
remote, versus local clients HTTP caching, adding 54-56

about 87 implementation overview 51, 52
REST resource 52-54

availability service 88, 89
RoomController 21

booking service 88, 89
Representational State Transfer. See REST
request mapping 22 S
request parameter mapping 23
resources

creating 39, 40

deleting 44

endpoints, testing 40, 41

sample web service
Service Module, anatomy 12,13
structure 11,12

[106]

STUDENTS-HUB.com

[vww allitebooks.cond

http://www.allitebooks.org
https://students-hub.com

second-level caching

about 99

Ehcache 99

JBoss Cache 99

OSCache 99
security

handling 89

testing 78,79
security, handling

Basic authentication 90

Digest authentication 90, 91

HTTP public key pinning (HPKP) 91
Service Level Agreements (SLAs) 84
Service Module

anatomy 12,13

local, versus remote service

invocations 14

Simple Object Access Protocol (SOAP) 1
Spring

used, for authorization 65

using, with Mockito 77
Spring Boot

URL 16

using, with integration testing 81
Spring controllers

unit testing 73, 74
Spring Framework

about 3

and REST principles 3
Spring Web MVC

URL 3

Subject Public Key Information (SPKI) 91

T

testing

about 73

load testing 83

types 83

User Acceptance Testing (UAT) 83
token-based authentication 64, 65
Tomcat instance 24
TRACE method 38
Trust on First Use security technique 91

U

Uniform Resource Identifiers (URIs) 2, 37
UNIX times

URL 53
User Acceptance Testing (UAT) 83

\'

Value-Object design pattern 29
versioning strategies
about 33
other approaches 35
representation versioning 34
URI versioning 33, 34

w

web services 1

X

XML-based communication protocol 1

STUDENTS-HUB.com

[107]

https://students-hub.com

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: A Few Basics
	REST principles
	Uniform interface
	Client-Server
	Stateless
	Cacheable
	Layered system
	Code on demand

	The Spring Framework and REST
	Our RESTful web service
	Architecture
	Data model

	Summary

	Chapter 2: Building RESTful
Web Services with
Maven and Gradle
	Apache Maven
	Dependency management in Apache Maven

	Gradle
	Dependency management in Gradle

	The structure of our sample web service
	The anatomy of a Service Module
	Local versus Remote Service Invocations

	Developing RESTful web services
	Working with your favorite IDE
	Making services executable
	Starting services with Maven

	Summary

	Chapter 3: The First Endpoint
	The Inventory service
	REST and the MVC pattern
	Request mapping
	Path mapping
	HTTP method mapping
	Request parameter mapping

	Running the service
	A few words on data representation
	Summary

	Chapter 4: Data Representation
	The Data-Transfer-Object design pattern
	The API response format
	The envelope format
	Error management
	Pagination support

	Customizing JSON responses

	API evolutions
	HATEOAS
	Versioning strategies
	URI versioning
	Representation versioning
	Other approaches

	Summary

	Chapter 5: CRUD Operations in REST
	Mapping CRUD operations to HTTP methods
	Creating resources
	Quickly testing endpoints
	JSON versus form data

	Updating resources
	The update endpoint
	Testing update requests

	Deleting resources
	Overriding the HTTP method
	Summary

	Chapter 6: Performance
	HTTP compression
	Content negotiation
	gzip or deflate?
	gzip compression in RESTful web services
	Spring Boot

	HTTP caching
	Cache-Control
	Private/Public caching
	No caching
	ETags
	Last-Modified/If-Modified-Since headers

	Room availability
	An overview of implementation
	The REST resource
	Adding HTTP caching
	Caching with ETags

	Summary

	Chapter 7: Dealing with Security
	The booking service
	The REST resource

	Authentication
	HTTP Basic authentication
	Using Basic authentication with Spring

	HTTP Digest authentication
	Token-based authentication
	Other authentication methods

	Authorization
	Authorization with Spring
	URL mapping
	Resource annotations

	Input validation
	Java Bean annotations
	Regular expressions
	Validating bookings

	Encryption
	Storing sensitive data

	Summary

	Chapter 8: Testing RESTful Web Services
	Unit testing Spring controllers
	Mocking
	Simple mocking
	Implementation stubbing with a mocking library
	Mockito and Spring

	Testing security
	Integration testing
	Continuous delivery
	Integration tests with Spring Boot
	Postman
	Postman and security

	Other forms of testing
	User Acceptance Testing
	Load testing

	Summary

	Chapter 9: Building a REST Client
	The basic setup
	Declaring a client

	Remote versus local clients
	Availability and booking services

	Handling security
	The Basic authentication
	The Digest authentication
	HTTP public key pinning

	Exception handling
	Summary

	Chapter 10: Scaling a RESTful Web Service
	Clustering
	Scaling up versus scaling out
	The benefits of clustered systems
	Load balancing
	Linear scalability

	Distributed caching
	Data-tier caching
	First-level caching
	Second-level caching

	Application-tier caching

	Asynchronous communication
	Summary

	Index

