
Dynamic Branch Prediction

Special Thanks to Dr. Muhamed Mudawar (KFUPM) and Dr.
Onur Mutlu (ETHZ) for most of the Slides

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Recall: Control Dependence

 Question: What should the fetch PC be in the next cycle?

 Answer: The address of the next instruction

 All instructions are control dependent on previous ones. Why?

 If the fetched instruction is a non-control-flow instruction:

 Next Fetch PC is the address of the next-sequential instruction

 Easy to determine if we know the size of the fetched instruction

 If the instruction that is fetched is a control-flow instruction:

 How do we determine the next Fetch PC?

 In fact, how do we even know whether or not the fetched

instruction is a control-flow instruction?

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Branch Types

Type Direction at fetch
time

Number of
possible next

fetch addresses?

When is next fetch
address resolved?

Conditional Unknown 2 Execution (register
dependent)

Unconditional Always taken 1 Decode (PC + offset)

Call Always taken 1 Decode (PC + offset)

Return Always taken Many Execution (register
dependent)

Indirect Always taken Many Execution (register
dependent)

Different branch types can be handled differently

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of dynamic

instructions.

 Potential solutions if the instruction is a control-flow instruction:

 Stall the pipeline until we know the next fetch address

 Always Guess Next PC = PC + 4

 Reducing the Branch Misprediction Penalty

 Employ delayed branching (branch delay slot)

 Eliminate control-flow instructions (predicated execution)

 Guess the next fetch address (branch prediction)

 Do something else (fine-grained multithreading)

 Fetch from both possible paths (if you know the addresses of both

possible paths) (multipath execution)

4Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Always Guess NextPC = PC + 4

 Always predict the next sequential instruction is the next

instruction to be executed

 This is a form of next fetch address prediction (and branch

prediction)

 How can you make this more effective?

 Idea: Maximize the chances that the next sequential instruction is

the next instruction to be executed

 Software: Lay out the control flow graph such that the “likely next instruction”

is on the not-taken path of a branch

 Profile guided code positioning

 Hardware: ??? (how can you do this in hardware…)

 Cache traces of executed instructions Trace cache

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

PC
Instruction

memory

4

Registers

M
u
x

M
u
x

M
u
x

ALU

EX

M

WB

M

WB

WB

ID/EX

0

EX/MEM

MEM/WB

Data
memory

M
u
x

Hazard
detection

unit

Forwarding
unit

IF.Flush

IF/ID

Sign
extend

Control

M
u
x

=

Shift
left 2

M
u
x

Reducing the Branch Misprediction Penalty

 Resolve branch condition and target address early

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 Define branch to take place after the next instruction

MIPS defines one delay slot

 Reduces branch penalty

 Compiler fills the branch delay slot

 By selecting an independent instruction

from before the branch

 Must be okay to execute instruction in the

delay slot whether branch is taken or not

 If no instruction is found

 Compiler fills delay slot with a NO-OP

Delayed Branch

label:

. . .

add $t2,$t3,$t4

beq $s1,$s0,label

Delay Slot

label:

. . .

beq $s1,$s0,label

add $t2,$t3,$t4

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

The Branch Problem

 Control flow instructions (branches) are frequent

 15-25% of all instructions

 Problem: Next fetch address after a control-flow instruction is not

determined after N cycles in a pipelined processor

 N cycles: (minimum) branch resolution latency

 If we are fetching W instructions per cycle (i.e., if the pipeline is W

wide)

 A branch misprediction leads to N x W wasted instruction slots

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Branch Prediction

Modern processors have deep pipelines

 Branch penalty limits performance of deep pipelines

Want to execute instructions beyond a branch even before that

branch is resolved use speculative execution

 Branch prediction: dynamic vs. static

What to predict?

9
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

IBM POWER4 Processor Pipeline

Source: https://www.ixbt.com/cpu/ibm/power4/p4-pipe.png
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

https://www.ixbt.com/cpu/ibm/power4/p4-pipe.png

Branch Prediction (A Bit More Enhanced)
 Idea: Predict the next fetch address (to be used in the next cycle) no

wasted cycle(s) on correct prediction

 Requires three things to be predicted at fetch stage:

 Whether the fetched instruction is a branch

 Direction (1-bit)

 Single direction for unconditional jumps and calls/returns

 Binary for conditional branches

 Target (32-bit or 64-bit addresses)

 Some are easy

– One address: uni-directional jumps

– Two: addresses: fall through (not taken) vs. taken

 Many: function pointer or indirect jump (e.g., jr r31)

 Observation: Target address remains the same for a conditional direct branch

across dynamic instances

 Idea: Store the target address from previous instance and access it with the PC

 Called Branch Target Buffer (BTB) or Branch Target Address CacheUploaded By: Jibreel BornatSTUDENTS-HUB.com

Branch Prediction Techniques

 Compile time (static)

 Always not taken

 Always taken

 BTFN (Backward taken, forward not taken)

 Profile based (likely direction)

 Program analysis based (likely direction)

 Run time (Dynamic Branch Prediction)

 Last time prediction (single-bit)

 Two-bit counter based prediction

 Two-level prediction (global vs. local)

 Hybrid

Common disadvantage of

compile time methods?

Cannot adapt to dynamic

changes in branch

behavior

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dynamic Branch Prediction

 Idea: Predict branches based on dynamic information (collected

at run-time)

 Advantages

+ Prediction based on history of the execution of branches. It can adapt to

dynamic changes in branch behavior

+ No need for static profiling: input set representativeness problem goes

away

 Disadvantages

-- More complex (requires additional hardware)

13Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 Prediction is just a hint that is assumed to be correct

 If incorrect then fetched instructions are killed

 1-bit prediction scheme is simplest to implement

 1 bit per branch instruction

 Record last outcome of a branch instruction (Taken/Not taken)

 Use last outcome to predict future behavior of a branch

1-bit Dynamic Branch Prediction Scheme

Predict

Not Taken

Taken

Predict

Taken

Not

Taken

Not Taken

Taken

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1-Bit Predictor: Shortcoming

 Inner loop branch mispredicted twice!

 Mispredict as taken on last iteration of inner loop

 Then mispredict as not taken on first iteration of inner loop

next time around

outer: …
…

inner: …
…
bne …, …, inner
…
bne …, …, outer

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dynamic Branch Prediction - One-bit Branch
History Table (BHT)

 Predict branch based on past history of branch

 One-bit Branch History Table (BHT)

PC

.

.

.

.

.

2N entries

Prediction

N bits

FSM

Update

Logic

Table update

Actual outcome

BHT: a cache of recent branches

• Each entry stores last direction that the

indexed branch went (1 bit to encode

taken/not-taken)

• No need to decode to know if it is a branch,

just look at instr. address

Hash

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dynamic Branch Prediction - One-bit Branch
History Table (BHT)

 One-bit Branch History Table (BHT)

PC

.

.

.

.

.

2N entries

Prediction

N bits

FSM

Update

Logic

Table update

Actual outcome

Aliasing Problem:

 Two branches may be hashed to the

same entry

 branch prediction history is polluted

 Solution: make the table bigger, apply

other cache optimization strategies

Hash

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1-bit Branch History Table (BHT) Example

int a=0;

For(i=0; a<4; i++) {

if(a%2==0)
{.....}

Else
{.....}

a++;

}

i 0 1 2 3 4

For Br Pred T T T T T

Act T T T T NT

If Br Pred T T NT T

Act T NT T NT

Assume BHT initialized as Taken

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 1-bit prediction scheme has a performance shortcoming

 2-bit prediction scheme works better and is often used

 4 states: strong and weak predict taken / predict not taken

 Implemented as a saturating counter

 Counter is incremented to max=3 when branch outcome is taken

 Counter is decremented to min=0 when branch is not taken

2-bit Prediction Scheme

Not Taken

Taken

Not Taken

Taken
Strong

Predict

Not Taken

Taken

Weak

Predict

Taken

Not Taken

Weak

Predict

Not Taken
Not Taken

Taken
Strong

Predict

Taken

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 2-bit scheme change prediction only if we get two

mispredictions

10

11

00

01

. . .

11

11

00

00

T

T NT

NT

T

NT

T

NT

Weakly

Not Taken
Strongly

Not Taken

Strongly

Taken
Weakly

Taken

BHT = 2n

entries
Program Counter

n bitsUpper bits
Branch

Prediction

2-bit Prediction Scheme with BHT

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

2-bit Branch History Table (BHT) Example

int a=0;

For(i=0; a<4; i++)
{

if(a%2==0)
{.....}

Else
{.....}

a++;

}

i 0 1 2 3 4

For Br Pred (10) T (11) T (11) T (11) T (11) T

Act T T T T (10) T

If Br Pred (10) T (11) T (10) T (11) T

Act T NT T NT

Assume BHT initialized as Weakly Taken (10)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

18%

5%

12%
10%

9%

5%

9% 9%

0%
1%

0%
2%

4%
6%

8%
10%
12%

14%
16%

18%
20%

eq
nt

ot
t

es
pr

es
so gc

c li

sp
ic
e

do
du

c

sp
ic
e

fp
pp

p

m
at

rix
30

0

na
sa

7

M
is

p
re

d
ic

ti
o

n
 R

a
te

Mispredict because either:

 Wrong guess for that branch

 Got branch history of wrong branch when index the table

 4096 entry table:

Integer
Floating Point

2-bit Prediction Scheme with BHT Accuracy

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

For More Advanced Branch Prediction …

 Hypothesis: recent branches are correlated; that is, behavior of

recently executed branches affects prediction of current branch

 Two possibilities: current branch depends on

 Local behavior: Last m outcomes of the same branch (local branch

predictor), e.g., a loop of 3 iterations is executed repetitively a history

record of the loop branch of the last 6 iterations should be able to predict

the direction of that branch correctly

 Global behavior: Last m most recently executed branches

 because branches are often correlated!

23

BHT predicts this

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Local vs. Global History Predictor Structure

Local History Predictor Structure
Global History Predictor Structure

Source: Combining Branch Predictors by Scott McFarling
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Branches Are Correlated!

 Branch direction of multiple branches

 Not independent but correlated to the path taken

 Example: path 1-1 of b3 can be known beforehand

25

if (aa==2) // b1

aa = 0;

if (bb==2) // b2

bb = 0;

if (aa!=bb) {// b3

……

}

b1

b2 b2

b3 b3 b3

1 (T)

1 1

0 (NT)

0

b3

0

Path: A:1-1 B:1-0 C:0-1 D:0-0
aa=0

bb=0

aa=0

bb2

aa2

bb=0

aa2

bb2

How to capture global behavior?

Idea: record m most recently executed

branches as taken or not taken, and use that

pattern to select the proper n-bit branch history

table

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Correlating Predictor: McFarling’s Gshare Predictor

 The Gshare architecture uses an m-bit global history register to keep track

of the direction of the last m executed branches.

 To simplify the implementation, this global history register is xored with the

(PC>>2) to create an index into a 2m-entry pattern history table of n-bit

counters.

 The result of this index is the prediction for the current branch. The

predictor then compares this prediction with the real branch direction to

determine if the branch was correctly predicted or not, and updates the

prediction statistics.

 The predictor then updates the n-bit counter used to perform the prediction.

 The counter is

 Incremented if the branch was taken, and

 Decremented if the branch was not taken. Finally, the branch outcome is shifted into

the most significant bit of the global history register:

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Correlating Predictor: McFarling’s gshare predictor

 + Better utilization of PHT

 -- Increases access latency

27
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Zero-Delayed Branching

 How to achieve zero delay for a jump or a taken branch?

 Jump or branch target address is computed in the ID stage

 Next instruction has already been fetched in the IF stage

Solution

 Introduce a Branch Target Buffer (BTB) in the IF stage

 Store the target address of recent branch and jump instructions

 Use the lower bits of the PC to index the BTB

 Each BTB entry stores Branch/Jump address & Target Address

 Check the PC to see if the instruction being fetched is a branch

 Update the PC using the target address stored in the BTB

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Branch Target Buffer (IF Stage)

 The branch target buffer is implemented as a small cache

 Stores the target address of recent branches and jumps

We must also have prediction bits

 To predict whether branches are taken or not taken

 The prediction bits are determined by the hardware at runtime

mux

PC

Branch Target & Prediction Buffer

Addresses of

Recent Branches

Target

Addresses

low-order bits

used as index

Predict

Bits
Inc

=
predict_taken

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Branch Target Buffer – cont’d

 Each Branch Target Buffer (BTB) entry stores:

 Address of a recent jump or branch instruction

 Target address of jump or branch

 Prediction bits for a conditional branch (Taken or Not Taken)

 To predict jump/branch target address and branch outcome before

instruction is decoded and branch outcome is computed

 Use the lower bits of the PC to index the BTB

 Check if the PC matches an entry in the BTB (jump or branch)

 If there is a match and the branch is predicted to be Taken then Update

the PC using the target address stored in the BTB

 The BTB entries are updated by the hardware at runtime

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Correct

Prediction

No stall

cycles

YesNo

Dynamic Branch Prediction with BTB

Use PC to address Instruction memory

and Branch Target Buffer

Found

BTB entry with predict

taken?

Increment PC PC = target address

Enter branch & target address,

and set prediction in BTB entry.

Kill fetched instructions.

Restart PC at target address

Mispredicted branch

Kill fetched instructions

Update prediction bits

Restart PC after branch

Normal

Execution

YesNo

Taken

branch?

No Yes

IF
ID

E
X

Taken

branch?

Jump?

No

Enter jump & target address in BTB

Kill fetched instruction.

Restart PC at jump target address

Yes

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Example: Evaluating Branch Alternatives

 Assume: Jump = 2%, Branch-Not-Taken = 5%, Branch-Taken = 15%

 Assume a branch target buffer with hit rate = 90% for jump & branch

 Prediction accuracy for jump = 100%, for conditional branch = 95%

 What is the impact on the CPI? (Ideal CPI = 1 if no control hazards)

Branch Scheme Jump Branch Not Taken Branch Taken

Predict not taken Penalty = 1 cycle Penalty = 0 cycles Penalty = 2 cycles

Delayed Penalty = 0 cycles Penalty = 0 cycles Penalty = 1 cycle

BTB Prediction Penalty = 1 cycle Penalty = 2 cycles Penalty = 2 cycles

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Evaluating Branch Alternatives- Solution

Branch Scheme Jump = 2% Branch NT = 5% Branch Taken = 15% CPI

Predict not taken 0.02 × 1 0 0.15 × 2 = 0.30 1+0.32

Delayed 0 0 0.15 × 1 = 0.15 1+0.15

BTB Prediction 0.02×0.1×1 0.05×0.9×0.05×2 0.15×(0.1+0.9×0.05)×2 1+0.05

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

