Organic Chemistry, Fourth Edition

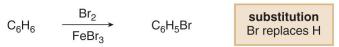
Janice Gorzynski Smith University of Hawai'i

Chapter 17 Lecture Outline

Prepared by Layne A. Morsch The University of Illinois - Springfield

Copyright © 2014 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Benzene

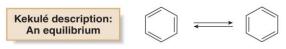

- Benzene (C₆H₆) is the simplest aromatic hydrocarbon (or arene).
- Benzene has four degrees of unsaturation, making it a highly unsaturated hydrocarbon.
- Whereas unsaturated hydrocarbons such as alkenes, alkynes, and dienes readily undergo addition reactions, benzene does not.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Reactivity of Benzene

 Benzene does react with bromine, but only in the presence of FeBr₃ (a Lewis acid), and results in substitution, not addition.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

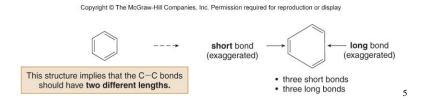

 Proposed structures of benzene must account for its high degree of unsaturation and its lack of reactivity towards electrophilic addition.

3

Benzene Background

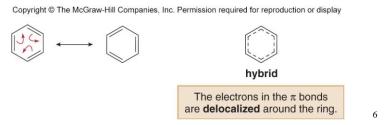
- August Kekulé proposed that benzene was a rapidly equilibrating mixture of two compounds, each containing a six-membered ring with three alternating π bonds.
- In the Kekulé description, the bond between any two carbon atoms is sometimes a single bond and sometimes a double bond.
- These structures are known as Kekulé structures.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display



- Although benzene is still drawn as a six-membered ring with alternating π bonds, in reality there is no equilibrium between the two different kinds of benzene molecules.
- Current descriptions of benzene are based on resonance and electron delocalization due to orbital overlap.

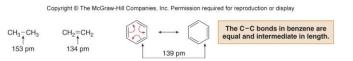
Structure of Benzene


Any structure for benzene must account for the following facts:

- 1. It contains a six-membered ring and three additional degrees of unsaturation.
- 2. It is planar.
- 3. All C-C bond lengths are equal.
- The Kekulé structures satisfy the first two criteria but not the third, because having three alternating π bonds means that benzene should have three short double bonds alternating with three longer single bonds.

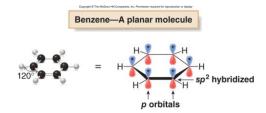
Resonance Hybrid of Benzene

- The resonance description of benzene consists of two equivalent Lewis structures, each with three double bonds that alternate with three single bonds.
- The true structure of benzene is a resonance hybrid of the two Lewis structures, with the dashed lines of the hybrid indicating the position of the π bonds.
- We will use one of the two Lewis structures and not the hybrid in drawing benzene. This will make it easier to keep track of the electron pairs in the π bonds (the π electrons).


Representations of Benzene

• Because each π bond has two electrons, benzene has six π electrons.

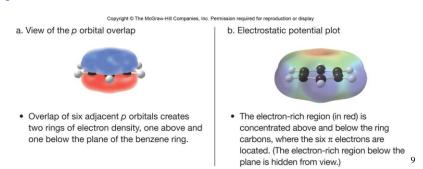
Some texts draw benzene as a hexagon with an inner circle:


The circle represents the $\mathbf{six} \ \pi \ \mathbf{electrons}$, distributed over the $\mathbf{six} \ \mathbf{atoms}$ of the ring.

• In benzene, the actual bond length (1.39 Å) is intermediate between the carbon-carbon single bond (1.53 Å) and the carbon-carbon double bond (1.34 Å).

Benzene Bond Lengths

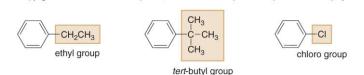
- Each carbon atom in a benzene ring is surrounded by three atoms and no lone pairs of electrons, making it sp² hybridized.
- Each carbon is then trigonal planar with 120° bond angles.
- Each carbon also has a *p* orbital with one electron that extends above and below the plane of the molecule.



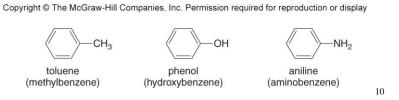
8

Electron Density in Benzene

- Overlap of six adjacent p orbitals creates two rings of edensity, one above and one below the plane of the benzene ring.
- These π electrons make benzene electron-rich and reactive with strong electrophiles.

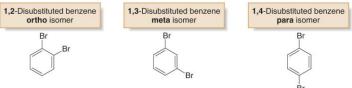

Figure 17.1

Naming Substituted Benzenes


• To name a benzene ring with one substituent, name the substituent and add the word benzene.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

ethylbenzene tert-butylbenzene chlorobenzene


 Many monosubstituted benzenes have common names which you must also learn.

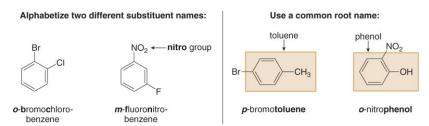
Nomenclature of Benzene Derivatives

 There are three different ways that two groups can be attached to a benzene ring, so a prefix—ortho, meta, or para can be used to designate the relative position of the two substituents.

ortho-dibromobenzene or

o-dibromobenzene or 1,2-dibromobenzene

meta-dibromobenzene or *m*-dibromobenzene or 1,3-dibromobenzene

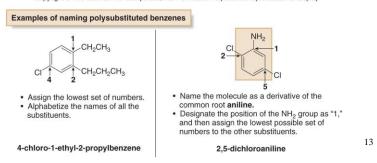

para-dibromobenzene or p-dibromobenzene or 1,4-dibromobenzene

11

Nomenclature of Benzene Derivatives

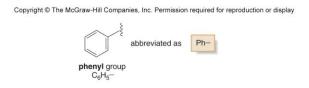
- · If the two groups on the benzene ring are different, alphabetize the names of the substituents preceding the word benzene.
- If one substituent is part of a common root, name the molecule as a derivative of that monosubstituted benzene.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display



Rules for Naming Benzene Derivatives

For three or more substituents on a benzene ring:


- 1. Number to give the lowest possible numbers around the ring.
- 2. Alphabetize the substituent names.
- 3. When substituents are part of common roots, name the molecule as a derivative of that monosubstituted benzene.
 - The substituent that comprises the common root is located at C1.

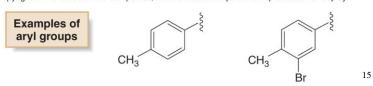
Copyright © The McGraw-Hill Companies. Inc. Permission required for reproduction or display

Naming Benzene as a Substituent

 A benzene substituent is called a phenyl group, and it can be abbreviated in a structure as "Ph-".

- A phenyl group (C₆H₅-) is formed by removing one hydrogen from benzene (C₆H₆).
- Therefore, benzene can be represented as PhH, and phenol would be PhOH.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display


Benzyl and Aryl Groups

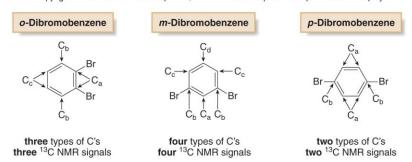
 The benzyl group, another common substituent that contains a benzene ring, differs from a phenyl group.

 $\label{eq:copyright} \begin{picture}(2000) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0){100}}$

• Substituents derived from other substituted aromatic rings are collectively known as aryl groups.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

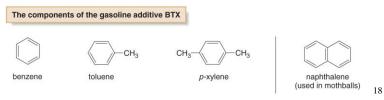

Table 17.1 Characteristic Spectroscopic Absorptions of Benzene Derivatives

Type of spectroscopy	Type of C, H	Absorption
IR absorptions	C _{sp²} -H C=C (arene)	3150–3000 cm ⁻¹ 1600, 1500 cm ⁻¹
¹ H NMR absorptions	(aryl H)	6.5–8 ppm (highly deshielded protons)
	CH ₂ — (benzylic H)	1.5–2.5 ppm (somewhat deshielded C_{sp^3} –H)
¹³ C NMR absorption	C _{sp²} of arenes	120–150 ppm

¹³C NMR Absorptions of Dibromobenzenes

Figure 17.2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

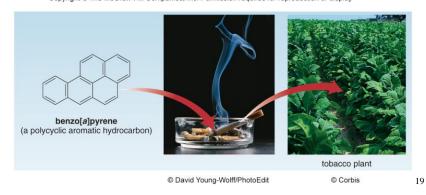

• The number of signals (lines) in the ¹³C NMR spectrum of a disubstituted benzene with two identical groups indicates whether they are ortho, meta, or para to each other.

17

Interesting Aromatic Compounds

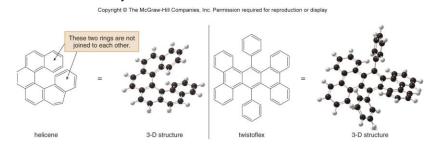
- Benzene and toluene, the simplest aromatic hydrocarbons obtained from petroleum refining, are useful starting materials for synthetic polymers.
- They are also two of the components of the BTX mixture added to gasoline to boost octane ratings.
- Compounds containing two or more benzene rings that share carbon-carbon bonds are called polycyclic aromatic hydrocarbons (PAHs).
- Naphthalene, the simplest PAH, is the active ingredient in mothballs.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display



Benzo[a]pyrene, a Common PAH

- Benzo[a]pyrene, produced by the incomplete oxidation of organic compounds in tobacco, is found in cigarette smoke.
- When ingested or inhaled, benzo[a]pyrene and other similar PAHs are oxidized to carcinogenic products.


Figure 17.3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

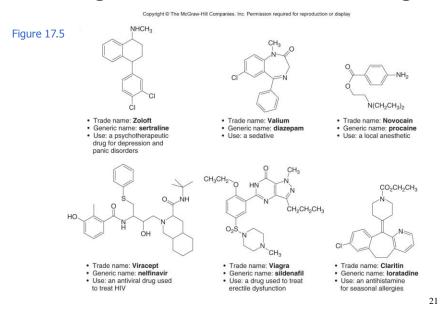
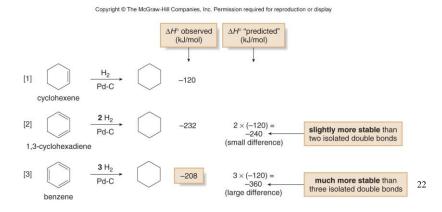

Synthetic PAHs

Figure 17.4 Helicene and twistoflex—Two synthetic polycyclic aromatic hydrocarbons


- In helicene all the rings twist slightly creating a rigid helical shape that prevents the hydrogens on both ends from colliding.
- Twistoflex is also non-planar to reduce steric interactions.
- Both of these molecules are examples of chiral molecules that do not contain stereogenic centers.

Drugs that Contain a Benzene Ring

Stability of Benzene

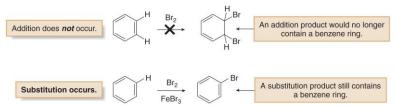
- Consider the heats of hydrogenation of cyclohexene, 1,3-cyclohexadiene and benzene:
 - All three give cyclohexane when treated with excess hydrogen in the presence of a metal catalyst.
 - However, the ΔH^0 for benzene is much less than predicted.

Heats of Hydrogenation for Benzene

Figure 17.6

Benzene with three "regular" C=C bonds $\Delta H^\circ = -360 \text{ kJ/mol}$ (hypothetical) $\Delta H^\circ = -208 \text{ kJ/mol}$ (observed)

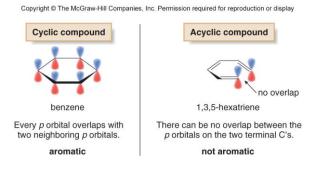
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display


- The huge difference between the hypothetical and observed heats of hydrogenation for benzene cannot be explained solely on the basis of resonance and conjugation.
- The low heat of hydrogenation of benzene means that benzene is especially stable—even more so than conjugated polyenes.
- This unusual stability is characteristic of aromatic compounds.

23

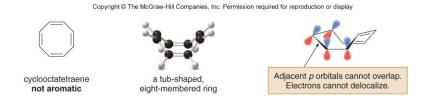
Unusual Reactivity of Benzene

- · Benzene's unusual behavior is not limited to hydrogenation.
- Benzene does not undergo addition reactions typical of other highly unsaturated compounds, including conjugated dienes.
- Benzene does not react with Br₂ to yield an addition product.
- Instead, in the presence of a Lewis acid, bromine substitutes for a hydrogen atom, yielding a product that retains the benzene ring.


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

The Criteria for Aromaticity

Four structural criteria must be satisfied for a compound to be aromatic:


- 1. A molecule must be cyclic.
- To be aromatic, each p orbital must overlap with p orbitals on adjacent atoms.

25

The Criteria for Aromaticity

- 2. A molecule must be planar.
- All adjacent p orbitals must be aligned so that the π electron density can be delocalized.

• Since cyclooctatetraene is nonplanar and not aromatic, it undergoes addition reactions just like those of other alkenes.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

H
Br
cyclooctatetraene

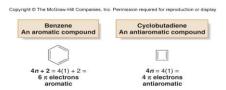
addition product

26

The Criteria for Aromaticity

- 3. A molecule must be completely conjugated.
- Aromatic compounds must have a p orbital on every atom.

27


The Criteria for Aromaticity

4. A molecule must satisfy Hückel's rule, and contain a particular number of π electrons.

Hückel's rule:

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

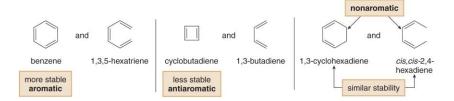
- An aromatic compound must contain $4n + 2\pi$ electrons (n = 0, 1, 2, and so forth).
- Cyclic, planar, and completely conjugated compounds that contain 4n π electrons are especially unstable, and are said to be antiaromatic.
- Benzene is aromatic and especially stable because it contains 6 π electrons.
- Cyclobutadiene is antiaromatic and especially unstable because it contains 4 π electrons.

Hückel's Rule and Number of π Electrons

• Hückel's rule refers to the number of π electrons, not the number of atoms in a particular ring.

Copyright © The McGraw-Hill Companies, Inc.	Permission required for reproduction or display		
Table 17.2 The Number of π Electrons That Satisfy Hückel's Rule			
n	4n + 2		
0	2		
1	6		
2	10		
3	14		
4 etc.	18		

29


Aromatic, Antiaromatic, and Nonaromatic

- Considering aromaticity, a compound can be classified in one of three ways:
- 1. Aromatic—A cyclic, planar, completely conjugated compound with $4n + 2\pi$ electrons
- 2. Antiaromatic—A cyclic, planar, completely conjugated compound with $4n \pi$ electrons
- 3. Not aromatic (nonaromatic)—A compound that lacks one (or more) of the following requirements for aromaticity; being cyclic, planar, and completely conjugated

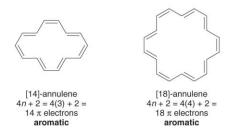
Stability of Aromatics

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

- An aromatic compound is *more* stable than a similar acyclic compound having the same number of π electrons. Benzene is more stable than 1,3,5-hexatriene.
- An antiaromatic compound is less stable than an acyclic compound having the same number of π electrons. Cyclobutadiene is less stable than 1,3-butadiene.
- A compound that is not aromatic is similar in stability to an acyclic compound having the same number of π electrons. 1,3-Cyclohexadiene is similar in stability to cis,cis-2,4hexadiene, so it is not aromatic.

31

NMR and Aromaticity

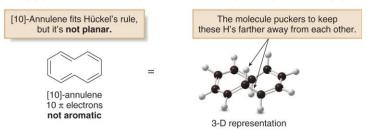

- ¹H NMR spectroscopy readily indicates whether a compound is aromatic.
- The protons on sp^2 hybridized carbons in aromatic hydrocarbons are highly deshielded and absorb at 6.5–8 ppm, whereas hydrocarbons that are not aromatic absorb at 4.5–6 ppm.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Larger Aromatic Rings

- Completely conjugated rings larger than benzene are also aromatic if they are planar and have $4n + 2\pi$ electrons.
- Hydrocarbons containing a single ring with alternating double and single bonds are called annulenes.
- To name an annulene, indicate the number of atoms in the ring in brackets and add the word annulene.

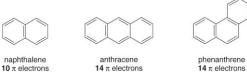
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display



33

Hückel's Rule and Number of π Electrons

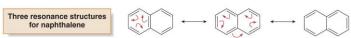
- [10]-Annulene has 10 π electrons, which satisfies Hückel's rule, but a planar molecule would place the two H atoms inside the ring too close to each other.
- · Thus, the ring puckers to relieve this strain.
- Since [10]-annulene is not planar, the 10 π electrons cannot delocalize over the entire ring and it is not aromatic.


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Fused Ring Aromatics

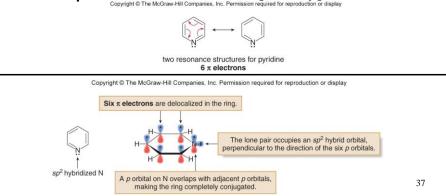
- Two or more six-membered rings with alternating double and single bonds can be fused together to form PAHs.
- There are two different ways to join three rings together, forming anthracene and phenanthrene.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display



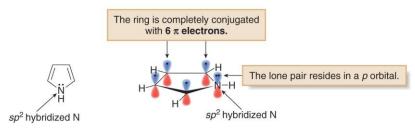
35

Resonance Structures of Fused Ring Aromatics


- As the number of fused rings increases, the number of resonance structures increases.
- Naphthalene is a hybrid of three resonance structures whereas benzene is a hybrid of two.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

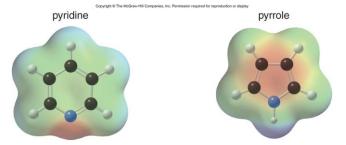
Heterocyles


- Heterocycles containing oxygen, nitrogen or sulfur, can also be aromatic.
- With heteroatoms, we must determine whether the lone pair is localized on the heteroatom or part of the delocalized π system.
- · An example of an aromatic heterocycle is pyridine.

Aromatic Heterocycles

- Pyrrole is another example of an aromatic heterocycle. It contains a five-membered ring with two π bonds and one nitrogen atom.
- Pyrrole has a p orbital on every adjacent atom, so it is completely conjugated.
- Pyrrole has six π electrons—four from the π bonds and two from the lone pair.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display



• Pyrrole is cyclic, planar, completely conjugated, and has 4n + 2 π electrons, so it is aromatic.

Electrostatic Potential of Aromatic Heterocycles

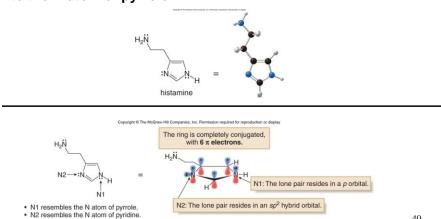
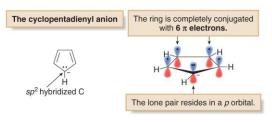

- In pyridine, the nonbonded electron pair is localized on the N atom in an sp2 hybridized orbital
 - · This can be seen by the region of high electron density on N.
- In pyrrole, the nonbonded electron pair is in a *p* orbital and is delocalized over the ring.
 - · The entire ring is electron rich.

Figure 17.7

Biologically Active Heterocycles


- Histamine is a biologically active amine formed in many tissues.
- It is an aromatic heterocycle with two N atoms—one which is similar to the N atom of pyridine, and the other which is similar to the N atom of pyrrole.

Ionic Aromatic Compounds

 Both negatively and positively charged ions can be aromatic if they possess all the necessary elements.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

 The cyclopentadienyl anion is aromatic because it is cyclic, planar, completely conjugated, and has six π electrons.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

• We can draw five equivalent resonance structures for the cyclopentadienyl anion.

Cyclopentadienyl Compounds

- Having the "right" number of electrons is necessary for a species to be unusually stable due to aromaticity.
- Thus, although five resonance structures can also be drawn for the cyclopentadienyl cation and radical, only the cyclopentadienyl anion has 6 π electrons, a number that satisfies Hückel's rule.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

cyclopentadienyl anion

• 6 π electrons

• contains $4n + 2\pi$ electrons

aromatic

cyclopentadienyl cation

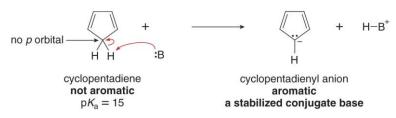
4 π electrons

• contains $4n\pi$ electrons

antiaromatic

cyclopentadienyl radical

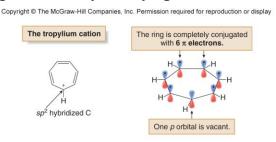
• 5 π electrons


• does not contain either 4n or $4n + 2\pi$ electrons

nonaromatic

Cyclopentadienyl Anion

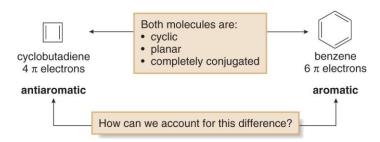
- Cyclopentadiene itself is not aromatic because it is not fully conjugated.
- However, cyclopentadiene is much more acidic (p K_a = 15) than most hydrocarbons because its conjugate base is aromatic and therefore, very stable.
- Loss of a proton causes the cyclopentadienyl anion to become fully conjugated and consequently aromatic.


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

43

Tropylium Cation

- The tropylium cation is a planer carbocation with three double bonds and a positive charge contained in a sevenmembered ring.
- Because the tropylium cation has three π bonds and no other nonbonded electron pairs, it contains six π electrons and is fully conjugated, thereby satisfying Hückel's rule.



• The tropylium cation is aromatic because it is cyclic, planar, completely conjugated, and has six π electrons delocalized over the seven atoms of the ring.

The Basis of Hückel's Rule

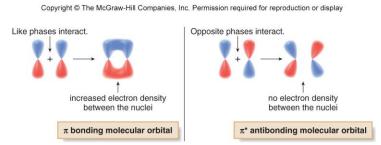
- Why does the number of π electrons determine whether a compound is aromatic?
- The basis of aromaticity can be better understood by considering orbitals and bonding.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

45

Molecular Orbital Theory

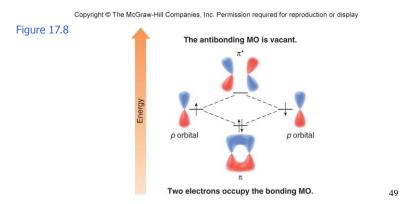
- Thus far, we have used "valence bond theory" to explain how bonds between atoms are formed.
 - Valence bond theory is inadequate for describing systems with many adjacent p orbitals that overlap, as is the case in aromatic compounds.
- Molecular orbital (MO) theory permits a better explanation of bonding in aromatic systems.
 - MO theory describes bonds as the mathematical combination of atomic orbitals that form a new set of orbitals called molecular orbitals (MOs).
 - A molecular orbital occupies a region of space in a molecule where electrons are likely to be found.


Forming Molecular Orbitals

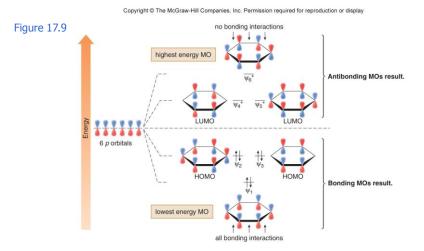
- When forming molecular orbitals from atomic orbitals, keep in mind that a set of n atomic orbitals forms n molecular orbitals.
- If two atomic orbitals combine, two molecular orbitals are formed.
- Recall that aromaticity is based on p orbital overlap.
- Also note that the two lobes of each p orbital are opposite in phase, with a node of electron density at the nucleus.
- When two p orbitals combine, two molecular orbitals should form.

47

Bonding and Antibonding Orbitals


 The combination of two p orbitals can be constructive—that is, with like phases interacting—or destructive, that is, with opposite phases interacting.

- When two p orbitals of similar phase overlap side-by-side, a π bonding molecular orbital results.
- When two p orbitals of opposite phase overlap side-by-side, a π^* antibonding orbital results.

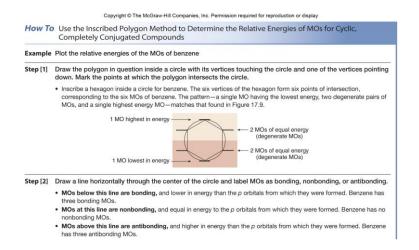

Formation of π and π^* Molecular Orbitals

- Two atomic p orbitals combine to form two molecular orbitals.
- The bonding π MO is lower in energy than the two p orbitals.
- The π^* antibonding MO is higher in energy because a destabilizing node results, which pushes nuclei apart when orbitals of opposite phase combine.

π Molecular Orbitals for Benzene

• Since each of the six carbon atoms in benzene has a p orbital, six atomic p orbitals combine to form six π MOs.

Molecular Orbitals for Benzene

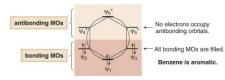

- The molecular orbital description of benzene is much more complex than the two MOs formed in Figure 17.8.
- Since each of the six carbon atoms of benzene has a p orbital, six atomic p orbitals combine to form six π molecular orbitals as shown in Figure 17.9.
 - The six MOs are labeled $\psi 1$ to $\psi 6$, with $\psi 1$ being the lowest energy and $\psi 6$ being the highest.
 - There are three bonding orbitals ψ 1, ψ 2, and ψ 3.
 - There are three antibonding orbitals $\psi 4^*$, $\psi 5^*$, and $\psi 6^*$.

51

Molecular Orbitals for Benzene

- The most important features of the six benzene MOs:
 - The larger the number of bonding interactions, the lower in energy the MO.
 - The larger the number of nodes, the higher in energy the MO.
 - Two pairs of MOs with the same energy ($\psi 2$ and $\psi 3$; $\psi 4^*$ and $\psi 5^*$) are called degenerate orbitals.
 - The highest energy orbital that contains electrons is called the highest occupied molecular orbital (HOMO).
 - The lowest energy orbital that does not contain electrons is called the lowest unoccupied molecular orbital (LUMO).

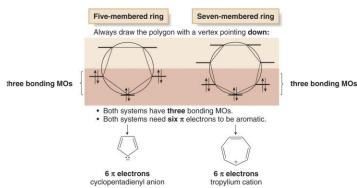
Inscribed Polygon Method of Predicting Aromaticity


53

Inscribed Polygon Method of Predicting Aromaticity

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or displa

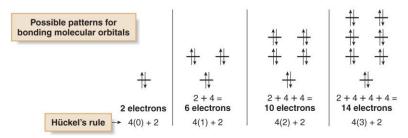
Step [3] Add the electrons, beginning with the lowest energy MO.


- All the bonding MOs (and the HOMOs) are completely filled in aromatic compounds. No π electrons occupy antibonding MOs.
- Benzene is aromatic because it has six π electrons that completely fill the bonding MOs.

- This method works for all monocyclic completely conjugated systems regardless of ring size.
- The total number of MOs always equals the number of vertices of the polygon.
- The inscribed polygon method is consistent with Hückel's 4n + 2 rule—there is always one lowest energy bonding MO that can hold two π electrons and the other bonding MOs come in degenerate pairs that can hold a total of four π electrons.

Inscribed Polygon Method of Predicting Aromaticity

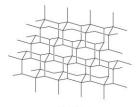
Figure 17.10 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

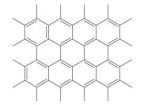

55

MO Patterns Leading to Aromaticity

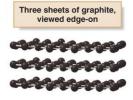
• For the compound to be aromatic, these MOs must be completely filled with electrons, so the "magic numbers" for aromaticity fit Hückel's 4n + 2 rule.

Figure 17.11 MO patterns for cyclic, completely conjugated systems


 $\textbf{Copyright} \ \textcircled{\o} \ \textbf{The McGraw-Hill Companies, Inc. Permission required for reproduction or display}$


Diamond and Graphite

- The two most common elemental forms of carbon are diamond and graphite.
- Their physical characteristics are very different because their molecular structures are very different.


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

diamond an "infinite" array of six-membered rings, covalently bonded in three dimensions

graphitean "infinite" array of benzene rings,
covalently bonded in two dimensions

Graphite exists in planar sheets of benzene rings, held together by weak intermolecular forces.

57

Buckminsterfullerene—Is it Aromatic?

- Buckminsterfullerene (C₆₀) is a third elemental form of carbon.
- Buckminsterfullerene is completely conjugated, but it is not aromatic since it is not planar.
- It undergoes addition reactions with electrophiles in much the same way as ordinary alkenes.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

20 hexagons + 12 pentagons of carbon atoms joined together

The 60 C's of buckminsterfullerene are drawn. Each C also contains a p orbital with one electron, which is not drawn.