
09/04/2025

1

REST Constraints

Ahmad Hamo
24-3-2-25

REST API (also known as RESTful API)

The motivation for REST was to create an architectural model for web services that uses the same principles that made the WWW such a success.
The goal of REST is to achieve the same scalability and simplicity.

Benefits:

Easy to develop Easy to debug (with standard browser) Leverage existing web application infrastructure

The response of remote service can be in XML/JSON or any textual format

Representational State Transfer (REST)

Use HTTP method to invoke remote services

STUDENTS-HUB.com

https://students-hub.com

09/04/2025

2

What is REST?
An architectural style for distributed hypermedia systems described by Roy
Thomas Fielding in his doctoral dissertation 2000.

Consists of constraints:
1. Client - Server
2. Stateless
3. Cache
4. Uniform Interface
5. Layered System
6. Code-On-Demand

Client Server Server

Relational

Database

Web

Application

Web

Browser
HTTP SQL

What does REST mean?
The name "Representational State Transfer" is intended to
evoke an image of how a well-designed Web application
behaves: a network of web pages (a virtual state-machine),
where the user progresses through the application by selecting
links (state transitions), resulting in the next page
(representing the next state of the application) being
transferred to the user and rendered for their use.

From Roy's dissertation.

STUDENTS-HUB.com

https://students-hub.com

09/04/2025

3

What does “Representational” mean in REST?
• When interacting with resources over a network (such as the

web), clients and servers do not directly exchange the actual
resource itself. Instead, they exchange representations of those
resources.

• A representation is a concrete depiction or encoding of the state
of a resource at a particular moment in time.

• User object isn't sent across the network. Instead, the server
sends a representation of that user in a specific format (like
JSON or XML).

Benefits:

• Easy to develop

• Easy to debug

• Leverage existing web

application infrastructure

• The motivation for REST was to create an architectural model for web services that uses the

same principles that made the WWW such a success.

• The goal of REST is to achieve the same scalability and simplicity.

STUDENTS-HUB.com

https://students-hub.com

09/04/2025

4

REST & SOAP
• Representational state transfer (REST) is a set of architectural principles.

• Simple object access protocol (SOAP) is an official protocol maintained by the
World Wide Web Consortium (W3C).

• The main difference is that SOAP is a protocol while REST is not.

• Typically, an API will adhere to either REST or SOAP, depending on the use case
and preferences of the developer.

• In general, REST is easier to use for the most part and is more flexible.

• It has the following advantages when compared to SOAP:

• Uses easy to understand standards like swagger and OpenAPI Specification 3.0

• Smaller learning curve

• Efficient (SOAP uses XML for all messages, REST mostly uses smaller message
formats like JSON)

• Closer to other Web technologies in design philosophy

REST

The basic REST HTTP requests methods or verbs which are commonly used POST, GET, PUT, and DELETE. In addition
to HEAD, OPTIONS, TRACE and PATCH requests as well. Example from the Swagger Pet Store API:

• Sending a GET request to /pet/{petId} would retrieve pets with a specified ID from the database.

• Sending a POST request to /pet/{petId}/uploadImage would add a new image of the pet.

• Sending a PUT request to /pet/{petId} would update the attributes of an existing pet, identified by a specified id.

• Sending a DELETE request to /pet/{petId} would delete a specified pet.

• Swagger is an Interface Description Language for describing RESTful APIs expressed using JSON/ YAML .
Swagger is used together with a set of open-source software tools to design, build, document, and use RESTful
web services. Swagger includes automated documentation, code generation, and test-case generation.
Wikipedia

• YAML is a human-readable data-serialization language. It is commonly used for configuration files and in
applications where data is being stored or transmitted. Wikipedia

GET Read or retrieve data
POST Add new data
PUT Update data that already exists
DELETE Remove data

STUDENTS-HUB.com

http://petstore.swagger.io/
https://en.wikipedia.org/wiki/YAML
https://en.wikipedia.org/wiki/YAML
https://students-hub.com

09/04/2025

5

HTTP response status codes
1.Informational responses (100–199)

102 Processing (WebDAV) This code indicates that the server has received and is processing the request, but no
response is available yet.

Successful responses (200–299)

200 OK The request succeeded.

3.Redirection messages (300–399)

301 Moved Permanently The URL of the requested resource has been changed permanently. The new URL is given
in the response.

4.Client error responses (400–499)
401 Unauthorized Although the HTTP standard specifies "unauthorized", semantically this response means
"unauthenticated". That is, the client must authenticate itself to get the requested response.

5.Server error responses (500–599)

500 Internal Server Error The server has encountered a situation it does not know how to handle.

SOAP vs. REST

Which One to Use?

•Use SOAP for high-security applications like banking and payment processing.

•Use REST for web services, mobile apps, and lightweight applications.

•SOAP is a protocol, meaning it has strict rules for message structure, security, and transactions.

•REST is an architectural style, meaning it provides guidelines rather than strict rules.

STUDENTS-HUB.com

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status#information_responses
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status#successful_responses
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status#redirection_messages
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status#client_error_responses
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status#server_error_responses
https://students-hub.com

09/04/2025

6

REST API Architectural Constraints

• Cacheable: Well-managed caching partially or eliminates some client-server interactions, further
improving scalability and performance. In REST, caching shall be applied to resources when
applicable, and then these resources MUST declare themselves cacheable. Caching can be
implemented on the server or client-side.

• Client-Server: This constraint essentially means that client applications and server applications
MUST be able to evolve separately without any dependency on each other. A client should
know only resource URIs, and that’s all. Today, this is standard practice in web development, so
nothing fancy is required from your side. Keep it simple.

Servers and clients may also be replaced and developed independently, as long as the
interface between them is not altered.

REST Architectural Constraints (restfulapi.net)

REST API Architectural Constraints
• Uniform Interface: It is a key constraint that differentiate between a REST API and Non-REST

API. Once a developer becomes familiar with one of your APIs, he should be able to follow a
similar approach for other APIs. (show rest-examples)

• Stateless: It means that the necessary state to handle the request is contained within the
request itself and server would not store anything related to the session.

If the client application needs to be a stateful application for the end-user, where the user logs
in once and does other authorized operations after that, then each request from the client
should contain all the information necessary to service the request – including authentication
and authorization details.

Question: What if one of the server instances goes down?
Answer: Since the server is stateless, it does not store any session data. This means that if one

server instance goes down, the other instances can still handle incoming requests because they

do not rely on shared session data.

REST Architectural Constraints (restfulapi.net)

STUDENTS-HUB.com

https://restfulapi.net/rest-architectural-constraints/
https://restfulapi.net/rest-architectural-constraints/
https://students-hub.com

09/04/2025

7

REST API Architectural Constraints
•Layered system: REST allows you to use a layered system architecture
where you deploy the APIs on server A, and store data on server B and
authenticate requests in Server C, for example. A client cannot ordinarily
tell whether it is connected directly to the end server or an intermediary
along the way.

•It allows for a system to be composed of multiple layers, each with a

specific role or responsibility. The client interacts with the system

without necessarily knowing the internal structure or how many
intermediary layers are involved in processing the request.

REST Architectural Constraints (restfulapi.net)

Benefits of a Layered System in REST
• Improved Scalability :

• By separating concerns into different layers, you can scale each component independently.

• Enhanced Security :
• Layers can provide additional security measures. For instance, an intermediary layer could filter

malicious requests before they reach the core application logic.

• Flexibility and Maintainability :
• Since each layer has a specific responsibility, changes in one layer (e.g., switching to a new database

system) do not necessarily affect other layers.

• Fault Tolerance :
• If one layer fails (e.g., a database server goes down), other layers may still continue to function. For

example, a caching layer could serve stale data while the database is being restored.

• Performance Optimization :
• Layers like caching servers or content delivery networks (CDNs) can store frequently accessed data

closer to the client, reducing latency and improving performance.

STUDENTS-HUB.com

https://restfulapi.net/rest-architectural-constraints/
https://students-hub.com

09/04/2025

8

REST API Architectural Constraints

• Code on demand (Optional): is an optional REST constraint that allows servers
to send executable code (e.g., JavaScript) to clients, enabling dynamic
functionality, but it is rarely used in modern APIs due to security concerns.​

• The examples of code on demand may include the compiled components such
as Java applets, UI widget rendering code and client-side scripts such as
JavaScript.

REST Architectural Constraints (restfulapi.net)

REST API Architectural Constraints

• All these constraints help you build a truly RESTful API, and you
should follow them.

• Still, at times, you may find yourself violating one or two
constraints. Do not worry; you are still making a RESTful API – but
not “truly RESTful.”

STUDENTS-HUB.com

https://restfulapi.net/rest-architectural-constraints/
https://students-hub.com

09/04/2025

9

Safe Methods
Request methods are considered safe if their defined semantics are essentially read-only. The
client does not request, and does not expect, any state change on the origin server as a result of
applying a safe method to a target resource.

The GET, HEAD, OPTIONS, and TRACE methods are considered safe methods. As per HTTP
specification, the GET and HEAD methods should be used only for retrieval of resource
representations – and they do not update/delete the resource on the server.

The purpose of distinguishing between safe and unsafe methods is to allow automated retrieval
processes (spiders) and cache performance optimization (pre-fetching) to work without fear of
causing harm.

Safe methods allow user agents to represent other methods, such as POST, PUT and DELETE, in a
unique way so that the user is made aware of the fact that a possibly unsafe action is being
requested – and they can update/delete the resource on the server and so should be used
carefully.

HTTP Methods - REST API Tutorial (restfulapi.net)

Safe Idempotent Methods
The term idempotent is used more comprehensively to describe an operation that will produce the
same results if executed once or multiple times.

In HTTP specification, the PUT, DELETE and safe methods (GET, HEAD, OPTIONS, TRACE) are
idempotent methods.

Idempotence is a handy property in many situations, as it means that an operation can be repeated
or retried as often as necessary without causing unintended effects.

With non-idempotent operations, the algorithm may have to keep track of whether the operation
was already performed or not.

POST is not an idempotent method since calling it multiple times may result in incorrect updates.
Usually, POST APIs create new resources on the server. If POST/payment endpoint is called with an
identical request body, you will create multiple records. To avoid this, you must have your
own custom logic preventing duplicate records.

HTTP Methods - REST API Tutorial (restfulapi.net)

STUDENTS-HUB.com

https://restfulapi.net/http-methods/
https://restfulapi.net/http-methods/
https://students-hub.com

09/04/2025

10

HTTP response codes

Must read the following resources:

1 HTTP Methods - REST API Tutorial (restfulapi.net)

2 https://restfulapi.net/http-status-codes/

3 https://blog.hubspot.com/website/idempotent-api

STUDENTS-HUB.com

https://restfulapi.net/http-methods/
https://restfulapi.net/http-methods/
https://restfulapi.net/http-status-codes/
https://blog.hubspot.com/website/idempotent-api
https://students-hub.com

09/04/2025

11

XML APIs vs. JSON APIs OpenAPI Specification (OAS)
• The OpenAPI Specification (OAS) defines a standard, language-agnostic interface to HTTP APIs

which allows both humans and computers to discover and understand the capabilities of the
service without access to source code, documentation, or through network traffic inspection.
When properly defined, a consumer can understand and interact with the remote service with a
minimal amount of implementation logic.

• An OpenAPI definition can then be used by documentation generation tools to display the API, code
generation tools to generate servers and clients in various programming languages, testing tools,
and many other use cases.

You must read and try following (we will use OpenAPI V 3.1.0):

1 Specification: https://spec.openapis.org/oas/v3.1.0

2 Example: https://petstore3.swagger.io/

3 Swagger editor: https://editor-next.swagger.io/ (go to File->Load Example menu)

STUDENTS-HUB.com

https://spec.openapis.org/oas/v3.1.0
https://petstore3.swagger.io/
https://editor-next.swagger.io/
https://students-hub.com

09/04/2025

12

Samples

Online REST API for Testing and Prototyping | GO REST

Dummy sample rest api - dummy.restapiexample.com

SOAPUI/ReadyAPI demo

Watch both videos on the following link:

Download Free ReadyAPI Trial | SoapUI

STUDENTS-HUB.com

https://gorest.co.in/
http://dummy.restapiexample.com/
https://www.soapui.org/downloads/trial-application-received-x/
https://students-hub.com

09/04/2025

13

Tools

• MySQL database

• Docker which used to package and run the application with its dependencies inside
container.

• SoupUI and Postman

• Git

• Create your account on

• https://github.com/

• https://hub.docker.com/

Next FastAPI
How to
use…

STUDENTS-HUB.com

https://github.com/
https://hub.docker.com/
https://students-hub.com

09/04/2025

14

First
Assignment

Details will be sent separately.
References
• RESTful Web APIs: Services for a Changing World, By Leonard Richardson, Mike Amundsen,

Sam Ruby 2020.

• https://www.w3.org/

• https://developer.mozilla.org/

• Web server vs. Application server (educative.io)

• The Next Dimension of Enterprise Computing, Dr. Billy B. L. Lim, School of Information
Technology, Illinois State University

• SOAP vs REST APIs: Which Is Right For You? | SoapUI

• REST vs. SOAP (redhat.com)

STUDENTS-HUB.com

https://www.w3.org/
https://developer.mozilla.org/
https://www.educative.io/edpresso/web-server-vs-application-server
https://www.soapui.org/learn/api/soap-vs-rest-api/
https://www.redhat.com/en/topics/integration/whats-the-difference-between-soap-rest%3A~%3Atext%3DRepresentational%20state%20transfer%20(REST)%20is%2Cprotocol%20while%20REST%20is%20not
https://students-hub.com

