Engineering Electromagnetics

Chapter 3:

Electric Flux Density, Gauss’ Law,
and Divergence
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Objectives

* Electric Flux Density,

* Gauss’ Law,

* Divergence

* First Maxwell’s Equation
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F ar aday Conductor in static electric field situations
Experiment

Metal Insulating or
conducting dielectric
spheres - material

Started with a pair of metal spheres of
different sizes; the larger one consisted
of two hemispheres that could be
assembled around the smaller sphere

1. With the equipment dismantled, the inner sphere was given a known positive
charge.

2. The hemispheres were then clamped together around the charged sphere with
about 2 cm of dielectric material between them.

3. The outer sphere was discharged by connecting it momentarily to ground.

4. The outer space was separated carefully, using tools made of insulating material
in order not to disturb the induced charge on it, and the negative induced charge
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Faraday Apparatus, Before Grounding

Considering an mner sphere of radius a and an outer sphere of radius b, with
charges of Q and —Q, respectively. The paths of electric flux ¥ extending
from the inner sphere to the outer sphere are indicated by the symmetrically
distributed streamlines drawn radially from one sphere to the other.

+0
Metal Insulating or
conducting dielectric

spheres ~" material
The inner charge, O, induces an equal
and opposite charge, -0, on the
inside surface of the outer sphere, by
attracting free electrons in the outer
material toward the positive charge.
This means that before the outer
sphere 1s grounded, charge +Q . .

Conductor in static Electric flux ¥

resides on the outside surface of the electric field
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Faraday Apparatus, Atter Grounding

=0 .
Metal 1 [nsulating or
conducting dielectric
spheres * material

1

ground
attached

electric flux ¥

Attaching the ground connects the outer surface to an unlimited supply of free
electrons, which then neutralize the positive charge layer. The net charge
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Interpretation of the Faraday Experiment

Metal Insulating or
conducting dielectric
spheres material

Faraday concluded that there
occurred a charge
“displacement” from the inner
sphere to the outer sphere.

Displacement involves a flow or flux, 'V, existing within the dielectric,
and whose magnitude is equivalent to the amount of “displaced”
charge.

Specifically:| ¥ = 0
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Electric Flux Density

q=0

Metal
conducting
spheres

Insulating or
dielectric
material

The density of flux at the inner sphere surface

is equivalent to the density of charge there
(in Coul/m?)

* Electric flux density, measured in coulombs per square meter
(sometimes described as “lines per square meter,” for each
line is due to one coulomb),

e Electric flux density is given the letter I), which was originally
chosen because of the alternate names of displacement flux

density or displacement density
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Vector Field Description of Flux Density

* The electric flux density D is a vector field.
* The direction of D at a point is the direction of the flux lines at that point, and

* The magnitude of D is given by the number of flux lines crossing a surface normal
to the lines divided by the surface area.

q=70
Metal [nsulating or
conducting _dielectric
spheres - material

A vector field is established which
points in the direction of the “flow”
or displacement. In this case, the
direction is the outward radial direction _l_
in spherical coordinates. At each surface,

we would have:

D = ¢ a, (inner sphere)
—y Ama?

D = Q a, (outer sphere)
—p Amb?
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Radially-Dependent Electric Flux Density

q= 0 D(7)

Metal [nsulating or
conducting _ dielectric
spheres - material

At a general radius r between
spheres, we would have:

Q =

a,

D =
477 12

Expressed in units of Coulombs/m?, and
defined over the range (a <r <b)
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Point Charge Fields

If we now let the inner sphere radius reduce to a point,
while maintaining the same charge, and let the outer sphere
radius approach infinity, we have a point charge. The
electric flux density 1s unchanged, but 1s defined over all
space:

D= 0 a
4z | C/m? (0 <r<w)

We compare this to the electric field intensity in free space:

E = Q a
 Admegr? V/m (O<7‘<OO)

_.and we see that: | P = €k | (free space only)
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Finding E and D from Charge
Distributions

D =¢)E | (free space only)

We learned in Chapter 2 that:

E / pucy (t ly)
= a Icc Space on
vol 47-[60R2 ! P ’

It now follows that:

/ 0, dV
D= dpr
vol 4nR*
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Summary of Faraday’s experiments

Metal
conducting

spheres X

[nsulating or
_dielectric
" material

* The electric flux passing through any imaginary
spherical surface lying between the two conducting
spheres 1s equal to the charge enclosed within that
1maginary surface.

* This enclosed charge 1s distributed on the surface of the
inner sphere, or 1t might be concentrated as a point

sruomSharge at the center of the imaginary sphere
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Gauss’ Law

The electric flux X

passing through any
closed surfaceis

equal o
to the total charge L0
enclosed by that
surface

» If the total charge is Q, then Q coulombs of electric flux will pass through
the enclosing surface.

* At every point on the surface the electric-flux-density vector D will have
some value D¢, where the subscript § merely reminds us that D must be
evaluated at the surface, and

* Dg will in general vary in magnitude and direction from one point on the

STU angther.
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Development of Gauss’ Law

At any point P, consider an incremental element of surface AS and let
D¢ make an angle 8 with AS. The flux AW crossing AS is then the
product of the normal component of Dg and AS

AV = flux crossing AS = Dg hormAS = DgcosOAS = Dg - AS

U = [ dV = Ds - dS
closed

surface

dS = dx dy, m rectangular
We define the differential dS = p do dp, n cylindrical or
surface area (a vector) as ' dS =12 sin 0 df do in spherical

dS =ndS

where n 1s the unit ourward
normal vector to the surface,
and where dS'1s the area of the

sdifferendial speben the surface Uploaded By: Mohammad Awawdeh
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Mathematical Statement of Gauss’ Law

W — % Dg - dS = charge enclosed =
S

In which the charge can exist in the form of point charges: () = E Qm
or a continuous charge distribution:

Line charge: QO = f pr dL

Surface charge: QO = j 0sdS (not necessarily a closed surface)
S

Volume charge: Q = / Py dv
vol
For a volume charge, we would have: ﬁ DS -dS = / | Pv dv
VO

A mathematical statement meaning simply that the total electric flux through any
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Using Gauss’ Law to Solve for D
Evaluated at a Surface

Knowing (O, we need to solve for D, using Gauss’ Law:

Q:ygDS-dS where dS = ndS
S

The solution is easy if we can choose a surface, S, over which to integrate
(Gaussian surface) that satisfies the following two conditions:

1. Dy is everywhere either normal or tangential to the closed surface, so that
Dy - dS becomes either DgdS or zero, respectively.

2. On that portion of the closed surface for which Dy - dS is not zero, Dg =

constant.
The integral now
simplifis $D.das— ¢ Doas—p. as-Q
Q Condition 1 Condition 2
So that: DS — m
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Example: Point Charge Field
Q

47712

Begin with the radial flux density: D = a,

and consider a spherical surface of radius a that surrounds the

charge, on which: 0 N
Ds = —a N
47 CIZ N
B
\ N

On the surface, the differential area is: \.\-\\

PO

Y

dS = r*sinfdf dp = a*sin6 do do
and this, combined with the outward unit normal vector is: ‘ “ Dg
dS = a’sin6 do d¢ a,

p__Y

471>

a, E = Q

— a,
Adrregr?
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Point Charge Application (continued)

Now, the integrand becomes:

Dg-dS =

a’sinfdddoa, -a, = g sin6 do dg¢
47 a? A7

and the integral 1s set up as:

=21
%Dg-ds — [ —sm@d@dqb
S o=

21 Q 27 Q

— f —(—cos6),d¢ = S—d¢ =0
0 47 0
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Another Example: Line Charge Field

The Gaussian surface for an mfinite uniform line charge 1s a right circular cylinder
of length L and radius p. D is constant in magnitude and everywhere perpendicular
to the cylindrical surface; D is parallel to the end faces.

Consider a line charge of uniform charge density p; on the z axis that extends over the range —co < z < 0.

We need to choose an appropriate Gaussian surface, being mindful of these considerations:

1. With which coodinates does the field vary (or of what variables is D a function)?
2.  Which components of D are present?

We know from symmetry that the field will be radially-directed (normal
to the z axis) in cylindrical coordinates:

D= Dpap Line charge .
PL ] P\
1
f
and that the field will vary with radius only: D I D
Y : a
ap O p ¥

o
D 0 — f (IO ) // 1

/
sTuSewesshaosecaeylindrical surface of radius p, and of length L. Uf%aded BI/; Mohammad Awawdeh



Line Charge Field (continued) - -

—_— ~ o dp
Ztdz z“ \:::::\:\ b i—dz
' e
S e | | | pds
b dp Pj/‘/
We apply Gauss’s law, p+dp

X

0 = Dg-dS=DS/ dS+0[ dS+O/ ds
cyl sides top bottom

L by
= DS/ ] pdpdz = Dg2npL
z=0 J¢=0

and obtain
DS — D,O = Q
21 P L Line charge —
. _ pr VAN,

In terms of the charge density p;, the total charge enclosed is ; ,

1

Q=pLL ;

Giving; /)I ______
P e
L
D,=—
"~ 2mp So that finally: | E, = — = /
2megp
stupdh TSR c4hfee space only)
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Another Example: Coaxial Transmission Line

We have two concentric cylinders, with the z axis
down their centers. Surface charge of density pg
exists on the outer surface of the inner cylinder.

Conducting
7 cylinders
A p-directed field is expected, and this should Ps
vary only with p (like a line charge). We

therefore choose a cylindrical Gaussian surface /+ }p\AD
p=0>b

of length L and of radius p, where a < p < b.

o
The left hand side of Gauss’ Law 1s written: olike

(Focusing on the electric flux at the outer surface of inner cylinder)

L 27
st-ds_/ Dsa, - a,pdddz = 2rpDsL = Q
S 0 JO N—
dS

...and the right hand side becomes: (focusing on the charge inside the inner cylinder)

2
Q = / ps dS = f / psadopdz = 2malpg
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Coaxial Transmission Line (continued)

We may now solve for the flux density:

. Conducting
/cylinders
. Q __aps ‘ N /
D(p) _ 27TpLap T ap 7

i

and the electric field intensity becomes: p=a
aps

E=—a,V/m (a<p<b)
€op
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Coaxial Transmission Line: Exterior Field

Because every line of electric flux starting from the charge on the inner cylinder
must terminate on a negative charge on the inner surface of the outer cylinder, the
total charge on that surface must be

Qouter cyl = —2malps inner eyl Conducting

cylinders

and the surface charge on the outer cylinder 1s found as

21 prS,outer cyl = _27TaL}OS,inner cyl

If a Gaussian cylindrical surface is drawn outside (p> b), a
total charge of zero 1s enclosed, leading to the conclusion that

0= Dg2npL (p > b)

or: Dg=10 (p > b)
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Example

Let us select a 50-cm length of coaxial cable having an inner radius of 1 mm and an
outer radius of 4 mm. The space between conductors 1s assumed to be filled with air.
The total charge on the inner conductor is 30 nC. We wish to know the charge density
on each conductor, and the E and D fields.

Solution. We begin by finding the surface charge density on the inner cylinder,

Qinner cyl 30 x 1077 D
Plimer 1 = "0l 27(10-3)(0.5) p-m

The negative charge density on the inner surface of the outer cylinder is

Qourer cyl —30 x 10_9 2
cyl = = — _2.39 (:/n’lh
Ps.ouer eyl = =50 27(4 x 1073)(0.5) a

The internal fields may therefore be calculated easily:

Do s _ 107(9.55 x 107°)  9.55
o p p

nC/m?>

and

D,  955x1077 1079
€0 8.854x10712p  p

E, = V/m

Both of these expressions apply to the region where | < p <4 mm. For p < | mm
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Electric Flux Within a Differential Volume Element
(For non-symmetrical closed surfaces)

The value of D at the point P may be expressed in rectangular

components, Dy = Dyoa, + Dyoa, + D pa,. We choose as our closed surface the
small rectangular box, centered at P, having sides of lengths Ax, Ay, and Az, and
apply Gauss’s law,

In order to evaluate the integral over the closed surface, the integral must be broken up into six
integrals, one over each face (which are very small surfaces so D can be constant on them)

.

P(x, y, z)

[
fD-dS—/ _|_[ +f +/ +f _|_f D =Dy =Dyga,+Dyga,+Dga,
P
S front back left right top bottom /

I

0

Taking the front surface, for example, we have: Az J———

Y

f = Dfront * AS‘front
front
= Dfront * Ay AZ a,

= ijfrontAy Az
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Electric Flux Within a Differential Volume
Element

. . ) . Ax
Notice that D, is the value of D, at P, and the distance of front face from P 18 >

Ax
D, front = Dyo + - x rate of change of D,with x 1

Plx, v, 2)
D D=D,=Da +D,a +0,a
Ax . — 4
= Dyo + —- - —
' 2 0x |/ 4
I °
Ax oD, Az S F
We now have: = | Dxo+ —- Ay Az , Ax
front 2 0x e Ay

Ll

and in a similar manner:

_ Ax 0D,
= | =D+ — Ay Az
back “\ 2 0x

minus sign because D, 1s inward flux through the back surface.

oD,
Ax Ay Az
0x

Therefore: + f -
front back
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Charge Within a Differential Volume Element

Now, by a similar process, we find that:

. 0D,
+ = —Ax Ay Az
right left dy

aD.
and + = —Ax Ay Az
top bottom 07

All results are assembled to yield an approximation which becomes better as Av becomes
smaller:

. (0D, dD, aD,
D-dS = +——+—|AxAyAz = ( (byGauss’Law)
S N v J

0x dy 0z
Av

where Q is the charge enclosed within the very small
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Example on Differential Volume Element

aD, D, dD.
D.dS = - & ) AxAyAz =
ﬁ (3x+8y+8z)xyz 0

Find an approximate value for the total charge enclosed in an incremental volume of
S : . . . T . T r-}
10~ m? located at the origin, if D = ¢ *sinya, —e ¥ cosy a, + 2za, C/m~.

Solution. We first evaluate the three partial derivatives

0D,
X
oD, .
— — ¢ "siny
dy ’
0D

= —e 'siny

At the origin, the first two expressions are zero, and the last 1s 2. Thus, we find that
the charge enclosed in a small volume element there must be approximately 2Av. If
Av is 1072 m>, then we have enclosed about 2 nC.
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The Del Operator

The del operator 1s a vector differential operator,
and 1s defined as:

Note that:

0 0 0
VD= (—ax + —a, + —az) -(Dyay + Dyay, + D.a;)
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Divergence and Maxwell’s First
Equation

The divergence of the vector flux density A is the outflow of flux from a small closed surface
per unit volume as the volume shrinks to zero.

Mathematically, this is:

. |  f A-dS
Divergence of A = div A = lim
Av—0 AV

Applying divergence function, we have:

, M | A, DA,
div A = 0x dy 0z

and when the vector field is the electric flux density:

A -dS
= lim s

Av—0 Av

oD oD oD D.dS
o + Y + —* )= lim 9§S = llim — = p, =divD Maxwell’s
0x 8y 0z Av—0 Av Av—0 Ay first
equation
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Maxwell’s first equation
(or the point form of Gauss’ Law)

divD =V - -D = p,

This 1s the first of Maxwell’s four equations, and it states that

The electric flux per unit volume leaving a
vanishingly small volume unit is exactly
equal to the volume charge density there.

This equation is called the point form of Gauss’s law. Gauss’s law relates the flux leaving
any closed surface to the charge enclosed, and Maxwell’s first equation makes an identical
statement on a per-unit-volume basis for a vanishingly small volume, or at a point.
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Divergence Theorem

We now have Maxwell’s first equation (or the point form of Gauss’ Law)

which states: .
divD =V D = p,
and Gauss’s Law 1n large-scale form reads:

fD-dS:Q:f pvdv=f V.Ddv
S vol vol

leading to the Divergence Theorem:

D-dS = V-Ddv
S vol

Divergence merely tells us

how much flux is leaving (or entering) a small volume
on a per-unit-volume basis; no direction is associated with it.
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Divergence Theorem
(Gauss Divergence Theorem)

Gives us fast and easier ways to:

* Find relationship between surface and volume
integrations.

* Find the

ocations of the charges’ source or sink.

« Explain the rate of change of flux or field.

 Find out

now much flux is leaving a source or

entering a sink point.
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Uploaded By: Mohammad Awawdeh



Divergence Expressions in the Three
Coordinate Systems

diVDz(

D,
0x

+ L+ —

oD,  dD,
ady 07

(rectangular)

, 1 o
divD = — —

p 0p

1 0Dy D,

(/OD,O)‘|'__‘|‘—

o 0¢ 0z

(cylindrical)

| L9,
divD = — —(2D,) +
r2 Or

rsing

0
sinf D
80( 9) +

oD,

spherical
sing op  pnerical
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Sample Questions
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Q=¢Dy%
S

3.2. An electric field in free space is E = (52¢/¢g) 4. V/m. Find the total charge contained within
a cube, centered at the origin, of 4-m side length, in which all sides are parallel to coordinate
axes (and therefore each side intersects an axis at +2.

The flux density is D = ¢gE = 52%a.. As D is z-directed only, it will intersect only the
top and bottom surfaces (both parallel to the z-y plane). From Gauss’ law, the charge in
the cube is equal to the net outward flux of D, which in this case is

2 2 2 2
Qenct = ng -nda =/ / 5(2)%a. - a. dzdy +/ / 5(—2)%a. - (—a.)dedy =0
-2J-2 -2J-2

where the first and second integrals on the far right are over the top and bottom surfaces
respectively.
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Q:%DS-dS
S

3.4. An electric field in free space is E = (5z%/¢g) 4. V/m. Find the total charge contained within
a sphere of 3-m radius, centered at the origin. Using Gauss’ law, we set up the integral in free
space over the sphere surface, whose outward unit normal is a,:

2w ™
Q=fng~nda=/ / 5z%a, - a, (3)%sinf df do
o Jo

where in this case z = 3cos# and (in all cases) a. - a, = cosfl. These are substituted to yield

2x
= 972n

Q=27 [ 50" costfsinddd = ~2x(5)3)* (5 ) con” 0

0
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3.10. An mfimtely long cylindrical dielectric of radius b contains charge within its volume of density
py = ap®, where a is a constant. Find the electric field strength, E, both inside and outside

the cylinder.

Inside, we note from symmetry that D will be radially-directed, in the manner of a line
charge field. So we apply Gauss' law to a cylindrical surface of radius p, concentric with
the charge distribution, having unit length i z, and where p < b. The outward normal
to the surface is a,.

1 2w 1 (2% p
fD- nda = f f Dya,-a,pdpdz = Qene =[ f / a(p')?p' dp' dpdz
o Jo o Jo Jo

in which the dummy variable p' must be used in the far-right integral because the upper
radial limit is p. D, is constant over the surface and can be factored outside the integral.
Evaluating both integrals leads to

3 3
2n(1)pD, = 27ma (l) pt = D,= 2 or Eqy = ﬁaﬂ. (p < b)
4 4 deg

To find the field outside the cylinder, we apply Gauss’ law to a cylinder of radius p > b.
The setup now changes only by the upper radius hmit for the charge integral, which is
now the charge radius, b:

1 p2w 1 p2m pb
vanda=f Dpap-appdqﬁd::=Q¢m;=f f f ap’pdpde dz
o Jo o Jo Jo

where the dummy variable 1s no longer needed. Evaluating as before, the result 1s

ab? ab*
Dp=4—P or Em;=mﬂp (P:}b)
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3.13. Spherical surfaces at r = 2, 4, and6 m carry uniform surface charge densities of 20 nC/m?,
—4nC/m?, and pg. respectively.

a)

Find D at r = 1, 3and5 m: Noting that the charges are spherically-symmetric, we
ascertain that D will be radially-directed and will vary only with radius. Thus, we apply
Gauss’ law to spherical shells in the following regions: r < 2: Here, no charge 1s enclosed,
and so D, = (.

80 x 10-9

r2

Q<r<d: 4ar’D, =47(2)%(20x107%) = D, =
So Dy(r =3) =89 x 107 C/m?.

C/m*

16 x 1077
—

rl-l

4<r<6: 4nr’D, =47(2)*(20 x 107?) + 4x(4)*(-4 x 107%) = D, =
So D,(r =5) = 6.4 x 10-19C/m?.

Determine pgo such that D = 0 at r = 7 m. Since fields will decrease as 1/r*, the question

could be re-phrased to ask for ps such that D = 0 at all points where r > 6 m. In this
region, the total field will be

n-9 2
r=

Requiring this to be zero, we find pyp = —(4/9) x 107° C/m?.
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divD 1a(D)+1aD¢+aDZ (eylindrical)
ivD = — — - — 4+ — cylindrica
pa,o'op 0 0@ 0z }

3.16. An electric flux density is given by D = Dg a,, where Dy is a given constant.

a) What charge density generates this field? Charge density is found by taking the diver-
gence: With radial D only, we have

pp =V -D = 1i(,r.urf}'n) _Do C/m*
pdp p

b) For the specified field, what total charge is contained within a cylinder of radius a and
height b, where the cylinder axis is the z axis? We can either integrate the charge density
over the specified volume, or integrate D over the surface that contains the specified
volume:

2w a D 2w
Q= [b/ / = pdpddd: =/.bf Dya,-a,adpdz = 2mabDy C
0o Jo 0o P o Jo -

STUDENTS-HUB.com Uploaded By: Mohammad Awawdeh



, 143 , J . 1 aDy
divD=— —((°D,) + (sin6 Dy) +
r2 or 6 7S

herical
7 $inf 7 ng agp  Cpherical

3.25. Within the spherical shell, 3 < r < 4 m, the electric flux density is given as
D =5(r - 3)*a, C/m*
a) What 1s the volume charge density at r = 47 In this case we have

o=V -D =~ 202D = 3 - 32(5r — 6) C/m?
r<d r

r

which we evaluate at r = 4 to find py(r = 4) = 17.50 C/m".

b) What 1s the electric lux density at r = 47 Substitute r = 4 into the given expression to
find D(4) = 5a, C/m?

c¢) How much electric flux leaves the sphere r = 47 Using the result of part b, this will be
& = 47(4)%(5) =320= C

d) How much charge 1s contained within the sphere, r = 47 From Gauss’ law, this will be
the same as the outward flux, or again, () = 3207 C.
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