Chapter 14

Mendel and the Gene Idea

PowerPoint® Lecture Presentations for

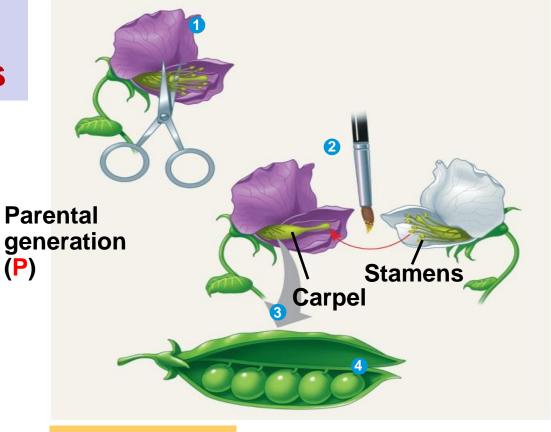
Biology

Eighth Edition
Neil Campbell and Jane Reece

Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

Overview:

- What genetic principles account for the passing of traits from parents to offspring?
- During the 1800s, The "blending"
 hypothesis is the idea that genetic material
 from the two parents blends together (like
 blue and yellow paint blend to make green)


- The "particulate" hypothesis is the idea that parents pass on discrete heritable units (genes)
- Mendel documented a particulate mechanism through his experiments with garden peas

Concept 14.1: Mendel used the scientific approach to identify two laws of inheritance

 Mendel discovered the basic principles of heredity by breeding garden peas in carefully planned experiments

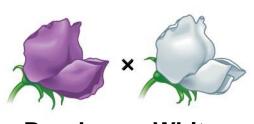
TECHNIQUE

Crossing pea plants

RESULTS

First filial generation offspring (F₁)

- Mendel chose to track only those characters that varied in an either-or manner
- He also used varieties that were truebreeding (plants that produce offspring of the same variety when they self-pollinate)
- A true breeding is a kind of breeding wherein the parents would produce offspring that would carry the same phenotype. This means that the parents are homozygous for every trait.

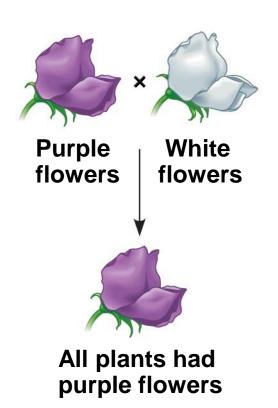

- In a typical experiment, Mendel mated two contrasting, true-breeding varieties, a process called hybridization
- The true-breeding parents are the P generation
- The hybrid offspring of the P generation are called the F₁ generation
- When F₁ individuals self-pollinate, the
 - F₂ generation is produced

Mendel' first law: The Law of Segregation

- When Mendel crossed contrasting, truebreeding white and purple flowered pea plants, all of the F₁ hybrids were purple
- When Mendel crossed the F₁ hybrids, many of the F₂ plants had purple flowers, but some had white
- Mendel discovered a ratio of about three to one, purple to white flowers, in the F₂ generation

EXPERIMENT

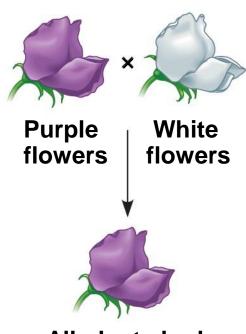
P Generation (true-breeding parents)


Purple flowers

White flowers

EXPERIMENT

P Generation (true-breeding parents)


F₁ Generation (hybrids)

EXPERIMENT

P Generation

(true-breeding parents)

F₁ Generation

(hybrids)

All plants had purple flowers

F₂ Generation

705 purple-flowered plants

224 white-flowered plants

- Mendel called the purple flower color a dominant trait and the white flower color a recessive trait
- Mendel observed the same pattern of inheritance in six other pea plant characters, each represented by two traits
- What Mendel called a "<u>heritable factor</u>" is what we now call a <u>**Gene**</u>

Table 14.1 The Results of Mendel's F ₁ Crosses for Seven Characters in Pea Plants					
Character	Dominant Trait	x	Recessive Trait	F ₂ Generation Dominant:Recessive	Ratio
Flower color	Purple	×	White	705:224	3.15:1
Flower position	Axial	×	Terminal	651:207	3.14:1
Seed color	Yellow	×	Green	6,022:2,001	3.01:1
Seed shape	Round	×	Wrinkled	5,474:1,850	2.96:1
Pod shape	Inflated	×	Constricted	882:299	2.95:1
Pod color	Green	×	Yellow	428:152	2.82:1
Stem length	Tall	×	Dwarf	787:277	2.84:1

Law of segregation states that the two alleles for a heritable character separate (segregate) during gamete formation and end up in different gametes

 Thus, an egg or a sperm gets only one of the two alleles that are present in the somatic cells of an organism

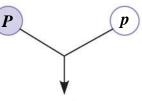
- Mendel's segregation model accounts for the 3:1 ratio he observed in the F₂ generation of his numerous crosses
- The possible combinations of sperm and egg can be shown using a Punnett square, a diagram for predicting the results of a genetic cross between individuals of known genetic makeup
- A <u>capital letter</u> represents a dominant allele, and a <u>lowercase</u> letter represents a recessive allele

P Generation

Appearance: Purple flowers White flowers Genetic makeup: PP pp

Gametes: P

P Generation


Appearance: Purple flowers White flowers

PP

Genetic makeup:

pp

Gametes:

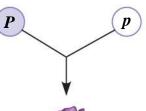
F₁ Generation

Appearance: Purple flowers Genetic makeup: Pp

Gametes: $\frac{1}{2} P$ $\frac{1}{2} P$

law of

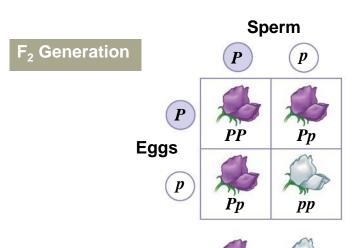
segregation


Mendel's Appeara

P Generation

Appearance: Purple flowers White flowers Genetic makeup: PP pp

Gametes:



F₁ Generation

Appearance: Purple flowers Genetic makeup: Pp

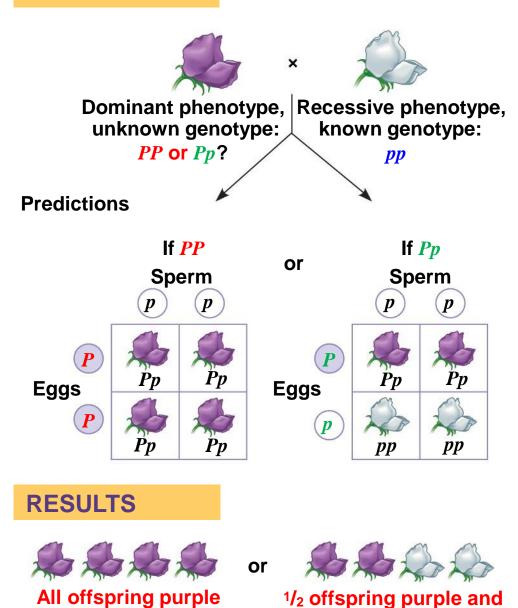
Gametes: $\frac{1}{2} p$ $\frac{1}{2} p$

Useful Genetic Vocabulary

- An organism with two identical alleles for a character is said to be homozygous for the gene controlling that character
- An organism that has two different alleles for a gene is said to be heterozygous for the gene controlling that character

- An organism's physical appearance: is called its phenotype
- An organism's genetic makeup is called its genotype.
- In the example of flower color in pea plants, *PP* and *Pp* plants have the same phenotype
 (purple) but different genotypes

Ratio 3:1

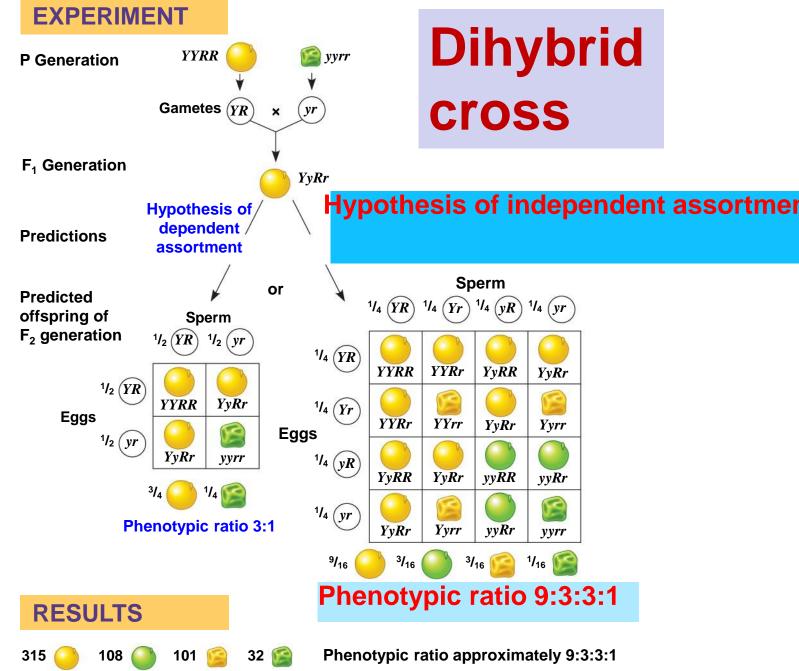

Ratio 1:2:1

The Testcross

- Used to determine the genotype of an organism that shows the dominant phenotype.
- Such an individual must have one dominant allele, but the individual could be either homozygous dominant or heterozygous
- The answer is to carry out a testcross: breeding the mystery individual with a homozygous recessive individual

 If any offspring display the recessive phenotype, the mystery parent must be heterozygous

TECHNIQUE


1/2 offspring white

Mendel's second law: The Law of Independent Assortment

- Mendel derived the law of segregation by following a single character
- The F₁ offspring produced in this cross were monohybrids, individuals that are heterozygous for one character
- A cross between such heterozygotes is called a monohybrid cross

- Mendel identified his second law of inheritance by following two characters at the same time
- Crossing two true-breeding parents differing in two characters produces dihybrids in the F₁ generation, heterozygous for both characters

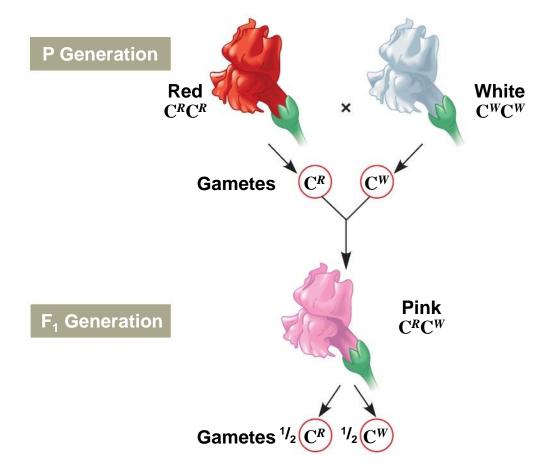
A dihybrid cross, a cross between F₁ dihybrids, can determine whether two characters are transmitted to offspring as a package or independently

- The law of independent assortment states that each pair of alleles segregates independently of each other pair of alleles during gamete formation
- Strictly speaking, this law applies only to genes on different, nonhomologous chromosomes
- Genes located near each other on the same chromosome tend to be inherited together

Concept 14.3: Inheritance patterns <u>are often more</u> <u>complex</u> than predicted by simple Mendelian genetics

- The relationship between genotype and phenotype is rarely as simple as in the pea plant characters Mendel studied
- Many heritable characters <u>are not</u> <u>determined</u> by <u>only one gene</u> with two alleles
- However, the basic principles of segregation and independent assortment apply even to more complex patterns of

Extending Mendelian Genetics for a Single Gene


- Inheritance of characters by a single gene may deviate from simple Mendelian patterns in the following situations:
 - When alleles are <u>not completely dominant</u> or recessive
 - When a gene has more than two alleles
 - When a gene produces multiple phenotypes

Degrees of Dominance

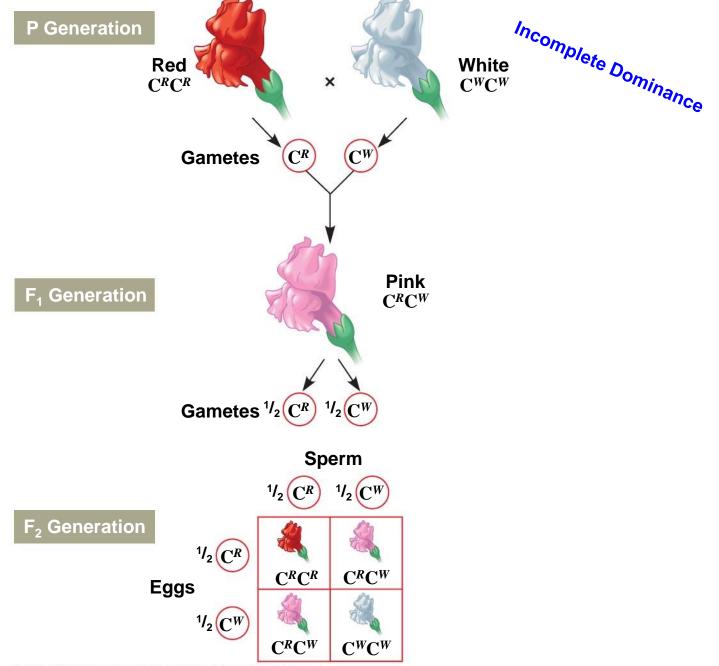
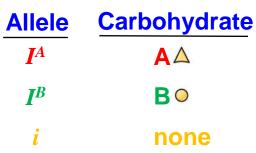
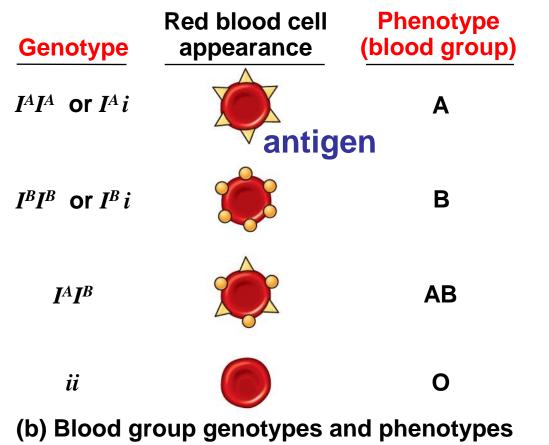

- Complete dominance occurs when phenotypes of the heterozygote and dominant homozygote are identical
- In incomplete dominance, the phenotype of F₁ hybrids is somewhere between the phenotypes of the two parental varieties. Example: Snapdragon flower color

Fig. 14-10-1

Incomplete dominance in snapdragon color


 In codominance, two dominant alleles affect the phenotype in separate, distinguishable ways.

Example: blood groups (A & B)


Multiple Alleles

- Most genes exist in populations in more than two allelic forms
- For example, the four phenotypes of the ABO blood group in humans are determined by three alleles for the enzyme (I) that attaches A or B carbohydrates to red blood cells: I^A, I^B, and i.

 The enzyme encoded by the ^{I A} allele adds the A carbohydrate, whereas the enzyme encoded by the ^{I B} allele adds the B carbohydrate; the enzyme encoded by the ^I allele adds neither

(a) The three alleles for the ABO blood groups and their associated carbohydrates

