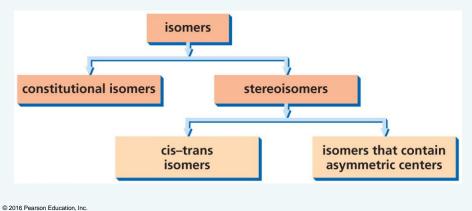
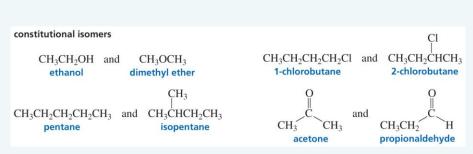
Chapter 4


Isomers: The Arrangement of Atoms in Space

Paula Yurkanis Bruice University of California, Santa Barbara


© 2016 Pearson Education, Inc.

Isomers

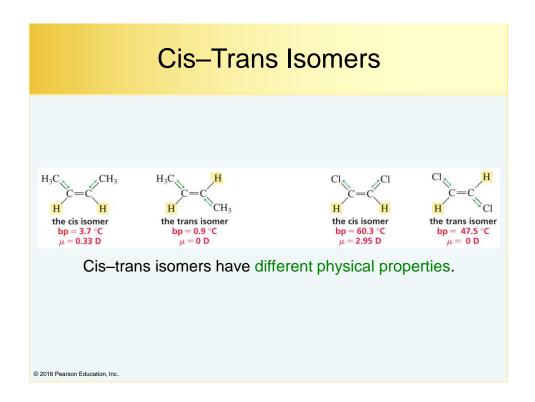
Compounds that have the same molecular formula but different structures.

Constitutional Isomers

Constitutional isomers differ in the way the atoms are connected.

© 2016 Pearson Education, Inc.

Stereoisomers: Cis-Trans Isomers


Cis-trans isomers result from restricted rotation.

Cyclic structures have restricted rotation.

Cis: The substituents are on the same side of the ring.

Trans: The substituents are on opposite sides of the ring.

Double bonds restrict rotation. Double bonds restrict rotation. H₃C H₃C H₃C H₄C H CH₃ Cis: The hydrogens are on the same side of the double bond. Trans: The hydrogens are on opposite sides of the double bond.

Some Alkenes do not have Cis-Trans Isomers

cis and trans isomers are not possible for these compounds because two substituents on an sp^2 carbon are the same

H

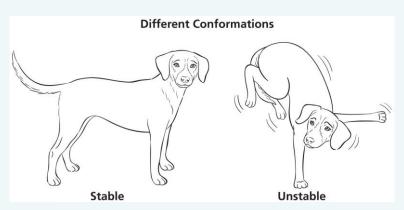
CH₃

CH₃CH₂

CH₃

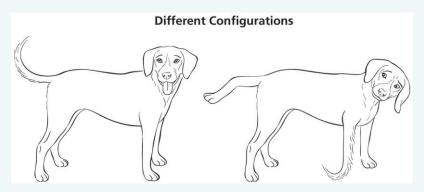
C=C

H


Cl

H

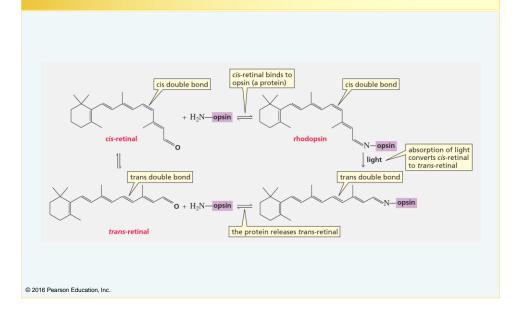
CH₃

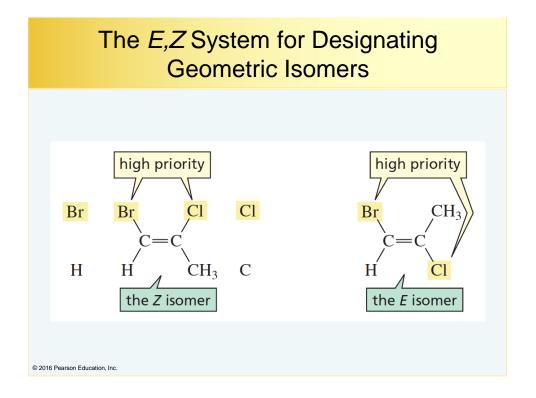

© 2016 Pearson Education, Inc.

Different Conformations

Compounds with different conformations (conformers) cannot be separated.

Different Configurations




Compounds with different configurations can be separated.

Cis-trans isomers have different configurations.

© 2016 Pearson Education, Inc.

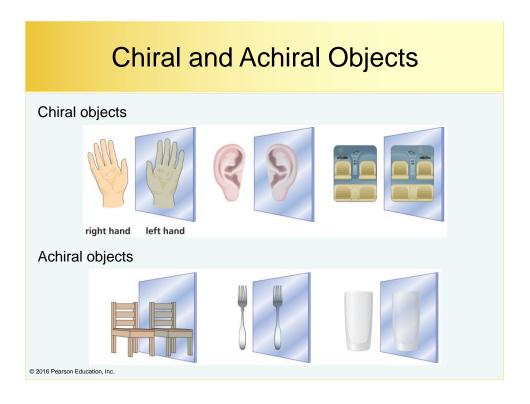
Cis-Trans Isomerization in Vision

The E,Z System for Designating Geometric Isomers

CHH CICH
$$_2$$
CH $_2$ CHCH $_3$ CCH CICH $_2$ CHCH $_3$ CHCH $_3$ C=C CICH $_2$ CH $_2$ CH $_2$ CH $_3$ CHCH $_3$ CHCH $_4$ CICH $_5$ CH $_2$ CH $_4$ CICH $_5$ CH $_5$

If the atoms attached to the sp^2 carbon are the same, the atoms attached to the tied atoms are compared; the one with the greater atomic number belongs to the group with the higher priority.

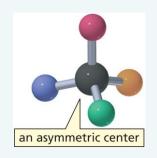
© 2016 Pearson Education, Inc

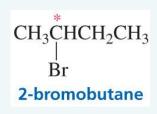

The E,Z System for Designating Geometric Isomers

HHO HOCH₂CH₂ CH=CH₂ HCC HOCH₂CH₂ CH₂CH₃
$$C=C$$
 CCC HC=CCH₂ CH₂CH₃ CHH HC=CCH₂ CH=CH₂ the $\it E$ isomer

If an atom is doubly bonded to another atom, treat it as if it were singly bonded to two of those atoms.

If an atom is triply bonded to another atom, treat it as if it were singly bonded to three of those atoms.


Cancel atoms that are identical in the two groups; use the remaining atoms to determine the group with the higher priority.



Chiral Molecules

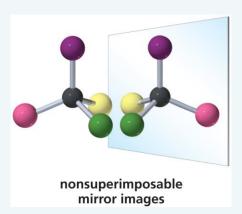
Chiral molecules have an asymmetric center.

An asymmetric center is an atom that is attached to four different groups.

Compounds with an Asymmetric Center

Enantiomers

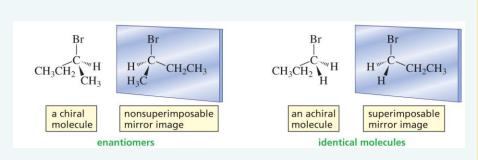
$$\begin{array}{c|c} & & & & & Br \\ & & & & & & Br \\ CH_3CH_2 & & & & & CH_2CH_3 \\ \hline & & & & & CH_3 \\ \hline & & & & CH_3 \\ \hline & & & & & CH_3 \\ \hline$$


The two isomers are called enantiomers.

Enantiomers are different compounds: they can be separated.

Enantiomers have the same physical and chemical properties.

© 2016 Pearson Education, Inc.


Enantiomers

Enantiomers are nonsuperimposable mirror images.

© 2016 Pearson Education, Inc.

Chiral and Achiral Molecules

Chiral compounds have nonsuperimposable mirror images.

Achiral compounds have superimposable mirror images (they are identical molecules).

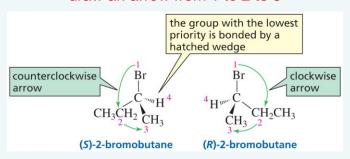
How to draw Enantiomers

Perspective formulas

of 2-bromobutane

Interchanging two atoms or groups attached to an asymmetric center produces an enantiomer.

Interchanging two atoms or groups a second time brings you back to the original compound:

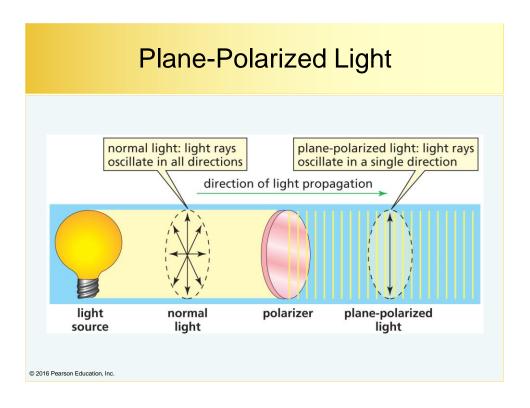

© 2016 Pearson Education, Inc.

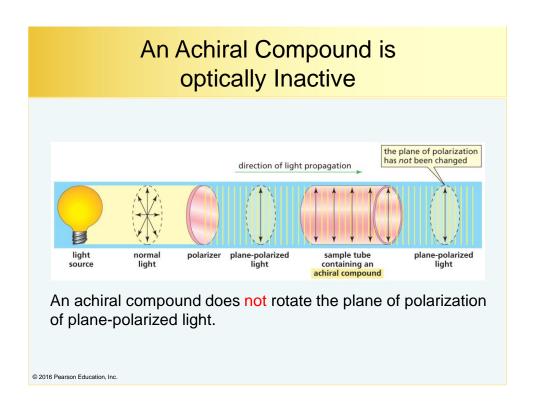
Naming Enantiomers

Assign relative priorities to the four groups.

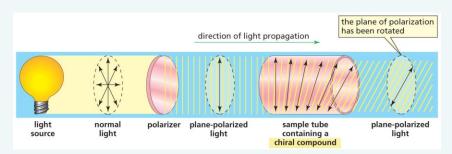
Naming Enantiomers

draw an arrow from 1 to 2 to 3


If the lowest priority group is on a hatched wedge, then clockwise = R and counterclockwise = S


© 2016 Pearson Education, Inc.

Naming Enantiomers


If the lowest priority group is **not** on a hatched wedge, switch a pair so it is on a hatched wedge.

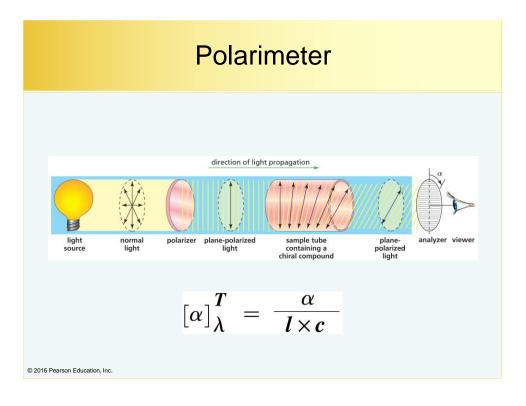
Then, name the new compound.

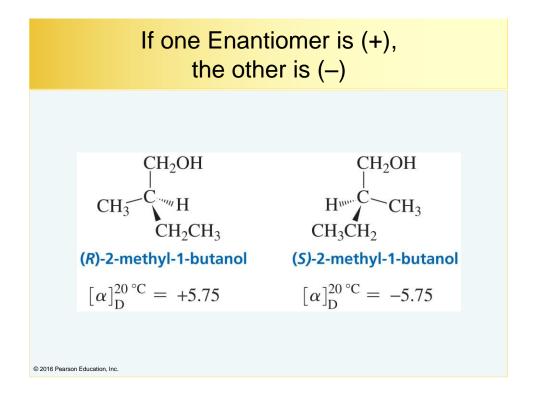
A Chiral Compound is optically Active

A chiral compound rotates the plane of polarization of plane-polarized light.

If it rotates the plane clockwise = (+)

If it rotates the place counterclockwise = (-)


© 2016 Pearson Education, Inc.


R and S Versus (+) and (-)

Some *R* enantiomers are (+) and some are (-).

Some S enantiomers are (+) and some are (-).

$$CH_3$$
 CH_3
 CH_3

Compounds with two Asymmetric Centers

maximum # of stereoisomers = 2ⁿ

(n = # of asymmetric centers)

1 and 2 are enantiomers. 3 and 4 are enantiomers.

© 2016 Pearson Education, Inc.

Diastereomers

1 and 2 are enantiomers. 3 and 4 are enantiomers.

Diastereomers are stereoisomers that are not enantiomers.

1 and 3 are diastereomers.

2 and 3 are diastereomers.

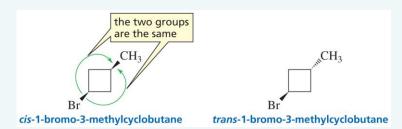
1 and 4 are diastereomers. 2 and 4 are diastereomers.

Diastereomers have different physical and chemical properties.

Two Asymmetric Centers, Four Stereoisomers

The cis stereoisomers are a pair of enantiomers.

The trans stereoisomers are a pair of enantiomers.


© 2016 Pearson Education, Inc.

Identifying an Asymmetric Center

An asymmetric center is attached to four different groups.

two asymmetric centers, four stereoisomers

No Asymmetric Centers

There are only two stereoisomers: cis and trans.

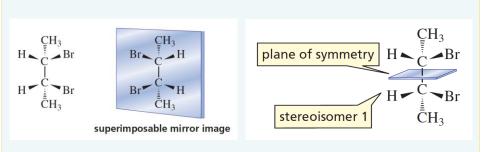
© 2016 Pearson Education, Inc.

No Asymmetric Centers

cis-1-bromo-4-methylcyclohexane

trans-1-bromo-4-methylcyclohexane

There are only two stereoisomers: cis and trans.


Two Asymmetric Centers: Three Stereoisomers (a meso compound and a pair of enantiomers)

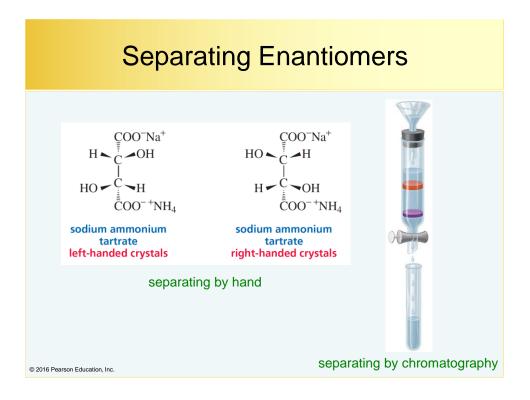
A compound with two asymmetric centers that has the same four groups bonded to each asymmetric center will have three stereoisomers:

a meso compound (1) and a pair of enantiomers (2 and 3)

© 2016 Pearson Education, Inc.

A Meso Compound has a Superimposable Mirror Image

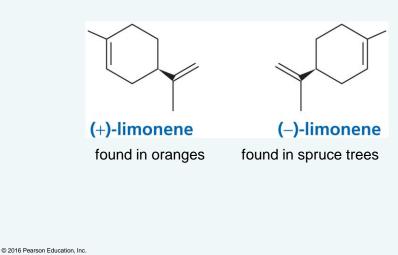
Meso compounds are optically inactive even though they have asymmetric centers.


Cyclic Meso Compounds

For cyclic compounds with the same substituent bonded to two asymmetric centers,

© 2016 Pearson Education, Inc.

Physical Properties of Stereoisomers


	Melting point, °C	Specific rotation	Solubility, g/100 g H ₂ O at 15 °C
(2R,3R)-(+)-Tartaric acid	171	+11.98	139
(2S,3S)-(-)-Tartaric acid	171	-11.98	139
(2R,3S)-Tartaric acid (meso)	146	0	125
(±)-Tartaric acid	206	0	139

Physiological Properties of Enantiomers

Enantiomers can have very different physiological properties.

Oranges and Lemons

