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Intuition Behind Deep Neural Nets
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Key Ideas of Neural Nets
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Perceptrons

Perceptrons

Leading to

• Neural Networks

• aka Multilayer Perceptron Networks

• aka Deep Learning
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Neuron inspires Regression

• Graphical Representation of linear regression

• McCullough-Pitts Neuron

• Note: Not a graphical model

15Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Neuron inspires Regression

• Edges multiply the signal xi by some weight θi.

• Nodes sum inputs:

• Equivalent to Linear Regression
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Activation function

• How do we construct the neural output
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Linear Neuron
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Activation function

• Sigmoid function or Squashing function
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Logistic Neuron
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Perceptron

• Classification squashing function
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Perceptron
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The central idea behind Neural Networks

Building a model that is both complex and simple to manipulate by composing multiple 
functions together.

Example: 
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X Y
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Anatomy of artificial neural network (ANN)
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X Y

𝑌 = 𝑓(ℎ)

input
neuron

node
output

Affine transformation

We will talk later about the choice of activation function.

Activation
ℎ = 𝑊𝑇𝑋
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Anatomy of artificial neural network (ANN)
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𝑋1

𝑋2

𝑌

𝑋𝑊1

𝑋𝑊2

Input layer hidden layer output layer 

𝑧1 = 𝑊1
𝑇𝑋 = 𝑊11𝑋1 + 𝑊12𝑋2 + 𝑊10

ℎ1 = 𝑓(𝑧1)

𝑧2 = 𝑊2
𝑇𝑋 = 𝑊21𝑋1 + 𝑊22𝑋2 + 𝑊20

 h2= 𝑓(𝑧2)

𝑌 = 𝑔(ℎ1, ℎ2)

Output function

𝐽 = ℒ( 𝑌, 𝑌)

Loss function

We will talk later about the choice of the output layer and the loss 
function. 

𝑓

𝑓
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Anatomy of artificial neural network (ANN)

23

𝑋1

𝑋2

𝑌

𝑋𝑊11

𝑋𝑊12

Input layer hidden layer 1 output layer 

𝐻1𝑊21

𝐻1𝑊22

hidden layer 2

𝑓

𝑓

𝑓

𝑓
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Anatomy of artificial neural network (ANN)
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𝑋1

𝑋2

𝑌

Input layer hidden layer 1 output layer 

𝐻
𝑛

−
1

𝑊
𝑛

1

hidden layer n

…

…

𝐻
𝑛

−
1

𝑊
𝑛

2

𝑓

𝑓

𝑋𝑊11

𝑋𝑊12

𝑓

𝑓
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Anatomy of artificial neural network (ANN)
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𝑋1

𝑋2

𝑌

Input layer hidden layer 1, output layer hidden layer n

…… …

m nodes

m nodes
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Anatomy of artificial neural network (ANN)
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hidden layer 1 hidden layer 2

output layerinput layer
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Design choices: Activation function
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ℎ = 𝑓(𝑊𝑇𝑋 + 𝑏)

The activation function should:

• Provide non-linearity

• Ensure gradients remain large through hidden unit

 

Common choices are 

• sigmoid, tanh

• ReLU, leaky ReLU, Generalized ReLU 

• softplus

• swish  
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Sigmoid, 𝜎() (aka logistic) and tanh
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Derivative is zero for much of the domain. This leads to “vanishing gradients” 
in backpropagation.

𝑦 =
1

1 + 𝑒−𝑥
𝑦 =

𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
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Rectified Linear Unit, ReLU(), Exponential ReLU (ELU)
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Two major advantages:
1. No vanishing gradient when x > 0
2. Provides sparsity (regularization) since y 

= 0 when x < 0

𝑦 = max(0, 𝑥)
𝑦 = max 0, 𝑥 + 𝛼 min(0, 𝑒𝑥 − 1)

where 𝛼 takes a small value

No vanishing gradients and easy to 
calculate. 
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Softplus and Swish
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𝑦 = log(1 + 𝑒𝑥)

The derivative of the softplus is the sigmoid 
logistic function, which is a smooth 
approximation of the derivative of the rectifier.  So 
the derivative of the softplus is continuous. 

𝑔 𝑥 = 𝑥 𝜎(𝑥)

Swish tends to work better than ReLU on deeper 
models across a number of challenging datasets. 
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TL;DR (too long; didn’t read)

Use ReLU or leaky ReLU  or ELU to start.

If you are concerned for a few points improvement in performance, experiment with 
swish and softplus and treat them as hyperparameters. In other words choose the 
activation that gives you the best validation loss.  
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Loss Function
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-
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Loss Function
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Loss Function
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Output unit for binary classification 
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Output unit for multi-class classification 
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SoftMax
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SoftMax and Cross-Entropy Loss
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Output unit for regression
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Number of nodes
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Number of nodes
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Number of nodes
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Number of nodes
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…
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Neural Networks as Universal Approximators
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Layers
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Layers

46Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Layers
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Why layers? 
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Input 

..
. 𝑃(𝑌 = 1)

input hidden1 hidden2 output 

ℎ2

ℎ1

𝑃(𝑌 = 0.5)
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Depth = Repeated Compositions
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Better Generalization with Depth
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(Goodfellow 2017)
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Shallow Nets Overfit More
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(Goodfellow 2017)

The 3-layer nets perform worse on the test set, 
even with similar number of total parameters.

The 11-layer net generalizes better on the test set 
when controlling for number of parameters.

Depth helps, and it’s not just because of more parameters

Don’t worry 
about this word 
“convolutional”. 
It’s just a special 
type of neural 
network, often 
used for images.
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Learning the coefficients

Start with single neuron
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𝑌 = 𝑓(𝑊0 + 𝑊1𝑥1 + 𝑊2𝑥2 + 𝑊3𝑥3 + 𝑊4𝑥4)

𝑥1

𝑥2

𝑥3

𝑥4

Coefficients or WeightsIntercept or Bias

f(X)=
1

1+𝑒−𝑊𝑇𝑋

Classification

f 𝑋 = 𝑊𝑇𝑋

Regression

𝑊𝑇𝑋 𝑓
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But what is the idea? 

Start with all randomly selected weights. Most likely it will perform horribly.

For example, in our heart data, the model will be giving us the wrong answer. 
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𝑆𝑒𝑥 = 𝑀𝑎𝑙𝑒

𝐶ℎ𝑜𝑙 = 152

Bad Computer

y=No

Correct

𝑀𝑎𝑥𝐻𝑅 = 197

𝐴𝑔𝑒 = 53

𝑊𝑇𝑋 𝑓 Ƹ𝑝 = 0.8 → 𝑌𝑒𝑠
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But what is the idea? 

Start with all randomly selected weights. Most likely it will perform horribly.

For example, in our heart data, the model will be giving us the wrong answer. 
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𝑆𝑒𝑥 = 𝑀𝑎𝑙𝑒

𝐶ℎ𝑜𝑙 = 352

Bad Computer

y=Yes

Correct

𝑀𝑎𝑥𝐻𝑅 = 170

𝐴𝑔𝑒 = 35

𝑊𝑇𝑋 𝑓 Ƹ𝑝 = 0.4 → 𝑁𝑜
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But what is the idea? 

• Loss Function: Takes all of these results and averages them and tells us how bad or 
good the computer or those weights  are. 

• Telling the computer how bad or good is, does not help.

•  You want to tell it how to change those weights so it gets better.  
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Loss function: ℒ 𝑤0, 𝑤1, 𝑤2, 𝑤3, 𝑤4

For now let’s only consider a single weight, ℒ 𝑤1  
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Minimizing the Loss function
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To find the optimal point of a function ℒ 𝑊

And find the 𝑊 that satisfies that equation. Sometimes there is no 
explicit solution for that.  

Ideally we want to know the value of  𝑤1 that gives the minimal ℒ 𝑊

𝑑ℒ(𝑊)

𝑑𝑊
= 0 solve for 𝑊∗ = argminWℒ(𝑊)
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Estimate of the regression coefficients:  gradient descent 
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A more flexible method is

• Start from a random point
1. Determine which direction to go to reduce the loss (left or right)

2. Compute the slope of the function at this point and step to the right if slope is 
negative or step to the left if slope is positive

3. Goto to #1 
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Gradient Descent
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• Algorithm for optimization of first order 

to finding a minimum of a function. 

• It is an iterative method.

• L is decreasing much faster in the 
direction of the negative derivative. 

• The learning rate is controlled by the 
magnitude of 𝜂.

L

w

- +

𝑤(𝑖+1) = 𝑤(𝑖) − 𝜂
𝑑ℒ

𝑑𝑤
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Batch and Stochastic Gradient Descent
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• Instead of using  all the examples for every step, use a subset of 
them (batch).

• For each iteration k, use the following loss function to derive the 
derivatives: 

• which is an approximation to the full loss function. 

ℒ = − 

𝑖

[𝑦𝑖 log 𝑝𝑖 + 1 − 𝑦𝑖 log(1 − 𝑝𝑖)]

ℒ𝑘 = − 

𝑖∈𝑏𝑘

[𝑦𝑖 log 𝑝𝑖 + 1 − 𝑦𝑖 log(1 − 𝑝𝑖)]
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Learning Rate
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• Our choice of the learning rate has a significant impact on the performance of gradient descent. 

When 𝜂 is too small, the algorithm 
makes very little progress.

When 𝜂 is too large, the algorithm 
may overshoot the minimum and 
has crazy oscillations.   

When 𝜂 is appropriate, the 
algorithm will find the minimum.
The algorithm converges!
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How can we tell when gradient descent is converging? We visualize the loss function at each 
step of gradient descent. This is called the trace plot. 

Loss  is mostly oscillating between 
values rather than converging.

While the loss is decreasing 
throughout training, it does not look 
like descent hit the bottom.

The loss has decreased significantly 
during training. Towards the end, the 
loss stabilizes and it can’t decrease 
further. 
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Learning Rate

There are many alternative methods which address how to set or adjust the learning 
rate, using the derivative or second derivatives and or the momentum. 

More on this later. 
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Multilayer Networks

• Stack Neurons together

• The output from one layer is the input to the next

• Each Layer has its own sets of weights
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Linear Regression Neural Networks

• What happens when we arrange linear neurons in a multilayer network?
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Linear Regression Neural Networks

• Nothing special happens.

• The product of two linear transformations is itself a linear transformation.
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Neural Networks

• We want to introduce non-linearities to the network.

• Non-linearities allow a network to identify complex regions in space
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Linear Separability

• More layers can handle more complicated spaces – but require more parameters

• Each node splits the feature space with a hyperplane

• A 2-layer network can represent any convex hull.
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Feed-Forward Networks

• Predictions are fed forward through the network to classify
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Feed-Forward Networks

• Predictions are fed forward through the network to classify
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Feed-Forward Networks

• Predictions are fed forward through the network to classify
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Feed-Forward Networks

• Predictions are fed forward through the network to classify
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Feed-Forward Networks

• Predictions are fed forward through the network to classify
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Feed-Forward Networks

• Predictions are fed forward through the network to classify
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Error Backpropagation

• We will do gradient descent on the whole network.

• Training will proceed from the last layer to the first.
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Error Backpropagation

• Introduce variables over the neural network
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Error Backpropagation

• Introduce variables over the neural network

• Distinguish the input and output of each node
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Error Backpropagation
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Error Backpropagation

• Training: Take the gradient of the last component and iterate backwards
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Error Backpropagation
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Empirical Risk Function
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Error Backpropagation

• Optimize last layer weights wkl:
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Calculus chain rule
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Error Backpropagation

• Optimize last layer weights wkl:
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Calculus chain rule
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Error Backpropagation

• Optimize last hidden weights wjk:
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Multivariate chain rule
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Error Backpropagation

• Optimize last hidden weights wjk:
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Multivariate chain rule
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Error Backpropagation

• Optimize last hidden weights wjk:
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Error Backpropagation

• Repeat for all hidden layers:
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Error Backpropagation

• Now that we have well defined gradients for each parameter, update using Gradient 
Descent:
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Error Back-propagation

• Error backpropagation unravels the multivariate chain rule and solves the gradient for 
each partial component separately.

• The target values for each layer come from the next layer.

• This feeds the errors back along the network.
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Problems with Neural Networks

• Interpretation of Hidden Layers

• Overfitting (Many parameters)

• Require very large annotated datasets 
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Overfitting

• Augment training data by applying transformations on the training data (mirroring, 
rotation, affine, …)

• Norm Penalties: L2 and L1 regularization

• Early Stopping

• Use “dropout” to regularize the weights in the globally connected layers (which contain 
most of the parameters). 

• Dropout means that half of the hidden units in a layer are randomly removed  for each training 
example. 

• This stops hidden units from relying too much on other hidden units.
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Early Stopping
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Early stopping: terminate while validation set performance is better. Sometimes is worth 
waiting a little before stopping. This is called patience.  

Patience is defined as the number of 
epochs to wait before early stop if no 
progress on the validation set. 

The patience is often set somewhere 
between 10 and 100 (10 or 20 is more 
common), but it really depends on the 
dataset and network.
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Dropout

• Each time we present a training example, we randomly omit each hidden unit with 
probability 0.5.
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Dropout

• At test time, all nodes are used but the weights are scaled. 
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Optimizers
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Local Minima
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Critical Points
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• Points with zero gradient 

• 2nd-derivate (Hessian) determines curvature
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Local Minima
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• Old view: local minima is major problem in neural network training

• Recent view:  

• For sufficiently large neural networks, most local minima incur low cost

• Not important to find true global minimum
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Saddle Points

99

• Recent studies indicate that in high 
dim, saddle points are more likely 
than local min

• Gradient can be very small near 
saddle points

Both local min 
and max
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Poor Conditioning
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• Poorly conditioned Hessian matrix

• High curvature: small steps leads to huge increase 

• Learning is slow despite strong gradients

Oscillations slow down 
progress
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Momentum
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• Oscillations because updates do not exploit curvature information

• Average gradient presents faster path to optimal: vertical components cancel 
out

𝐿(𝑊)

𝑊
2

𝑊1
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Momentum
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• Old gradient descent: 

• New gradient descent with momentum: 

𝑔 =
1

𝑚


𝑖

𝛻𝑊𝐿(𝑓 𝑥𝑖; 𝑊 , 𝑦𝑖)

𝑓is the Neural Network

𝑊∗ = 𝑊 − η𝑔

𝜈 = 𝛼𝜈 + (1 − 𝛼) 𝑔 𝑊∗ = 𝑊 − 𝜂𝜈

controls how quickly 
effect of past gradients decay
a Î [0,1)
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Adaptive Learning Rates

103

• Oscillations along vertical direction
• Learning must be slower along parameter 2

• Use a different learning rate for each parameter?

𝐿(𝑊)

𝑊
2

𝑊1
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AdaGrad

104

• Accumulate squared gradients:

• Update each parameter:

• Greater progress along gently sloped directions

ri = ri + gi
2 𝑔 is the gradient

Inversely proportional to 
cumulative gradient

𝛿 is a small number, making sure 
this does not become too large
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Other Adaptive Learning Rate Methods

• RMSProp 

• Use exponentially weighted average for gradient accumulation

• Adam

• RMSProp + Momentum

• Works well in practice, it is fairly robust to hyper-parameters

105

ri = rri + (1- r)gi
2
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Other Neural Networks
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Convolutional Network

• The network is not fully connected.  

• Different nodes are responsible for different regions of the image.

• This allows for robustness to transformations.
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A Convolutional Network
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A Convolutional Network
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Other Neural Networks

• Multiple Outputs

• Skip Layer Network

• Recurrent Neural Networks
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Multiple Outputs

• Used for N-way classification.

•  Each Node in the output layer corresponds to a different class.

•  No guarantee that the sum of the output vector will equal 1.
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Skip Layer Network

• Input nodes are also sent directly to the output layer.
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Recurrent Neural Networks

• Output or hidden layer information is stored in a context or memory layer.
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Hidden Layer Context Layer

Output Layer

Input Layer
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Recurrent Neural Networks

• Vanilla RNN

• Long-Short term memory (LSTM).

• Gated Recurrent Units (GRU).
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Transformer Family
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Back to our Object Recognition System
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Building an Object Recognition System
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Fully Connected Neural Net
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Locally Connected Neural Net
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Locally Connected Neural Net
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Convolutional Net
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Convolutional Net
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Convolutional Net
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Convolutional Net
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Convolutional Net
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Convolutional Net
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“Convolution” Operation
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“Convolution” Operation
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Convolutions – what happens at the edges?

If we apply convolutions on a normal image, the result will be down-sampled by an 
amount depending on the size of the filter.

We can avoid this by padding the edges in different ways.
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Padding
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Stride
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Example
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Convolutional Net

134Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Convolutional Net
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Pooling
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Pooling
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Pooling
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Pooling
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Pooling: example with stride 2x2
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Building a CNN

A convolutional neural network is built by stacking layers, typically of 3 types:
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Building a CNN
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Building a CNN
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A Convolutional Network
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Example
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Conv Nets: Training

• In a convolutional layer, we are basically applying multiple filters over the image to 
extract different features. But most importantly, we are learning those filters!

• Since convolutions and sub-sampling are differentiable, we can use standard back-
propagation.

• Algorithm: 

   Given a small mini-batch
- Forward Propagation   

- Backward Propagation

- Parameter Update
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What do CNN layers learn?
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What do CNN layers learn?
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Layers Receptive Field

• The receptive field is defined as the region in the input space that a particular CNN’s 
feature is looking at (i.e., be affected by).

• The receptive field size is a crucial issue in many visual tasks, as the output must 
respond to large enough areas in the image to capture information about large objects.

• Let’s look at the receptive field in 1D, no padding, stride 1 and kernel 3x1
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Layers Receptive Field
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Popular Convolutional Neural Networks (CNNs)
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Software
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