ENCS5341
Machine Learning and Data Science

Neural Networks
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- Adjustable Weights
- Weights are not Learned

- Learnable Weights and Threshold
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- XOR Problem

- Solution to nonlinearly separable
problems

- Big computation, local optima and
overfitting

- Limitation of learning
prior knowledge

- Kernel function:
Human intervention

- Hierarchical feature learning

- Framework for estimating
generative models via
adversarial process
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Introduction: Building an Object Recognition System

IDEA: Use data to optimize features for the given task.
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Introduction: Building an Object Recognition System

CLASSIFIER

What we want: Use parameterized function such that
a) features are computed efficiently
b) features can be trained efficiently
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Introduction: Building an Object Recognition System

END-TO-END
RECOGNITION
SYSTEM

- Everything becomes adaptive.
- No distiction between feature extractor and classifier.
- Big non-linear system trained from raw pixels to labels.
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Introduction: Building an Object Recognition System

\\CARII
' END-TO-END
RECOGNITION
SYSTEM

Q: How can we build such a highly non-linear system?

A: By combining simple building blocks we can make more and more
complex systems.
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Intuition Behind Deep Neural Nets

NOTE: Each black box can have trainable parameters.
Their composition makes a highly non-linear system.
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Intuition Behind Deep Neural Nets

Intermediate representations/features

NOTE: System produces a hierarchy of features.
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Intuition Behind Deep Neural Nets

EE !]3 'lﬂﬂ
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Lee et al. "Convolutional DBN's for scalable unsup. learning...” ICML 2009
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Intuition Behind Deep Neural Nets

\\CARI'
N

-

Lee et al. ICML 2009
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Intuition Behind Deep Neural Nets

Lee et al. ICML 2009
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Key Ideas of Neural Nets

IDEA # 1

Learn features from data

IDEA # 2

Use differentiable functions that produce
features efficiently

IDEA # 3

End-to-end learning:
no distinction between feature extractor and classifier

IDEA # 4

"Deep” architectures:
cascade of simpler non-linear modules
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Perceptrons

Perceptrons
Leading to
* Neural Networks

* aka Multilayer Perceptron Networks

* aka Deep Learning
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Neuron inspires Regression

* Graphical Representation of linear regression
* McCullough-Pitts Neuron

* Note: Not a graphical model

Sort of what a neuron
I looks like

' ' Denantes -
¥ ¢

b
Axan

 Call Body

T Bynapse
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Neuron inspires Regression

* Edges multiply the signal x. by some weight 0.

D
* Nodes sum inputs: Fx,0) = Z 0,2% + 6,
d=1

e Equivalent to Linear Regression

Sort of what a neuran
| looks like
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Activation function

 How do we construct the neural output

£(7,0) =077

Linear Neuron
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Activation function

* Sigmoid function or Squashing function

f(&,0) = g(0" 7)
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Perceptron

* Classification squashing function

—1whenz <0
+1whenz > 0

Perceptron
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The central idea behind Neural Networks

Building a model that is both complex and simple to manipulate by composing multiple
functions together.

Example:
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I
R o
0.830 = s I 0840 =
1l
1
| 0.839 =
0.825 = |
!
> / >
/ W
/ X 0.838 =
0.820 = 'f »
I}
I\ e —mm
I
0.837 =
0.815 =
________________
0.836 =
[] 1 [] [] 1 1 1 1 [] 1 1 [] [] 1 1 1 1 1
4100 -75 50 -25 00 25 50 75 100 .00 -75 50 -25 00 25 50 75 100

STUDENTS-HUB.com Uploaded By: Jibreef'Bornat



Anatomy of artificial neural network (ANN)

neuron

Input
P node

output

h=wTx Affine transformation

\/ = f(h) Activation
X > » Y

We will talk later about the choice of activation function.
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Anatomy of artificial neural network (ANN)

Input layer hidden layer output layer

Z1 = WlTX = W11X1 + W12X2 + W10
hy = f(z1)

X4 XW;
¥ =g(hy,hy) —> ] =L(E,Y)
Output function  Loss function
X2 XWZ
Z, = WIX =Wy Xq + WaX, + Whyy

hy= 1(22)

We will talk later about the choice of the output layer and the loss

function.
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Anatomy of artificial neural network (ANN)

Input layer hidden layer 1 hidden layer 2 output layer
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Anatomy of artificial neural network (ANN)

Input layer hidden layer 1 hidden layer n output layer

S
=
|
=
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Anatomy of artificial neural network (ANN)

Input layer hidden layer1, hidden layer n output layer

m nodes

(L / ,>”’T“S C
O (¢
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Anatomy of artificial neural network (ANN)

input layer output layer

hidden layer 1 hidden layer 2
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Design choices: Activation function

h = f(WTX + b)
The activation function should:

* Provide non-linearity

* Ensure gradients remain large through hidden unit

Common choices are

* sigmoid, tanh

* RelU, leaky ReLU, Generalized RelLU
* softplus

e swish
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Sigmoid, a() (aka logistic) and tanh

y

1

y:

" 1te*

ex

S e_x

e.'X,'

+ e

Sigmoid

>

0.25 =

0.20 =

0.15=

0.10=

Sigmoid Derivative

Tanh Derivative

Derivative is zero for much of the domain. This leads to “vanishing gradients”
In backpropagation.
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Rectified Linear Unit, ReLU(), Exponential ReLU (ELU)

y = max(0,x) + amin(0,e* — 1)
where a takes a small value

y = max(0, x)

RelLU Derivative ELU derivative

Two major advantages:
1. No vanishing gradient when x>0 No vanishing gradients and easy to

2. Provides sparsity (regularization) sincey calculate.
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Softplus and Swish

y =log(1+e*)

Softplus

Softplus Derivative

The derivative of the softplus is the sigmoid
logistic function, which is a smooth

approximation

of the derivative of the rectifier. So

STihPENNTVStNEIBf ¢hesoftplus is continuous.

g(x) = xa(x)

Swish Derivative

Swish tends to work better than ReLU on deeper
models across a number of challenging datasets.
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TL;DR (too long; didn’t read)

Use ReLU or leaky ReLU or ELU to start.

If you are concerned for a few points improvement in performance, experiment with
swish and softplus and treat them as hyperparameters. In other words choose the
activation that gives you the best validation loss.
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Loss Function

Probabilistic modeling

Likelihood for a given measurement:
p(:ilW; x;)

Assume independency, likelihood for all measurements:

Lw; X, ) = p(r W3 X0 = | [puiw; )

Maximize the likelihood, or equivalently minimizing the -ve log-likelihood:

LW;X,Y)=—logL(W;X,Y) =—Zlogp(yi|W; X;)
i
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Loss Function

Do not need to design separate loss functions if we follow the probabilistic
modeling approach, i.e. minimize the -ve likelihood function.

Examples:

* Distribution is Normal then -ve log-likelihood is MSE:
) 1 _(yi-.'f;i)z
. ;x = e 20
P © V{2n20)}

LW;X,Y) =X,y — 9:)°

* Distribution is Bernouli then -ve log-likelihood is Binary Cross-Entropy:

p(yiIW;x;) = p] (1 — p)* ¥
LW;X,Y) =—=);ly;logp; + (1 —y;)log(1 — p;)]
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Loss Function

* Fory that follow Multinouli, then likelihood is:

AW - v.) = . = JIvi=k)
p(yilW;x) = Up (yi = k) Cross-Entropy

LW;X,Y)=—X; 2 1(y; = k) logp(y; = k)

where k is the class and (y; = k) is the indicator function.
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Output unit for binary classification

OUTPUT UNIT

X=>¢pX)=Py=1)=

14+ e ¢
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Output unit for multi-class classification

OUTPUT UNIT
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SoftMax

¢ (X)

rest of the network
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0<ABC<1
A+B+C=1
A score

B score

C score

OUTPUT UNIT

Y

e¢k(X)

Ik{=1e¢k(x)

Probability of A

Probability of B

Probability of C
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SoftMax and Cross-Entropy Loss

Cross-

Softmax

—ntropy (Softmax)

Given a function with weights W,
Training pairs [x;; y;] (input and labels)

Score function s = f(x;, W)
eq. fx, W) =W - [x0, X1, .., X517 »
. - 32 |, | 245 |[E| 013 |5 |204
Suppose: 3 training examples and 3 classes 51 [+ 1640 %, 087 B 014
“ ’ " | -1.7 018 S |000|"|694
® . \ Z L; =
S cat 32 13 22 _ L + Lz +Ls _
S chair 51 4.9 25 3
» 'car 17 20 -31
_ 2.04 + 0.079 + 6.156 _
Loss 204 0.079 6.156 - 3 B

Prof, Leal-Taixé and Prof. Niessner
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Output unit for regression

J
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OUTPUT UNIT

X=¢X)=Y =WTe¢X)
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Number of nhodes
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Number of nhodes

Input

o 0O
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Number of nhodes
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Number of nhodes

Hidden
Input Output
=
—-= real: xsin(x)
= pred
Ch T TN,
> 0 - \
\“
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_4-
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Neural Networks as Universal Approximators

We have seen that neural networks can represent
complex functions, but are there l[imitations on
what a neural network can express?

4\ 7 heural network model
/

Theorem:

For any continuous function f defined on a
bounded domain, we can find a neural network

that approximates f with an arbitrary degree of
accuracy.

One hidden layer is enough to represent an approximation of any function to an
arbitrary degree of accuracy.

So why deeper?
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Layers
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Layers
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Layers

Input

Hidden Hidden Hidden

=
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Why layers?

Representation matters!

Neural networks can learn useful representations for the problem. This is another

Cartesian Coordinates
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input hidden, hidden, output

& ® class1
® class 2
5_
_q__
2 4
@ o — PY=1)

-7 4
—4 4
—6 4

-8 : : '| : :

-5 -6 -4 -2 1] 2 4 B

i P(Y = 0.5)
/
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Depth = Repeated Compositions

Visible layer 1st hidden layer 2nd hidden layer 3rd hidden layer Output
(input pixels) (edges) (corners and (object parts) (object identity)
contours)
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Better Generalization with Depth

96.5 T ! ! ! ! | !
96.0
95.5
95.0
94.5
94.0
93.5
93.0
92.5

92.0 | | | | | | |
3 4 5) 6 7 8 9 10 11

(Goodfellow 2017) Layers
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Shallow Nets Overfit More

Depth helps, and it’s not just because of more parameters

97 | | | , Don’t worry
—~ e—e 3. convolutional about this word
2 96 | -1 “convolutional”.
§ 3, fully connected It’s just a special
& 9T V-V 11, convolutional [{ typeof neural
o network, often
§ 9 - -1 used forimages.
= 1
S 93 | | | 1 -
av} ™ '
7
S 92 | ~
91 ' |
0.0 0.2 1.0
8
(Goodfellow 2017) Number of parameters x 10
The 11-layer net generalizes better on the test set The 3-layer nets perform worse on the test set,
when controlling for number of parameters. even with similar number of total parameters.
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Learning the coefficients

Start with single neuron

Classification Regression

_ 1 — T
fX)= —r5 fX) = WX

X2 Q\/
wrx —> Y = f(Wy + Wixg + Woxy + Waxg + Wyxy)

SN

Intercept or Bias Coefficients or Weights
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But what is the idea?

Start with all randomly selected weights. Most likely it will perform horribly.

For example, in our heart data, the model will be giving us the wrong answer.

MaxHR =197 ()

Correct
Age =53 Q\
wi'x| f | —p=08->Yes  y=No
Sex = Male Q/

Chol = 152 Q

Bad Computer
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But what is the idea?

Start with all randomly selected weights. Most likely it will perform horribly.

For example, in our heart data, the model will be giving us the wrong answer.

MaxHR =170 ()

Correct
Age = 35 Q\
wi'x| f | —p=04-No y=Yes
Sex = Male Q/

Chol = 352 Q

Bad Computer
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But what is the idea?

* Loss Function: Takes all of these results and averages them and tells us how bad or
good the computer or those weights are.

* Telling the computer how bad or good is, does not help.

* You want to tell it how to change those weights so it gets better.

Loss funCtion: L(Wo, W1, Wy, W3, W4)

For now let’s only consider a single weight, L(w,)
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Minimizing the Loss function

Ideally we want to know the value of w; that gives the minimal L(W)

10-

-Log-Likelihood

n > o co
1 1 1 1

02 01 00 01
To find the optimal point of a function IZ(W)
dL(w)
aw

0 solve for W* = argminy L(W)

And find the W that satisfies that equation. Sometimes there is no
explicit solution for that.
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Estimate of the regression coefficients: gradient descent

-Log-Likelihood

A more flexible method is | B

e Start from a random point
1. Determine which direction to go to reduce the loss (left or right)

2. Compute the slope of the function at this point and step to the right if slope is
negative or step to the left if slope is positive

3. Goto to #1
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Gradient Descent

Algorithm for optimization of first order
to finding a minimum of a function.

It is an iterative method.

L is decreasing much faster in the
direction of the negative derivative.

The learning rate is controlled by the
magnitude of 7.
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Batch and Stochastic Gradient Descent

£== [yilogp; + (1 - y)log(1 - py)]

l

* Instead of using all the examples for every step, use a subset of
them (batch).

* For each iteration k, use the following loss function to derive the
derivatives:

Lk = — z [yilogp; + (1 —y;)log(1 —p;)]

iebk
e which is an approximation to the full loss function.
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Learning Rate

* Our choice of the learning rate has a significant impact on the performance of gradient descent.

L) 4 L() L)
i .
Ac\ \J‘ W v W v
When 7 is too small, the algorithm When 7 is too large, the algorithm When 1 is appropriate, the
makes very little progress. may overshoot the minimum and algorithm will find the minimum.
has crazy oscillations. The algorithm converges!
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How can we tell when gradient descent is converging? We visualize the loss function at each
step of gradient descent. This is called the trace plot.

[ §

L(w)
w(ﬂ\ \’
L) T
\ R
o g 2%
wc-\ W Wu\ o
8
L()
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l
Llw)
WAWWMW
206 300 4oo 509 ucmc‘\s
A
Lw)
v 208 310 Mo 58 i pouy
/
Lw)
e 310 oo 590 I rodons

While the loss is decreasing

throughout training, it does not look
like descent hit the bottom.

Loss is mostly oscillating between
values rather than converging.

The loss has decreased significantly
during training. Towards the end, the

loss stabilizes and it can’t decrease
further.
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Learning Rate

There are many alternative methods which address how to set or adjust the learning
rate, using the derivative or second derivatives and or the momentum.

More on this later.
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Multilayer Networks

e Stack Neurons together
* The output from one layer is the input to the next

* Each Layer has its own sets of weights
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Linear Regression Neural Networks

* What happens when we arrange linear neurons in a multilayer network?
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Linear Regression Neural Networks

* Nothing special happens.
* The product of two linear transformations is itself a linear transformation.
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Neural Networks

e We want to introduce non-linearities to the network.

* Non-linearities allow a network to identify complex regions in space
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Linear Separability

* More layers can handle more complicated spaces — but require more parameters
e Each node splits the feature space with a hyperplane

* A 2-layer network can represent any convex hull.

e 9 9 e
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Feed-Forward Networks

* Predictions are fed forward through the network to classify
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Feed-Forward Networks

* Predictions are fed forward through the network to classify
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Feed-Forward Networks

* Predictions are fed forward through the network to classify
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Feed-Forward Networks

* Predictions are fed forward through the network to classify

STUDENTS-HUB.com
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Feed-Forward Networks

* Predictions are fed forward through the network to classify

0 90,0/ 01,0
X n_ P

< Pon >~

A = S 91,1 /
X9 ), )

“to,2 61,
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Feed-Forward Networks

* Predictions are fed forward through the network to classify

STUDENTS-HUB.com
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Error Backpropagation

* We will do gradient descent on the whole network.

* Training will proceed from the last layer to the first.
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Error Backpropagation

* Introduce variables over the neural network

0 = {wi;, Wik, Wi}

Wk

X p
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Error Backpropagation

* Introduce variables over the neural network

 Distinguish the input and output of each node

— {wma Wik, wkl}
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Error Backpropagation

a; = E W;j 2 ap = E Wik % a; = E WEl 2k
i J k

zj = g(ay) 2 = g(ag) 2z = g(ar)

— {wma Wik, wkl}
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Error Backpropagation

* Training: Take the gradient of the last component and iterate backwards

a; = E Wij 2 ap = E Wik<j a; = E Wl 2k
i J

zj = g(a;) 2, = g(ay) z1 = g(ar)

— {wma Wik, wkl}
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Error Backpropagation

N
1
R(O) = N ;L(yn — f(xn)) Empirical Risk Function
N
1 1 9
= 2 5 = Sl
2
1 <. 1
— N § (yn — g (Z Wg1g (Z wikg (Z Wi Ln z>> ))
n=0 k 7 )
z J <3 A Zk ai Zl

Tp
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Error Backpropagation

* Optimize last layer weightsw,;: L, = % (yn — f(xn))Q
day .,
awkl N Z lgal n] lauj;{;l | Calculus chain rule
]. 2 —
el A 5(Un — g(ain)) Oz Wiy | 1 o ,
awkzl B Z [ 8aln ] | Owyy ] N ;[ (Yn — 21,n)9 (a1,n)] 2k.n
2 a; Zj ag Zk aj

L2

Tp
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Error Backpropagation

* Optimize last layer weightsw,;: L, = % (Yn — f(zn))?
day .,
awkl N Z lgal ] [aujkl] Calculus chain rule
91 (
o § (al n)) 8zk,nwkl B i B B
awk:l_ Z[ aam ][ Owp ]_N;[ (Un
Z; aj  Zj a 2k a2
l Wiy l l Wik l l
xr
W
L1
X2

Lp
STUDENTS-HUB.com
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Error Backpropagation

. Optimize last hidden weights w,: o _ L Z Ol,nZk,n

Owy
_ L Z 8Ln 8a,k,n
(‘9ka aak,n 8wjk:

oL, Oaj., Oak n
_ _Z Z a, [ Ok, ] Multivariate chain rule
8w3k p

8al,n 8ak,n 8wjk

2 Q 2 ag 2k a

Wk

L2

Lp
STUDENTS-HUB.com
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Error Backpropagation

: : : OR
* Optimize last hidden weights wy: —>— = Z Ol,nZk,n
kl

oL, Oa oa
_ E E n L,n k,n Multivariate chain rule
8’(1) L 8&[ n a&k n ow k
J ) ) .7

L2

Lp
STUDENTS-HUB.com
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Error Backpropagation

. . . OR
* Optimize last hidden weights w;,: o N Z Ol,nZk,n
OR 8&[ n
wi _Z [Zalaakn] i
OR

8fwjk

L p
STUDENTS-HUB.com

N Z [Z 5l’wkl9/(ak,n)] 2jn] = %Z Ok, [2).n]
n l
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Error Backpropagation

. Repeat for all hidden layers:

8R aal n 1
— p— _— 2 _— n n n - — 5 n n
Owg Z lﬁaln] [awkl N = 2n)g (@n)] 21 Z 1,n %k
OR _aak n 1
- N , N T L n = 0 REIRD
8wjk; Z lﬁak n | (‘9ka N Z [Z 0; wk:zg CLk ] Zj, Z knZj,

OR  _ —Z [ &w _ %Z [Z Srnwing (@jn) | Zim = N;@-,nz@-,n

Ow da; y, | 8ww
a; Zj %k aj 21

L2

Tp
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Error Backpropagation

 Now that we have well defined gradients for each parameter, update using Gradient

Descent: IR
t+1 t
Wy ; = Wy Uwij
t+1 t 8R
Wit = Wi —nN—
j j Wit
OR
t+1 _ t
Wi = Wy — n—’wm
2 @ o ak Zk aj Z]

L p
STUDENTS-HUB.com
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Error Back-propagation

* Error backpropagation unravels the multivariate chain rule and solves the gradient for
each partial component separately.

* The target values for each layer come from the next layer.

* This feeds the errors back along the network.

Trp
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Problems with Neural Networks

* Interpretation of Hidden Layers

* Overfitting (Many parameters)

* Require very large annotated datasets
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Overfitting

Augment training data by applying transformations on the training data (mirroring,
rotation, affine, ...)

Norm Penalties: L, and L, regularization

Early Stopping

Use “dropout” to regularize the weights in the globally connected layers (which contain
most of the parameters).

* Dropout means that half of the hidden units in a layer are randomly removed for each training
example.

* This stops hidden units from relying too much on other hidden units.
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Early Stopping

Early stopping: terminate while validation set performance is better. Sometimes is worth
waiting a little before stopping. This is called patience.

No regularization

‘ Patience is defined as the number of
epochs to wait before early stop if no
progress on the validation set.

— loss training The patience is often set somewhere
—— loss validation between 10 and 100 (10 or 20 is more
common), but it really depends on the
dataset and network.

loss

10° 7

0 100 200 300 400 500
epochs
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Dropout

Uploaded By: JibreefBornat

(b) After applying dropout.

S
.—.?’\N.Wf‘\b.
XXX
XK N
o g Vg sing
\ a8,
.‘}» QX KR

SR

N _
A,

Standard Neural Net

o
AV
S

* Each time we present a training example, we randomly omit each hidden unit with
probability 0.5.
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Dropout

* At test time, all nodes are used but the weights are scaled.

Present with Always

probability p present

(a) At training time (b) At test time
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Optimizers
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Local Minima

This local minimum
performs nearly as well as
the global one,

so it is an acceptable
halting point.

Ideally, we would like
to arrive at the global
minimum, but this

might not be possible.

f(z)

This local minimum performs
poorly, and should be avoided.
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Critical Points

* Points with zero gradient

e 2"d_derivate (Hessian) determines curvature

STUDENTS-HUB.com

Minimum

)
) /
NN 1)
ety e,
ot gt}
NIV
NI
4

Maximum

Saddle point
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Local Minima

* Old view: local minima is major problem in neural network training

* Recent view:
 For sufficiently large neural networks, most local minima incur low cost

* Not important to find true global minimum
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Saddle Points

Both local min hNo
and max

DS

........
.l
.........
'
)

+05

A10
/10

— /05
«1.0 - /
T B 1
00 o ~05
0os

STUDENTS-HUB.com

* Recent studies indicate that in high
dim, saddle points are more likely
than local min

* Gradient can be very small near
saddle points
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Poor Conditioning

e Poorly conditioned Hessian matrix
e High curvature: small steps leads to huge increase

e Learning is slow despite strong gradients

Oscillations slow down
progress
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Momentum

* Oscillations because updates do not exploit curvature information

L(W)

* Average gradient presents faster path to optimal: vertical components cancel

out
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M omentum fis the Neural Network

* Old gradient descent:

1
g = EE VwL(f (xi; W), y:) W*=W —ng
i

* New gradient descent with momentum:

v=av+(1—a)g W*=W —nv

a 1[0,1) controls how quickly
STUDENTS-HUB.com effect of past gradients decay Uploaded By: Jibreet'Bornat



Adaptive Learning Rates

L(W)

9\

=

oW

A

"""" > ¢ 74
* Oscillations along vertical direction
* Learning must be slower along parameter 2

* Use a different learning rate for each parameter?
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AdaGrad

 Accumulate squared gradients:

g is the gradient

 Update each parameter:

Inversely proportional to

* Greater progress along gently sloped directions cumulative gradient

6 is a small number, making sure
this does not become too large
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Other Adaptive Learning Rate Methods

* RMSProp

* Use exponentially weighted average for gradient accumulation

e Adam

* RMSProp + Momentum
* Works well in practice, it is fairly robust to hyper-parameters
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Other Neural Networks
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Convolutional Network

* The network is not fully connected.

» Different nodes are responsible for different regions of the image.

* This allows for robustness to transformations.

\‘\-“"\-\.
[
Il i
\
\H\
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A Convolutional Network

pooled Fully-connected 1

feature maps pooled  featuremaps  foatyre maps
feature maps

plylx)

.7&

Outputs
Kiput Convolutional Pooling 1 Convolutional  pooling 2
layer 1 layer 2
+ RelU + RelU
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A Convolutional Network

pooled Fully-connected 1

feature maps pooled  featuremaps  foatyre maps
feature maps

Outputs

Input Convolutibnal Pooling 1 Convolutiohal  pooling2
layer layer 2
+ Rel

Why is there more than one layer?

L

What is Pooling? What is going on here?

What are feature maps
and why are there
multiple feature maps?

STUDENTS-HUB.com Uploaded By: Jibreef'Bornat
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Other Neural Networks

* Multiple Outputs

e Skip Layer Network

e Recurrent Neural Networks
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Multiple Outputs

e Used for N-way classification.
 Each Node in the output layer corresponds to a different class.

* No guarantee that the sum of the output vector will equal 1.
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Skip Layer Network

* Input nodes are also sent directly to the output layer.

.

N

L2

—

f(z,0)

>
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Recurrent Neural Networks

* Output or hidden layer information is stored in a context or memory layer.

Output Layer

Hidden Layer

Input Layer
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Recurrent Neural Networks

® ® 0 © ®
+ Vanilla RNN L? e il ,
6 & © o
I[A
* Long-Short term memory (LSTM). N
—o—
X X
B i mm

Tt

e Gated Recurrent Units (GRU).
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Transformer Family

Output Multi-head attention
Probabilities
: !
Linear
Linear 1
% N Concat
Add & Norm
Feed —~ =
Forward caled Dot-Product .
Attention h Scaled dot-product attention
e %) 11 th s
Multi-Head = = ™ 1
Food Attention | | Linear P Linear Linear MatMul
Forward JD) N~ [} A
SoftMax
N )
—(Add & Norm ) e v K Q Mask (opt.
Multi-Head Multi-Head )
Attention Attention Zoom-In! Scale
1 7 1 - T
e J \ e
. MatMul
Positional ) ! Positional t t
Encodin D 5% i
g Encoding Q K \Vi
Input Output
Embedding Embedding
I 1 Zoom-In!
Inputs Outputs
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Back to our Object Recognition System
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Building an Object Recognition System

END-TO-END
RECOGNITION

SYSTEM

- Everything becomes adaptive.
- No distiction between feature extractor and classifier.
- Big non-linear system trained from raw pixels to labels.
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Fully Connected Neural Net

Example: 1000x1000 image
IM hidden units
m) 10712 parametersl!

"/7”

!
|

|

\

|

N
\\\}\\

- Spatial correlation is local
- Better to put resources elsewherel!
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Locally Connected Neural Net

Example: 1000x1000 image
IM hidden units
Filter size: 10x10
100M parameters

Filter/Kernel/Receptive field:
input patch which the hidden unit is
connected to.
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Locally Connected Neural Net

STATIONARITY? Statistics is
similar at different locations

Example: 1000x1000 image
IM hidden units
Filter size: 10x10
100M parameters
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Convolutional Net

Share the same parameters across
different locations:
Convolutions with learned kernels

> 5 '.'* 7 4
4 v A ':- -
A # el
. ’ /
x £7 ? ;
¥ / . i
6 % g T+ /.
B 2 - 4
", P
% " y
i#
H
i
‘
11

\\

,u

STUDENTS-HUB.com Uploaded By: Jibreef'Bornat




Convolutional Net

E.g.: 1000x1000 image
100 Filters
Filter size: 10x10
10K parameters
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Convolutional Net
CONVOLUTIONAL NET

hidden unit /

filter response
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Convolutional Net
CONVOLUTIONAL LAYER

output feature map

STUDENTS-HUB.conlnPut feature maps Uploaded By: Jibreeéf'Bornat



Convolutional Net

CONVOLUTIONAL LAYER

output feature maps

Input feature maps /
NOTE: the nr. of output feature maps is /
STUDENTS-HUB.osnally larger than the nr. of input feature maps Uploaded By: Jibreef Bornat




Convolutional Net

CONVOLUTIONAL LAYER

Convolutional
Layer

L1
[ 4

input feature maps output feature maps
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“Convolution” Operation

(-1x3)+(0x0)+(1x1D)+
(-2x2)+(0x6)+(2x2)+
(-1x2)+(0x4)+(1x1)=-3

— —
—
—
—

| Convolution Kernel (

Kernel Map
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“Convolution” Operation

RGB Image
(7x7x3)

STUDENTS-HUB.com

AN NN NN\
SN\ YV
VARMAWWAWAY,

AAL A AN

Convolution Kernels I

Convolution Filter
(3x3x3)

Feature Map

(7x7x1)
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Convolutions —what happens at the edges?

If we apply convolutions on a normal image, the result will be down-sampled by an
amount depending on the size of the filter.

We can avoid this by padding the edges in different ways.
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Padding

Full padding. Introduces zeros such that all Same padding. Ensures that the
pixels are visited the same number of times by output has the same size as the
the filter. Increases size of output. input.
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Stride

Stride controls how the filter Stride = 1
ConVOIVeS arou nd the Input 7 x7 Input Volume 5 x 5 Output Volume
volume. o

The formula for calculating the
output size is:

W —K+ 2P Stride =2
= +1

S 7 x 7 Input Volume 3 x 3 Output Volume

Where O is output dim, W is the
Input dim, K is the filter size, P r:
Is padding and S the stride
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Example: A convolutional layer with one 3x3 filter that takes an 32x32 RGB image as input.

Input 1Filter Output
size=32X32 size=3x3X3 size=32X32
channels=3 stride =1

padding = same

—
|
——
A |
.
A

How many parameters does the layer have?

n filters xfilter volume + biases= total number of params
l1x (3 x3x3)+1= 28
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Example

A convolutional layer with 16 3x3 filters that takes 32x32 RGB image as
Input.

* How many parameters does the layer have?

I6X3X3X3 +16 = 448

L\

Number of Sjze of Numberof  Biases (one
filters  Kernel channelsof  per filter)
prev layer
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Convolutional Net

Let us assume filter is an "eye" detector.

Q.: how can we make the detection robust
to the exact location of the eye?
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Convolutional Net

By "pooling"” (e.g., max or average) filter
responses at different locations we gain
robustness to the exact spatial location
of features.
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Pooling

POOLING LAYER

NOTE:
1) the nr. of output feature maps is the
same as the nr. of input feature maps
2) spatial resolution is reduced

— patch collapsed into one value

— use of stride > 1

STUDENTS-HUB.com Input feature maps output feature maps 4154 4ed By: JibreéiBornat



Pooling

/ Pooling Layer @
output feature maps

input feature maps
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Pooling

Example:

S | O | 0|

STUDENTS-HUB.com

max pool with 2x2 window
and stride 1
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Pooling

Pooling involves selecting:

* Apooling operation, much like a filter to be applied to feature maps: max,
mean, median.

* The size of the pooling operation.
* The stride.

The size of the pooling operator must be smaller than the size of the feature
map; specifically, it is almost always 2x2 applied with a stride of 2 using
max pooling.

Invariant to small, “local transitions”
Face detection: enough to check the presence of eyes, not their precise location

Reduces input size of the final fully connected layers (more later)

No learnable parameters
=
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Pooling: example with stride 2x2

~ | O |

&~ | O

STUDENTS-HUB.com

max pool with 2x2 window
and stride 2x2 7 | 8
3 |4
mean pool with 2x2 window
and stride 2x2 35|55
1.75 | 2
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Building a CNN

A convolutional neural network is built by stacking layers, typically of 3 types:

Pooling Layers

N

- N (
Convolutional
Layers
N /N
One stage
s N\ ([ b
Convolutional Pooling Lavers
Layers o=

N /N o

STUDENTS-HUB.com

Input
Image
B

Fully connected
Layers

~

Whole system

1% stage

2" stage

3" stage

Fully Conn. |
Layers

Class
Labels
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Building a

CNN

e

\

~

Action

Apply filters to
extract features
Filters are composed
of small kernels,
learned

One bias per filter
Apply activation
function on every
value of feature map

Convolutional Layers

4 )

 Number of filters

» Size of kernels (W
and Honly, Dis
defined by input
cube)

e Activation function

e Stride

* Padding

Parameters

/

/

/

\

~

/O

Input: 3D cube,
previous set of
feature maps
Output: 3D cube, one
2D map per filter

%

STUDENTS-HUB.com
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Building a

CNN

-

Action

Reduce
dimensionality

Extract maximum or

average of a region
Sliding window
approach

~

/

Pooling Layers

-

Parameters

Stride
Size of window

~

s

~

1/O

Input: 3D cube,
previous set of
feature maps
Output: 3D cube, one
2D map per filter,
reduced spatial
dimensions

/

STUDENTS-HUB.com
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Building a CNN

\.

/

Action

Aggregate
information from
final feature maps
Generate final
classification (or
regression)

\

Fully connected Layers

/

~

Parameters

Number of nodes
Activation function:
usually changes
depending on role of
the layer. If
aggregating info, use
ReLU. If producing
final classification,
use Softmax. If

regression use linear

%

-

1/O

\

Input: FLATTENED 3D
cube, previous set of
feature maps
Output: Probabilities
for each class or
simply prediction for
regression y

/

STUDENTS-HUB.com
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A Convolutional Network

pooled Fully-connected 1

feature maps pooled  featuremaps feature maps
feature maps

Outputs

Input

layer 1 layer 2
+ RelLU + RelLU
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Example

* Let C be aCNN with the following disposition:
* Input: 32x32x3 images
¢ Convl: 8 3x3 filters, stride 1, padding=same
* Conv2:16 5x5 filters, stride 2, padding=same
* Flatten layer
* Densel: 512 nodes
* Dense2: 4 nodes

* How many parameters does this network have?

(8x3x3x3+8)+(16x5x5x8+16)+(16x16x16x512+512)+ (512 x4 + 4)

Convl Conv2 Densel Dense?2
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Conv Nets: Training

* In a convolutional layer, we are basically applying multiple filters over the image to
extract different features. But most importantly, we are learning those filters!

* Since convolutions and sub-sampling are differentiable, we can use standard back-
propagation.

* Algorithm:

Given a small mini-batch

- Forward Propagation
- Backward Propagation
- Parameter Update
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What do CNN layers learn?

Layer 1 Layer 2

“W , A
B = TG =
cats. |09 V)0 e [ [ [ = | O /T |6
il N @f/@
%N % //_\! H@\\“H
CHAIRS Fﬁ Hsl % m— || = | — ﬂ W (|
NN -
|| i Al
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What do CNN layers learn?

ASNINEY
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Elephants
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Layers Receptive Field

* The receptive field is defined as the region in the input space that a particular CNN’s
feature is looking at (i.e., be affected by).

* The receptive field size is a crucial issue in many visual tasks, as the output must
respond to large enough areas in the image to capture information about large objects.

* Let’s look at the receptive field in 1D, no padding, stride 1 and kernel 3x1

Layer 2 -

,/I\ \. <[ >~ W\
Input T e e
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Layers Receptive Field

In 2D, it works the same way.

The receptive field for layer L, ry, can be
calculated using the recursive formula:

A
L [—1 f7
?"():Z (kl—l)HSi + 1 /;
[=1 1=1 //

g

%
%
7,

* k;kernel size (positive integer)
* 5; stride (positive integer)

Note: For every max-pooling layer, we multiply the receptive field by the window
size (assuming stride is the same as the window size)
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Popular Convolutional Neural Networks (CNNs)

(==
| 11x11 conv, 96, /4, pooli2 | | 3x3 conv, 64 | (==}
AlexNet, 8 layers  E— VGG, 19 layers —— GoogleNet, 22 layers st ResNet, 152 layers
5x5 conv, 256, pool/2 x3 conv, 64, pool/ -
A J v —
(I LSVRC 2012) | 3x3 conv, 384 | (ILSVRC 2014) | 3x3 conv, 128 ] (ILSVRC 2014) EEEsEE (I LSVRC 2015)
v | e
| 3x3 conv, 384 ] | 3x3 conv, 128 pool/2 | [==] Q
h 2 2 = L
| 3x3 conv, 256, pool/2 | | 3x3 conv, 256 ] B0 B0 B0 B0 B
L 2 \ 2 o e
| fc, 4096 ] | 3x3 conv, 256 | —
\ 4 v RN BT T
[ fc, 4006 ] | 3x3 conv, 256 | B2 83 5
\ 2 \ 4 =1 -
| fc, 1000 | I 3x3 conv, 256, pool/2 I 0 B0 B A =
v : fZtmEd o
| 3x3 conv, 512 | = o
4 e en e e
| 3x3 conv, 512 | B B0 = i
\ 4 =
| 3x3 cony, 512 | B B B B2
\ 4 = R 2
[ 3x3 conv, 512, pool/2 | [=5)
v —
| 3x3 conv, 512 | Bt B B Bt
\ 4 2 6 2
| 3x3 conv, 512 ] ==
\ 4 Sl s)e
| 3x3 conv, 512 | RRE
4 =]
[ 3x3 conv, 512, pool/2 | ==
v ea
[ fc, 4096 | =
l L 2 I ==
fc, 4096 .
v =
| fc, 1000 | =
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Software

=

TensorFlow

t h cadlno Caffe é-’ Caffez MatConvNet

L
’ -

The Microsoft Cognitive Toolkit ®

easy-to-use, open-source, com
I an brain.

PYTORCH
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