Roller Chains (1)

Tuesday, June 22, 2021

⇒ Geometry :

* The pitch diameter of the sprocket is:

$$D = \frac{P}{Sin(180/N)}$$

+ The pitch angle is ?
$$\sigma = 360$$

$$\mathcal{T} = \frac{360}{N}$$

$$\left\{ \frac{L}{p} \approx \frac{2C}{p} + \frac{N_1 + N_2}{2} + \frac{(N_2 - N_1)^2}{4\pi^2 C/p} \right\}$$

Nz = beeth of large sprocket

+ The center distance is :

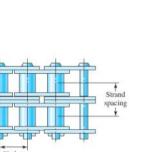
$$C = \frac{p}{4} \left[-A + \sqrt{A^2 - 8\left(\frac{N_2 - N_1}{2\pi}\right)^2} \right]$$

Where:
$$A = \frac{N_1 + N_2}{2} - \frac{L}{p}$$

$$(17-36)$$

The maximum exit velocity of the chain is

$$v_{\text{max}} = \frac{\pi Dn}{12} = \frac{\pi np}{12\sin(\gamma/2)}$$


Thus the minimum exit velocity is

$$v_{\min} = \frac{\pi dn}{12} = \frac{\pi np}{12} \frac{\cos(\gamma/2)}{\sin(\gamma/2)}$$

where
$$d = D \cos \frac{\gamma}{2}$$

To find (P):

Dimensions of American
Standard Roller
Chains—Single Strand
Source: Compiled from ANSI B29.1-1975.

Ch	NSI ain nber	Pitch, in (mm)	Width, in (mm)	Minimum Tensile Strength, Ibf (N)	Average Weight, Ibf/ft (N/m)	Roller Diameter, in (mm)	Multiple- Strand Spacing, in (mm)
	25	0.250 (6.35)	0.125 (3.18)	780 (3 470)	0.09 (1.31)	0.130 (3.30)	0.252 (6.40)
	35	0.375 (9.52)	0.188 (4.76)	1 760 (7 830)	0.21 (3.06)	0.200 (5.08)	0.399 (10.13)
1	41	0.500 (12.70)	0.25 (6.35)	1 500 (6 670)	0.25 (3.65)	0.306 (7.77)	_
	40	0.500 (12.70)	0.312 (7.94)	3 130 (13 920)	0.42 (6.13)	0.312 (7.92)	0.566 (14.38)
nd .	50	0.625 (15.88)	0.375 (9.52)	4 880 (21 700)	0.69 (10.1)	0.400 (10.16)	0.713 (18.11)
	60	0.750 (19.05)	0.500 (12.7)	7 030 (31 300)	1.00 (14.6)	0.469 (11.91)	0.897 (22.78)
	80	1.000 (25.40)	0.625 (15.88)	12 500 (55 600)	1.71 (25.0)	0.625 (15.87)	1.153 (29.29)
10	00	1.250 (31.75)	0.750 (19.05)	19 500 (86 700)	2.58 (37.7)	0.750 (19.05)	1.409 (35.76)
13	20	1.500 (38.10)	1.000 (25.40)	28 000 (124 500)	3.87 (56.5)	0.875 (22.22)	1.789 (45.44)
14	10	1.750 (44.45)	1.000 (25.40)	38 000 (169 000)	4.95 (72.2)	1.000 (25.40)	1.924 (48.87)
16	50	2.000 (50.80)	1.250 (31.75)	50 000 (222 000)	6.61 (96.5)	1.125 (28.57)	2.305 (58.55)
18	80	2.250 (57.15)	1.406 (35.71)	63 000 (280 000)	9.06 (132.2)	1.406 (35.71)	2.592 (65.84)
20	00	2.500 (63.50)	1.500 (38.10)	78 000 (347 000)	10.96 (159.9)	1.562 (39.67)	2.817 (71.55)
24	10	3.00 (76.70)	1.875 (47.63)	112 000 (498 000)	16.4 (239)	1.875 (47.62)	3.458 (87.83)

+ The allowable horse power is:

 $H_a = K_1 K_2 H_{\text{tab}}$

(17-37)

where K_1 = correction factor for tooth number other than 17 (Table 17–22)

 K_2 = strand correction (Table 17–23)

Table 17-22

To find KI:

Tooth Correction Factors, K_1

Number of Teeth on Driving Sprocket	K ₁ Pre-extreme Horsepower	K ₁ Post-extreme Horsepower
11	0.62	0.52
12	0.69	0.59
13	0.75	0.67
14	0.81	0.75
15	0.87	0.83
16	0.94	0.91
17	1.00	1.00
18	1.06	1.09
19	1.13	1.18
20	1.19	1.28
N	$(N_1/17)^{1.08}$	$(N_1/17)^{1.5}$

Tuesday, June 22, 2021

11:33 PM

To find (K2):

Table 17-23

Multiple-Strand Factors, K_2

Number of Strands	K ₂
1	1.0
2	1.7
3	2.5
4	3.3
5	3.9
6	4.6
8	6.0

60 1.24 2.31 3.32 4.30 6.20 8.03 9.81 11.6 13.3 15.0 16.7 18.3 21.6 18.1 14.8 12.4 10.6

To find (Heab):

Table 17-20	Sprocket Speed,			ANSI Cho	in Numbe	r	
Rated Horsepower	rev/min	25	35	40	41	50	
Capacity of Single-	50	0.05	0.16	0.37	0.20	0.72	
Strand Single-Pitch	100	0.09	0.29	0.69	0.38	1.34	
Roller Chain for a	150	0.13*	0.41*	0.99*	0.55*	1.92*	
17-Tooth Sprocket	200	0.16*	0.54*	1.29	0.71	2.50	
Source: Compiled from ANSI B29.1-1975 information only	300	0.23	0.78	1.85	1.02	3.61	
section, and from B29.9-1958.	400	0.30*	1.01*	2.40	1.32	4.67	
	500	0.37	1.24	2.93	1.61	5.71	
	600	0.44*	1.46*	3.45*	1.90*	6.72*	
	700	0.50	1.68	3.97	2.18	7.73	j
	800	0.56*	1.89*	4.48*	2.46*	8.71*	
	900	0.62	2.10	4.98	2.74	9.69	1
	1000	0.68*	2.31*	5.48	3.01	10.7	1
	1200	0.81	2.73	6.45	3.29	12.6	- 2
	1400	0.93*	3.13*	7.41	2.61	14.4	
	1600	1.05*	3.53*	8.36	2.14	12.8	1
	1800	1.16	3.93	8.96	1.79	10.7	
	2000	1.27*	4.32*	7.72*	1.52*	9.23*	1

1.56

1.84

5.28

5.64

2500

3000

Type A

Note: Type A-manual or drip lubrication; type B-bath or disk lubrication; type C-oil-stream lubrication.

Type B

5.51*

4.17

1.10*

0.83

6.58*

4.98

7.57

5.76

Type C

+ The torque on the driving shaft is:

* The bending force on the drive shaft is:

$$F = 2T$$

where: D= pitch dianeter of the sprocket.

^{*}Estimated from ANSI tables by linear interpolation.

Tuesday, June 22, 2021

11:57 PM

Table 17-20

Rated Horsepower Capacity of Single-Strand Single-Pitch Roller Chain for a 17-Tooth Sprocket (Continued)

Sprocket Speed,				AN	SI Chai	n Num	ber		
rev/min		80	100	120	140	160	180	200	240
50	Type A	2.88	5.52	9.33	14.4	20.9	28.9	38.4	61.8
100		5.38	10.3	17.4	26.9	39.1	54.0	71.6	115
150		7.75	14.8	25.1	38.8	56.3	77.7	103	166
200		10.0	19.2	32.5	50.3	72.9	101	134	215
300		14.5	27.7	46.8	72.4	105	145	193	310
400		18.7	35.9	60.6	93.8	136	188	249	359
500	Туре В	22.9	43.9	74.1	115	166	204	222	0
600	$\frac{1}{N}$	27.0	51.7	87.3	127	141	155	169	
700		31.0	59.4	89.0	101	112	123	0	
800		35.0	63.0	72.8	82.4	91.7	101		
900		39.9	52.8	61.0	69.1	76.8	84.4		
1000		37.7	45.0	52.1	59.0	65.6	72.1		
1200		28.7	34.3	39.6	44.9	49.9	0		
1400		22.7	27.2	31.5	35.6	0			
1600		18.6	22.3	25.8	0				
1800		15.6	18.7	21.6					
2000		13.3	15.9	0					
2500		9.56	0.40						
3000		7.25	0						

Type C Type C'

| Table 17-21

Note: Type A—manual or drip lubrication; type B—bath or disk lubrication; type C—oil-stream lubrication; type C′—type C, but this is a galling region; submit design to manufacturer for evaluation.

* The horse power Hat must be transmitted is:

$$H_d = H_{\text{nom}} K_s n_d$$

(17-38)

Where: Ks = Service Factor For non uniform loads which is found in:

Table 17-15

Suggested Service Factors K_S for V-Belt Drives

	Source of Power					
Driven Machinery	Normal Torque Characteristic	High or Nonuniform Torque				
Uniform	1.0 to 1.2	1.1 to 1.3				
Light shock	1.1 to 1.3	1.2 to 1.4				
Medium shock	1.2 to 1.4	1.4 to 1.6				
Heavy shock	1.3 to 1.5	1.5 to 1.8				

+ HEab can be found by:

* Start with this equation when we need to select the chain type.

+ The chordal speed variation is:

$$\frac{\Delta V}{V} = \frac{v_{\text{max}} - v_{\text{min}}}{V} = \frac{\pi}{N} \left[\frac{1}{\sin(180^{\circ}/N)} - \frac{1}{\tan(180^{\circ}/N)} \right]$$
(17–31)

Table 17-21

type C'-type C, but this is a galling region; submit design to manufacturer for evalu

Single-Strand Sprocket Tooth Counts Available from One Supplier*

No.	Available Sprocket Tooth Counts
25	8-30, 32, 34, 35, 36, 40, 42, 45, 48, 54, 60, 64, 65, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120
35	4-45, 48, 52, 54, 60, 64, 65, 68, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120
41	6-60, 64, 65, 68, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120
40	8-60, 64, 65, 68, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120
50	8-60, 64, 65, 68, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120
60	8-60, 62, 63, 64, 65, 66, 67, 68, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120
80	8-60, 64, 65, 68, 70, 72, 76, 78, 80, 84, 90, 95, 96, 102, 112, 120
100	8-60, 64, 65, 67, 68, 70, 72, 74, 76, 80, 84, 90, 95, 96, 102, 112, 120
120	9-45, 46, 48, 50, 52, 54, 55, 57, 60, 64, 65, 67, 68, 70, 72, 76, 80, 84, 90, 96, 102, 112, 120
140	9-28, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 42, 43, 45, 48, 54, 60, 64, 65, 68, 70, 72, 76, 80, 84, 96
160	8-30, 32–36, 38, 40, 45, 46, 50, 52, 53, 54, 56, 57, 60, 62, 63, 64, 65, 66, 68, 70, 72, 73, 80, 84, 96
180	13-25, 28, 35, 39, 40, 45, 54, 60
200	9-30, 32, 33, 35, 36, 39, 40, 42, 44, 45, 48, 50, 51, 54, 56, 58, 59, 60, 63, 64, 65, 68, 70, 72
240	9-30, 32, 35, 36, 40, 44, 45, 48, 52, 54, 60

*Morse Chain Company, Ithaca, NY, Type B hub sprockets.