BIRZEIT UNIVERSITY

COMPUTER SCIENCE DEPARTMENT FACULTY
OF ENGINEERING AND TECHNOLOGY

ADVANCED PROGRAMMING COMP231

Lecturer :Farid Mohammad

SSSSSSSSSSSSSSSS

https://students-hub.com

Inheritance 2

STUDENTS-HUB.com

https://students-hub.com

STUDENTS-HUB.com

Lo

https://students-hub.com

Overriding Methods

10 override a method,
the method must be defined in the subclass

using the same signature and the same return type
as in its superclass.

class Cat{
Overriding

public void Sound(){

System.out.println("me

; e Same method
} name and same
class Lion extends Cat| parameters
public wvoid sniff(){
System.out.println("sniff");
}
public woid Sound(){
System.out.println("roar");
}
}

// Method Overriding Example

//Base class
class Parent {
public void display() §
System.out.println(''parent method is executed")s
}
H

//Derived or Inherited class
class Child extends Parent {

//Below method overrides the Parent display() method
@Override
public void display() {
System.out.println("'child method is executed")s
}
}

//Driver class
public class Main {
public static void main(String args|)
{
// If a Parent type reference refers
// to a Parent object, then Parent's
/ display() is called
Parent parentObject = mew Parent()s
parentObject.display()s

/' If a Parent type reference refers

// to a Child object Child's display()
// is called. This is called RUN TIME
// POLYMORPHISM.

Parent childObject = mew Child()s
childObject.display()s

STUDENTS-HUB.com

m An instance method can be
overridden only if it is accessible.

Thus a private method cannot

be overridden, because it 1s not
accessible outside its own class.

If a method defined

in a subclass is private in its superclass,
the two methods are completely
unrelated.

m Like an instance method, a static
method can be inherited. However, a
static method

cannot be overridden. If a static
method defined in the superclass is
redefined in a subclass, the method
defined in the superclass is hidden. The
hidden static methods

can be invoked using the syntax
SuperClassName.staticMethodName.

https://students-hub.com

1 1.7 True or false? You can override a private method defined in a
superclass.

1 1.8 True or false? You can override a static method defined in a
superclass.

1 1.9 How do you explicitly invoke a superclass’s constructor from a
subclass?

11.10 How do you invoke an overridden superclass method from a
subclass?

STUDENTS-HUB.com

https://students-hub.com

11.5 Overriding vs. Overloading

Overloading means to define multiple
methods with the same name but different
signatures.

Overriding means to provide a new
implementation for a method in the subclass.

public class Test { public class Test {
public static void main(String[] args) { public static void main(5tring[] args) {
A a = new A(): A a = new A();
a.p(lo); a.p(10);
a.p(10.0); a.p(l0.0);
} !
} }
class B { class B {
public void p(double i) { public void p(double i) {
System.out.printin(i * 2); System.out.printin(i * 2);
} }
} }
class A extends B { class A extends B {
/ This method overrides the method in B // This method overloads the method in B
public void p(double i) { public void p(int i) {
System.out.printin(i); System.out.printin(i);
} 1
} }
(a) (b

To avoid mistakes, you can use a special Java syntax, called override
annotation, to place

@Override before the method in the subclass. For examples
public class CircleFromSimpleGeometricObject extends
SimpleGeometricObject {

// Other methods are omitted

@Override

public String toString() {

return super.toString() + "\nradius is " + radiuss

}

}

This annotation denotes that the annotated method is required to override
a method in the superclass. If a method with this annotation does not
override its superclass’s method, the

STUDENTS-HUB.com

https://students-hub.com

compiler will report an error.

For example, if toString is mistyped as tostring, a
compile error is reported. If the override annotation
isn’t used, the compile won’t report an error. Using
annotation avoids mistakes.

STUDENTS-HUB.com

https://students-hub.com

Identify the problems in the following

code:
public class Circle {
private double radiuss

public Circle(double radius) §{
radius = radiuss

}

public double getRadius() §

return radiuss

}

public double getArea() {
return radius * radius * Math.PIs
}

}

class B extends Circle {
private double lengths

B(double radius., double length) {
Circle(radius)s

length = lengths

}

@Override

public double getArea() {
return getArea() * lengths
}

}

11.12 Explain the difference between method
overloading and method overriding.

11.13 If a method in a subclass has the same
signature as a method in its superclass with the
same return type, is the method overridden or
overloaded?

11.14 If a method in a subclass has the same
signature as a method in its superclass with a
different return type, will this be a problem?

11.15 If a method in a subclass has the same name
as a method in its superclass with different
parameter types, is the method overridden or
overloaded?

11.16 What is the benefit of using the @Override
annotation?

STUDENTS-HUB.com

https://students-hub.com

The Object Class and Its toString() Method

Every class in Java is descended from the
java.lang.Object class.

If no inheritance is specified when a class is
defined,

the superclass of the class is Object by
default.

For example, the following two class definitions are
the same:

public class ClassName { public class ClassName extends Object {
. Equivalent |
}

}

There are some methods provided by the Object

This section introduces the toString method in the
Object class.

The signature of the toString() method is:
public String toString()

Invoking toString() on an object returns a string
that describes the object.

By default, it returns a string consisting of a class
name of which the object is an instance, an at sign
(@),

and the object’s memory address in hexadecimal.

For example, consider the following code

Loan loan = new Loan();
System.out.println(loan.toString());

The output for this code displays something like
Loan@15037eS5.

STUDENTS-HUB.com

https://students-hub.com

This message is not very

helpful or informative. Usually you should
override the toString method so that it returns
a descriptive string representation of the object.

For example, the toString method in the

Object class was overridden in the
GeometricObject class in lines 4649 in Listing
11.1

as follows:

public String toString() {

return ""created on " + dateCreated + ""\ncolor: "
+ color +

'""and filled: " + filled;

}

STUDENTS-HUB.com

https://students-hub.com

Polymorphism

Polymorphism means that a variable of a supertype
can refer to a subtype object.

The three pillars of object-oriented programming
are encapsulation, inheritance, and
polymorphism.

You have already learned the first two. This section
introduces polymorphism.

The definition of "Polymorphism" is hidden in its name
itself. "Poly" means "many" and "morphs" means
"forms".

Thus "Polymorphism" may be considered as a concept in
Java in which an entity(object), variable or function may
present in one or many forms.

You can say that Circle is a subtype of
GeometricObject and
GeometricObject is a supertype for Circle.

The inheritance relationship enables a subclass to
inherit features from its superclass with
additional new features.

A subclass is a specialization of its superclass;
every instance of a subclass is also an instance of its
superclass, but not vice versa.

For example, every circle
is a geometric object, but not every geometric
object is a circle.

Therefore, you can always
pass an instance of a subclass to a parameter of its
superclass type. Consider the code in

LisTING 11.5 PolymorphismDemo. java

1 public class PolymorphismDemo {
2 J¥* Main method */
3 public static void main(String[] args) {
4 J/ Display circle and rectangle properties
5 displayObject(new CircleFromSimpleCGeometricObject polymorphic call
5] (1, "red", false));
7 displayObject(new RectangleFrom5impleGeometricObject polymorphic call
a8 (1, 1, "black", true}};
9 ¥
10
11 /#* Display geometric object properties */
12 public static void displayObject(SimpleGeometricObject object) {
13 System.out.printin{"Created on " + object.getDatelreated() +
14 ". Color is " + object.getColor(});
15 1
16

STUDENTS-HUB.com

https://students-hub.com

The method displayObject (line 12) takes a
parameter of the GeometricObject type.

You can invoke displayObject by passing any
instance of GeometricObject

(e.g., new
CircleFromSimpleGeometricObject(1, "red",
false)

and new Rectangle-
FromSimpleGeometricObject(1, 1, "black",
false) in lines 5-8).

An object of a subclass can be used wherever its
superclass object is used. This is commonly known
as polymorphism

STUDENTS-HUB.com

https://students-hub.com

11.8 Dynamic Binding

A method can be implemented in several classes
along the inheritance chain.

The JVM decides which method is invoked at
runtime.

A method can be defined in a superclass and
overridden in its subclass.

For example, the
toString() method is defined in the Object class
and overridden in GeometricObject.

Consider the following code:
Object 0 = mew GeometricObject()s
System.out.printIn{o.toString())s

To answer this question, we first introduce
two terms: declared type and actual type.
A variable must be declared a type.
Here o’s declared type is Object.
Here o’s actual type is GeometricObject,

because o references an object created using new
GeometricObject().

Which toString() method is invoked by o is
determined by o’s actual type.

This (s known as

dynamic binding.

Dynamic Binding

¥old =ethod()
f -t

Syatem.out.println 1

p ("From Class A");
i

publie class Binding
{
public static void main(String[] azg
{

A al = new Al);

al.methodi) ;

 #BHd method ()
[

Rl = S —_— = System.out.println |
: : : ' 5 % ["From Class B"); I8

STUDENTS-HUB.com

https://students-hub.com

11.19 Can you assign new int[50], new Integer[50], new String|[50], or new

Object|50], into a variable of Object|] type?

11.20 What 1s wrong in the following code?

public class Test {

public static void main(String]] args) {
Integer|] list1 = {12, 24, 55, 1}3
Double]] list2 = {12.4, 24.0, 55.2, 1.0}z
intf] list3 = {1, 2, 3}

printArray(list1)s

printArray(list2)s

printArray(list3):

}

public static void printArray(Object]] list) {
for (Object oz list)

System.out.print(o + " ")s
System.out.println()s
}
H

11.21 Show the output of the following code:

public class Test {
public static void main(String[] args) {
new Person().printPerson();
new Student().printPerson();
}
!

class Student extends Person {
@0verride
public String getInfo() {
return "Student";
}
}

class Person {
public String getInfo() {
return "Person";

}

public void printPerson() {
System.out.printin(getInfo());

}

public class Test {
public static void main(5tring[] args) {
new Person().printPerson(];
new Student().printPerson();
}
}

class Student extends Person {
private String getInfo() {
return "Student”;

}
}

class Person {
private String getInfo() {
return "Person”;

}

public void printPerson() {
System.out.printin{getInfo(});
}
}

{a)

STUDENTS-HUB.com

b

https://students-hub.com

	
	COMPUTER SCIENCE DEPARTMENT FACULTY OF ENGINEERING AND TECHNOLOGY
	ADVANCED PROGRAMMING COMP231
	Lecturer :Farid Mohammad
	Inheritance 2
	Overriding Methods
	11.5 Overriding vs. Overloading
	The Object Class and Its toString() Method
	Polymorphism
	11.8 Dynamic Binding

