

بسبب ضيق الوقت ما لخصت التشابتر، هاد تلخيص دكتور عبدالرحيم موسى وضفت عليه النوتس الي بحكيهم خلال الشرح ورح يكون هيك لآخر المادة

[10.9] Convergence of Taylor Series

Assume f, f, f, \dots, f are continous on [a, b] and f is Ih (Taylor's Theorem) (n) differentiable on (a, b), then there exists a number c ∈ (a, b) such that:

lifferentiable on
$$(a_1b)$$
, then there exists which that:

$$f(b) = f(a) + f(a)(b-a) + \frac{f(a)}{2!}(b-a)^2 + \dots + \frac{f(a)}{n!}(b-a)^n + \frac{f(a)}{(n+1)!}(b-a)^n$$

Remainder

* Note that Taylor's Theorem is a generalization of the MVT. * If we change b by x, we get Taylors formula: fict= flb)-fla)

$$f(x) = f(a) + f(a)(x-a) + \frac{f(a)}{2!}(x-a)^2 + \dots + \frac{f(a)}{n!}(x-a)^n + P_n(x)$$

• Rn(x) is the Remainder of order n "or the error term"

results from approximating f by $\ln(x)$ i given by $\ln(x) = \frac{f(c)}{(n+1)!} (x-a)$ where $\ln(a,x)$

$$R_n(x) = \frac{\int (c)}{(n+1)!} (x-a)$$
 where $c \in (a, x)$

* Convergence of Taylor Series: If $\lim_{x \to \infty} R_n(x) = 0$ for all $x \in I$, then the Taylor Series

generated by f at
$$x = a$$
 converges to f on I :
$$f(x) = \begin{cases} f(a) \\ f(x) = a \end{cases}$$

STUDENTS-HUB.com

Exp show that the Taylor series generated by f(x) = ex (78) at x=0 converges to fix) for every real value x. $f(x) = e^x$ is smooth on $IR = (-\infty, \infty)$. Thus, has all orders of all derivatives. Taylor's formula is $e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{h}}{n!} + R_{n}(x)$, where $R_n(x) = \frac{e}{(n+1)!} \times \frac{n+1}{x}$. Note that $\lim_{n\to\infty} R_n(x) = \frac{e}{e} \lim_{n\to\infty} \frac{x}{(n+1)!}$ Thus, the series converges to e for every x => This sector $e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{k}}{k!} + \dots = \frac{x^{k}}{k!}$ * Note that $e = \sum_{k=1}^{\infty} \frac{1}{k!}$ as a series. $c \in (0,1)$ occel $e = 1 + 1 + \frac{1}{2!} + \dots + \frac{1}{n!} + R_n(1)$, where $R_n(1) = \frac{e}{(n+1)!} < \frac{3}{(n+1)!}$ In (The Remainder Estimation Theorem) Given Taylor's formula: f(x) = Pn(x) + Rn(x). If $|f^{(n+1)}| \le M$ for all $+ \in (a,x)$, then the Remainder $|f^{(n+1)}| \le M$ for all $+ \in (a,x)$, then the Remainder $|f^{(n+1)}| \le M$ for $|f^{(n+1)}| \times M$ for the $|f^{(n+1)}| \times M$ for every $|f^{(n+1)}| \times M$ for $|f^{(n+1)}| \times M$ for |

then the series converges to f(x). Exp show that the Taylor series for sinx at x=0 converges for all x. Recall that Taylor's formula for sinx at x=0 is $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + \frac{(-1)}{(2n+1)!} + \frac{x^5}{2n+1}$. For apply The Remainder Theorem: $|R(x)| = \left| \frac{f(c)}{(2n+2)!} \times \right| \le \frac{1|x|}{(2n+2)!}$ $|R(x)| = \frac{1|x|$

STUDENTS-HUB.com

Exp show that Taylor series for cosx at x=0 converges

to cesx for every value of x. The Taylor's formula for cosx at x=0 is

 $\cos x = 1 - \frac{x^2}{2!} + \frac{x}{4!} - \frac{x^6}{6!} + \cdots + (-1)^n \frac{x^n}{(2n)!} + R_{2n}(x)$. Since | cosx | and | it's all derivative | < 1 we apply the Remainder

Estimation Theorem with M=1

 $0 \le |R_{2n}(x)| \le \frac{|x|}{|x|}$. Now for every x we have $R_{2n}(x) \to 0$

There fore, the series converges to cosx for every x. Thus, $\cos x = \sum_{i=1}^{\infty} \frac{(-i)^{2}x^{i}}{(2n)!} = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \cdots$

Exp Find the first four nonzero terms in the Maclaurin series for

the functions: $\square \frac{1}{3}(2x + x \cos x) = \frac{2x}{3} + \frac{x}{3}\left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots\right)$

 $=\frac{2x}{3}+\frac{x}{3}-\frac{x^3}{213}+\frac{x^5}{3(41)}-\frac{x^7}{3(61)}+\cdots$

 $= x - \frac{x^3}{6} + \frac{x^5}{7^2} - \frac{x^7}{2160} + \cdots$ $= \left(\frac{1+x}{x^{1}} + \frac{x^{2}}{x^{1}} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \cdots \right) - \left(\frac{x^{2}}{x!} + \frac{x^{3}}{2!} + \frac{x^{4}}{2!2!} + \frac{x^{2}}{2!3!} + \cdots \right)$

 $+\left(\frac{x^{7}}{4!}+\frac{x^{5}}{4!}+\frac{x^{6}}{2!4!}+\cdots\right)$

 $= 1 + X - \frac{x^{5}}{3} - \frac{x^{7}}{6} + \cdots$ Uploaded By: anonymous

31 $\cos x = \sum_{n=1}^{\infty} \frac{(-n)^n x^n}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$ $\frac{(-1)^{2} \times 2}{(2n)!} =$ Exp For what values of x can we replace sinx by x-x3 with an error of magnitude no more than 3x104? $\sin x = x - \frac{x^3}{31} + \frac{x^5}{51}$ Using the Alternating Series Estimation Theorem: Therefore the error The error after $\frac{x^3}{31} < \left| \frac{x^5}{51} \right|$. be less than 3×10^{4} $\Rightarrow \frac{1 \times 1}{120} < 3 \times 10^{4}$ 1x1 < \$\square 360x10 = 0.514. Exp Estimate the error if $l_3(x) = x - \frac{x^3}{6}$ is used to estimate the value of sinx at x=0.1 $f(x) = \sin x = P_3(x) + R_3(x)$, where $R_3(x) = \frac{f(c)}{11}(x-0)^{4}$ Apply The Remainder Estimation Th. with M=1 Error = | R3(x) | < \frac{1 \times 41}{41} = \frac{(0.1)}{24} \times 4.2 \times 10^6 The estimate $\sqrt{1 + x} = 1 + (x/2)$ is used when x is small. Esti $f(x) = \frac{1}{2}(1+x)^{-\frac{1}{2}}$ By AST Theorem 1(x) = -1 (1+ x) = Error < 1-x $f(X) = \frac{3}{2}(1+X)^{\frac{3}{2}}$