Organic Chemistry, Fourth Edition

Janice Gorzynski Smith University of Hawai'i

Chapter 7

Alkyl Halides and Nucleophilic Substitution

Prepared by Layne A. Morsch The University of Illinois - Springfield

Copyright © 2014 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Alkyl Halides

Introduction

Nomenclature

Physical properties

General features of nucleophilic substitution

The leaving group

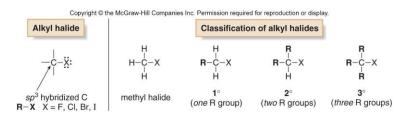
The nucleophile

Possible mechanisms for nucleophilic substitution

The $S_N 2$ mechanism

The S_N1 mechanism

Carbocation stability

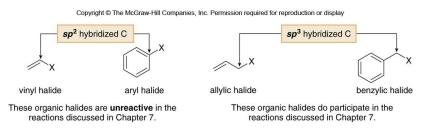

When is the mechanism S_N1 or S_N2 ?

Vinyl halides and aryl halides

Organic synthesis

Alkyl Halides

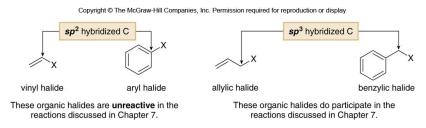
- Alkyl halides are organic molecules containing a halogen atom bonded to an sp³ hybridized carbon atom.
- The halogen atom in halides is often denoted by the symbol "X".
- Alkyl halides are classified as primary (1°), secondary (2°), or tertiary (3°), depending on the number of carbons bonded to the carbon with the halogen atom.



3

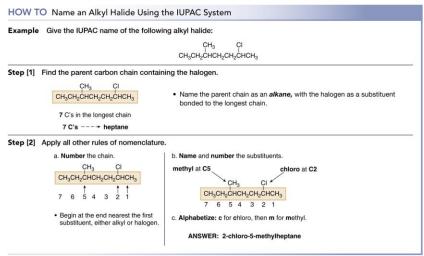
Types of Alkyl Halides

- Vinyl halides have a halogen atom (X) bonded to a C-C double bond.
- Aryl halides have a halogen atom bonded to a benzene ring.

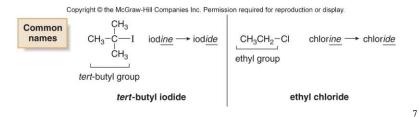

Figure 7.2

Types of Alkyl Halides

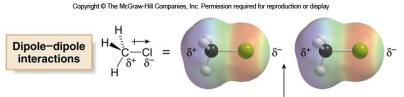
- Allylic halides have X bonded to the carbon atom adjacent to a C-C double bond.
- Benzylic halides have X bonded to the carbon atom adjacent to a benzene ring.


Figure 7.2

5


Naming Alkyl Halides

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display


Common Names of Alkyl Halides

- Common names are often used for simple alkyl halides.
- To assign a common name:
 - Name all the carbon atoms of the molecule as a single alkyl group.
 - Name the halogen bonded to the alkyl group.
 - Combine the names of the alkyl group and halide, separating the words with a space.

Polarity of Alkyl Halides

- Alkyl halides are weakly polar molecules.
- They exhibit dipole-dipole interactions because of their polar C-X bond.
- Since the rest of the molecule contains only C-C and C-H bonds, they are incapable of intermolecular hydrogen bonding.

Opposite ends of the dipoles interact.

Physical Properties of Alkyl Halides

Table 7.1 Physical Properties of Alkyl Halides Boiling point and melting point · Alkyl halides have higher bp's and mp's than alkanes having the same number of carbons. CH₃CH₃ and CH₃CH₂Br bp = -89 °C · Bp's and mp's increase as the size of R increases. larger surface area CH₃CH₂CI CH₂CH₂CH₂CI her mp and bp mp = -136 °C bp = 12 °C mp = -123 °C bp = 47 °C . Bp's and mp's increase as the size of X increases more polarizable halogen higher mp and bp CH₃CH₂CI CH₃CH₂Br ◆ mp = −119 °C bp = 12 °C Solubility RX is soluble in organic solvents. · RX is insoluble in water.

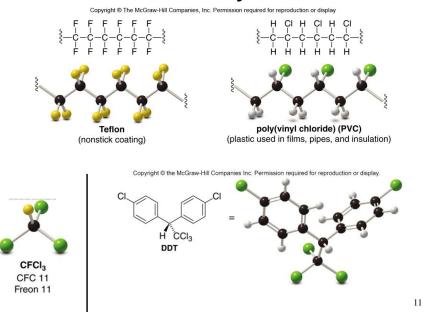
9

Simple Alkyl Halides

Figure 7.4

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

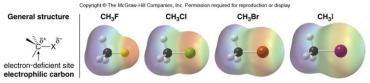
 Chloromethane (CH₃CI) is produced by giant kelp and algae and also found in emissions from volcanoes such as Hawaii's Kilauea. Almost all of the atmospheric chloromethane results from these natural sources.


 Dichloromethane (or methylene chloride, CH₂Cl₂) is an important solvent, once used to decaffeinate coffee. Coffee is now decaffeinated by using supercritical CO₂ due to concerns over the possible ill effects of trace amounts of residual CH₂Cl₂ in the coffee. Subsequent studies on rats have shown, however, that no cancers occurred when animals ingested the equivalent of over 100,000 cups of decaffeinated coffee per day.

 Halothane (CF₃CHCIBr) is a safe general anesthetic that has now replaced other organic anesthetics such as CHCl₃, which causes liver and kidney damage, and CH₃CH₂OCH₂CH₃ (diethyl ether), which is very flammable.

CF₃CHCIBr

Common Alkyl Halides


DDT kills insects that spread diseases such as malaria and typhus

DDT accumulates in fatty tissues

The Polar Carbon-Halogen Bond

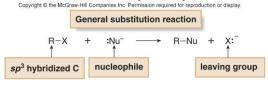
- The electronegative halogen atom in alkyl halides creates a polar C-X bond, making the carbon atom electron deficient.
- Electrostatic potential maps of four simple alkyl halides illustrate this point.
- This electron deficient carbon is a key site in the reactivity of alkyl halides.

• The polar C-X bond makes the carbon atom electron deficient in each CH₃X molecule.

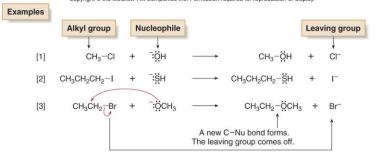
Reaction Types for Alkyl Halides

Copyright © the McGraw-Hill Companies Inc. Permission required for reproduction or display.

· Alkyl halides undergo substitution reactions with nucleophiles.


Copyright © the McGraw-Hill Companies Inc. Permission required for reproduction or display.

Alkyl halides undergo elimination reactions with Brønsted-Lowry bases.


15

Substitution Reactions

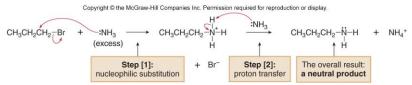
Three components are necessary in any substitution reaction.

Copyright © the McGraw-Hill Companies Inc. Permission required for reproduction or display.

Nucleophiles in Substitution Reactions

- <u>Nucleophiles</u> are <u>Lewis bases</u> that can be <u>negatively charged</u> or <u>neutral</u>.
- 1. Negatively charged nucleophiles like HO⁻ and HS⁻ are used as salts with Li⁺, Na⁺, or K⁺ counterions to balance the charge.
 - Since the identity of the counterion is usually inconsequential, it is often omitted from the chemical equation.

17


Neutral Nucleophiles

2. <u>Neutral nucleophile</u>: the substitution product bears a positive charge.

Copyright © the McGraw-Hill Companies Inc. Permission required for reproduction or display. neutral nucleophile
$$\begin{array}{c} \text{CH}_3\text{CH}_2\text{CH}_2 - \text{Br} \\ \text{All CH}_3 \text{ groups remain in the product.} \end{array}$$

- The substitution product's positive charge is usually caused by a proton bonded to O or N.
- That proton is readily lost from this in a Brønsted-Lowry acid-base reaction, forming a neutral product.

Drawing Products of Nucleophilic Substitution Reactions

- The overall effect of any nucleophilic substitution is the replacement of the leaving group by the nucleophile.
- · To draw any nucleophilic substitution product:
 - 1. Find the sp³ hybridized carbon with the leaving group.
 - 2. Identify the nucleophile, the species with a lone pair or π bond.
 - 3. Substitute the nucleophile for the leaving group and assign charges (if necessary) to any atom that is involved in bond breaking or bond formation.

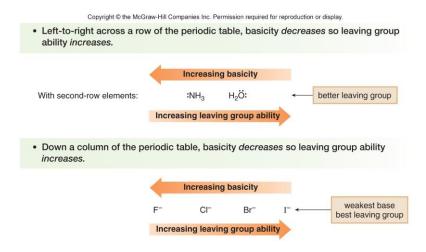
19

The Leaving Group

- In a nucleophilic substitution reaction of R-X, the C-X bond is heterolytically cleaved, and the leaving group departs with the electron pair in that bond, forming X:-.
- The more stable the leaving group X:-, the better able it is to accept an electron pair.

• In comparing two leaving groups, the better leaving group is the weaker base.

• In comparing two leaving groups, the better leaving group is the weaker base.


R−X +:Nu⁻ → R−Nu + X:⁻

Nucleophilic substitution occurs with leaving groups that are weak bases.

 For example, H₂O is a better leaving group than HO⁻ because H₂O is a weaker base.

Trends in Leaving Group Ability

• The weaker the base, the better the leaving group.

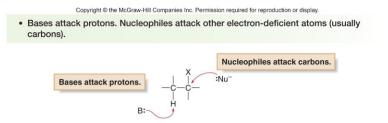
21

Good Leaving Groups

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Starting material	Leaving group	Conjugate acid	pK _a
R-CI	Cl ⁻	HCI	-7
R—Br	Br ⁻	HBr	-9
R—I	1-	HI	-10
R-OH ₂ +	H ₂ O	H ₃ O ⁺	-1.7

Poor Leaving Groups


 Conjugate bases of weaker acids are poorer leaving groups.

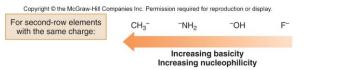
Starting material	Leaving group	Conjugate acid	pK,	
R-F	F ⁻	HF	3.2	
R—OH	⁻ОН	H ₂ O	15.7	
R-NH ₂	⁻NH₂	NH ₃	38	
R-H	H-	H_2	35	
R-R	R⁻	RH	50	

23

Nucleophiles and Bases

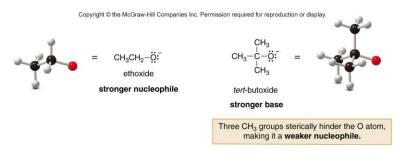
- <u>Nucleophiles and bases</u> are <u>structurally similar</u>: both have a lone pair or a π bond.
- They differ in what they attack.
 - Bases attack protons. Base + H
 - <u>Nucleophiles</u> attack other <u>electron-deficient</u> atoms (usually carbons). Nu + C

Nucleophiles vs. Bases


- Although nucleophilicity and basicity are interrelated, they are fundamentally different.
 - Basicity is a measure of how readily an atom donates its electron pair to a <u>proton</u>.
 - It is characterized by an equilibrium constant, Ka in an acidbase reaction, making it a thermodynamic property.
 - Nucleophilicity is a measure of how readily an atom donates its electron pair to <u>other atoms</u>.
 - It is characterized by a rate constant, k, making it a kinetic property.

25

Nucleophilicity Parallels Basicity


Nucleophilicity parallels basicity in three instances:

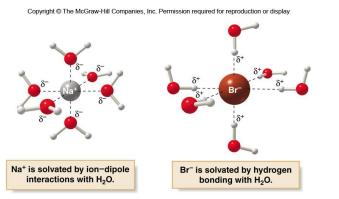
- For two nucleophiles with the <u>same nucleophilic atom</u>, the stronger base is the stronger nucleophile.
 - The relative nucleophilicity of HO⁻ and CH₃COO⁻, is determined by comparing the pK_a values of their conjugate acids (H₂O = 15.7, and CH₃COOH = 4.8).
 - HO⁻ is a stronger base and stronger nucleophile than CH₃COO⁻.
- 2. A <u>negatively charged nucleophile</u> is always a <u>stronger</u> <u>nucleophile</u> than its conjugate acid.
 - HO⁻ is a stronger base and stronger nucleophile than H₂O.
- 3. Right-to-left across a row of the periodic table, nucleophilicity increases as basicity increases:

Steric Effects on Nucleophile Strength

- Nucleophilicity does not parallel basicity when steric hindrance becomes important.
 - Steric hindrance is a decrease in reactivity resulting from the presence of <u>bulky groups</u> at the site of a reaction.
 - Steric hindrance decreases nucleophilicity but not basicity.
 - Sterically hindered bases that are poor nucleophiles are called nonnucleophilic bases.

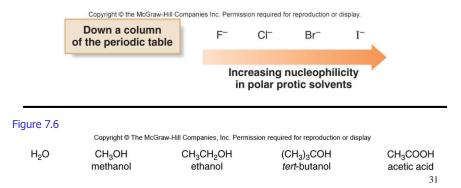
27

Steric Effects on Nucleophile Strength

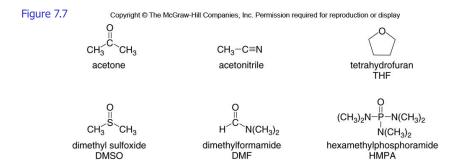

Solvent Effects on Nucleophilicity

- Most organic reactions are performed in a liquid solvent capable of dissolving the reactants, at least to some extent.
- Since substitution reactions involve polar starting materials, polar solvents are used to dissolve them.
- There are two types of polar solvents: protic and aprotic.
- · Nucleophilicity can be affected by the nature of the solvent.

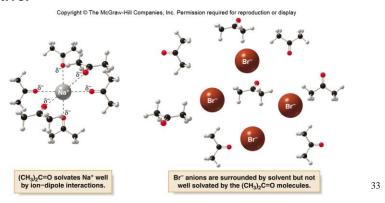
29


Solvation by Polar Protic Solvents

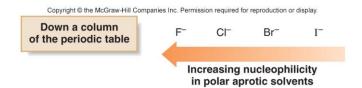
- Polar protic solvents solvate both <u>cations and anions</u> well.
- If the salt NaBr is used as a source of the nucleophile Br in H₂O:
 - The Na⁺ cations are solvated by ion-dipole interactions with H₂O molecules.
 - The Br anions are solvated by strong hydrogen bonding interactions.


Nucleophilicity in **Polar Protic** Solvents

- Smaller, more electronegative anions are <u>solvated more</u> <u>strongly</u>, effectively shielding them from reaction.
- In polar protic solvents,
 - nucleophilicity increases down a <u>column</u> of the periodic table as the size of the anion increases.
- This is the opposite of basicity.


Polar Aprotic Solvents

- Polar aprotic solvents also exhibit dipole-dipole interactions, but they have no O-H or N-H bonds.
 - They are incapable of hydrogen bonding.


Nucleophilicity in **Polar Aprotic** Solvents

- Polar aprotic solvents solvate cations by ion-dipole interactions.
- Anions are not well solvated because the solvent cannot hydrogen bond to them.
- These anions are said to be "naked" and therefore, more reactive.

Nucleophilicity vs. Basicity in Polar Aprotic Solvents

- In polar aprotic solvents, nucleophilicity parallels basicity, and the stronger base is the stronger nucleophile.
- Because basicity decreases as size increases down a column, nucleophilicity decreases as well.

Common Nucleophiles

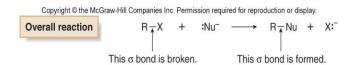
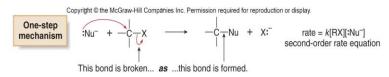

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Table 7.4	Common Nucleophiles in Organic Chemistry
-----------	--

	Negatively charged nucleophiles			Neutral nucleophiles	
Oxygen	⁻OH	⁻OR	CH ₃ COO ⁻	H ₂ O	ROH
Nitrogen	N_3^-			NH_3	RNH ₂
Carbon	-CN	HC≡C-			
Halogen	CI ⁻	Br ⁻	Γ		
Sulfur	HS ⁻	RS-		H ₂ S	RSH

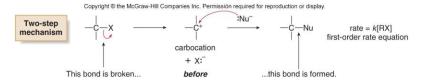
35


Bond Breaking and Makingin Nucleophilic Substitution Mechanisms

- But what is the order of bond making and bond breaking?
- In theory, there are three possibilities.
 - · Bond making and breaking occur at the same time.
 - Bond breaking occurs first.
 - · Bond making occurs first.

Nucleophilic Substitution Mechanisms-Concerted

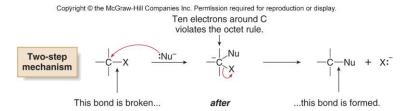
1. Bond making and bond breaking occur at the same time.



- The mechanism is comprised of one step.
- In such a bimolecular reaction, the rate depends upon the concentration of both reactants.
- · The rate equation is second order.

37

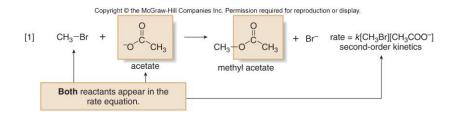
Nucleophilic Substitution Mechanisms-Bond Breaking First


2. Bond breaking occurs before bond making.

- The mechanism has two steps and a carbocation is formed as an intermediate.
- The first step is rate-determining.
- The rate depends on the concentration of RX only.
- · The rate equation is first order.

Nucleophilic Substitution Mechanisms-Bond Making First

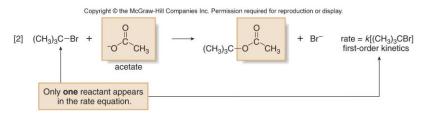
3. Bond making occurs before bond breaking.



- This mechanism has an inherent problem.
- The intermediate generated in the first step has 10 electrons around carbon, violating the octet rule.
- Because two other mechanistic possibilities do not violate a fundamental rule, this last possibility can be disregarded.

30

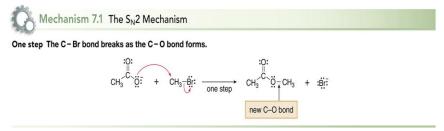
Kinetics and Mechanisms


Consider reaction 1 below:

- Kinetic data show that the rate of reaction 1 depends on the concentration of <u>both reactants</u>, which suggests a <u>bimolecular</u> reaction with a one-step mechanism.
- This is an example of an S_N2 (bimolecular nucleophilic substitution) mechanism.

Kinetics and Mechanisms

Consider reaction 2 below:


- Kinetic data show that the rate of reaction 2 depends on the concentration of only the <u>alkyl halide</u>.
- This suggests a two-step mechanism in which the ratedetermining step involves the <u>alkyl halide</u> only.
- This is an example of an S_N1 (unimolecular nucleophilic substitution) mechanism.

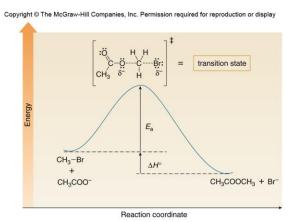
41

S_N2 Reaction Mechanism

- The mechanism of an S_N2 reaction would be drawn as follows.
- Curved arrow notation is used to show the flow of electrons.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

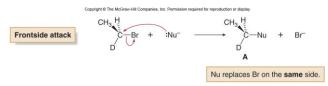
S_N2 Kinetics


- S_N2 reactions exhibit 2nd order kinetics.
- The reaction is bimolecular both the alkyl halide and the nucleophile appear in the rate equation.

rate = $k[CH_3Br][CH_3COO^-]$

43

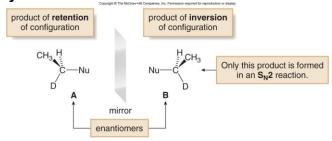
Energy Diagrams for S_N2 Reactions


Figure 7.8 $CH_3Br + CH_3COO^- \rightarrow CH_3COOCH_3 + Br^-$

 In the transition state, the C—Br bond is partially broken, the C—O bond is partially formed, and both the attacking nucleophile and the departing leaving group bear a partial negative charge.

Stereochemistry of the S_N2 Reaction

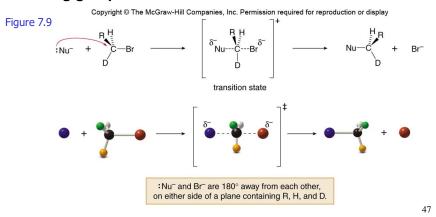
- There are <u>two possibilities</u> for which direction the nucleophile will approach the substrate.
 - Frontside Attack: The nucleophile approaches from the same side as the leaving group.



 Backside Attack: The nucleophile approaches from the side opposite the leaving group.

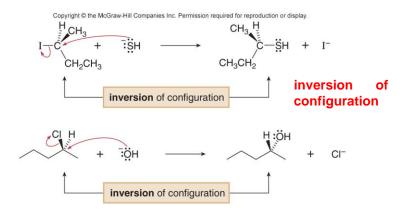
Stereochemistry of the S_N2 Reaction

- The <u>products</u> of <u>frontside</u> and <u>backside</u> attack are different compounds.
 - They are enantiomers.

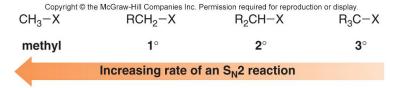


- All S_N2 reactions proceed with backside attack of the nucleophile.
- ullet They result in inversion of configuration at the stereocenter.

Uploaded By: anonymous


Transition States of S_N2 Reactions

- The transition state always has partial bonds to the nucleophile and the leaving group.
- There can also be partial charges on the nucleophile and/or leaving group.

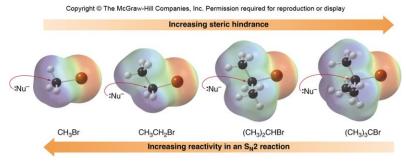

Inversion in S_N2 Reactions

Examples

Substrate Reactivity in S_N2 Reactions

• As the number of R groups on the carbon with the leaving group *increases*, the rate of an S_N2 reaction *decreases*.

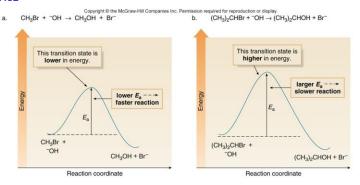
- Methyl and 1° alkyl halides undergo S_N2 reactions with ease.
- 2° Alkyl halides react more slowly.
- 3° Alkyl halides do not undergo S_N2 reactions due to steric effects.


Bulky R groups near the reaction site make nucleophilic attack from the backside more difficult, slowing the reaction rate.

49

Steric Effects in S_N2 Reactions

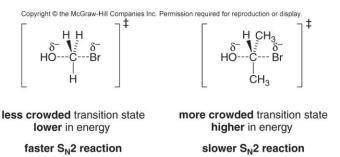
Electrostatic potential maps illustrate the effects of steric hindrance around the carbon bearing the leaving group in a series of alkyl halides.


Figure 7.11

Energy Diagrams for S_N2 Reactions

- The higher the E_a, the slower the reaction rate.
- Thus, any factor that increases E_a decreases the reaction rate.

Figure 7.12



 CH₃Br is an unhindered alkyl halide. The transition state in the S_N2 reaction is lower in energy, making E_a lower and increasing the reaction rate. (CH₃)₂CHBr is a sterically hindered alkyl halide. The transition state in the S_N2 reaction is higher in energy, making E_a higher and decreasing the reaction rate.

51

Effect of Sterics on Rate of S_N2 Reactions

- Increasing the <u>number of R groups</u> on the carbon with the leaving group increases crowding in the transition state, thereby decreasing the reaction rate.
- The S_N2 reaction is fastest with unhindered halides.

Characteristics of the S_N2 Mechanism

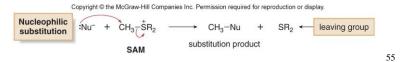
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or displa

Characteristic	Result	
Kinetics	 Second-order kinetics; rate = k[RX][:Nu¯] 	
Mechanism	One step	
Stereochemistry	Backside attack of the nucleophileInversion of configuration at a stereogenic center	
Identity of R	 Unhindered halides react fastest. Rate: CH₃X > RCH₂X > R₂CHX > R₃CX 	

53

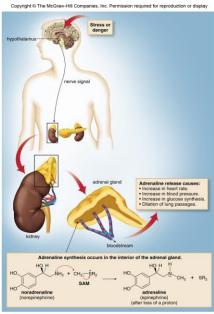
The S_N2 Reaction in the Synthesis of Drugs

Figure 7.13


- In both examples, the initial substitution product bears a positive charge and goes on to lose a proton to form the
 product drawn.
- The NH₂ group serves as a neutral nucleophile to displace halogen in each synthesis. The new bonds formed by nucleophilic substitution are drawn in red in the products.

Nucleophilic Substitution Reactions in Biological Systems

 Nucleophilic substitution reactions are important in biological systems as well.



 This reaction is called methylation because a CH₃ group is transferred from one compound (SAM) to another (:Nu⁻).

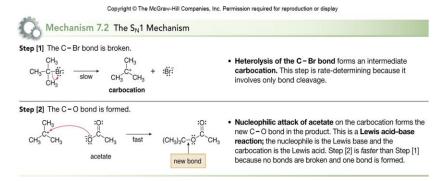
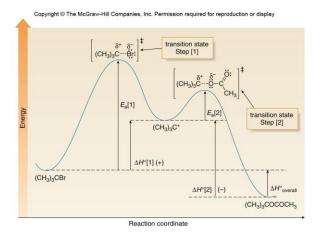

S_N2 Reaction in Adrenaline Synthesis

Figure 7.14
Adrenaline synthesis from noradrenaline in response to stress

S_N1 Reaction Mechanism

• The mechanism of an S_N1 reaction would be drawn as follows: Note the curved arrow formalism that is used to show the flow of electrons.

 Key features of the S_N1 mechanism are that it has two steps, and carbocations are formed as reactive intermediates.

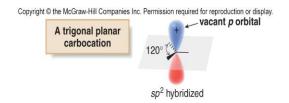

S_N1 Kinetics

- S_N1 reactions exhibit 1st order kinetics.
- The reaction is unimolecular involving only the alkyl halide.
- The <u>identity and concentration of the nucleophile</u> have no effect on the reaction rate.
- Therefore, the nucleophile does not appear in the rate equation.

rate =
$$k[CH_3Br]$$

Energy Diagrams for S_N1 Reactions

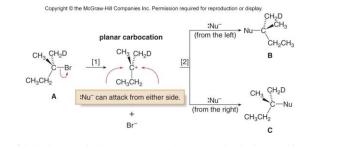
Figure 7.15 $(CH_3)_3CBr + CH_3COO^- \rightarrow (CH_3)_3COCOCH_3 + Br^-$



- Since the S_N1 mechanism has two steps, there are two energy barriers.
- E_a[1] > E_a[2] since Step [1] involves bond breaking and Step [2] involves bond formation.
 In each step only one bond is broken or formed, so the transition state for each step has on
- In each step only one bond is broken or formed, so the transition state for each step has one partial bond.

59

Stereochemistry of S_N1 Reactions

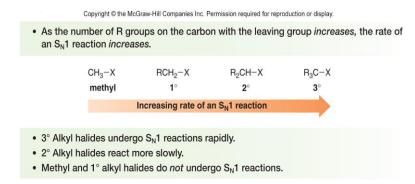

To understand the stereochemistry of the S_N1 reaction, we must examine the geometry of the carbocation intermediate.

 A carbocation (with three groups around C) is sp² hybridized and trigonal planar, and contains a vacant p orbital extending above and below the plane.

Racemization in S_N1 Reactions

- Step [1]: Loss of the leaving group generates a planar carbocation that is achiral.
- In Step [2]: attack of the nucleophile can occur on either side to afford two products which are a pair of enantiomers.
- Because there is no preference for nucleophilic attack from either direction, an equal amount of the two enantiomers is formed—a racemic mixture.
- · This process is called racemization.

Racemization in S_N1 Reactions

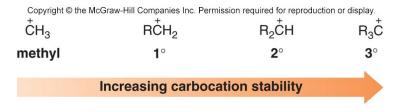

Examples:

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

- Nucleophilic substitution of each starting material by an S_N1 mechanism forms a racemic mixture of two products.
- With H₂O, a neutral nucleophile, the initial product of nucleophilic substitution (ROH₂⁺) loses a proton to form the final neutral product, ROH (Section 7.6).

Substrate Reactivity in S_N1 Reactions

 The rate of an S_N1 reaction is affected by the type of alkyl halide involved.

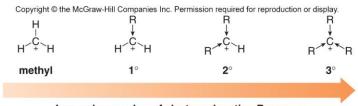


• This trend is exactly opposite to that observed in $S_N 2$ reactions.

63

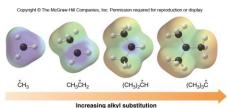
Carbocation Stability

- The effect of the type of alkyl halide on $S_N 1$ reaction rates can be explained by considering carbocation stability.
- Carbocations are classified as primary (1°), secondary (2°), or tertiary (3°), based on the number of R groups bonded to the charged carbon atom.
- As the number of R groups increases, carbocation stability increases.



Inductive Effects and Carbocation Stability

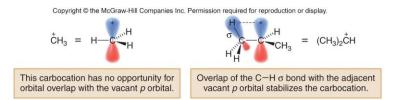
- The order of carbocation stability can be rationalized through inductive effects and hyperconjugation.
- Inductive effects occur by the pull of electron density through σ bonds caused by electronegativity differences between atoms.
- Alkyl groups are electron donor groups that stabilize a positive charge because they contain several σ bonds, each containing electron density.
- · As a result, alkyl groups are more polarizable than a hydrogen atom, and better able to donate electron density.
- In general, the more alkyl groups attached to a carbon with a positive charge, the more stable the cation will be.


65

Carbocation Stability

Increasing number of electron-donating R groups Increasing carbocation stability

Figure 7.17 Electrostatic potential maps for differerent carbocations



Increasing alkyl substitution
Increasing dispersal of positive charge

· Dark blue areas in electrostatic potential plots indicate regions low in electron density. As alkyl substitution increases, the region of positive charge is less concentrated on carbon.

Hyperconjugation and Carbocation Stability

- The order of carbocation stability is also a consequence of hyperconjugation.
- <u>Hyperconjugation</u> is the <u>spreading out of charge</u> by the overlap of an empty *p* orbital with an adjacent σ bond.
- This overlap delocalizes the positive charge on the carbocation over a larger volume, thus stabilizing it.
- For example: (CH₃)₂CH⁺ can be stabilized by hyperconjugation, but CH₃⁺ cannot.

67

Characteristics of the S_N1 Mechanism

Table 7.6 Characteristics of the S_N1 Mechanism

Characteristic

Result

Kinetics

• First-order kinetics; rate = k[RX]Mechanism

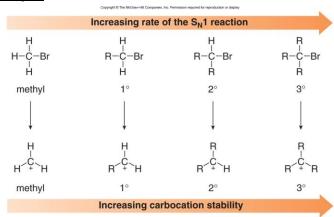
• Two steps

Stereochemistry

• Trigonal planar carbocation intermediate
• Racemization at a single stereogenic center

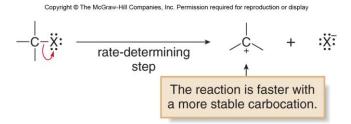
Identity of R

• More substituted halides react fastest.
• Rate: $R_3CX > R_2CHX > RCH_2X > CH_3X$

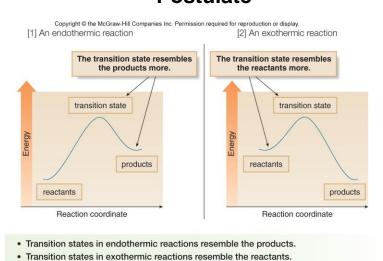

The Hammond Postulate

- The Hammond postulate relates reaction rate to stability.
- It provides a quantitative estimate of the energy of a transition state.
- The Hammond postulate states that the transition state of a reaction resembles the structure of the species (reactant or product) to which it is closer in energy.

69


The Hammond Postulate

- The rate of S_N1 reaction increases as the <u>number of R</u> groups on carbon increases.
- The stability of a carbocation increases as the <u>number of</u> R groups on the C⁺ increases.


The Hammond Postulate and S_N1 reactions

• Thus the rate of an S_N1 reaction increases as the stability of the carbocation increases.

71

Transition State Energy and the Hammond Postulate

Endothermic Reaction Transition States

- In an endothermic reaction, the transition state resembles the products more than the reactants, so anything that stabilizes the product stabilizes the transition state also.
- Thus, lowering the energy of the transition state decreases E_a , which increases the reaction rate.
- If there are two possible products of different stability in an endothermic reaction, the transition state leading to the <u>more stable product is lower in energy</u>, so this reaction should occur more quickly.

73

Transition State Energy of an Endothermic Reaction

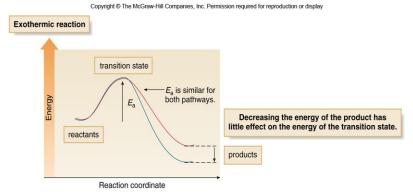
Endothermic reaction

transition state
leads to the lower energy transition state
leads to the lower energy product.

products

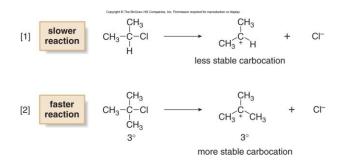
slower reaction

Reaction coordinate


Exothermic Reaction Transition States

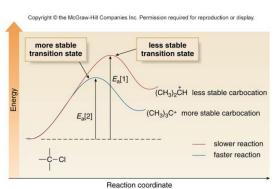
- In the case of an exothermic reaction, the transition state resembles the reactants more than the products.
- Thus, lowering the energy of the products has <u>little or no</u> effect on the energy of the transition state.
- Since E_a is unaffected, the reaction rate is unaffected.
- The conclusion is that in an exothermic reaction, the more stable product \underline{may} or \underline{may} not form faster, since E_a is similar for both products.

75


Transition State Energy of an Exothermic Reaction

Application of the Hammond Postulate to the S_N1 Reaction

- In the S_N1 reaction, the rate determining step is the formation of the carbocation, an endothermic process.
- According to the Hammond postulate, the stability of the carbocation determines the rate of its formation.



77

Application of the Hammond Postulate to the S_N1 Reaction

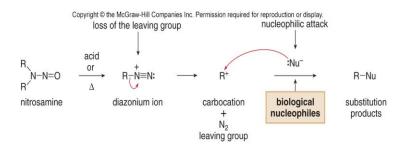
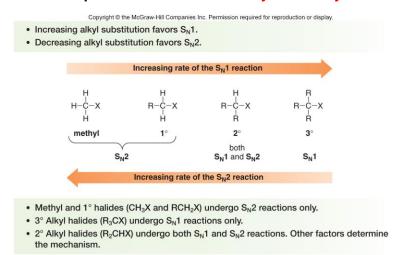

- Since (CH₃)₂CH⁺ is less stable than (CH₃)₃C⁺
- $E_a[1] > E_a[2]$
- Reaction [1] is slower

Figure 7.20
Energy diagram for carbocation formation in two different S_N1 reactions

Nitrosamines: S_N1 Reactions

- nitrosamines (R₂NN=O): act as toxins and carcinogens.
- With acid and heat, they can break down to form carbocations, which react with biological nucleophiles.

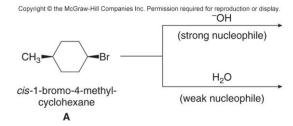

79

Predicting the Mechanism of Nucleophilic Substitutions Reactions

- Four factors are relevant in predicting whether a given reaction is likely to proceed by an S_N1 or an S_N2 mechanism:
 - 1. The alkyl halide—CH₃X, RCH₂X, R₂CHX or R₃CX
 - 2. The nucleophile—strong or weak
 - 3. The leaving group—good or poor
 - 4. The solvent—protic or aprotic

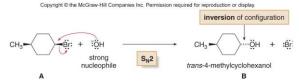
1. Nature of the Alkyl Halide

The most important factor is the identity of the alkyl halide.



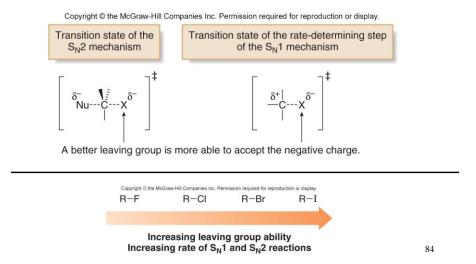
81

2. Effect of the Nucleophile


- Strong nucleophiles (which usually bear a negative charge) present in high concentrations <u>favor S_N2 reactions</u>.
- Weak nucleophiles, such as H₂O and ROH <u>favor S_N1 reactions</u> by decreasing the rate of any competing S_N2 reaction.

Example: Consider what happens when the 2° alkyl halide A, which can react by either mechanism, is treated with either the strong nucleophile Ho⁻ or the weak nucleophile H₂O.

2. Effect of the Nucleophile


The strong nucleophile favors an S_N2 mechanism.

• The weak nucleophile favors an S_N1 mechanism.

3. Effect of Leaving Groups

• A better leaving group increases the rate of both S_N1 and S_N2 reactions.

4. Effect of Solvent

- Polar protic solvents like H_2O and ROH favor S_N1 reactions because the ionic intermediates (both cations and anions) are stabilized by solvation.
- Polar aprotic solvents $\underline{\text{favor S}_{\text{N}}2}$ reactions because nucleophiles are not well solvated, and therefore, are more nucleophilic.

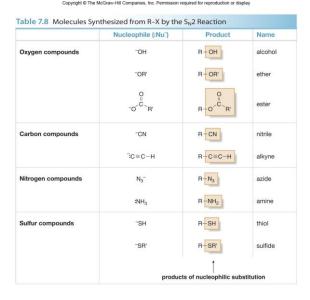
85

Predicting S_N1 or an S_N2–Summary

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Alkyl halide	Mechanism	Other factors
CH ₃ X	S _N 2	Favored by
RCH ₂ X (1°)		 strong nucleophiles (usually a net negative charge)
		 polar aprotic solvents
R ₃ CX (3°)	S _N 1	Favored by
		 weak nucleophiles (usually neutral)
		 polar protic solvents
R ₂ CHX (2°)	S _N 1 or S _N 2	The mechanism depends on the conditions.
		• Strong nucleophiles favor the S_N2 mechanism over the S_N1 mechanism. For example, RO $^-$ is a stronger nucleophile than ROH, so RO $^-$ favors the S_N2 reaction and ROH favors the S_N1 reaction.
		 Protic solvents favor the S_N1 mechanism and aprotic solvents favor the S_N2 mechanism. For example, H₂O and CH₂OH are polar protic solvents that favor th S_N1 mechanism, whereas acetone [(CH₃)₂C = O] and DMSO [(CH₃)₂S = O] are polar aprotic solvents that favor the S_N2 mechanism.

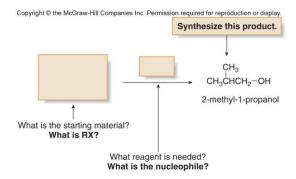
Vinyl and Aryl Halides


- S_N1 or S_N2 reactions occur on <u>sp³ hybridized carbons</u>.
- Vinyl and aryl halides, which have a halogen attached to a sp² hybridized carbon, do not undergo S_N1 or S_N2 reactions.
- Heterolysis of the C-X bond would form a <u>highly unstable</u> vinyl or aryl cation.

87

Organic Synthesis

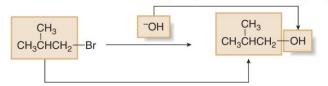
- Organic synthesis is the systematic preparation of a compound from a <u>readily available starting material</u> by one or many steps.
- Nucleophilic substitution reactions, especially S_N2, are used to introduce a <u>wide variety of functional groups</u> into a molecule, depending on the nucleophile.
- Organic synthesis has produced many useful compounds (e.g., pharmaceuticals, pesticides, and polymers used in everyday life).
 - Chemists may rely on synthesis to prepare useful substances such as a natural product produced by organisms, but in only minute amounts (e.g., Taxol used in cancer treatment).


Organic Synthesis Using Alkyl Halides

89

Thinking Backwards in Organic Synthesis

- To carry out the synthesis of a particular compound, we must think backwards, and ask ourselves the question:
 - "What starting material and reagents are needed to make it?"
- If a nucleophilic substitution is being used, determine what alkyl halide and what nucleophile can be used to form a specific product.



Approaches Used in Organic Synthesis

- To determine the two components needed for synthesis, remember that the carbon atoms come from the organic starting material, in this case, a <u>1° alkyl halide</u>.
- The functional group comes from the <u>nucleophile</u>, HO⁻ in this case.
- With these two components, we can "fill in the boxes" to complete the synthesis.

Copyright © the McGraw-Hill Companies Inc. Permission required for reproduction or display.

The nucleophile provides the functional group.

The alkyl halide provides the carbon framework.