

3) $\forall x \in (-\infty, \infty)$, $y = \tan x$ iff $\tan y = x$, $y \in (-\underline{x}, \underline{x})$ 4) $\forall x \in (-\infty, \infty)$, $y = c_0 + x$ iff tan y = x, $y \in (0, \pi)$ |x/2|, y = sec x iff sec y = x, $y \in (0,\pi)$ 5) -{5] $\forall |x| \geq 1$, y = csc x iff csc y = x, $y \in (-\frac{\pi}{2}, \frac{\pi}{2}) - fo$ 6) Domain: $-1 \le x \le 1$ Domain: $-1 \le x \le 1$ Domain: $-\infty < x < \infty$ Range: $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$ Range: $0 \le y \le \pi$ Range: $-\frac{\pi}{2} < y < \frac{\pi}{2}$ $\frac{\pi}{2}$ $y = \cos^{-1}x$ $y = \tan^{-1}x$ π 2 (b) (a) (c) Domain: $x \le -1$ or $x \ge 1$ Domain: $x \le -1$ or $x \ge 1$ Domain: $-\infty < x < \infty$ Range: $-\frac{\pi}{2} \le y \le \frac{\pi}{2}, y \ne 0$ Range: $0 \le y \le \pi, y \ne \frac{\pi}{2}$ Range: $0 < y < \pi$ $y = \cot^{-1}x$ $y = \sec^{-1}x$ π 7 (f) (d) (e) Illustration: Sin 2 = To since sin To = 1/2 لم · الما من عميع الدواك (كملائية العكرية كن وايا تكوم إما من الربع الأول أو الثاني أو "المشود أو الما بع" 11 (محبرد ل (کت ہے ضرح (کنکو نیات (ک بقیۃ للمرواں (کمیکٹ، (کھک Uploaded By: Ayham Nobani STUDENTS-HUB.com

Illustration Function Range Domain $\sin(\sin^2 \frac{1}{2}) = \frac{1}{2}$ U=Sinx X [-1, 1] y ∈ [-₩, ₩] $\sin\left(\sin\frac{-\pi}{4}\right) = -\pi$ 1sin (sin 3 =) + 3 = 4 $\cos(\cos^{-1}/2) = -\frac{1}{2}$ $y = \cos x$ $x \in [-1, 1]$ $y \in [o, \pi]$ $\cos^{-1}\left(\cos\frac{3}{4}\right)=\frac{3\pi}{4}$ 2- $Cos(cos \overline{T}) \neq \overline{T}$ $\forall x \in \mathbb{R}, ton(ton x) = X$ $9 = \tan x$ X E (-00,00) $\mathcal{Y} \in \left(-\frac{T}{2}, \frac{T}{2}\right)$ 3tan(tan-TT)=-TT $tan'(tan 2\pi) \neq 2\pi$ りモ[の用]-{耳} 1×121 y=sec X 4 $\left[\times \notin (-1,1) \right]$ y = cs < xy ∈ [亚,]-{0} $|\chi| \ge |$ 5 $y = \cot x$ $y \in (o, \pi)$ 6- $\chi \in (-\infty,\infty)$ مثلثار سرخاصة Ty Γ2 The ملك ثلاثين مسم میں متر رسامی Uploaded By: Ayham Nobani STUDENTS-HUB.com

Examples: 1) Find the value of y for the following: a) y= sin(亡) بداية، رلجيع الدوال (كمكثية (تعكيم) فأنه مَمَّكَم عِند النعَّاح (محمقية دائمًا م (مربع الأول كَرُارِين موحقي عند وتقاط (سالبة تكومه من أكربع الآج (أما كَالِم ار (شاف جسب (راد (ماکسته) ن جذار الوال / مه (معدم in (- -) ' - is = y ' ' اور م عل إما ن / بحرار دل ، او امر بع (مرابع / ولأنه بيا- مى ب البة / كذا مستكومة الروبع (رابع Sing== in = -1/4 = Cos $\left(\frac{\sqrt{3}}{2}\right)$ 6) y 501: $Y \in [0,\pi]$ $\cos y = \sqrt{3}$) $=\frac{1}{6}$ 9 $y = \tan\left(\frac{-1}{\sqrt{3}}\right)$ $\tan y = \frac{-1}{\sqrt{3}}$, $y \in (-\frac{\pi}{2}, \frac{\pi}{2})$ 501: 13 $y = -T_{6}$ d) $y = \cos\left(-\sqrt{3}\right)$ $Cosy = -\sqrt{3}$, $y \in [0,\pi]$ 58: y = 5TSTUDENTS-HUB.com Uploaded By: Ayham Nobani

2) Find the exact value of Sec $(\tan \frac{2}{3}) + \sin(\cos \frac{2}{4})$ sol: Set x = tan 3 and B = cos 4, so we have $\tan \alpha = \frac{2}{3}$ and $\cos \beta = -\frac{1}{4}$ 3 2 $\sqrt{15}$ 4 β -1 > $= \sec \alpha + \sin \beta = \frac{\sqrt{13}}{3} + \frac{\sqrt{15}}{11}$ 3) If $\alpha = \sin\left(\frac{-2}{3}\right)$, find $\sin\alpha$, $\cos\alpha$, $\tan\alpha$, ... <u>sol:</u> Sind = $\frac{-2}{3}$ and $\alpha \in [-\pi_2, 0]$, so $\cos \alpha = \sqrt{5}$, $\tan \alpha = \frac{-2}{\sqrt{5}}$, $sec = \frac{3}{\sqrt{5}}, cs = \frac{-3}{2}, and cot = \frac{-\sqrt{5}}{2}.$ The Relations Between Inverse Trig. funs $1 - Sec \chi = \cos \frac{1}{x}$ $z - csc^2 x - sin^2 \frac{1}{2}$ $3 - \sin(-x) = - \sin^2 x$ (odd fun) $4-\tan(-x) = -\tan(x) \quad (odd fun)$ $5 - \frac{1}{\cos(-x)} = \pi - \cos x$ $\left(\begin{array}{ccc} c \circ s & x + c \circ s & -x & = & \overline{l_1} \end{array}\right)$ 6- cos'(x) = T/2 - sin x $7 - \cot^{1} x = \overline{T_{2}} - \tan^{1} x$ 8- csc' x = T - sec' x $PF: i) \quad Let \ \alpha = sec^{-1} x \implies sec \ \alpha = x \implies cos \ \alpha = \frac{1}{x}$ $\therefore \alpha = \cos \frac{1}{x}$ $\beta \times \Rightarrow \alpha + \beta = \frac{1}{2}$ $6) \frac{1}{10} \frac{1}{10$

ملحوض: بالمتحدام (كنتط مايي (4) / (7) / لاحظ ما يلي : $(d(-x) = \frac{1}{2} - \tan(-x) = \frac{1}{2} + \tan^{-1} x$ Examples: 1) Find the value of tan (sec'1) Sol: $\alpha = sc(1 = cos(\frac{1}{r}) = 0$ tanx = tan o = [o]2) $Cos(tan'(\frac{-3}{4}) - sin'\frac{4}{5})$ sol: Set $\alpha = \tan \frac{-3}{4}$, $\beta = 5 \operatorname{in} \frac{-4}{5}$, 4 1 x 4 7 5 -3 -- cos (x - B) = cos x cos B + sin x sin B $= \frac{4}{5} \cdot \frac{3}{5} + \left(\frac{-3}{5}\right) \cdot \frac{4}{5} = 0$ 3) $Csc (tan \frac{1}{2} - cos \frac{-4}{5})$ sol: Set $x = \tan \frac{1}{2}$, $\beta = \cos \frac{-4}{5}$ ىقوم اول جےب (۹-۷) من فاکسی (۲ جام، للحدل کالی (۶-۷) دی sin(x-B) = sin x cosB - cos x sin B $\frac{-1}{\sqrt{5}} - \frac{-4}{5} - \frac{2}{\sqrt{5}} + \frac{3}{5} = \frac{-10}{5\sqrt{5}} = \frac{-2}{5\sqrt{5}}$ $- \operatorname{csc}(\alpha - \beta) = \left(-\sqrt{s} \right)$ 4) Find the value of sec' (sec - Tr) <u>sol:</u> Firstly, sec' (sec - Tr) = - Tr since - Tr & [1,T] - [Tr]

Note that sec x is even, so $sec(-\frac{\pi}{6}) = sec \frac{\pi}{6}$ $So = \frac{1}{5} = Sec'(Sec' = \frac{1}{5}) = \frac{1}{5}$ $Sec'(Sec' = \frac{1}{5}) = \frac{1}{5}$ 5) cot (cot - T/4) = ~ <u>sol:</u> $Cot - \overline{T}_{y} = -1$ (Do it). so $\operatorname{cot}^{(-1)} = \operatorname{cot}^{(-1)} = \mathcal{K} \in (0, \pi)$ 1 VZ X $\frac{1}{\sqrt{2}} = \frac{3\pi}{4}$ Derivatives of Inverse Trig. funs and Integration. Thrm: 1) $\frac{d}{dx} \sin^2 x = \frac{1}{\sqrt{1-x^2}}$ |x| < 1z) $\frac{d}{d\chi} \cos^{-1}\chi = \frac{-1}{\sqrt{1-\chi^2}}$ $|\chi| < 1$ 3) $\frac{d}{dx}$ tan $x = \frac{1}{1+x^2}$, 4) $\frac{d}{dx} = \frac{-1}{1+x^2}$ 5) $\frac{d}{dx}$ sec $\chi = \frac{1}{|\chi| \sqrt{\chi^2 - 1}}$, |x| > 16) $\frac{d}{dx} \csc^{-1} x = \frac{-1}{|x| \sqrt{x^2 - 1}}$ |x| > 1

PF: 1) Lot y=sinx, so siny=x $\Rightarrow \cos y \cdot \frac{dy}{dx} = 1$ $\frac{\partial y}{\partial x} = \frac{1}{\cos y} = \frac{1}{\sqrt{1-x^2}}$ یا ملیکی من 1 5) $y = \sec^{1} x \implies \sec y = x$ \Rightarrow sec y. tany. $\frac{dy}{dx} = 1$ $\Rightarrow \frac{dy}{dx} = \frac{1}{secy.tany}$ (But $secy = \chi$ and $tan^{2}y = sec^{2}y - 1 = \chi^{2} - 1$ $tan y = \mp \sqrt{\chi^{2} - 1}$ (χ) $sec^{2}\chi = \frac{\mp 1}{\chi \sqrt{\chi^{2} - 1}}$, (χ) $sec^{2}\chi = \frac{\mp 1}{\chi \sqrt{\chi^{2} - 1}}$, للمظ أمر مما سات مناعدتو دائماً ذات من وجب) لذا $\int x = \begin{cases} \frac{1}{x \sqrt{x^2 - 1}}, & x > 1 \\ \frac{1}{x \sqrt{x^2 - 1}}, & x > 1 \end{cases}$ $= \frac{1}{|x| \sqrt{x^2 - 1}}$ اَسْات (كَتْتَاح (2)) (4) / (6) بِأَنْتَ سِرِحِلَة مَد (لعلامًا تَ cos x = Z - sin x, cot x = Z - tan x, csc x = Z - sec x

ملتخطة . ستخدم مَا نور (سلسلة ليمي (موانير (سابقة : 1. $\frac{d(\sin^{-1}u)}{dx} = \frac{1}{\sqrt{1-u^2}} \frac{du}{dx}, |u| < 1$ 2. $\frac{d(\cos^{-1}u)}{dx} = -\frac{1}{\sqrt{1-u^2}}\frac{du}{dx}, |u| < 1$ 3. $\frac{d(\tan^{-1}u)}{dx} = \frac{1}{1+u^2}\frac{du}{dx}$ 4. $\frac{d(\cot^{-1}u)}{dx} = -\frac{1}{1+u^2}\frac{du}{dx}$ 5. $\frac{d(\sec^{-1}u)}{dx} = \frac{1}{|u|\sqrt{u^2 - 1}}\frac{du}{dx}, |u| > 1$ 6. $\frac{d(\csc^{-1}u)}{dx} = -\frac{1}{|u|\sqrt{u^2 - 1}}\frac{du}{dx}, |u| > 1$ Examples: Find dy if 1) $y = \sin x^{2}$ $\frac{sol:}{dx} \frac{dy}{dx} = \frac{1}{\sqrt{1 - (x^{2})^{2}}} \times 2x = \frac{2x}{\sqrt{1 - x^{4}}}$ 2) $y = \tan \sqrt{x^2 + 1}$. $\dot{y} = \frac{1}{1 + (\sqrt{x^2 + 1})^2} * \frac{1}{2\sqrt{x^2 + 1}} * 2x = \frac{x}{(2 + x^2)\sqrt{x^2 + 1}}$ 3) $y = \csc\left(\frac{3}{\chi}\right)$ $\dot{y} = \frac{-1}{\left|\frac{3}{x}\right| \sqrt{\left(\frac{3}{x}\right)^2 - 1}} * \frac{-3}{\chi^2} = \frac{1}{|x| \sqrt{\frac{9}{\chi^2} - 1}} = \sqrt{\frac{9}{9 - \chi^2}}$ ملحوظى: ممكم على المناد السبع، بملاجف العلاقة علي مناح = عرب عرب م

Integration Formulas: : به توانیم رو شقای (سابقة عمام استناع (متا یه استان) مس توانیم (می شقای (سابقه عمام استاع) 1. $\int \frac{du}{\sqrt{-2}} = \sin^{-1}\left(\frac{u}{a}\right) + C$ (Valid for $u^2 < a^2$) 2. $\int \frac{du}{a^2 + u^2} = \frac{1}{a} \tan^{-1} \left(\frac{u}{a} \right) + C$ (Valid for all u) 3. $\int \frac{du}{u\sqrt{u^2 - a^2}} = \frac{1}{a}\sec^{-1}\left|\frac{u}{a}\right| + C$ (Valid for |u| > a > 0) $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$ $\frac{2}{\sqrt{\alpha^2-u^2}} = \frac{1}{\sqrt{\alpha^2-u^2}} + \frac{1}{\sqrt{\alpha^2-$ ۱- جارج وسیکا مل کا لیکا ک $\int \frac{-du}{\sqrt{a^2 - u^2}} = -\int \frac{du}{\sqrt{a^2 - u^2}} = -\sin\left(\frac{u}{a}\right) + C$ مع ولأجذ بعيم (لإ كسّار جحة كل المجوابيم لوجود (لعلائة : $\cos x = \frac{1}{2} - \sin x$ Examples: $1) \int \frac{dx}{10 + x^2} = \frac{1}{\sqrt{10}} \tan^{-1}\left(\frac{x}{\sqrt{10}}\right) + C$ J^{z} $Z) \int \frac{dx}{\sqrt{x^{2}-1}} = \frac{\sqrt{x}}{\sqrt{x^{2}-1}} = \frac{\sqrt{x}}{\sqrt{x^{2}-1}} = \frac{\sqrt{x}}{\sqrt{x^{2}-1}} = \frac{\sqrt{x}}{\sqrt{x^{2}-1}}$ $= \cos \frac{1}{\sqrt{2}} - \cos \left(\frac{\sqrt{3}}{2}\right) = \frac{1}{4} - \frac{1}{6} = \frac{1}{\sqrt{2}}$

3) $\int \frac{dx}{(4x - x^2)}$ لحی حذا (سؤال دیجب برایة باکال (کمربع: (۲-۲+×+×) – = $x^{2} - x^{2}$ $= -\left(\left(\times -2 \right)^{2} - 4 \right) = 4 - \left(\times -2 \right)^{2}$ $\frac{dx}{\sqrt{4x-x^{2}}} = \int \frac{dx}{\left(4-(x-2)^{2}\right)^{2}}$ du - dx $=\int \frac{du}{\left(\frac{u}{2}-\frac{u^2}{2}\right)} = \sin\left(\frac{u}{2}\right) + C$ $= \left| \sin\left(\frac{x-2}{2}\right) + C \right|$ 4) $\int \frac{dx}{4x^2 + 4x + 2}$ <u>sol:</u> Complete a square: $4x^{2} + 4x + 2 = 4\left(x^{2} + x + \frac{1}{4} - \frac{1}{4}\right) + 2$ $= 4 \int \left(x + \frac{1}{2} \right)^{2} - \frac{1}{4} \Big| + 2 = 4 \left(x + \frac{1}{2} \right)^{2} - 1 + 2$ $= (2 \times +1)^{2} + 1$ $\begin{bmatrix} d_{2} x_{3}^{2} y_{3} \end{bmatrix} (h_{2} y_{2} y_{2} y_{3} y_{3} + x_{3} y_{3} + x_{3} y_{3} + y_{3} y_{3} + y_{3} y_{3} + y$ $\int \frac{dx}{4x^2 + 4x + 2} = \int \frac{dx}{(2x+1)^2 + 1}$ $k = Z X^{+1}$ du = zdx1/2 du = dx $=\frac{1}{2}\int \frac{du}{u^2+1} = \frac{1}{2} \tan u + C$ $= \left(\frac{1}{2} + \frac{1}{2} +$ STUDENTS-HUB.com <u>Uploa</u>ded By: Ayham Nobani

5) $\int \frac{dx}{\chi \sqrt{4\chi^2 - 5}} = \int \frac{dx}{2\chi \sqrt{\chi^2 - 5_{4}}}$ $= \frac{1}{2} \cdot \frac{1}{\sqrt{5/4}} \cdot \frac{1}{\sqrt{5/4}} + C \qquad \left(\alpha = \sqrt{5/4}\right)$ $= \left(\frac{1}{\sqrt{5}} \quad sec' \right) \frac{2x}{\sqrt{5}} + C$ لاخط أنه يمكم على المثالات بأخذ عروت من عم عرام والحوي التكامل سبتخدام التعويم البسيط وف الترابي تخصل على نفس المواب و المسينة . 6) $\int \frac{dx}{\sqrt{e^{2x}-6}} = \int \frac{e^{2x}dx}{e^{2x}-6} \qquad u = e^{2x}$ $du = e^{2x}$ $= \left(\frac{Ju}{u\sqrt{u^2-c}}\right) = \frac{1}{\sqrt{6}} \sec\left(\frac{u}{\sqrt{6}}\right) + C$ $=\frac{1}{\sqrt{6}}\operatorname{sec}\left|\frac{e^{x}}{\sqrt{6}}\right| + C = \left|\frac{1}{\sqrt{6}}\operatorname{sec}\left(\frac{e^{x}}{\sqrt{6}}\right) + C\right|$ $u = \tan^2 y$ $du = \frac{dy}{1 + y^2}$ $7) \qquad \left(\frac{Jy}{tan^{-1}y} \left(1+y^{2}\right)\right)$ $= \int \frac{du}{u} = \frac{h}{u} + C = \frac{h}{tany} + C$