Problem 2.1
Evaluate the Fourier transform of the damped sinusoidal wave g(r) = exp(—=r)sin(2nf .r)u(r)

where u(r) is the unit step function

Solution
The Fourier transform of g(¢) is
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Problem 2.2
Determine the inverse Fourier transform of the frequency function G(f) defined by the amplitude
and phase spectra shown in Fig. 2.5.
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Note: If we let W — oo, G(f) — jsgn(t), the inverse of which ~ L This result agrees with the

n
limiting value of the solution for W = eo.
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Problem 2.3
Suppose g(r) is real valued with a complex-valued Fourier transform G(f). Explain how the rule of
Eq. (2.31) can be satisfied by such a signal.

Solution
With G(f) being complex valued, we may express it as

G(f) =GN +iG,(f)

where G ,(f) is the real part of G(f) and G,(f) is its imaginary part. Hence,
G(0) = G(0)+ jG,;(0).

According to Eq. (2.31) in the text,

[ sdr = G,(0)+ jG,(0)

With g(/) being real valued, this condition can only be satisfied if the imaginary part G;(0) is zero.
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Problem 2.4

Continuing with Problem 2.3, explain how the rule of Eq. (2.32) can be satisfied by the signal g(¢)
described therein.

Solution

Since g(f) is real valued, it follows that the integral Jm G(f)df must likewise be real valued. For

this condition to be satisfied, the imaginary part of G(f) must be an odd function of /.
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Problem 2.5
Develop the detailed steps that show that the modulation and convolution theorems are indeed the
dual of each other.

Solution
The modulation theorem states that
g1 (060 < [ GG,/ - Wdh (1)

To apply the duality theorem, we say that if
g1(Ng,(t) = X(f), then

ST rem @A TS G

For the problem at hand, we may therefore write

[~ GG, -man = g(=fgy-1) @)

Next, we apply Eq. (2.21), which states that if g(r) = G(f) then g(—f) = G(—f). Hence,
applying this rule to Eq. (2), we may write

" 60G,0-na = g,(Hegr()

which is a statement of the convolution theorem, with G (¢) = g,(f) and G,(1) = g,(f).
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Problem 2.6
Develop the detailed steps involved in deriving Eq. (2.53), starting from Eq. (2.51).

Solution
According to Eq. (2.51),

[~ eimg,t-vdt = G,()G,(1)

According to Eq. (2.21),if g(1) = G(f).then g(—f) = G(—f).Hence, applying this rule to the
problem at hand, we may write

[~ gaimg-ndt = G,(/)Gy-1)

Next, we note that if we complex conjugate the term g,(T - 7), then the conjugation theorem of Eq.
(2.22) teaches us that

f gl(‘r)g;(t—r)ch = G.(,f')G;(—f‘)

which is the desired result, except for the fact that we have interchanged the roles of variables t
and 1.
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Problem 2.7
Prove the following properties of the convolution process:

(a) The commutative property:
gi()kgy (1) = go(1) kg (1)

Proof:

g () *kg,(1) = fmg,('c)gz(!—'c)dr

= Jm g, (r—-1)g,(1)dt

Replace 7 - T with A. That is, T=1r- A. Hence

§i0Xgy(1) = =[ ~ gy (1~ )ik

= f 2>(M) g (t=A)d\

= g () kg, (1)

(b) The associative property:
g () *[g () kgy(0)] = [g,(1) kg, (1) Kg,(1)

Proof:
Let
x(1) = g,(1)*kgs(1)

= f g,(Vg;(t =Dyt

Hence

I(t) = g,(t)k [g,(1)kgs(1)] = f g, (M)x(t=r)dh

= f g|(7t)fmg2(t]g3(!—T—k)dtrﬁu (1)
Replace T+ A with ; that is, T = U - A. Hence, keeping A fixed, we may write
I(t) = f g|(7\)f gz(l-l‘)h)g_‘{(f—].l)(ﬂ.ltﬁu (2)

With p fixed, the integral r 2,(M)g,(1—A)d\ is recognized as the convolution of g; (1) and
2-(1), as shown by

g = [ giMg,(-2dh = g (%W

We may therefore rewrite Eq. (1) as

Continued on next slide
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Problem 2.7 continued

I(t) = r gt —du = g, (kg = [g, (kg (H)]Kkgy(1)
(c) The distributive property:

31(!')*[‘?3{”'*'33“)] = g (1)kg,(1)+ g, (1)*kgs(1)
Proof:

g (*[g () + 23] = [ g(Mlg(t-1) + g5(t-D)ld

—00

Jm g (t)g,(r— T)dt+J g(Dgy(t-1)drt

g (D) kg, (1) + g (1) kg,(1)
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Problem 2.8
Considering the sinc pulse sinc(#), show that

jm sinc>(1)dt = 1

Solution
This integral may be viewed as

[ = Jm sinc(t) - sinc(t)dt
which, in light of Rayleigh’s energy theorem, may also be expressed as
[ = Jm |F[sinc(f)]|2d_/'

From Eq. (2.25) in the text, we have
F[sincf] = rect(f)

Hence,
I = rﬂ rectz(./')d_f“
1/2
= var
—1/2
=1
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Problem 2.9
Determine the Fourier transform of the squared sinusoidal signals:

() g(t) = cos’(2nf 1)
(ii) g(1) = sin°(2nf 1)

Solution
(1) Using the trigonometric identity

cos’0 = %(l + c0s20)

we may express g(/) as

g(t) = %(l + cosdmn f 1)

Hence,

G(f) = 38(/)+ 380/ =2/ )+ 38(/ +21)
(11) Next, using the trigonometric identity

sinze = %(I - ¢0s20)

we may write

sin2(2n_f‘{.!) = %(] —cosdn f 1)

Hence,

G(f) = 38(/) =380/ = )=/ + 1)
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Problem 2.10
Consider the function

a0~ (e-2) -}

which consists of two delta functions at ¢t = 15
yields the unit rectangular function rect(7). Using Eq. (2.79), show that

rect(t) = sinc(f)

l. The integration of g(f) with respect to time ¢

Solution

To begin, consider the transform pair

o) = 1

Hence, the Fourier transform of g(¢) is

G(f) = exp(Jnfi) — exp(—jnfi)

from which we readily deduce that G(0). Hence, applying Eq. (2.79) in the text yields

o o .
Flrect(1)] = W[exp{_;nf) exp(—/nf)]

_ sin(nf) _
nf
where we have used the identity

sinc(f)

sin(mf) = ‘LTI,;_({JW'_(,—NU'J
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Problem 2.11
Using the Euler formula

cosx = %exp[(_jx)-i- exp(—jx)]

reformulate Egs. (2.91) and (2.92) in terms of cosinusoidal functions.

Solution

- o -

D exp(2nnfor) = Y exp(j2mnfo)+ 1+ Y exp(2nnf )
=00 n=1 f=-c0

= 1+ Z [exp(_;‘.?n’n_/'[)r) + exp (—_}‘2?5!?_[‘0!)]

n=1

o

=1+2 Z cos(2mn ft)
n=l1
We may therefore reformulate Eq. (2.91) as

Z d(t—mT,) = _f'[,+2_f'[,z cos(2mm f 1)
ni=-co n=l

where f, = 1/T.
Similarly, we may write

oo

z cos(j2mmf 1) = l+2z cos(2mm f 1)

n=-co m=1

Hence, we may reformulate Eq. (2.92) as

[+2) cosmmfyt) = Ty Y, 3(f—nfy)

m=1 f1=-co
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Problem 2.12

Discuss the following two issues, citing examples for your answers:

(a) Is it possible for a linear time-invariant system to be causal but unstable?
(b) Is it possible for such a system to be noncausal but stable?

Solution
(a) Itis possible for a system to be causal but unstable. Causality means that the impulse response

of the system /i(f) must be zero for negative ¢. Instability means that the BIBO criterion

r [h(t)|dt < oo

is violated. Such a system could be represented by the impulse response

»"?{-')={ 0 forr<0
exp(t) for >0

(b) By the same token, it is possible for the system to be stable but noncausal. In this second case,
we may cite the impulse response

h(t) = { exp(t) for <0
0 for >0

What does Problem 2.12 teach us?
The problem teaches us that the properties of stability and causality are independent.
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Problem 2.13
The impulse response of a linear system is defined by the Gaussian function

2
h(t) = exp(~{—§}
2T

where the parameter T is used to adjust duration of the impulse response. Determine the frequency
response of the system.

Solution

From Eq. (2.40) in the text, recall that

exp{—m2) = exp{—n_f‘z)

Next, from the dilation property of the Fourier transform described in Eq. (2.20), recall that if

h(t) = H(f),then

hiat) = LH(i)
la] \a

where ¢ is the dilation parameter. For the problem at hand, we have

2n T

Accordingly, the frequency response of the system is
H(f) = 21 texp(=2n°t f)
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Problem 2.14
A tapped-delay-line filter consists of N weights, where N is odd. It is symmetric with respect to
the center tap, that is, the weights satisfy the condition

0 = W Lns 0<snsN-1

(a) Find the amplitude response of the filter.
(b) Show that this filter has a linear phase response. What is the implication of this property?

w

Solution
The impulse response of the filter is
N-1
h(t) = Y w,8(t—nA1)
n=0
Hence, the frequency response of the filter is
N-1
H(f) = 3, w,exp(~/2nnfAt)
n=0
To illustrate, consider the example of N=135. Then
H(f) = wWot W exp(—/j2nfAt) + W, exp(—j4nfAt) + Wy exp(—jomfAT) + 11-4exp(—_f875fﬁ'c)

= exp(—j4nfAT)[wqexp(j4nfAT) + w exp(j2nfAT) + w, + wyexp(—j2rfAT)

+m1'4exp(—_,r‘4nm’r}] (1)
For this example, the symmetry condition
w, = Wy, forO=n=N-I
reads as
W, = Wy, forO<n<4

Hence, wy = w4 and wy = wy. Accordingly, we may rewrite Eq. (1) as
H(f) = exp(—j4nfAT)[woexp(j4m/AT) + exp(—j4nfAT)
+w,(exp(j2nfAT)) + exp(—j2nfAT)
+w,]
= exp(—j4nfAt)[2wycos(4mfAT) + 2w (2RfAT) + w, ]
We may therefore generalize this result as
-1
H(f) = exp(—_ﬂn(N—z-l-)_fAT) Wy 2 Z w, cos(2mnfAT)
2 n=0

(a) The amplitude response of the filter is therefore
N-1

~

|H() = wy, +2 Y, w,cos(2rnfAT)
2 =0
(b) The phase response of the filter is therefore

are(H (1)) = exp(~j2n{ 5 ) fav)

which is linear with respect to the frequency /. The implication of this condition is that except
for a delay, there is no phase distortion produced by the filter.
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Problem 2.15
Derive the relationship of Eq. (2.142) between the two cross-correlation factors R_‘:“(T} and R_‘._‘.(T}.

Solution
By definition

R_m_{t) = rm ).-{.f)x*(r —T)dt

Complex co.l.ljugate both sides of the equation:
R (1) = r X(t=1)y (0)dt

Next, replac::’t with -1:

Ry (-1) = Ja; X(t+ 1)y (1)dt

Finally, replace r + T with ¢, which is equivalent to replacing f with ¢ - T; we therefore (since dt
remains unchanged)

R (1) = [ x(0)y (t-mydt = R, (v)
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Problem 2.16
Consider the decaying exponential pulse

exp(—at) t>0
g(t) =49 1, t=0
| 0, (<0
Determine the energy spectral density of the pulse g(7).

Solution
The Fourier transform of g(7) 1s (see Eq. (2.12) in the text

: 1
G = —
) = 3
The energy spectral density of the pulse 1s therefore
, P
E,(f) =16/

= 1 —oo<‘f<oo

2., 2,2
a +4nf
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Problem 2.17
Repeat Problem 2.16 for the double exponential pulse

exp(—at), >0
glt) =49 1, =0
exp(at), t<0

Solution
The Fourier transform of g(¢) is (see Eq. (2.16))

. 2

G(f) = 5

a +4n"f
The energy spectral density of the double exponential pulse is

2
. 4 :

E(f)=——555 —=</<=

(a"+4n" ")
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Problem 2.18
In an implicit sense, Eq. (2.153) embodies Parseval’s power theorem, which states that for a
periodic signal x(t) we have

T/2 -
lrj If_/2|.\-(r}|2m = ¥ |xrsy)|
H=-c0

where T is the period of the signal, f; is the fundamental frequency, and X{(nf;) is the Fourier trans-
form of x(r) evaluated at the frequency nf. Prove this theorem.

Solution
Adapting Eq. (2.86) to the problem at hand, we may write

oo

xp() = [y Z X(nfy)exp(j2nnfyt) (h
H==c0
where
T T
: <<=
'\-T{r) = '\['r)s 2 sSrs 2
0, otherwise
. ]
Jo = T

and X(nfy) is the Fourier transform of g(7), evaluated at the frequency /= nf,. Using Eq. (1) to
evaluate the integral

(772

}_"J-m lx(0)|“dr

we write

12 [ & o
=1, s z X{n.)"u}exp(j2nn.f'“!}]{ Z X (mfy)exp(—j2mnmf ) |dt

H=-ca m=-ca

= T 2 _ _
= /o z X(nfy)X {m_,fU)J s exp(j2n(n—m) fy1)dt (2)

n=-o0

To evaluate the integral on the right-hand side of Eq. (2), we write

r/2 . . _ . . T2
J - exp (j2r(n—m)f,t)dt = cxp(_;Zn(n—m)‘,f”r)L gy

]
Jj2n(n-m)f,

Continued on next slide
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Problem 2-18 continued

_ o 3 . 3
—jzﬂ(”_m”.”[exp((_,':rr(n m)) —exp—jn(n—m))]

B 1 .
= msm(n{n —m)) (3)

Whenever the indices n and m are assigned different integer values, Eq. (3) assumes the value
zero. On the other hand, whenever the indices are assigned the same integer value, the integral in
Eq. (3) assumes the limiting value

I .. sin(mw(n—m
—_ l“'n M — L
Fo n=m T(n—m) S 0

Accordingly, we may simplify Eq. (3) as

T/2 , ] l Coa=m
J exp (j2r(n—m) fot)dt = { f, N
T/2

0, otherwise

Hence, substituting Eq. (4) into (2), we get

1= |X(ufy)| (5)

H==-ca

We finally write

/2 -
2 b= 3 |x )

n=-oo

which is the desired result.
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Problem 2.19

(a) The half-cosine pulse g(r) of Fig. 2.40(a) may be considered as the product of the rectangular
function rect(#/T) and the sinusoidal wave Acos(nt/T). Since

rect(%) = Tsinc(/fT)

teoft) “Air-) )]

and multiplication in the time domain is transformed into convolution in the frequency
domain, it follows that

G(f) = [Tsinc(_fTJl*{g[5(.f'— % A %H}

where % denotes convolution. Therefore, noting that

sinc(,lT]*S(‘f'_ %) - sinc[T(_f‘—%II
sinc(,!T)*a(,f‘ + %J = sincI:T(,f# %)]
we obtain the desired result

G(f) = A—;[sinc(fT I %) + sinc(_fT + %H

(b) The half-sine pulse of Fig. 2.40(b) may be obtained by shifting the half-cosine pulse to the
right by 7/2 seconds. Since a time shift of 7/2 seconds is equivalent to multiplication by
exp(-/nfT) in the frequency domain, it follows that the Fourier transform of the half-sine pulse
is

G(f) = %‘[sinc(ﬂ“ - %) + sinc(_;‘T + %H exp(—jnfT)

(c) The Fourier transform of a half-sine pulse of duration aT is equal to

I”'%[sinc(qﬂ— %) + sinc(a_}‘T + %ﬂ exp(—jnfaT)

(d) The Fourier transform of the negative half-sine pulse shown in Fig. 2.40(c) is obtained from
the result by putting ¢ = -1, and multiplying the result by -1, and so we find that its Fourier
transform is equal to

—%[sinc(]“f + %) + sinc(.,-‘T— %)] exp(jnfT)
Continued on next slide
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Problem 2-19 continued

(e) The full-sine pulse of Fig. 2.40(d) may be considered as the superposition of the half-sine
pulses shown in parts (b) and (¢) of the figure. The Fourier transform of this pulse is therefore

G(f) = ’%[sinc(_fr - ;) + sinC(_fT + ;)][ exp (—/fT) - exp (jn/T)]

I AT ..
= J:AT_smc(fT 2]+5mc(_,fT+2)_sm{n;,fT)

-sin(n;{T— E) sin(an + g)-

=y 2 + sin(m/fT)
i ﬂ;lT—g n/T +§ _
= _jAT|- cos(n/T) , cos(n/T) sin(r/T)
| T g n/T + g
_ . [sin2nfT) sin(2n/T)
/4 T[ 2nfT - 2nfT+n7 ]

N _sin(2nfT —n)  sin2r/T + 1)
"AT[ IT-% | 2mT+x ]

= jAT[sinc(2fT +1)—sinc(2 /T -1)]
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Problem 2.20
(a) The even part g,(¢) of a pulse g(r) is given by

g.(t) = %lg(r} +g(-1)]

Therefore, for g(f) = Arect(%—%) we obtain
A 1 t 1
+ S
[lgct(r 2) lcct( T 2)]
A rect( )
3ree(57)]

which is shown illustrated in Fig. 1:

g.(1)

A
1
0 T
2d1)
Ai2
Figure 1 | |
T 7 !

The odd part of g(¢) is defined by
1
go('f} - j[c(") cs{ f)]

= Hreet( - 5) - rect(- 73]

which is illustrated in Fig. 2:

Zoll)
A
2

T I .
L [« 7

lqlh

Figure 2

(b) The Fourier transform of the even part is
G,(f) = ATsinc(2fT)
The Fourier transform of the odd part is

G,(f) = —-Tbll]C(fT)eXp( ,‘It}‘T)——-TSIHC(fT}eXp(,!TEfT)

- A_f sinc(/T)sin(n/T)
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Problem 2.21

Express g(1) as
g(r) = g,(n)+g,(1)

where
) 2
g,() = lr exp T N
TT 2
s e’
(1) = - exp| —— |du
&0 = 2], p[ 2
Therefore,

) 2
g,(t+T) ! exp(—%]du
!

T

where we have made use of the fact that

/)
l‘r ex T du=l
P T )

T
Similarly
T
0T = [ exp| -}
g5 ( ) . xp[ 12 ]{H
= lr ex —&"2 du = )
7). P 12 2

Continued on next slide
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Problem 2-21 continued

Next, noting the following four relationships
Flg \(t+T)] = G,(f)exp(j2n/T)

Flg,(t-T)] = G,(f)exp(—j2nfT)

exp {—%J = Texp (—rc‘rz_f‘z)
T

rmg(lf)ifif = jz—lﬂ_fl,(?(_f‘)"‘%G(U)S(f)

we find that taking the Fourier transforms of g(1+7) and g,(¢-T) respectively yields

exp(-nt’ f7)

. , L
G (f)exp(j2rfT) = ~Tanf

Gy(f)exp(—j2fT) = ——exp(-nt’/?)

j2nf
Therefore,

o 2.2 .
Gi(f) = jzm.exr)( T f7)exp(—j2nfT)
oo 22 .
G,(f) = ﬁm.uxp( T f7)exp(J2n/T)

Thus the Fourier transform of g(1) is
G(f) = G ()T G,(f)

- ﬂlnf exp (-’ ) [exp(—j21/T) + exp (j21/T)]

= Rifexp(—ntzl,f'z)sin(anT)
| Al L1
2T exp(—nt [ )sinc(2/T)
When T approaches zero, G(f) approaches the limiting value 27sinc(2/7), which corresponds to
the Fourier transform of a rectangular pulse of unit amplitude and duration 27, which is correct.

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only
to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that

STU Dpﬁlﬂﬁ.déngﬂjrél% (o)r r17018 of the 1976 United States Copyright Act without the permission OUWFG) fggﬂﬂe oangi)s/lfnlw[fé!lak Obal d



Problem 2.22

@ G(/) = [ gexp(-j2nfr)dr
) , .
= f g{f)exp(—J‘Zrcﬂ)rfr+J:g(r)exp(—j2nﬂ)dr
= rl g{r)cos(Zn/?)dr—_r] Je(t)sin(2nft)dt

+ | g(t)cos(2mft)dt — | je(t)sin(2mft)dt
j:a{ )cos(2mft)c¢ J:fg( )sin(21/7)
If g(1) is even, then g(f) = g(-1). Hence,

J” 2 (1) cos(2mft)dt = j:g(r)COS(znf'r)m

f_}mg(f}sin(hﬁ)dr - —_[:g(r)sin(zuf'r)m

and so

G(f) = ZJ:g(f}cos(Zr;,!i)d.r_ which is purely real.
If, on the other hand, g(r) is odd, g(r) = -g(-1). Hence,
Jﬂmg(f)sin(h;mdr = _[:g(r)sin(znﬂ}dr

_r} g(tycos(2mft)dt = —rg{r)cos{zmi)df
—oo 0
and thus

G(f) = —2}J:g(r)sin(2nfi}ff{ which is purely imaginary.

(b) The Fourier transform of g(¢) is defined by
G(/) = [ gexp(-j2nfndi
Differentiating both sides of this relation n times with respect to f:
d"G(f) _

2 = an) [ e janndr (1)
Tha‘t is,
J )”d“(;(_f')

n .
l g{f] Al (21': (ff\”

(c) Putting /=0 in Eq. (1), we get

rm.f”g(!)dr - (ﬁ)”G“”(O)

Continued on next slide
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Problem 2.22 continued

(d) Since
(1) = Gy(=/)
it follows that
aig= [ GG0- f)dn
From this result we deduce the Fourier transform

Flg,(0g:(0] = [ _g1(Dgx()exp(-j2m/n)di

= [ GG~ f)a )
Setting /=0 in Eq. (2), we get the desired relation
[ aa0 = 660
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Problem 2.23

We are given the following inequalities:

G e a

27fG (/)] < j:|“';_(!’) di

2rsGnl< | |CEWiar

Considering the triangular pulse g(f) of Fig. 2.41 in the text, its first and second derivatives with
respect to time / are illustrated in Fig. |:

d’g(1)
dt

gl

g(r)

AT 780 AT
dr-
f r
: -T 0 T
Figure 1
v-24T
We thus have
[ lglar = ar
I de) = 24
e
d’g(t) , _ [ 4
fme = fﬁ|5“ +T)=28(1)+8(t - T)\dt
— 4_A
T
The bounds on the amplitude spectrum |G(f)| are therefore as follows:

|G(f)|<AT

Continued on next slide
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Problem 2.23 continued

. A
G < —
G i

Gl <

RZII.Z T

which are shown plotted in Fig. 2.

Bound (1)

N\
~ ,(Buund (2)

~
~Bound (3
k\\‘oun (3)

Actual
Fi gure 2 spectrum

The actual amplitude spectrum of the triangular pulse is given by

IG(f)] = ATsinc’(/T)
which is also plotted in Fig. 1. From this figure we see that bounds (1) and (3) define boundaries
on the actual spectrum |G(/)|.
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Problem 2.24

(a) The convolution of g;(f) and g5(¢) is defined by
g (kg () = [ g (g (t-T)de ()
Differentiating both sides of Eq. (1) with respect to time :

d i d
Zleinxgy 0] = [ g(mTe (-0t

i e

= fmé,l(’r)d“_”g,z{r T)dt

il d
= g1 7,0
Since convolution is commutative, we may also write
d d
—[ * o, =|—g *g
Flai %01 = [T (0)|*e0

In other words, the derivative of a convolution produce of two signals is equivalent to the
convolution of one of the signals and the derivative of the other.

(b) Changing variables in Eq. (1), we may write
gi0%g(0) = [ g Mgyt-M)ah @)
Integrating both sides of Eq. (2) with respect to t:
[ lg@*g@ld = | [ g0)g (-1t
Interchanging the order of integration and rearranging terms:
[ ta@xgmid = [ gi0f e -1yand 3)
Recognizing that
[ et-na = [T g,
w_:may rewrite Eq. (;Tas

-A
[ lgm*gmidr = [ g e 0da

= q(*[ e

In other words, the integral of a convolution product of two signals is equivalent to the
convolution of one of the signals and the integral of the other.
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Problem 2.25

Express )(f) as

v = ()

= x(r)x(1)
Since multiplication in the time domain corresponds to convolution in the frequency domain, we
may express the Fourier transform of y(7) as

V() = [ XQ)X(f-Nyak

where X(f) is the Fourier transform of x(r). However, X(/) is zero for |f| > W. Therefore,
w

YN = [ XO)X(f = hydh

In this integral we note that X(/- A) is limited to -W < /- A < W. When A = -, we find that
2W < f<0. When A = W, we find that 0 < /< 2W. Accordingly, the Fourier transform Y(/) is
limited to the frequency interval -2W < f<2W.
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Problem 2.26

(a) Consider a rectangular pulse g(f) of duration 7 and amplitude 1/7, centered at 1 = 0, as shown

in Fig. 1:
g
L4 area = |

Figure 1 T 0 T '

The Fourier transform of g(f) is
. _ sin(wfT)

(_‘ E e——

(1) /T
As the duration T approaches zero, g(f) approaches a delta function, and so we find that in the
limit:

. Y . i T)
lim G = lim sin(n/T) _ ]
Tl»{: ) T—o0 ®fT

(b) Consider next the sinc pulse 2 sinc(2W¢) of unit area, as shown in Fig. 2:

20
w20

3 | 0 1 L3
Wy " W '
w =

(=]
[*]

The Fourier transform of g(f) is
(£) = rec L)
G(f) re(.t(2 TQ

which has unit amplitude and width 2J¥, centered at /= 0. As W approaches infinity, g(¢)

approaches a delta funct6ion, and the corresponding Fourier transform becomes equal to unity
for all f.
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Problem 2.27

The G(f) is in the form of a unit step function defined in the frequency domain, as shown in Fig. |

1.0

B e

Figure 1 0

Now, for a unit step function defined in the time domain, we have

1 .
u(t) = ;ﬂf—}— 55(_!)

j2
Applying the duality property of the Fourier transform to this relation, we get

1 1 . .
-t 3=
LTAb) ()= u(f)
where we have used the fact that &(-r) = 8(¢). Therefore, the time function g(f) whose Fourier
transform is depicted in Fig. 1, is given by
|

I |
g(t) = J.2m+26(0
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Problem 2.28

2
(a) Taking the Fourier transform of both sides of d;g'f) = Zk:ﬁ(! —1;), we get
dt i

(21’ G(f) = Y kexp(=j2nft,)

-1 Yy
Joi

Therefore, G(f) =
4n

(b) Differentiating the trapezoidal pulse of Fig. 2.42 twice, we get:

L. .|

-ty 0 n

u*:.f_:{!} {.ﬂ':

Hence,

, .y - - . -
G(f) = ————lexp(j2n/t,) —exp(j2nft,) —exp(j2nfi,)— +exp(j2nft,)]

2 2
A" f (1, —1,)

= ————/cos(j2nf1,) - cos(j2nf1,)]
2n f ('f.’;_ra)

= 5 sin[wf (¢, —t,)sinwf (1, +1,)]
2n fh('(.’}_ ra)
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Problem 2.29

(a) From part (b) of Problem 2.28, we have

G(f) = ——a——sinln/ (1, ~ 1 )]sin (R (1, + 1,)] (1)
T/ Uh_?‘r;)

As 1, approaches ¢, we get the following result:

lim ,;sin[nf'(r,,—r{;)] =1
=1 T[-’{u-“h - .f”)
and

lim sin[nf (¢, +1¢,)] = sin(nft,)
=1,

Accordingly, the Fourier transform of Eq. (1) approaches the limiting value

lim G(f) = ﬂifsin(Z:r;f'!”]

Ip=1,
sin(27f 7,
"y,
2t,Asinc(2mf1,) (2)
which is the desired result.

(b) The limiting Fourier transform of Eq. (2) is recognized as the Fourier transform of a
rectangular pulse of amplitude 4 and duration 7= 21,.
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Problem 2.30

The transfer function H(f) and impulse response /(f) of a linear time-invariant filter are related by
H(/) = [ hyexp(-j2nfidr

Applying a special form of Schwarz’s inequality (see Appendix 5), we may write

[HOI< [ 1h()exp(=j2mmldr

Since |exp(—j2nf1)| = 1, we may simplify this relation as

HOI< ] Ihldi

If the filter is stable, the impulse response is absolutely integrable:

j:lh(r}ldr <oo

Therefore, the amplitude response of a stable filter is bounded for every value of the frequency f,
as shown by

[H ()] = o
According to Rayleigh’s energy theorem, the energy of the input signal x(¢) is given by

Ec= [ Wla = [ Ix(lar

and the energy of the output signal v(¢) is

E,= [ Ivla= [ [y(las

The Fourier transforms ¥(f) and X{(f) are related by

Y(f) = H(/)X(S)

Therefore,

E, = [ IHOPIX(Par ()

For a stable filter, we may express |H(f)| in the form K|H,(f)| where K is a scaling factor equal to
the maximum value of |H(f)| and |H,(f)| < 1 for all /. Thus, we may rewrite Eq. (1) in the form:

E, = K[ |HPIXIds

Since |H,(f)| < 1 for all £, it follows that
[P Par< | 1xonlar

or equivalently

E, <K XIS

If the input signal has finite energy, we then have
[ Ixiar =«

Accordingly, we find that £, < eo, which means that the output signal y(7) also has finite energy.
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Problem 2.31

(a) The transfer function of the ith stage of the system of Fig. 2.43 is
. 1

H; L —

i) 1+ j2nfRC
-

I+ j2nf1y’

where it is assumed that the buffer amplifier has a constant gain of unity. The overall transfer

function of the system is therefore

Ty=RC

N
H(f) = []H ()
i=1

1
(1+ j2nf1,)"

The corresponding amplitude response is
1

|7 ()| = —%73 (1)
[1+2nf1y)7]
(b) Let
12 _ If"2
! 4:1:2N

Then, we may rewrite Eq. (1) for the amplitude response as

1 ,1-N/2
N =[1+1 2
= [1+ 50UT)]
In the limit, as N approaches infinity we have

A-N/2
0 = tim [1+ 5077

N = ool

= ep[5 30D

o£F)
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Problem 2.32

(a) The integrator output is

v(t) = JJ T.T(T)(f‘lf

Let x(¢) = X(f):then

x() = [ X(Dexp(j2ndf
Therefore,

v(t) = ﬁ_r[j: X(_f')exp(_iZI{ﬁ)d}"}d‘r

Interchanging the order of integration:

v(t) = me X{.)")I:JJF_I_ exp(jZnﬁ)d‘r:I(.‘j'

= [ [TX(f)sinc(/T)exp(—jn/T)lexp(j2nft)df

The Fourier transform of the integrator output is therefore

Y(f) = TX(f)sinc(fT)exp(—jnfT) (1)
Equation (1) shows that y(f) can be obtained by passing the input signal x(¢) through a linear
filter whose transfer function is equal to Tsinc(fTexp(-n/T).

Continued on next slide
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Problem 2-32 continued

(b) The amplitude response of this filter is shown in Fig. 1:

[H
T

r - |

| |

| |

| |

I N—
. —
Fl,,ure ] _3 2 2 0 | 2 3 Y

T T T T T T

The approximation with an ideal low-pass filter of bandwidth 1/7, gain T, and delay 7/2, is
shown dashed in Fig. 1. The response of this ideal filter to a unit step function applied at r =0
is given by

2n T
) T T[I E)Sinl
|ded|('f) - EJ ” 7y @
At time ¢t = T. we therefore have

n sml
Yideal(1) = —J

_ %I:J" bmkm rﬂ‘ﬁ]

= L{Si(e0) + Si(m)]

_T(n
B Tt(2+ ]'85)

1.09T (2)
On the other hand, the output of the ideal integrator to a unit step function, evaluated at time
t =T, is given by

T
wT) = jﬂ u(t)dr

. (3)
Thus, comparing Egs. (2) and (3) we see that the ideal low-pass filter output exceeds the ideal
integrator output by only nine percent for 7= 1.
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Problem 2.33

The half cosine pulse in Fig. 2.33(a) is

g(n) = Arcct(%)cos(%’)

Fourier transforming both sides gives
Sy sin[n/T], |1 _L) . L)
G = ATy *}[2[6("( 2T +8(‘f a7 ]}

A Tsin[n_,r‘T - g] ATsin [n_fT + g]
+

fry) Ay

2AT cos(nfT)
n(l-2/T)(1+2/T)
Therefore, the energy density of g(¢) is
_ 44T cos’(/T) _ 44°T  cos’(r/T)
(-4 RParts -1y
Consider next the half-sine pulse in Fig. 2.33(b), which is the same as that of Fig. 2.33(b) shifted

to the right by 7/2. This time-shift corresponds to multiplication by exp(-j2n/T), which has unit
amplitude for all /. Therefore, both pulses have exactly the same energy density defined in Eq. (1).

W) = GNP (1)
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Problem 2.34

The autocorrelation function of a deterministic signal g(¢) is defined by

R = [ g(gtt-vdi (1)
This formula applies to a real-valued signal, which is satisfied by all three signals specified under
parts (a) through (c).

(a) g(r) = exp(-atu(r), u(f): unit step function

Applying Eq. (1) yields
Rx(T} = f exp(—at)exp(—a(t—71))dt

o exp(a‘r}rexp(—Zm)dr
T

oo

= cxp{at][—ﬁcxp(—hn)]

I=t

_ | -
= ﬁexp( art)

which is depicted in Fig. 1

Figure |

Continued on next slide
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Problem 2-34 continued

(b) g(1) = exp(-alt))
which is sketched in Fig. 2(a). Part (b) of the figure sketches g(7 - T) = exp(-alt - T|)

gl

(a)

gUr-1)
1.0p==-

b
Figure 2 ©®)

SE== ===

In light of Fig. 1, applying Eq. (1):

Rg(T) = fexp(—a!}exp(—a(r—T}}a’{ +J: exp(—at)exp(—a(t—1))dt

+ J; exp(at)exp(a(t—1))dt

%ﬂcxp{—m) +Texp(—at) + Z}Lacxp(—a‘r)

(:—i + ‘c)exp(—a’c)

which is sketched in Fig. 3.

Figure 3

(c) g(r) =exp(-at)u(r) - explat)u(-r)

Continued on next slide
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Problem 2-34 continued

which is sketched in Fig. 4(a). Part (b) of the figure sketches g(r - 1)
2l

1.0

: \
w \ |

glr-t

= K
(b) \“‘ '
: -1.0 ﬂ
Figure 4

In light of Fig. 4, applying Eq. (1) for t = 0:

Rg(l') = f exp(—at)exp(—a(t—1))dt
+ J; exp(—at)[—exp(a(t—71))]dt

o J-” [—exp(—at)][—exp(a(t—1))]dt

1 1
P = . - + — -
2aexp( at) —Texp(—at) zaexp{ art)

= (%—T)exp{—at), =0
Similarly, for T < () we have
R_L,(t) = G it ‘c)exp(at}
Summing up these two results:

1
(E - ‘c)exp(—at), 120
R, (1) =
(é + T)cxp(n‘r), <0

Continued on next slide
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Problem 2-34 continued

which is sketched in Fig. 5.

Ry(7)

Y RS
4 €xp(-2)

Figure §
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Problem 2.35

Applying the formula for the autocorrelation function
R,(1) = [ g(ng (t-v)di
to the specified signal
g = lexp[—ﬁ). —co < [ < oo
0 {{]

we get

Ry(0) = [ lzexpE‘g(r2+<r—rf)}n
0

1y
{ ]{Zr =-2tt+1 )}h

= —r exp

L =
|

1 nt n 2
gl gl 3

ly

Letx = l( 21— i) and therefore (for fixed 1)
2

dt = id\'
ﬁ b

We may then rewrite Eq. (1) as

nT 2
exp exp(—mx”)dx 2)
'J_"n [ '}fm

(l

RGO
Recognizing that

r exp (—‘I[,‘(z)ff,\’ =]
we find that Eq. (2) simplifies to

2
1 nT

R (T) = — exp[——]
8 '\/é"u 2fﬁ

which has the same form as the bell-shaped Gaussian curve:

Ry(7)
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Problem 2.36

We are given the Fourier transform
G(f) = sinc(f)
Using the transform pair
—_— nl - 2
Ry (1) = |G(/)]
we may therefore express the autocorrelation function R(7) as the inverse Fourier transform of

sincz(f). From Eq. (2.43) in the text, we readily deduce that R,(7) has the triangular form

R (1)
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Problem 2.37

Recognizing two facts:

1. R,(1)=|G(N]* and

2. the spectrum G(f) is invariant to a time shift,

we infer that a signal g(f) and the time-shifted version g(f - fy) for any #; will have exactly the
same autocorrelation function.
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Problem 2.38

(a) We are given the power signal
g(r) = Ag+ A cos(2nf 1 +0,)+ 4500821 f 1)

The three components of g(f) are uncorrelated with each other. Therefore, the power spectral
density of g(¢) is the sum of the power spectral densities of the three constituent components,
as shown by

5 2 2

- A A3 . S
SgU) = S8+ B = ) +8(f + 1)1+ IS — 1) +8(/ + /)]

Correspondingly, the autocorrelation function R,(1) is given by
2 2

2
Rg(‘t) = > + ?lcos{?_n,,f']‘t) + ?cos(Zn_{'zr)

(Here we are postulating a fundamental result that, as with energy signals, the autocorrelation
function and power spectral density of a power signal constitute a Fourier-transform pair).

(=]

_ 4

() R,(0) = >

(c) In calculating the autocorrelation function, information about the phase shifts 8, and 6, is
completely lost.
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Problem 2.39

We will determine the autocorrelation function of the signal g(f) depicted in Fig. 2.45 by
proceeding on a segment-by-segment basis:

1. The maximum value of Rg{'c} occurs at T = 0, for then g(¢) and g(¢-T) overlap exactly, yielding

R,(0) = 3(A°)(T) = 34°T

2. For 0 <1 <(T/2), we have the picture depicted in Fig. 1. From this figure, we obtain

T/2 (T/2)+1
Ry(v) = | (+A)(+A)dr + | (+A)(-A)di
—(3T/2)+1 -T/2
- e (+A4)(+A4 d;+frm+t( A)(+A)dt
j—(?“/2}4-1- ) T/2 ~4)

37/2
- (-A)(-A)dt

(T/2)+7
2 2 2 2 2
= A(T-1)-A"1+A(T-1)-A"1+A4°(T-1)
= A*(3T-51), 0<|t<(7/2)
where the use of |t| is invoked in light of the symmetric property of the autocorrelation

function.

3. Next, for (7/2) <t < T, we have the picture depicted in Fig. 2, from which we obtain

Rg(t) _ J T/2

(T/2)+t
(-A)(-A)dt +J' (+A4)(-A)dt
—(3T/2)+1 -T/2

T/2 T/2)+1
+J' (+A)(+A)a'r+r (-A)(+A4)dt
(T/2)+1 T/2
+ 2 AY(-A)d
“A)(-A)dt
j(mm( )(-A)

ANT 1) - APt + AN (T 1) - A1+ AX(T-1)

A2(3T—5‘t), §<['r|<T

4. Next, for T<1 < 37/2, we have the picture depicted in Fig. 3, from which we obtain

r/s2 (T/72)+1
R, (1) = j (+A)(-A)dt + Jr (-A)(-A)dt
‘ T/72)+t T/2

N ;Tz’2 AV(+ 4 d
f_(mm(- )(+A4)d

QT -1+ A (-T+1)-A*Q2T -1)
A (=5T+31) for T<[t|<3TN2

Continued on next slide
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Problem 2-39 continued

5. For(37/2) <1t < 2T we have the picture depicted in Fig. 4, from which we obtain

R (1) = Irzz

(T/2)+1 37/2
(+A)(-A)dr+j (-A)(-A)df+f (-A)(+A)dt
—(3T/2)+1 T/2 —(T/2)+t

SOl D ey A
AX(=5T +37) for (37/2) + [t| < 2T

o)

[
[
: | | ; 1
I | (| I
1 [ I
| Lo 7 (' 1
! ° FE 1
I I
| ! » 1l
| ( L
+ 4 !
| ]
[
* -A
Figure 1: -(7/2) <1 <(T7/2)
a(r)
A
i
3712 T2 o! [m 3772 ’
| | i
| | 1
T -4 v r 1
| 1 P o 1
[ [ P > T e
| 1 Pl [ I
| li,’{f T [ I | (| 1
I° A1 Vo (I !
= T P L | 1
| I 1 1
| | | 1
L + 3
[ 0 |
| I
—.'I

Figure 2: (772) <1< (37/2)
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Problem 2-39 continued

al(n)
A
3772 T2 72 372
I
0
-4 . !
| ! o 1 1
— T _..: o — T —pl
I 1o | 1
I 1 alt-t) 1 I I
I I ] 1 1 I
I [ |
I I ] I
1 1 I I
: ; !
L
I
P
Figure 3: T<1t<(37/2)
(1)
A
I
=372 -T2 ! T2 372
o[ | !
I
-1 v '
[ 1o 1 |
I 1 l — T —pl
I 1 1 I
I gt-m) Vo 1 |
! 1o 1 I
I S440 L 1
| ] | ]
I 1o |
' 0 | !
]
A+ :
Figure 4: (37/2) <t <2T
glr)
A
372 -T2 772 3772
0 3
-A
1 1
| I
1} I |
. glr-1) ! |
I b 1 |
I A 1 :
I
— 14—
L 1
| 0 I !
I I
L} _‘_i L

Figure 5: 2T <1t <3T
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Problem 2-39 continued

7. Finally, for [t[ > 37, we find that R (1) = 0 .
Putting all these pieces together, we get the autocorrelation function R,(1) plotted in Fig. 6, which
is symmetric about the origin T=0.

R,(1)

Figure 6: Plot of the autocorrelation function R(tT)
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Problem 3.1.
For 100 percent modulation, is it possible for the envelope of AM to become zero for some time

t? Justify your answer.

Solution
By definition, the envelope of AM signals is A |t + k,m(1)|, where A,. is the carrier amplitude, £, is

the amplitude sensitivity of the modulator, and m(r) is the message signal. The envelope will
assure the zero value if and only if

k,m(tr) =1

So long as this condition is satisfied, then the envelope of the AM signal will assume the value
Zero.
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Problem 3.2.

For a particular case of AM using sinusoidal modulating wave, the percentage modulation is 20
percent. Calculate the average power in (a) the carrier and (b) each side frequency, expressing
your results as percentages of total transmitted power.

Solution
For sinusoidal modulation, the AM wave is defined by

s(t) = A (1 +k,m(t))cos(2nf 1)
For m(t) = A,,cos(2nf,,t), we have (see Example 3.1)

5(t) = A cos(2nf f) + %uA(,cos[Zn(ff. ol ARG %uAf,cos[2n(‘{'(,—,f'm)r]

(a) The average power in the carrier, expressed as a percentage of the total transmitted power, is
(with u =20%)

i3
74 S 1 S I O
%Af +}1u2A5 1+05p2 1+05x02> 17002

Expressing this result as a percentage, the result reads as 98%.

(b) The average power in each side frequency is therefore approximately [%.
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Problem 3.3

In AM, spectral overlap is said to occur if the lower sideband for positive frequencies overlaps
with its image for negative frequencies. What condition must the modulated wave satisfy if we are
to avoid spectral overlap? Assume that the message signal m(r) is of a low-pass kind with
bandwidth W.

Solution

The lowest frequency of the lower sideband is /. - W, where f.. is the carrier frequency and W is the
message bandwidth. To avoid spectral overlap, we must therefore satisfy the condition:
fo=W>0

Hence, f. must always be greater than the message bandwidth .
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Problem 3.4
A square-law modulator for generating an AM wave relies on the use of a nonlinear device (e.g.,
diode); Fig. 3.8 depicts the simplest form of such a modulator. Ignoring higher order terms, the
input-output characteristic of the diode-load resistor combination in this figure is represented by
the square law:

2
vo(t) = av (1) ta,vi(1)
where
vi(t) = A.cos(2mf 1) +m(r)
is the input signal, v,() is the output signal developed across the load resistor, and a; and a, are
constants.
(a) Determine the spectral content of the output signal v,().
(b) To extract the desired AM wave from v,(7), we need a band-pass filter (not shown in Fig. 3.8).

Determine the cutoff frequencies of the required filter, assuming that the message signal is
limited to the band-W < < W.

(c) To avoid spectral distortion by the presence of undesired modulation products in v,(f), the
condition f. > 2IW must be satisfied; validate this condition.

Solution
The output signal is

vo(t) = avi(1)+ az'.":lz(t)

aj(A.cos(2nf 1) +m(1)) +ay(A.cos(2mf 1) + m(!])2
[a; +2a,m(t)]A . cos(2nf 1)

+laym(t)+ azAfcosz(Zn_)"(_r) + azmz(r)] (nH

(a) The expression inside the first set of square brackets defines the desired AM wave:
s(ty = A fa, +2a,m(r)]cos(2mf 1)
2a, i
= a,A{,I:l + T‘m(r)] cos(2mf 1)
1
which represents an AM wave with
~ 2a,

a
a,

defining the amplitude sensitivity of the modulator.

Continued on next slide

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only
to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that

STU Dpﬁrﬂﬁ.déngﬂjrél% (o)r r17018 of the 1976 United States Copyright Act without the permission OUE i:ggﬂne oangi)s/tgnlwffglak Obal d



Problem 3.4 continued

(b) The required band-pass filter must have a passband centered on /. and a bandwidth equal to
2W.

(c) The expression inside the second set of square brackets of Eq. (1) defines the undesired
modulated products. The terms that matter are:

* The term azmz(f)‘_ whose highest frequency component is 2W.

¢ The term azA(.zcosz(ZTt_f('.r), whose frequency is 2 f,.

To extract the desired AM wave we therefore require:

Condition I:

(fe + W) <2f,

orf.>W

Condition 2:

(fo-W)>2W

orf.>3W

If therefore we satisfy condition 2, then condition 1 is automatically satisfied.
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Problem 3.5

For the sinusoidally DSB-SC modulation considered in Problem 3.5, what is the average power in
the lower or upper side-frequency, expressed as a percentage of the average power in the DSB-SC
modulated wave?

Solution
With the carrier suppressed at the modulator output, the average power in either side frequency is
50% of the average power of the modulated wave.
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Problem 3.6.

The sinusoidally modulated DSB-SC wave of Example 3.2 is applied to a product modulator

using a locally generated sinusoid of unit amplitude, and which is synchronous with the carrier

used in the modulation.

(a) Determine the output of the product modulator, denoted by (1).

(b) Identify the two sinusoidal terms in v(f) that are produced by the upper side frequency of the
DSB-SC modulated wave, and the remaining two sinusoidal terms produced by the lower side
frequency.

Solution
(a) From Example 3.2, the DSB-SC modulated is defined by

s(t) = %AE.AH,COSQR(_}"(&_f'm}r)+%AE.AH!cos(ZTl:(f(,—_f'm)r)

Applying s(¢) and cos(2nf.f) to a product modulator yields
v(t) = s(t)cos(2mf .t)

1
2

= At‘A:J];COS(zn(,fI('*_,f COS{z‘II(f(.—If.m}I)COS{th‘fI{.-’)

m m

yt)cos(2m f 1) + %A{,A

= %A(,AH,[COS(ZR{Z_}“(. + [0 +cos(2f,,0)]

1

+-A,4

A [COS QRS = [,)1) + cos(2[ )] (1)

m

(b) The two sinusoidal terms inside the first set of square brackets in Eq. (1) are produced by the
upper side frequency at f. + f,,. The other two sinusoidal terms inside the second set of

brackets are produced by the lower side frequency /.. - f,,-

Note that with f. > f,,, the first and third terms in v(s), both of which relate to carrier
frequency 2f,. are removed by a low-pass filter. This would then leave the second and fourth
sinusoidal terms, both of frequency f,,, as the only output of the filter. The coherent detector
thus reproduces the original modulating wave of frequency f,,, with the output consisting of

two contributions, one due to the upper side frequency and the other due to the lower side
frequency.
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Problem 3.7
The coherent detector for the demodulation of DSB-SC fails to operate satisfactorily if the
modulator experiences spectral overlap. Explain the reason for this failure.

Solution
The DSB-SC modulated wave is defined by

s(t) = A.m(t)cos(2mf 1)
Spectral overlap occurs if the condition f. > ¥ is violated, in which case the lower sideband
overlaps with its image.
However, when s(7) is applied to a coherent detector, the resulting output is
v(t) = s(t)cos(2nf 1)

= Am(t)cos (2 f 1)

= %A(,m(r)[l +cos(4nf .1)]

The spectral description of v(7) is shown in Fig. 1, assuming that f. < WV:

i
AM(0)

|
2

Figure 1
Recovery of the original signal is possible only if
2f - W>W
or

fe>W

But this condition is being violated because of the spectral overlap.

Hence, once spectral overlap is permitted, no coherent detector can recover the original
modulating signal.
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Problem 3.8
As just mentioned, the phase discriminator in the Costas receiver of Fig. 3.16 consists of a

multiplier followed by a time-averaging unit. Referring to this figure, do the following:
(a) Assuming that the phase error ¢ is small compared to one radian, show that the output g(¢) of

the multiplier component is approximately %q;»mz(.') .
(b) Furthermore, passing g() through the time-averaging unit defined by

| T
f‘j Tg{.f)a'!

where the averaging interval 27 is long enough compared to the reciprocal of the bandwidth of
g(t), show that the output of the phase discriminator is proportional to the phase-error ¢

multiplied by the dc (direct current) component of m?(t). The amplitude of this signal (acting
as the control signal applied to the voltage-controlled oscillator in Fig. 3.16) will therefore
always have the same algebraic sign as that of the phase error ¢, which is how it should be.

Solution
(1) Referring to the Costas receiver in Fig. 3.16 in the text, we see that the output of the in-phase

channel is %A(.coqum(f) and the output of the quadrature channel is %A(_sinq)m({) . The

output of the multiplier in the phase discriminator is therefore

gt = (%A(.COSQJHI'(.’))(%A(,Sinﬂ]m(.’))

= %siancosq)mz(f) (D)

If the phase error ¢ is small compared to one radian, we may use the approximations:
sind = ¢
cosf =1

in which case the multiplier output g(¢) simplifies approximately to }Iq)m (1).
(i1) Passing g(¢) through the time-averaging unit yields the phase discriminator output

il iy o
(1) = 2_?*.[_rgmd’

"
=~ ikl }lq”nz(f)dr

2T r
.
= %J n.fz{.f)(!f
i
1
= 7070
where
_ 1T 2
P, = ﬁj‘_rm (t)dt

is the dc component ofmz(.f} or, equivalently, the average power of m(1).
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Problem 3.9
Verify that the outputs of the receiver in Fig. 3.17(b) are as indicated in the figure, assuming
perfect synchronism between the receiver and transmitter.

Solution
The transmitted signal is

s(t) = A.m(t)cos(2n f 1)+ A.m,(t)sin(2w f 1)
Hence, the product modulator output of upper channel in Fig. 3.17(b) is
vi(t) = A’ .cos(2n f .t)s(1)

= A A" m(t)cos(2m f 1)+ A, A" .m,(t)cos(2nf .t)sin(2n f 1)

= %A(.A'(_m{!}[ I+ cos(4mf 1))+ %A(_A m(t)sin(4nf 1)

Passing v|(f) through the low-pass filter yields %AE,A’(_m(r), so long as there is no spectral
overlap, that is, f. > W.

Consider next the lower channel of the figure. The product-modulator output is
vy (t) = A’ .cos(2m [ t)s(t)

= A A" m(t)sin(2nf t)cos(2mf 1) + At,A’(_mz(f)sinz(Z:rc‘,!'(_f)

%A(.A’(_m{.f}sin(4rtf(.f) + %A(.A’(.mz(r][l —cos(4nf 1))

Passing v,(f) through the low-pass filter yields %A(.A’(,m(f} , as indicated in the figure.
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Problem 3.10

Using Egs. (3.22) and (3.23), show that for positive frequencies the spectra of the two kinds of
SSB modulated waves are defined as follows:

(a) For the upper SSB,

A, o
S(f)y =1 FMU~T) for [2f,

0 for0<f<f,
(b) For the lower SSB,

0 for f>f,
SR ]|
SM(f=f) for0<f<f,

(c) Write down the formulas for these two kinds of SSB modulation that pertain to negative
frequencies.

Solution
According to Eq. (3.24):

A, A.

s(t) = 7(:11(!}005(275_}"(.{);jﬁ;{rjsin(Zn_{(.r)

where 71(¢) is the Hilbert transform of m(¢). Taking the Fourier transform of s(z):
4, I LN IR

ST T‘(M(,f'—f}.)+M(.f‘+f}.))i4—f(M(,f —f)-M(f+f.)

From Eq. (3.22):

M(f) = =jM(f)sgn(f)

Hence,
S(f) = T(f"/f(.f-_;"{.}Jr M(.H.f(.)) * (4—f(—_iM{.f —_}’(,)sgn{j—j(,) +.;'M(,f+_}'(.]5g“(.f +_f(.})
A(, A{_
i T(M(f—.f'{.)?M(f—.f'(.)Sgn(_f'—.f'(.))+T(M(.f'+_f'(.} t M(.f'"‘_f'(.}Sgll(.f"*‘.f'(.))
Ac Ac
w T“ ¥ Sg"(f—.f‘(.)JM(,f'—C‘(.)+T(1 tsgn(f+f )OM(f+[,) (1)
By definition:
sno ¥l IR
S laroEfi=ifis
and
1 for f[>—f
e or .f.> .f.{-
Sinforfit<t o i)

Continued on next slide
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Problem 3.10 continued

(a) From Eq. (3.24), recall that the minus sign in this formula corresponds to upper SSB. Hence,
for the upper SSB, we have
A, 4.
SN = T(l tsgn(f=fIM(f—f)+ T(] =sgn(f+ f DM+ f) (2)

where the term containing M(f - f.) pertains to positive frequencies and the term containing
M(f + f.) pertains to negative frequencies. Therefore for positive frequencies and /> ... Eq. (2)
simplifies to

A
() = 5 U+HM -1
Ac'
= M~ 1) )

ForO=f<f.. S()=0.

(b) From Eq. (3.24), also recall that the plus sign in this formula corresponds to the lower SSB,
for which we find that for f<f..:

A A
S() = g =sgn(f = fIM(f = f)+ (1 +sen(f+ LM+ 1)

Therefore for positive frequencies and /< /., we have

A
() = (=DM = 1,)
_ 4c .,
= 5 M(f~10) @)

On the other hand, for /> f. we have  S(f) = 0.

(c) For negative frequencies, we focus on terms containing M(f+ 1), in light of which we get the

following results:
(1) For upper SSB:

A
(3 S . .
S(f) = TM("{ +f) for f<-f, (5)
| 0 for—f.<f<0
(i1) For lower SSB:
[0 for f<-f.
S(f)=1 4 (6)

TCM{_!? fo) for—f. < f<0
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Problem 3.11
Show that if the message signal m(r) is low-pass, then the Hilbert transform 7z(¢) is also low-pass
with the same bandwidth as m(¥).

Solution
The Fourier transform of the Hilbert transform m(¢) is defined by

M(f) = —jsen(/IM(f)
where M(f) = F[m(t)]. To illustrate, let the spectrum M(f) be as shown in Fig. 1(a). Then, the

corresponding spectrum M (f) is as shown in part (b) of the figure. The spectrum M(f) is
therefore also low-pass, occupying the frequency band -W < f'< W just like M(f).

Mif)
M0y

(a)

-W 0 w

M

Figure 1 -M{0)
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Problem 3.12

Starting with Eq. (3.23) for a SSB modulated wave, show that the product-modulator output in the
coherent detector of Fig. 3.12 (assuming perfect synchronism with the transmitter) in response to
this modulated wave contains a new SSB modulated wave with carrier frequency 2f,..

Solution

Suppose we focus on the upper SSB in Eq. (3.23) (i.e., use the minus sign in this formula). Then
A, A,

s(t) = 7‘»:(.’)(:05(23}“(.{) = 7‘:3;{(]5i11(2nj'(_f}

Applying this modulated wave to the coherent detector of Fig. 3.12 with the phase error ¢ = 0, we
first get the product-modulated output

v(t)y = A’ .s(t)cos(2mf 1)

f'A,f' 2 o A(‘A’(‘ A - n c o
ot m(t)cos (2mf 1)~ TJ?!{-‘)Sln(Zﬂf ALeos2rf 1)
Ar' tr' ¢ ,r" A
= ——mO+ cos(nf )] ———m()sin(4nf 1)
A4, AA

=3 m(t) + ('4 ('[m{r)cos(4ﬂ_f{.r)—r.?i(.'}sin(4rl:_)‘".r)]

Comparing this formula with that for s(¢), we see that v(f) contains a new upper SSB modulated
wave with carrier frequency 2f.. This same statement also applies to the lower SSB modulated

wave s(7).
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Problem 3.13

For the low-pass filter in Fig. 3.12 (assuming perfect synchronism) to suppress the undesired SSB
wave, the following condition must hold

fo= W._ f.= carrier frequency, and W = message bandwidth
Justify this condition

Solution

Continuing with the solution to Problem 3.12, we see that the product-modulator output v(¢) also
contains a scaled version of the original message signal m(t). For positive frequencies,the highest
frequency component of m(t) is W, and the lowest frequency of the new upper SSB modulated
wave is 2f. - W. For the low-pass filter to reject this SSB modulated wave, we require that

2f.- W= W, or simply f.> W. Under this condition, the detector output is

’

A4.4°,
v, (1) = Tm(.')
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Problem 3.14
Validate the statement that the high-frequency components in Eq. (3.36) represent a VSB wave
modulated onto a carrier of frequency 2f,..

Solution
The high-frequency components in Eq. (3.36) are defined by the formula
. 1 , . . ., . . o,
G(f) = gAcA M (S “2fJH(f=f)TM([+2f )H(S+ [ )] (D

Referring to Eq. (3.33), the spectrum of the incoming VSB modulated wave is
S(f) = EA(.[M(J' =f)TMf+fIIH(S)

= SAM ~ FOH()+ 5AMS + FOH ) @

Examining Eqs. (1) and (2), as labelled here, we see that (ignoring the scaling factors)

1. The first term in Eq. (1), namely, M(f- 2f.)H(f - f..) is equal to the first term in Eq. (2), namely
M(f - f (/) shifted to the right by f,.

2. By the same token, the second term in Eq. (1), namely, M(f + 2f.)H(f + f.) is equal to the
second term in Eq. (2), namely, M(f + f,)H(f) shifted to the left by f,..

Since Eq. (2) represents a VSB wave modulated onto carrier frequency f,., it follows that Eq. (1)
represents a VSB wave modulated onto the new carrier frequency 2f,..
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Problem 3.15

Derivation of the synthesizer depicted in Fig. 3.25(b) follows directly from Eq. (3.39). However,
derivation of the analyzer depicted in Fig. 3.25(a) requires more detailed consideration. Given that
fo= Wand

cos (2 f 1) = %[1 +cos(4mf,1)]
and

sin(2rnf . r)cos(2n f 1) = %sin 4nf.0),

show that the analyzer of Fig. 3.25(a) yields s/(f) and so(r) as its two outputs.

Solution
Consider first the upper channel in Fig. 3.25(a). Multiplying (see Eq. (3.39))

s(t) = .5',{r)cos{21t‘,f'(.!)—sgsin(Zn_f‘(.r)
by the carrier 2cos(2nf.f), we get
vi(t) = 2s(t)cos(2m f 1)

= 25,(1)cos QM f 1)~ 2s(1)Sin (2T f 1) cos (2 £ 1)
= s,(0)[1 + cos(4nf .1)] —SQ(.“}Sil] (4nf.1)
= s;(1)+5°(1)
where
s°(1) = sp(1)cos(4nf 1) —sy(t)sin(4nf 1)
represents a new linearly modulated signal with carrier frequency 2f... Provided that both s/¢) and
solt) are limited to the band -W < < W and we pass v(f) through a low-pass filter of cutoff

frequency W as in Fig. 3.25(a), then s’(¢) is rejected provided that f. > .
Consider next the lower channel in Fig. 3.25(a). Multiplying s(¢) by -2sin(27wf.t), we get
V5 (f) = =2s(1)sin(2nf 1)

= —25,(1)SIN(2MS 1)cOS (2T [ 1) + 25 5(1)sin’ 21 f 1)
= —s;(t)sin(4nf 1) +[1 - cos (411,}"'(,{)].5'9{{)
= ,S'Q(f)—.S'”(!)
where
s”(t) = s;(0)sin(4n f 1) +spy(t)cos(4mf 1)
is a new linearly modulated signal with carrier frequency 2f... Hence, passing v,(¢) through a low-

pass filter as in Fig. 3.25(a), s”(¢) is rejected again provided that the cutoff frequency W of the
low-pass filter satisfies the condition /. > W.

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only
to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that

STU Dpﬁrﬂﬁ.déngﬂjrél% (o)r rlr(_)]S of the 1976 United States Copyright Act without the permission OUE ngﬂne oangi)s/tgnlwffglak Obal d



Problem 3.16
Starting with the complex low-pass system depicted in Fig. 3.26(c), show that the y(#) derived in
Eq. (3.45) is identical to the actual output y(¢) in Fig. 3.26(a).

Solution
According to Fig. 3.25(a), we have

Y(f) = H()S() (1)
and according to Fig. 3.25(b),

2Y(f)=H()S(f) (2)
From Eq. (3.44) we note that

H(f-f,) =2H(f) for />0 3)
Therefore, substituting Eq. (3) into (2) and cancelling the common factor 2, we get

V(f=fo0=HNSS =1, [>0 4)
Finally, noting that for /> 0

V() =Y =10

and

S =310

we readily see that Eq. (3) is a rewrite of Eq. (1), which validates the outputs displayed in Fig.
3.26.
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Problem 3.17

(a) We are given
c(t) = A.sin(2nf 1)
and
m(t) = A,sin(2nf 1)
Invoking the definition of AM wave
s(t) = [1+k,m(t)le(r)
we now write
s(t) = A1 +k, A, sin(2rf, t)]sin(2nf 1)
= A.sin(2nf 1) + A sin(2n f )sin(2wf 1) (1)
where
el
is the modulation factor. Next, we use the trigonometric identity

m

sindsinB = %[COS(A —B)—cos(A4+B)]
Hence, we may rewrite Eq. (1) as
S() = ASinQRf 1) + 3UAL0SQRS~ f,)0) = COSQR(f+ f,)0)] )

The spectrum of the AM wave s(t) consists of three components:
(i) Carrier: A sin(2nf 1)

(1) Lower side-frequency: %j.lAE.cos(Zn(_f'(_ -t
(ii1)  Upper side-frequency: —%j.lAf,cos{Zn{f(_ + £

This spectrum is depicted in Fig. 1.

SN

Figure 1 4 4

(b) Comparing the AM spectrum of Fig. 1 with the corresponding AM spectrum of Fig. 3.3(c) on
page 105 of the text, we may make two observations:
* The frequency locations of the spectral components of these two AM waves are identical.
+ The only difference between them is that the upper side-frequency f,. + f,, in Fig. | is the

negative of the upper side-frequency f, + f,, in Fig. 3.3(c).

Note: The following correction in the first printing of the book should be made. The modulating
wave should read as follows:

m(t) = Am Si[‘l(Zl‘[_f-‘,”f)
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Problem 3.18

(a) We are given

c(t) = 50cos(100ms)volts, f.=50Hz
and
m(t) = 20cos(2mt)volts, S =1Hz

The resulting AM wave is
s(t) = [1+k,m(1)]e(r)
= 50[1 +20kcos(2mt)] cos(100ms) (1)
A percentage modulation of 75% corresponds
20k=0.75
or
k=10.0375
Accordingly, we may rewrite Eq. (1) as
s(t) = S0[1+0.75cos(2nt)]cos(100mt) (2)
Equation (2) is plotted in Fig. 1.

(b

—

Expanding the AM wave s(t) of Eq. (2) into its spectral components, we write
s(t) = 50cos(100mr) +37.5cos(2mt)cos(100ms)
= 50cos(100ms) + 18.75[cos(102m¢) + cos(98ms)]volts

The power developed across a 100-ohm load by this AM wave is therefore

2 2 2
p :l (50) +l (18.75) +l (18.75)
PEERT OO ) 100 2 100

12.5+3.426

15926 watts

This result shows that the carrier contributes about 80% of the power delivered to the load.

Continued on next slide
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Problem 3.18 continued

Problem. 3.18

s(t)

time,t

Figure 1: Problem 3.18
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Problem 3.19

We are given

m(t) = — (1)
1+¢
The AM wave is therefore defined by
sty = A L1 +k,m(t)]cos(2m f 1)
k,t i
=41+ 5 [cos2mf 1) (2)
1 +1¢

The message signal mi(r) is plotted in Fig. 1(a) with its maximum value of 1/2 and minimum value
of -1/2 att=1 and 1 = -1, respectively.

(a) Percentage modulation = 50%
kdm()|a = 0.5

with |m (1)

max = % it follows that &, = 1 for 50% modulation. For this example, Eq. (1) takes

the form
s(t) = A(_(l + L ,)cos{2n.f'f.r) 3)
1+
Let f be measured in seconds. Then, for the envelope of the AM wave to be clearly visible, the
period of the carrier, 1/f., must be small compared to the time taken for the message signal
m(f) to reach its peak value. To satisfy this requirement, we let
1

— = 10Hz

3=

which corresponds to
f. = 10Hz

Setting the carrier amplitude 4. = 1 volt, and /. = 10Hz, Eq. (3) is plotted in part (b) of Fig. 1.

(b) Percentage modulation = 100%
In this case, we have k, = 2. Correspondingly, Eq. (1) assumes the form

s(t) = A(_(l + 2 ,)cos{Zm{'(.r) )
1+
Keeping 4, =1 volt, and /. = 10Hz as in case (a), Eq. (4) is plotted in Fig. 1(c).

(c) Percentage modulation = 125%
In this third and final example, we have £, = 2.5. Hence, Eq. (1) now assumes the form

s(t) = A(_(l + 2’5r,)cos(2n.f'r.r) (3)
1+

Keeping .= 1 volt, and /. = 10Hz as before, Eq. (5) is plotted in Fig. 1(d).

Comparing the AM waveforms plotted in parts (b), (c¢) and (d) of Fig. 1, we may make the
following observations:

*« The AM wave of Fig. 1(b) is undermodulated

* The AM wave of Fig. 1(c) is on the verge of overmodulation

*  The AM wave of Fig. 1(d) is overmodulated

Continued on next slide
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Problem 3-19 continued

Problem. 3.19
051 | | [ y
04r §
0.3

0.2

m(t)
(=]

(a)

(b)

-15 ' - .
-10 =5 0 5 10
time,t

Figure 1: Problem 3.19

Continued on next slide
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Problem 3-19 continued

Problem. 3.19(b)

(c)

(d)

time.t

Figure 1 (continued): Problem 3.19
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Problem 3.20

(a) Let the input voltage v; consist of a sinusoidal wave of frequency %_[‘(_ (i.e., half the desired

carrier frequency) and the message signal m(r), as shown by
v, = A.cos(nf .t)+m(r) (1)
Then, the output current i, is

jr: = (fll’{-"'ﬂ}l’?
= a,[A.cos(nf t)+m(t)] +a[A.cos(nf 1) +m{.f)]3

= a[A.cos(mf ) +m(r)]+ %(.'3/4:’,[(:053{1{_}'(..*) +3cos(mf .1)]

* %”3"&“("][ I+ cos(2nf,0)] +3azA, cos(mf tym’ (1) + asm’ (1)

Assume that m(r) occupies the frequency interval -IW < f< . Then, the amplitude spectrum of
the output current i, is as shown Fig. 1:

3. I AW 0 W 3n 1. rl 3.
T * = T 5
2w 2w

Figure |

From this spectrum we see that in order to extract a DSB-SC wave with carrier frequency f,
from i,, we need a bandpass filter with mid-band frequency f,. and bandwidth 2¥, the two of

which satisfy the requirement:
f.
feo=W> > +2W

that is, 1. > 6W
Therefore, to use the given nonlinear device as a product modulator, we may use the

configuration: shown in Fig. 2.

Figure 2

Continued on next slide
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Problem 3-20 continued

(b) To generate an AM wave with carrier frequency f., we require a sinusoidal component of
frequency f, to be added to the DSB-SC generated in the manner described under (a). To

achieve this requirement, we may use a configuration involving a pair of the nonlinear devices
and a pair of identical bandpass filters, as depicted in Fig. 3.

Nonlinear
device

BPF

v

Acos(rfr)

miry
w AM wave

o ¢

A cos(nf.r)

Nonlinear
device

BPF

Figure 3

The resulting AM wave is therefore %aSAE[AU +m(t)]cos(2nf ) . Thus, the choice of the

dc level A at the input of the lower branch controls the percentage modulation of the AM
wave.
The nonlinear device defined in Eq. (1) cannot be used for demodulation. The reason for

saying so is that Eq. (1) lacks a square-law term, which is essential for demonstration (i.e.,
recovery of the message signal from an incoming AM wave).
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Problem 3.21

We are given
m(t) = A.cos(2nf 1)
and
c(ty = A,cos(2nf .t +0)
The AM wave is therefore
s(t) = [L+k m(t)]e(r)
= A[1+k,A,cos(2nf, t)]cos(2rf .t + ¢)
A1 +pcos(2rf, 1)cos(2rf .1+ () (1)

The focus in this problem is to see how varying the phase ¢ affects the waveform of the AM signal
s(7). We may thus set the following parameters:

L= k{rAm:O'5

A, = 1volt

fu = 1Hz

and

fe = SHz

Then, Eq. (1) assumes the form

s(t) = [1+0.5cos(2nt)]cos(10ms + ) (2)

Equation (2) is plotted in Fig. | for the prescribed values ¢ = 0°, 45°, 90°, and 135°. Examining

these four waveforms, we may make the following observation:

+ Insofar as the envelope of the AM wave is concerned, varying the carrier phase ¢ has no effect
whatsoever on the waveform of the envelope, which is intuitively satisfying.

* The only visible effect of varying the carrier phase ¢ is a shift in the uniformly spaced zero-
crossings of the AM wave.

Continued on next slide
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Problem 3-21 continued
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Figure 1: Problem 3.21

Continued on next slide

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only
to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that

STU Dpﬁwtidéngﬂljrél()é (o)r r11918 of the 1976 United States Copyright Act without the permission o(jf) ngﬂne oangi}s/tfnlﬁﬂfglak Obal d



Problem 3-21 continued
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Figure 1 (continued): Problem 3.21
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Problem 3.22

For the solution to this problem, see Fig. 2 in the solution to Problem 3.20.
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Problem 3.23

(a) For f. = 1.25 kHz, the spectra of the message signal m(r), the product modulator output s(7),
and the coherent detector output v(r) are as shown in Fig. 1, respectively:

Mify

(a)

f(kHz)

{b) A_ 1 _7‘:\ f1kHz)

-2.25 -l.I35 -025 0 025 125 225

"

(c)

F(kHz)

-1 0 1

Figure |

(b) For the case when f. = 0.75, the respective spectra are as shown in Fig. 2:

M)

f{kHz)

. —] T,;\ Fikiz)

S(kHz)

Figure 2

To avoid sideband-overlap, the carrier frequency f,. must be equal to or greater than | kHz. The

lowest carrier frequency is therefore | kHz for each sideband of the modulated wave s(7) to be
uniquely determined by m(7).
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Problem 3.24

The noncoherent carrier is
c(t) = A.cos(2mf .t +0)
and the DSB-SC modulated wave is m()cos(2mf.7). The composite signal is therefore
s(t)y = A.cos(2rf .t + )+ m(t)cos(2mf 1)
= [A.cosd+m(t)]cos(2nf ) — A sindsin(2T f 1)
= s,(0)cos(2nf 1) = s,(t)sin(2n f 1)
where h
s;(t) = A cosd+m(r)
.s'Q(!} = A_.sind
Applying the composite signal s(r) to an ideal envelope detector produces the output

-

a(t) = 1570 +5p(01'
= [(4, cosd+m(1))*1+ (4 sing)*

2 2 2 2.2 172
= [A cos O +2A4 . cosbm(t)+m (1) + A sin ]
2 2 1/2
= [A;+2A cosbm(t)+m (1)] (1)

(a) For ¢ =0, Eq. (1) reduces to
a(r) = (4> +24,m()+m* )"’
= A, +ml(t) (2)

which consists of the message signal m(f) plus a dc bias equal to the carrier amplitude.

(b) For ¢ # 0 and |m(r)| << A4./2, we may approximate Eq. (1) as follows:

) 1/2
a(t)y=[A.+2A4, cosdom(r)]

= A(.[l +/%cos¢m(r)]”2 (3)

[

With [cosd| < 1, and |[m(r)| << A /2, we may approximate Eq. (3) further as

a(t) = Af.[l + %costj}m(f)]

[8
= A + cosom(t) 4)
When ¢ is close to zero, the detector output in Eq. (4) is very close to the value defined in Eq.
(2). However, when ¢ approaches 90°, cos$ approach zero, then the envelope detector output
in Eq. (4) reduces to a dc component equal to A4, with no significant trace of the message

signal m(r) being visible. If therefore the phase error ¢ is variable, then the envelope detector
output a(t) varies in a corresponding way, which could be undesirable.

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only
to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that

STU Dpﬁrﬂﬁ.déngﬂjrél% (o)r rlr(_)]S of the 1976 United States Copyright Act without the permission OUE ngﬂne oangi)s/tgnlwffglak Obal d



Problem 3.25

(a) The effect of a frequency error Af in the local oscillator used in the coherent detector shows
itself as follows:

c'(t) = cos(2r(f .+ Af))
Applying the DSB-SC modulated wave s(r)
s(t) = A.cos(2nf t)ym(r)
to a coherent detector employing ¢’(¢) yields the product modulator output (see Fig. 1)
v(t) = s(t)c'(1)
= A.cos(2n f t)cos(2T f £+ 2RAft)m(1) (1)

(N ) ol(r)

Low-pass
filter

&

Figure 1
Using the trigonometric identity
cosAcosB = %[COS{A +B)+ cos(A-B)]
we may rewrite Eq. (1) as
v(t) = %A{.[cos(4ﬂf{,r + 2wAft) + cos(2mAft) Im(t) (2)

Next, passing v(f) through the low-pass filter in Fig. | removes the high-frequency component,
producing the output

1
2
which exhibits beats at the error frequency Af.

o(t) = sA.cos(2nAft)m(t) (3)
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Problem 3.26

The message signal is defined by the rectangular pulse

mm:{A. Iy o iy i

0, otherwise
The SSB modulated wave is defined by

A A,
s(t) = —2‘-111(!}{:05(27[_,('(_3‘) F —2(-151(f)si11(2:r|:f(_r)
where /(1) is the Hilbert transform of m(t). The in-phase and quadrature components of s(f) are

respectively defined by

L
si(t) = jm(r)

AT
sot) = i?m{r)
The envelope of s(1) is therefore

2 2 1/2
a(t) = [s;(2) + Sg}(f)]

Aol 2 1/2
= 7[:1: (t)y+m ()] (2)

The Hilbert transform of the rectangular pulse of Eq. (1) was determined in Problem 2.52 of
Chapter 2; it is reproduced here for a pulse of unit amplitude and duration T:

t—(T/2)

(3)
(+(T/2)

. 1
|f = __l
m(t) T n

where In denotes the natural logarithm. From Eq. (3) we see that J?:z{r) assumes an infinitely
large value at = 7/2 and t = -T/2. Correspondingly, the envelope of the SSB modulator exhibits
peaks at the beginning and end of the input pulse.
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Problem 3.27

(a) The frequency error Af'= 20 Hz. Since this frequency error is positive and the incoming SSB
wave contains the upper sideband, the frequency components of the demodulated signal are
shifted downward by Af, compared with the message signal. The demodulated signal therefore
consists of three frequency components: 80, 180, and 380 Hz.

(b) When the lower sideband is transmitted, the frequency components of the demodulated signal
are shifted upward by Af. compared with the message signal. The demodulated signal
therefore consists of three frequency components: 120, 220, and 420 Hz.
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Problem 3.28

The energy of the carrier over a bit duration is defined by

T,
E = J c'z(r)d.f
0

= AEJ‘:‘ cosz(ZI{fir)df (1)
Using the identity
cosgﬁ i %(l + c0s20)
we rewrite Eq. (1) as

1 2 )
E = -AJ [1+ cos(4nf t)]dr
2 ¢y

1 2¢ls 1 2¢ls :
= - + -
2A(_Ju dr 2A<.Ju cos(4m f .1)dt (2)

Typically, the carrier frequency f,. is high compared to the bit rate 1/7},; we may therefore set the
integral term in Eq. (2) approximately equal to zero, in which case we write
1

E=La2a
~ 2%, a
I 2
= EA(_T;} {3)

For the energy E to equal unity, we may solve Eq. (3) for the carrier amplitude 4., obtaining

, 2
A = —_—
‘ Th

which is the desired result. On this basis, we express the carrier as

c(r) = JTZCOS(ZR_/}})
b
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Problem 3.29

izi it
(a) Using the terminated series expansion exp(—x)=1-x+ % T 1? we may express the diode
H
current i, normalized with respect to /), as
LA ex (—i)— 1
i i 7
) Hin 3
:_L+l(_1-) _l(L) (1)
Ve 2V g o\V
(b) Given
v 0.01 ! :
— e ce— ) + -
7 0.026[(:05(27:.[}”!) cos(2mf .1)]
= 0.385[cos(2m f ) + cos(2m [ .1)] (2)
we find that substitution of Eq. (2) into (1) yields
!i ~—0.385[cos(2n f, 1) + cos(2n f .1)]
0
+0.074[ cos (2 £, 1) + cos(2m f .1)]°
— 0.0095[ cos (27 f , 1) + cos2m f 1)1’ 3)

Next, using the identities

c0329 = %[l + ¢0s(20)]

3 3 1
=2 Bl 3
cos 0 cos0 + —cos(30)

cosBcosh = %[COS(B +¢)+cos(0-0)]
we may rewrite Eq. (3) in the form:

= 0.074 - 0.406[cos(2m f 1) + cos (2T f .1)]

i
I_u m
+0.037{ cos(4n f 1) + cos(4nf 1) + cos[2n(f .+ [, )] + cos[2n(f .- [ )]}
—0.0016[cos (6T f 1) + cos(6m f .1)]

—-0.0071{cos[2r(f .+ 2f,)t] + cos[2nr(f . =2 f,)!]

iilices [ 22l bR eos [ 20l = Al ]

Continued on next slide
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Problem 3-29 continued

For f,, - 1 kHz and /. = 100 kHz, we thus find that the discrete amplitude spectrum of the diode
current i (for > 0) is as shown in Fig. 1.

:,m 100 |Im 200 200 S (kHz)
B N SR S :

99 101 199 201
Figure | Desired AM wave

(¢) From the amplitude spectrum of Fig. |1 we see that in order to extract an AM wave with carrier
frequency /. from the diode current i/, we need a band-pass filter that passes only the frequency
components: 99, 100 and 101 kHz, corresponding to f. - f,,, f.. and f. + f,,, respectively. We
therefore require a band-pass filter with center frequency 100 kHz and bandwidth 2 kHz.

(d) The resulting band-pass filter output is
L
"U

—0.406¢cos(2nf.f) +0.148cos(2m f .t)cos(2m [, 1)

—0.406[1-0.362cos(2m [, t)]cos(2m f .t)
The percentage modulation is therefore 36.2 percent.
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Problem 3.30

The multiplexed signal is defined by
s(ty = A.m(t)cos(2m f 1)+ A .my(t)sin(2m f 1)
Therefore, the spectrum of s(7) is

A A, o o
S(f) = f[Ml(_f'—,l'(,J+M.{_f'+.l}.}]+2—j[M2(f—.f(-) - My(f+ 1]

where M |(f) = F(m(7)] and M,(f) = F{mz(f)]: The spectrum of the received signal is therefore
R(f) = H()S()

A, o o 1 o 1 o
E TH(.f)[Ml(f FHEM L)+ SMf = f o) ==My(] +.f{.)]

To recover m(f), we multiply 7(7) [i.e., the inverse Fourier transform of R(f)] by cos(2nf.r) and
then pass the resulting output through a low-pass filter, which 1s designed to have a cutoff

frequency equal to the message bandwidth . The signal produced at the filter output has the
following spectrum

FIr(n)cos2nf 0] = 3[R/ = )+ R( + £0]

= T"H(,f‘ —fIM (=2 )+M (f)+ %Mz(f -2f)- %Mz(f)]

A,
FGH L[ M)+ ML 421 )% My () = SMo(f +21,)] (1)

The condition H(f. + f) = H*(f. - f) is equivalent to H(f + f.) = H(f - f,.); this follows from the fact

that for a real-valued impulse response /(r), we have H(-f) = H*(f). Hence, substituting this
condition in Eq. (1), we get

A,
Flr(t)cos(2nf 1)) = T‘H(.[‘—J“{.)Ml(‘f‘)

A,
FEH = L[ MU =200+ SMAS =200+ MU(S + 200 = Mo +21,)]

The low-pass filter output therefore has a spectrum equal to (4 /2)H(f - f.)M,(f).
Similarly, to recover m»(r), we multiply r(r) by sin(2nf.r), and then pass the resulting signal
through a low-pass filter. In this case, we get an output with a spectrum equal to

(A2)H(T - fIMo(f).
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Problem 3.31
(a) The SSB wave s,,(7) is defined by
El
5,(t) = 7‘[;»{()(:05(211]"(_{)—ri;(f)sin(Zn.,f'(.r)] (1)
and its Hilbert transform is defined by

Al
s, = —zt-[m{r)sin(ant.r)—fi:(r)cos(Zﬂf(_r)] (2)

In Eq. (2), we have used the following properties of the Hilbert transform:
(a) The Hilbert transform of m(f)cos(2nf.7) is m(7)sin(2nf 1)

(b) The Hilbert transform of /n(r)sin(2m £ .t) is —im(t)cos (2 f .t)
We may therefore use Eqs. (1) and (2) to write

A, )
s,(t) = cos(2nf 1) = 7‘[»:({)(:05*{21'{,}"(..’)—r?;(f)sin(2nf(..')cos(2ﬂ:_f'(.!}] (3)

5, (8)sin(2nf t) = %[m{.*]sinz(Zrc_,f'(.f] +m(t)sin(2n f t)cos(2n f .1)] (4)
Adding Egs. (3) and (4) and solving for m(f), we get

m(t) = A?"[S,,(UCOS(MI}.I)+-§';,(!)Sin(2ﬂf}.f}] (5)
Next, we use Egs. (1) and (2) to write

Al 5
s, ()sin(2nf 1) = Ef-[m(f)COS(2TI2‘}"(_!}Sin(ZT[‘f'(_[)—Jii(!)sin'{m‘t‘f}_.“}] (6)

Continued on next slide
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Problem 3-31 continued

s, (t)cos(2m f t) = %[m[.‘)Sill(ZRf(.f)COS{ZJ‘[_,(I.!)+Jir(f){:032(2TC.f'(_f)] (7)
Subtracting Eq. (6) from Eq. (7) and then solving for 7i1(1) , we get
m(t) = gz-ll."\'”(r)cos(Zrc_}"f.r)—.s‘”(.f]sin(Z:rr_,f'(.r)] (8)
Equations ES) and (8) are the desired results for part (a) of the problem.

(b) The SSB wave s/(7) is defined by
s(1) = A?r[f?f(fJCOS(zﬂ_f'{.f)+f5?(f)5111{2ﬂ_f'(.f)] )
and its Hilbert transform is defined by

A
§,0) = T‘[m(!)sin@n‘f'{.f)—:?:(r)cos(bt_/'(.f}] (10)

where again we have made use of the above-mentioned properties of the Hilbert transform.
Therefore, using Egs. (9) and (10) we write

A,
s(t)cos(2m f 1) = j[rr:(r}cosz(2n_f‘.r)+ﬁr(f)sin{Z:rcf(_r)cos(Z:'tf(.r}] (1)
A 5
S(nsin2uf 1) = j[;}:(f)sin‘(Zn_{‘l.r)—Jir{r)cos{2rcj'{_.f)sin{2n‘f'(..-‘)J (12)
Adding Egs. (11) and (12) and then solving for m(t), we get
m(t) = Ai[s,(.f)cos[Zrtf(_f}+.§‘,(.')sin[2rtj‘(_r}] (13)
Next, we use Egs. (11)and (12) to write
A
s (O)sin(2rf 1) = T‘[m(r)cos(2n_}"(_r)sin(21t_,f'(_.')+Ji:(!}sin2(2n_f“(_f)] (14)
A
S(Hcos(2mf 1) = j[rr:(r}sin(‘?n‘l‘(_r)cos(2rc.,f“{_!)—:?3(!)(:052(21:.!“(_/)] (15)

Subtracting Eq. (15) from Eq. (14) and then solving for (1) , we get

m(r) = Ai[s‘,(t) sin(2w f 1) = 5,(t)cos(2m f .1)] (16)

[#

Equations (13) and (16) are the desired results for part (b) of the problem.

(c) From Egs. (15) and (16), we see that the message signal m(f) may be recovered from s,(f) or
s/(1) by using the scheme shown in Fig. 1.

sdr)

i =(—\ ; 3 }:Ics.s:l:._:e
= / signal
L
) cos(2rf 1)
Hilbert
transformer
»X)
Figure | sin(2nf.1)

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only
to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that

STU Dpﬁrﬂﬁ.déngﬂjrél% (o)r rlr(_)]S of the 1976 United States Copyright Act without the permission OUE ngﬂne oangi)s/tgnlwffglak Obal d



Problem 3.32

We will approach the solution to this problem by showing that, as postulated in the problem, if the
in-phase component H(f) of the complex low-pass filter’s transfer function and its quadrature

component Hy(f) satisfy the following relations

H,(f) =1 for-W=f<w (1)
and
HQ(_J“] = _HQ(_;(‘) for-W<f<W )

then, starting with the frequency-discrimination basis for generating a VSB modulated wave s(1),
we may express s(/) containing a vestige of the lower sideband as follows:

A A,
s(t) = T(JJE{I)COS(2E_/"<.!] - T‘m’(f}sin(Zn‘f(_r} 3)
where m’(f) is obtained by passing the message signal m(r) through the quadrature filter defined
by Hy(f).
To proceed, from Eq. (3.44) in the text, recall the relation
| - A . :
EHU -1 = H()), f>0 (4)

The corresponding relation for negative frequencies is described by
1 ~* . . i i
SH (410 = H().  f<0 5)

Using frequency discrimination as the basis for generating the VSB modulated wave s(f), we
express the spectrum of s(f) as

7 . _ .
S(f) = E‘-[M(j —fOTM+ fIVH(S) (6)
where M(f) = F[s(¢)]. Next, using Eqgs., (4) and (5) in (6), we write

A, - .
S(f) T‘[M(f—_/}.}+M(,f'+,f}.]][H(,!'—,f'(-)H (f+ 1]

A - A ~
= jM(f—f}.}H(.f'—,f'(.}+jM(.f'+.f}.)H (f+f) (7

Continued on next slide

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only
to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that

STU Dpﬁrﬂﬁ.déngﬂjrél% (o)r r17018 of the 1976 United States Copyright Act without the permission OUE i:ggﬂne oangi)s/tgnlwffglak Obal d



Problem 3-32 continued

where it is recognized that the cross-product terms
M(f - f‘(,)!zl*(‘f' + /) and M(f+ \{'(,)FI*(]'—‘{(,) are both zero, because the individual
factors in each product term occupy completely disjoint frequency bands. Setting
H()) = H/(f)+ jHy(f)
and
H (f) = H;(f)=jH (/)
we expand Eq. (7) as

4,
SUY = M =L IH S =)+ MU+ L OH(f+ )]

A,
+ ,fj[M(,f' ~JIH =S )-M(f +[IH(f+ )] (8)

Using the all-pass property of Hy(f) defined in Eq. (1) and the odd-function property of H(f)
defined in Eq. (2), we may simplify Eq. (8) as

A,
SN = T{[M(f-,f'(.)+M(,f'+.f}.)]

+,f%[M(,f'—f(.) ~M(f+ fIIH () 9)
Transforming Eq. (9) into the time domain, we obtain the formula of Eq. (3) for the VSB
modulated wave s(¢).

As noted earlier, m’(t) is obtained by passing the message signal m(r) through the quadrature
filter. In accordance with the description of HQ(_,() depicted in the problem, we may depict the
frequency response of the quadrature filter as in Fig. 1, where f,, denotes the vestigial bandwidth.

The important point to note from the solution to this problem is that Eq. (3) includes SSB
modulation as a special case. Specifically, if f;, = 0, then the frequency response depicted in Fig. |

simplifies to a signum function. Correspondingly, Eq. (3) reduces to a SSB modulated wave
containing the upper sideband.

Holf))

Figure |
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Problem 4.1.
Using Eq. (4.7), show that FM waves also violate the principle of superposition.

Solution
From Eq. (4.7), the FM wave is defined by

s(t) = Af.cos[Zﬂ_f'(,.f +2nk ,-_r m(‘r)d‘t}
o
Suppose m(t) = m(t) + my(t). Then,
s(t) = A(,cos[Zn_f'{,.f + ZHA_I-JJU m(T)dt + ZJIA'_’,-JJUJHQ(‘C)d{I (1)

Suppose next the two message signals m(f) and m»(f) are applied individually to the frequency
modulator. Then in response to n1(f), we have

s,(1) = A(,cos[Zn‘f‘(,r+2n!\'_rJ‘:}m,(t}dti| (2)

Likewise, for mi,(f) we have

55(1) = A(.cos[Zn‘f‘(.r+2:rc!\‘_f.-[:)m2(t}d‘c:| (3)

From Eqgs. (1) through (3), we readily see that

s(t)#s,(1) +5,(1)

In other words, the principle of superposition (basic to linear systems) is violated. Hence,
frequency modulation is a nonlinear process.
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Problem 4.2
Suppose that the linear modulating wave

m(e) = at for r=0
0 forr<0

is applied to the scheme shown in Fig. 4.3(a). The phase modulator is defined by Eq. (4.4). Show
that if the resulting FM wave is to have exactly the form as that defined in Eq. (4.7), then the
phase-sensitivity factor &, of the phase modulator is related to the frequency sensitivity factor ¢ in
Eq. (4.7) by the formula

k, = 2nk,T

where T is the interval over which the integration in Fig. 4.3(a) is performed. Justify the
dimensionality of this expression.

Solution
According to Fig. 4.3(a), the FM wave is defined by

s(t) = A(_cosl:Zrcf(_r+?l,kpj.:]m{‘c)d‘c] (1

where T is an integration constant.
According to Eq. (4.7), the FM wave is defined by

s(t) = A(.cosl:Zrc_,f'(_r + an_f-JJum(t)c.’t] (2)

If Eqgs. (1) and (2) are to be identical, then we require that

fip E 21'1::’(_,-?"

Dimensionality of this expression is justified as follows:

1. kyis measured in hertz per volt. Therefore, 2mk T has the dimensions of cycles, per volt and

therefore radians per volt,
2.k is itself measured in radians per volt.
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Problem 4.3
The Cartesian baseband representation of band-pass signals discussed in Section 3.8.1 is well-
suited for linear modulation schemes exemplified by the amplitude modulation family. On the
other hand, the polar baseband representation
s(t) = a(t)ycos[2mf .t +O(1)]
is well-suited for nonlinear modulation schemes exemplified by the angle modulation family. The
a(t) in this new representation is the envelope of s(7) and ¢(¢) is its phase.

Starting with the baseband representation [see Eq. (3.39)]
s(t) = 5,{.*)(:0521!:]'(.{—..\'Q(.f}sin{Zn‘f'(,r)
where 5(7) is the in-phase component and s(?) is the quadrature component, we may write

1/2
a(t) = [s7(0) + sg(0)]
and
Al 1[So(0)
$(#) = tan E\';(!}:l

Show that the polar representation of s(7) in terms of a(f) and ¢(¢) is exactly equivalent to its
Cartesian representation in terms of s(1) and (7).

Solution
We are given

2 2 1/2
a(t) = [s;(1) +s55(0)]
and
. aso()
O(r) = tan L;U}]

Hence, expanding the polar representation of s(¢), we write
s(t) = a(t)cos[0¢]
= a(t)cos[2mf .t + ()]

Continued on next slide
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Problem 4-3 continued

= a(t)cos(O(r))cos(2mf 1) —a(t)sin(G(r))sin(2wf 1) (1)
Since tan[d(¢)] = [SQ—“}] it follows that
s;(1)
S0t st
cos(r) = 3 S!(z) v )
THORE G R
and
sing(ry = ——00 20
[-s‘;(f)+-s'§;(0] at)
Hence,
a(tycosd(t) = s,(1) (2)
and
a(t)ysind(t) = .S'Q(.-'] (3)

Substituting Eqgs. (2) and (3) into (1), we get
s(t) = ,3',(.f)cos(2:rc_f'(,f]—.S‘Q(r}sin(Zn_/'(..f)

which is the Cartesian representation of s(f).
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Problem 4.4

Consider the narrow-band FM wave approximately defined by Eq. (4.17). Building on Problem

4.3, do the following:

(a) Determine the envelope of this modulated wave. What is the ratio of the maximum to the
minimum value of this envelope?

(b) Determine the average power of the narrow-band FM wave, expressed as a percentage of the
average power of the unmodulated carrier wave.

(c) By expanding the angular argument 0(¢) = 2nf .t + ¢(r) of the narrow-band FM wave s(/)

in the form of a power series and restricting the modulation index P to a maximum value of
0.3 radian, show that

3
0(t)=2nf t+PBsin(2nf 1) - I%sin' Q2nf 1)

What is the value of the harmonic distortion for B = 0.3 radian?

Hint: For small x, the following power series approximation

tan_](.\'} =x— %x?'

holds. In this approximation, terms involving x° and higher order ones are ignored, which is
justified when x is small compared to unity.

Solution
(a) From Eq. (4.17), the narrow-band FM wave is approximately defined by
s(t)y=A.cos((2mf 1) - BA{.sin(2n.,f'(..f)sin{ZR_f'm.f)} (1)

The envelope of s(¢) is therefore
1/2

a(t) = A, (1+p’sin’2nf 1))

1,2 .2 . 172
= A(.(l + EB sin (211_}‘”,!)) for small

The maximum value of a(f) occurs when sin 2(211{'”,;} = 1, yielding
1,2

Amax = A(_,(l + 55 )

,
The minimum value of a(f) occurs when sin™ (27 f
Amin = A(‘

The ratio of the maximum to the minimum value is therefore

A max 1,2
A “(l+§B)

min

t) = 0, yielding

m

Continued on next slide
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Problem 4-4 continued

(b) Expanding Eq. (1) into its individual frequency components, we may write
s 1 . : 1 : :
s(t)y=A,cos(2nf 1)+ zBA(_cosQn(f o ol 400 o 5[3A(_c05(2n(.f{_ oy

The average power of s(f) is therefore

P, = 1,4 +( BA) GBA(,)Z

= 24201+ )

The average power of the unmodulated carrier is

] lisha
P(. = EA(
Hence
= ]+B2

(¢) The angle 6(¢) is defined by
(1) = 2nf t+6(1)

= 2nf ¢+ tan I{Bsin(ZIt_f'm{))
Setting B = sin(2n f 1)
and using the approximation (based on the Hint), we may approximate 6(¢) as

(1) =2 f ¢ + Psin(2n [, 1) - %B" sin(2mf 1)

Ideally, we should have (see Eq. (4.15))

0(t) = 2nf t+PBsin(2nf,2)

The harmonic distortion produced by using the narrow-band approximation is therefore

D(r) = %qln 2nf,,0)

The maximum absolute value of D(r) for = 0.3 is therefore
3

=

D =

max

e

S w

K]

= 0.009 = 1%

which is small enough for it to be ignored in practice.
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Problem 4.5
Strictly speaking, the FM wave of Eq. (4.15) produced by a sinusoidal modulating wave is a
nonperiodic function of time ¢. Demonstrate this property of frequency modulation.

Solution

Starting with Eq. (4.15) we write

s(t) = A [cos(2nf 1)+ Bsin(2n [, 1)] (H
For the FM wave s(¢) to be a periodic function of time, we require that the condition

,‘;(!JrL) = s(1) (2)

<
be satisfied for a period equal to 1/f,,. Replacing ¢ with ¢ + (1/f,,) in Eq. (1), we write

_.\‘(r + L) = A cos [211,{‘(.(; + L) + Bsin(znj'mr + L):I
f " -'{m J m
= A.cos[2nf .+ 2nf ./ f,) + Bsin(2nf 1+ 2m)]
= A.cos[2nf .+ (2nf ./ 1)+ Bsin(2nf ,1)] (3)
In general, the carrier frequency f. is a noninteger multiple of the modulation frequency f,,.

m

Accordingly, s(r+(1/f,,))#s(s) and therefore the condition of Eq. (2) for periodicity is
violated.
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Problem 4.6
Using a well-known trigonometric identity involving the product of the sine of an angle and the
cosine of another angle, demonstrate the two results just described under points 1 and 2.

Solution
The incoming FM wave is defined by (see Eq. (4.57))

s(t) = A cos[2nf .1+ b,(1)] (nH
The internally generated output of the VCO is defined by (see Eq. (4.59))

r(t)y = A,cos[2m f .t +¢,(1)] (2)
Multiplying s(t) by () yields

s(r(t) = A A sin[2rf £+ 0, ()] cos[2rf .t + 05(1)] (3)

Using the trigonometric identity

sindcosB = %[sin(A + B)+sin(4 - B)]
we may rewrite Eq. (3) as

s(Or(t) = %A(.A,_sin[ém_f‘(,r+¢l(r)+q>2(r)]

+%A{,Al,sinw](r)—q}z(!}] “

Except for a scaling factor, the first term of Eq. (4) defines the double-frequency term (identified
under point 1 on page 179) and the second term of the equation defines the difference-frequency
term (identified under point 2 of the same page).
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Problem 4.7
Using the linearized model of Fig. 4.15(a), show that the model is approximately governed by the
integro-differential equation

do,(1) do, (1)
- +an”rqu(,(r)h(r—r)drz -
Hence, derive the following two approximate results in the frequency domain:
o :
(a) @ (f) = I+L(f}¢'('”
o L) .
(b) V(f) k. T+I(D +L(‘f‘)¢'](‘f)
where
N = HU)
L = Ky—=—
(f) 0/

is the open-loop transfer function. Finally, show that when L(f) is large compared with unity for
all frequencies inside the message band, the time-domain version of the formula in part (b)
reduces to the approximate form in Eq. (4.68).

Solution

According to condition 1 stated on p.178 of the text, the frequency of the VCO is set equal to the
carrier frequency f... According to condition 2 on the same page, the VCO output has a 90° phase
shift with respect to the unmodulated carrier. In light of these two conditions, we note starting
with the equation

{
“qi;’:” + ZnKl,qu)(,{T)h(f ~T)dt~- q:(;f(m

the integral in the left-hand side of the equation is the convolution of 0,(f) and A(f). Therefore,
applying the Fourier transform to this equation and using two properties of the fourier transform
pertaining to differentiation and convolution, we get

2rf @ () + 2K @ (HH(S) = j2nf P (f) (1)
where

®,(f) = Flo,(n] and P (f) = F[¢,(n)]

(a) Solving Eq. (1) for ®,( /). we get

" o j2nf
)= T+ 2m K H ()

1 :
= ——F—0,(f)
H =
]+K"_.§;)
1

T l-'-—i,(.,"]d)'("f) (2)

H(f)
Jf

@, (/)

where L(f) =

Continued on next slide
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Problem 4-7 continued

(b) Next, from Eq. (4.63) we have
e(r) = K—”fD (1)
k, "¢

Therefore

K,

E(f) = A_(D (f)

And, from Eq. (4.65) we have
v(1) = r e(T)h(1 - T)dt

Therefore
Vf) = E(H(S)
Eliminating E(f) between these two transform-related equations, we get

V(f) = —H(P.(f) 3)

!.

Eliminating ®_( /') between Egs. (1) and (3), we get

K
Vif) = ~2H(f) —

k. m‘bl(,f}
Since
: H(/f)

L s K ——

f) 7
then
Kopem = ¥1
!"_.-HU) k. L(f)
and so we get the desired result

Jr L) .

rN=% Trign ) (4)

Finally, when L(f) >> 1 for all f; Eq. (4) simplifies further as

1 JZE)‘
The tlme-domam version of this formula reads as follows
1 do(n)
Y=k Tar

v

which is a repeat of Eq. (4.67).
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Problem 4.8

For the PM case, we have by definition
s(t) = A cos[2mf 1+ kpm{.f)].

whose angle is

0,(1) = 2nf 1+ kpm(.').

The instantaneous frequency is therefore

Jit) = T TE
. +& dm(1)
O 2n dt
Ak Ak
= [t ==L =LY 8(t-nT,) (1)
27T, 2::2 0

n
which is equal to /. + Ak,/2n T} except for the instants that the message signal has discontinuities.

At these instants, the phase shifts by -k,4/T|, radians.Accordingly, the PM wave has the waveform
depicted in Fig. 1

S(n)

A [\n.l\ f\-’ﬁzl\ /\”‘)R ‘
JV NV NV N

Figure 1
For the FM case, we have
f;{'f) = f( + ""_;'-’”(f)
and the modulated wave is defined by

s(t) = Al.cos[an,"(,f+2nk_,-ﬂ):1r(1)d:i|

The modulated wave is therefore depicted in Fig. 2.

S(t)

NANAN AN
fﬂ U wr"\/ w-’ﬁ\j \Im\

Figure 2
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Problem 4.9

The instantaneous frequency of the mixer output is as shown in Fig. 1:

e} NN )

Figure 1 Jo

F

The presence of negative frequency merely indicates that the phasor representing the difference
frequency at the mixer output has reversed its direction of rotation.

Let N denote the number of beat cycles in one period. Then, noting that N is equal to the
number of shaded areas shown in Fig. 1, we deduce that

[48f - 1515 -7)+ 287 £o7]
2-/(1
4Af - T(1 = fy1)
Since f3T << 1, we have the approximate result
N=4Af -1
Therefore, the number of beat cycles counted over one second is equal to
N

—— = 4Af - [T,
1/f, /1o

JN{
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Problem 4.10
By definition, the instantaneous frequency f; is related to the phase 0(f) as

it 10

HE AT 7

which may be rewritten as

HIENIINAG

iiiiloele ()

where A8 and At are small changes in the phase 0(7) and time ¢. We are given
O(r+AN-0(1) ==

from which we infer that

AO =7 (2)
Substituting Eq. (2) into (1) yields

L1801

ilARn2Eale N ore

which is the desired result.

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only
to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that

STU Dpﬁrﬂﬁ.déngﬂjrél% (o)r r17018 of the 1976 United States Copyright Act without the permission OUWFG) fggl&ﬂe oangi)s/lfnlw[fé!lak Obal d



Problem 4.11

The phase-modulated wave is defined by
s(t) = A.cos[2nf 1+ k,A,cos(2nf,,0)]

A.cos[2nf 1+ B cos(2nf 0], B, =k,4,

A.cos(2mf, !)cos[BPcos(Zn}"mr)] —A. sm(2:rcj(.f)sin[chos 2nf 0] (1)
If B, < 0.3, then for all time / we approximately have

cos[B,cos(2m /1)) =1

sin[ﬂpcos(2n,‘mf}] cos(Zn,‘m!}

Correspondingly, we may approximate Eq. (1) as follows:

s(t)=A.cos(2nf 1) - BPA sin(2n f, f)cos(Z:rc{m!)

= 4,005 S 1)~ 3B,A,SNR2R(S+ f,)0] - 3B, AcSUI2R(f~ £,)1] 2)

p [
The spectrum of s(¢) is therefore

()= %A(.lﬁ(,f— SO+8(/+ [0
41 B;‘?Ac[a(f -f.m}_s{-’{l+-’fr+fm)]

;B,,A(fﬁu L) = S = L)
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Problem 4.12

(a) From Table A3.1 in Appendix 3, we find (by interpolation) that Jy(P) is zero for the following
values of modulation index:

B=2.44,
B=5.52,
B=8.65,
=118,
and so on.

(b) The modulation index is defined by

Therefore, the frequency sensitivity factor is

_ B-"{‘m
T4

m

p (1)

We are given f,, = 1 kHz and 4,, = 2 volts. Hence, with Jy(§) = O for the first time when
B =2.44, the use of Eq. (1) yields

- 244x10°
T
1.22x 10 hertz/volt
Next, we note that Jy(B) = 0 for the second time when 3 = 5.52. Hence, the corresponding
value of 4, for which the carrier component is reduced to zero is
A — B-’{‘!N
m A !

552%10°
122 % 10°
4.52 volts
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Problem 4.13

(a) The frequency deviation is
Af = kA, =25x10°x20 = 5x 10°Hz

The corresponding value of the modulation index is

Using Carson’s rule, the transmission bandwidth of the FM wave is therefore
By =2f,(1+B) = 2x100(1 +5) = 1200kHz = 1.2MHz

(b) Using the universal curve of Fig. 4.9, we find that for p = 5:
—_— = 3
Af

Therefore, the transmission bandwidth is
BT = 3x 500 = 1500kHz = 1.5MHz

which is greater than the value calculated by Carson’s rule.

(c) If the amplitude of the modulating wave is doubled, we find that

Af = IMHz and B = 10
Thus, using Carson’s rule we now obtain the transmission bandwidth

By = 2x100(1+10) = 2200kHz = 2.2MHz

On the other hand, using the universal curve of Fig. 4.9, we get

BT
a7 = 273

and By=2.75 MHz.
(d) If /,,, is doubled, B = 2.5. Then, using Carson’s rule, Br= 1.4 MHz. Using the universal curve,

(By/Af) =4, and
B, = 4Af = 2MHz
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Problem 4.14

(a) The angle of the PM wave is defined by
0,(1) = 21/ 1 +km(1)

2nf t+k,A,cos(2nf 1)

=2nf .+ B‘,,cos(Zn_/‘mr)
where 3, = k,4,,. The instantaneous frequency of the PM wave is therefore
DRI T e )
S0 = 2% df
= fe=B,f msin(2rf 1) (1)

Based on Eq. (1), we see that the maximum frequency deviation in a PM wave varies linearly
with the modulation frequency f,,.

Using Carson’s rule, we find that the transmission bandwidth of the PM wave is
approximately (for the case when B}, 1s small compared to unity)
BT = 2(-'{:}: + Bp-flm) = 2-’(”:{ I+ Bp} = 2-‘{:::[3;;' (2)
Equation (2) shows that By varies linearly with the modulation frequency f,,,.

(b) In an FM wave, the transmission bandwidth By is approximately equal to 2Af, assuming that
the modulation index B is small compared to unity. Therefore, for an FM wave, By is
effectively independent of the modulation frequency f,,,.
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Problem 4.15

Consider first the action of the mixer with the two inputs: voltage-controlled oscillator (VCO)
output and crystal oscillator output. The mixer produces an output of its own whose frequency is
the difference between the instantaneous frequency of the VCO and the crystal oscillator
frequency.

The mixer output is applied to the frequency discriminator followed by a low-pass filter. By
design, the output produced by the frequency discriminator has an instantaneous amplitude that is
proportional to the instantaneous frequency of the FM signal applied to its input. Accordingly, the
amplitude of the signal produced by the frequency discriminator is proportional to the difference
between the VCO frequency and the crystal oscillator frequency.

In light of these considerations, we may now make the following statements:

*  When the FM signal s(f) produced at the VCO output has exactly the correct frequency, the
low-pass filter output is zero.

» Deviations in the carrier frequency of the FM signal s(7) from its assigned value will cause the
frequency discriminator-filter output to produce a dc output with a polarity determined by the
sense of the carrier-frequency drift in the FM signal s(7). This dc signal, after suitable
amplification is, in turn, applied to the VCO in such a way as to modify the instantaneous
frequency of the VCO in a direction that tends to restore the carrier frequency of the FM

signal s(¢) to its correct value.
In summary, the application of feedback applied to the VCO in the manner described in Fig.

4.19 has the beneficial effect of stabilizing the carrier frequency of the FM signal produced at the

VCO output.
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Problem 4.16

From Fig. 4.20, we see that the envelope detector input is
v(t) = s(t)y—s(t—T)

= A.cos[2nf t+ ()] —A.cos[2nf (t—=T)+o(t—T)]
Using a well-known trigonometric identity, we write

o P2nf20-T)+06()+0(t—T)7 . r2nf.T+0(t)—0(t—T)
v(l) = 72A(,sm|: 3 ]mn[ 3 ] (1)
For ¢(7), we have
0(t) = Bsin(2rf 1)
Correspondingly, the phase difference ¢(f) - ¢(¢ - 7) is given by
O(t)—o(t—T) = Bsin(2n f,,1) = Bsin[2n f (1 - T)]
= B[sin(2nf 1) —sin(2nf ,t)cos(2n [, T)+ cos(2nf t)sin(2nf,,T)] (2)
Using the approximations:
cos(2n f,T)=1
sin(2nf, T)=2n/f,T
we may approximate Eq. (2) as
= 2nAfTcos (2 f 1) (3)
where
Af = B-f}H'
Therefore, recognizing that 2nf.7'= n/2, we may write
2nf . T+o(t)—0(t—T
sin( /. ¢(2) i }) =sin(nf . T +nAfTcos(2m f 1))
= sin(g + nAchos{2n_f'mr})
= ﬁcos(:rl:Achos(Zn_f'mr)) + ﬁsin(nAchos{Zn_fmr)]
= J2+.2rAfTcos(2nf 1)
where we have made use of the fact that tAf7" << 1. We may therefore rewrite Eq. (1) as
v(t)==224,(1+ nAchos(2n_f‘,];f})sin(ﬂf(.(2r ~T)+ WJ (4)

Accordingly, the envelope detector output is the envelope of v(7), namely,
a(t) =224,(1 + nAfTcos(2nf 1))

which, except for a bias term, is proportional to the modulating wave.
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Problem 4.17

Consider first the message signal

- >
m(t) = { artag 120
0, t=0

applied to a frequency modulator. The signal produced by this modulator is defined by

s,(t) = A_cos _ZJI_)"'(_{ + ZJIA'_J,-_[:}m I (T)dt]

= A(.COS 2]’[‘,('{,( +2mk I'JJ{ (f-"]f+ a(])(ﬁ:]

= A, cos _2H_f'(..f+ZTEA'J,-(%cJI.fz+a“r+(')], = (1)

where C is the constant of integration.
Consider next the message signal

:.’33!2 +bhyit+by, 120
0, t=0

m,(t) =

applied to a phase modulator. The signal produced by this second modulator is defined by
$y(t) = A,cos[2mf .t + k,my(1)]

I

A(.cos[Zn_;"(.r+A'P{bzr2+b|.f+b{,}], =0 (2)
For the FM signal s,(¢) of Eq. (1) and the PM signal of Eq. (2) to be exactly equal for r > 0, we
require that the following conditions be satisfied:

(i) nkay = kyb,

(i) 2mkag = kb,

(iii) 2111(,( = kpbu
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Problem 4.18

We are given that the IF filter has a bandwidth of 200 kHz centered on the frequency fjp = 10.7
MHz. This filter will therefore pass frequencies inside the range defined by the two extremes:

low-end: 10.7-0.2=10.5 MHz

high-end: 10.7 +0.2=10.9 MHz
The image lies inside the band 109.4 to 129.4 MHz, which is positioned well outside the passband

of the IF filter. Therefore, the IF filter will suppress the translated band centered on the image

frequency fimage-
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Problem 4.19

The instantaneous frequency of the modulated wave s(7) is shown in Fig. |

0
ot of
Je
R T [}
T 0 i I
Figure 1 :
We may thus express s(¢) as follows
cos(2mf 1), rq_g
() =9 cos[2n(f,+AN)], —%s:sg (1)
cos(2m f 1), g<!

The Fourier transform of s(¢) is therefore

! T/2 ! 1 |
S(f) =j' cos (27 /1) exp (—j2mft)dt

+ j z: cos[2m(f .+ Af )tlexp(—j2nft)dt

2

+ [, cosC@rs e - 2nf0d

= er cos(2m f .t)exp(—j2mft)dt

+ J- ;z {cos[2m(f, +Af)t—cos(2nf .t)]}exp(—j2nft)dt (2)

The second term of Eq. (2) is recognized as the difference between the Fourier transforms of two
RF pulses of unit amplitude, one having a frequency equal to f. + Af and the other having a
frequency equal to f.. Hence, assuming that f,7'>> 1, we may express the Fourier transform S(f) of
Eq. (2) as follows:

18—+ Lsine(T(f~ £~ AN - Lsinc[T(f - £ 1. £>0
S(f) =1 2 ’ ;

38/ + [ )+ ZSinc[T(f + [, +AN] - Zsinc[T(f+ )], [<0
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Problem 4.20

The filter input is
vi(r) = g(1)s(r)
= g(r)cos{Zn.f'{.r—nkfz)

The complex envelope of v(7) is

V(1) = g(t)exp(—jmkr’)

The impulse response /(7) of the filter is defined in terms of the complex impulse response Er(!) as
follows

h(1) = Relh()exp(j2nf 1)

With A(7) defined by

h(t) = cos(2nf 1+ ki),

we have

(1) = exp(jmkr’)

The complex envelope of the filter output is therefore (except for a scaling factor)!

(1) = h(t)*V,(1)

-t

- jm a(T)exp (- jmkt)expl jmk(r - 1) dr
= exp(jrck!:)r g(t)exp (-2 jnktt)dt

= exp(jnki*)G(kt) (1)
where in the last line we have used the definition of the Fourier transform to write
G(kt) = r 2(T)exp (- j2mkit)dt

Hence, from Eq. (1), we obtain the

1. It turns out that the scaling factor equals 1/2; to be exact, we should write
S PP
1”{.’) = Eh(”*]“'“)

For details, see the 4th edition of the book:
S. Haykin, Communication Systems, pp. 725-734, 4th edition, Wiley.

V(1) = |G k)l (2)

Equation (2) shows that the envelope of the filter output is, except for a scaling factor, equal to the
magnitude of the Fourier transform of the input signal g(r) with ks playing the role of frequency f.
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Problem 4.21

For convenience of the discussion, we assume time-domain symmetry around the origin ¢ = 0.
Accordingly, in theory, the signal produced by the amplitude limiter component of the band-pass
limiter due to s;(f) consists of an infinite sequence of harmonically related angle-modulated

components with two properties:
* The components are centered on odd multiples of the carrier frequency /...

* The components have progressively decreasing amplitudes.
Typically, the carrier frequency f. of an FM signal is large compared to the transmission

bandwidth By of the FM signal. It follows therefore that provided this condition is satisfied, that
is, f. is large enough compared to By then the filter component of the band-pass limiter will
effectively suppress all the spectral components coming out of the limiter except for the one
component centered on f,..

In light of these observations that are intuitively satisfying, we may now state that if /. is large
enough compared to By, then the output s,(f) produced by the band-pass limiter in response to the
input s,(7) is defined by the FM signal

$2(1) = Acos2mf 1+ 2mk [ m(v)dt]

where the amplitude 4 is a constant.
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Problem 4.22

(a) Starting with Eq. (4.15) for sinusoidal FM, we write
s(t) = A cos[2nf 1+ Bsin(2n f ,1)] (1)
where f,, is the modulation frequency and [ is the modulation index. Correspondingly, the
Fourier transform of s(7) is defined for an arbitrary value of B (see Eq. (4.31))

SU) = 5 X SuBNBS =S e=nf ) +8(f + [+ nf )] 2)

where J,(B) is the nth order Bessel function of the first kind. Passing s(¢) through a linear
channel of transfer function H(f) produces an output signal ¥(f) whose Fourier transform is
defined by

b AU D Mkl = 4 02 Y1 (1 40

0 il
Il ?( Z JH( B)[”(-f('+”-fm]6{-’(_-"("”.}(‘1”} i ”{_.f‘n"n-fm]6(-’(I+.f{'+ﬂ-fm]] (3)

Applying the inverse Fourier transform to ¥(/) yields the output signal

A, & L L
y() = =5 X L, BIHS A0S ,)exp(G2r(f +nf,)0)]

+H(=f.—nf,)exp(=j2r(f . +nf,)) 4

For a channel with real-valued impulse response, we have H(f) = H*(-f) where the asterisk
denotes complex conjugation. We may therefore rewrite Eq. (4) as

Y0 =34. 3 T B+ 0, )expG2R(S +nf )]

n=-co

+ H*{_f“(, +nf,)exp(—j2n(f, . +nf,)t)

= A, Y J,(BYRe[H(f +nf,)exp(j2r(f .+ nf,)1)] 5)

n=-c0

where Re denotes the real-time operator.

Continued on next slide
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Problem 4-22 continued

(b) Following the development of the universal curve plotted in Fig. 4.9, let n,,, denote the
largest value of 1 in Eq. (5) for which the condition
|J”{B)| > 0.1

is satisfied so as to preserve the effective frequency content of the FM signal s(f). We may then
approximate Eq. (5) as

”m-..\

viy=A4, Y JBRe[H(f . +nf,)exp(j2r(f . +nf,)N] (6)

[t

Expressing the transfer function H(f) in the polar form

H(f) = [H()lexp(id(f)) (7)
we may rewrite Eq. (6) as

max

vy=A. Y JBHS +nf )| cosRu(f +nf,)t+0(f .+ nf,) (®)
N==Nax
From the discussion presented in Section 2.7, recall that the transmission of a signal through a
linear channel (filter) is distortionless provided that two conditions are satisfied:
(i) The amplitude response |H(f)| is constant over the band -B < /< B, where B is the channel
bandwidth.
(i1) The phase response ¢(f) is a linear function of the frequency f'inside the band -B < f< B.
Accordingly, in the context of our present discussion, the FM transmission through the
channel of transfer function H(f) introduces two forms of linear distortion:
(i) Amplitude distortion, which arises when the condition
|H(f +nf
is violated.
(11) Phase distortion, when the condition
O(f . +nf

1s violated.

m)| is constant for 0 < n < ny.y

) 1s a linear function of n for 0 <n < ny ¢
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Problem 4.23

(a) Consider the FM version of angle modulation. Let the instantaneous frequency of the
modulator be a linear function of the first derivative of the message signal m(¢), as shown by

: : d
Jit) = ./l_+k|€ﬁm[(}
Then, correspondingly, the instantaneous phase is defined by
2 ()dt
nj:].f,( )
2n f t+ 21k m(t)

where it is assumed that m(0) = 0. In this scenario, the modulated signal is defined by
s(t) = A.cos(0,(t))
= A.cos[2nf 1 +0,()m(1)]

which is recognized as phase modulation.
Suppose next that f;(¢) is a linear function of the second derivative of m(f), as shown by

0,(1)

1) = ,f'f.+l'\'2d msr)
dt
Correspondingly, we have
dm(t)

0,(t) = 2nf 1+ 2?[&27

where it is assumed that dm(r)/dt is zero at t = 0. The modulated wave assumes the new form

s(t) = A{.cos(Zn_f‘i.r+2ﬂﬂ’2dt;—§”)

We may generalize these results by stating that if the input to a frequency modulator is the nth
derivative of the message signal m(r), then the corresponding modulated wave is defined by

d"'lm(r]]
n-1

s(1) = A(,cos[2ﬂ_f'(,r+2nk”
di

where it is assumed that & 'm(1)/dr™" is zero at time 1 = 0.
Consider next the scenario where the input to the frequency modulator involves integrals

of the message signal m(¢). Starting with JJ m(T)dt as the input to the modulator, we write
0
fi(t)y = f.+ C,JJ m(t)dt
0
and, correspondingly,
0,(1) = 2nf t+ 211:(:,(_[)‘ m(‘c)d’[)dl
0

The resulting modulated signal is defined by

Continued on next slide
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Problem 4-23 continued

s(t) = A(_cos[Zrcj'(_r+2nc,f(](ﬁm(t)d’c)dl]

Unlike the modulation scenario involving derivatives of mi(f), we can see that when
considering the scenario involving integrals of m(f), mathematical formulation of the
modulated signal s(f) becomes increasingly more complicated.

(b) There could be a practical benefit from using a frequency-modulation strategy involving
integrals of the message signal m(r) if m(r) happens to be corrupted by additive noise. In such
a scenario, the integration process tends to reduce the corruptive influence of the additive
noise by smoothing it out. However, the drawback of such a modulation strategy is two-fold:
(1) Mathematical analysis of ordinary FM is complicated enough. Using integrals of the

message signal as the input to the frequency modulator makes the problem even more

complicated.
(i1) Likewise, designs of the transmitter and receiver become even more complicated.
Statements similar to (i) and (ii) apply to the use of second and higher derivatives of the
message signal m(¢) as the input to the frequency modulator. The only exception here is the
first derivative of m(r), in which case the frequency modulator produces a phase modulated
version of the signal. One other point to note is that if the message signal m(¢) is corrupted by
additive noise, the operation of differentiation will enhance the presence of the noise
component, which is undesirable.

To conclude, the “simple” forms of angle modulation exemplified by the ordinary FM and
ordinary PM discussed in the chapter are good enough from a theoretical as well as practical
perspective.

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only
to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that

STU Dpﬁrﬂﬁ.déngﬂjrél% (o)r r17018 of the 1976 United States Copyright Act without the permission OUE i:ggﬂne oangi)s/tgnlwffglak Obal d



Problem 4.24

(a) We are given a nonlinear channel’s input-output relation:
2 3
v,(1) = av;(1) ta,v, (1) +ayv; (1) (1)
where vi(f) is the input and v,(¢) is the output; a,, a,, and a5 are fixed parameters. The input
signal is defined by

vi(t) = A,cos(2mf .t + (1)) (2)
where
(1) = 2nk_,.fum(~c)dr (3)

where m(7) is the message signal and ky is the frequency sensitivity of the frequency
modulator. Substituting Eq. (2) into (1) yields
v (1) = ayA,c082Tf t + O(t)) + ayA-cos (2 f .t + (1))

+ay A cos QL .t + 0(1)) )
Using the trigonometric identities:

00528 = %{l + cos(20))

cos3B = ‘l‘(l + cos(30))

we may rewrite Eq. (4) as

v, (1) = %(!EAE + (cr,A{. + 3—1(:3/43)005{211_,"(..* + (1))

+ %crzAfcosMnf{_f +20(r)) + %aﬁicos((m_f'(.r +30(1)) (5)
Equation (5) shows that the channel output consists of the following components:

. 1 2
A dc component, EGEA"

» Frequency modulated component of frequency f.., phase ¢(f) and amplitude

3 3
(cr,Al. + fo3A(_J
+ Frequency modulated component of frequency 2f.., phase 2¢(f) and amplitude
|

5(.*2,45

» Frequency modulated component of frequency 3/,., phase 3¢(7) and amplitude
1 3
Z(??'A(.

Continued on next slide
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Problem 4-24 continued

(b) To remove the nonlinear distortion and thereby extract a replica of the original FM signal v;(1),
it is necessary to separate the FM component with carrier frequency £ in v,(f) from the higher
order FM components. Let Af denote the frequency deviation of the original FM signal and W
denote the highest frequency component of the message signal m(r). Then, using Carson’s rule
and noting that the frequency deviation above 2f,. is doubled (which is the component nearest
to the original FM signal), we find that the necessary condition for separating the desired FM
signal with carrier frequency f, from that with carrier frequency 2/, is

2f = QAEW)> [ A=W

or
fo>3Af +2W (6)
(c) To extract a replica of the original FM signal v{(r), we need to pass the channel output v, (1)

through a band-pass filter of midband frequency /. and bandwidth 2(Af + W). The resulting
filter output is

V(1) = (a]A(.+§—‘a3‘4i)cos(2n]'(.r +0(1)) (7)
where ¢(¢) is defined by Eq. (3).
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Problem 4.25
(a) The loop filter in the second-order phase-locked loop (PLL) is defined by

H(f) =1+< (1)
i

where a is a filter parameter. The Fourier transform of phase error ¢.(r) (i.e., the phase
difference between the phase of the FM signal applied to the PLL and the phase of the FM
signal produced by the VCO) in the PLL is defined by (see part (a) of Problem 4.7)

1

DP.(f) = md’ﬂf} (2)
where the loop transfer function is itself defined by
L(f) = Ky )

The @,(f) in Eq (2) is the Fourier transform of the angle ¢(¢) in the FM signal applied to the
PLL. Substituting Eq. (1) into (3) and expanding terms, we get

(Jff“)z/aKU
T )
L+ [(if)/al +[(f) /aK)
Define the natural frequency of the loop

Jn = JaKy ©)

and the dampling factor

D,.(f) = ( J‘D.(f) 4

¢ = & (6)
4a
We may then recast Eq. (4) in terms of the loop parameters f,, and { as follows:
, U7 fy
@{,m:[ s )
V280G /7 F,) TGS/ 1)

(b) Suppose the FM signal applied to the PLL is a single-tone modulating signal, for which the
phase input is defined by

o,(r) = Bsin(2nf 1) (8)
Then, invoking the use of Eq. (7), we find that the corresponding phase error 0.(7) is defined
by
o (1) = O, ,cos(2mf 1+ ) (9)
where

AL/ L)/ )
¢‘J” - 2.2 2 5 172 (10)

[( l == (.f”j/.fu) ) + 4§ (-fm/‘fﬂ)-]
and
1 2 . / .

Y = g—tan [—C’Um j"),] (1

- (-flm/fn)-

Continued on next slide
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Problem 4-25 continued

One other thing we need to do is to evaluate the Fourier transform of the PLL output v(#). For
this purpose, we first note that the Fourier transform of v() is related to ®(f) as follows (see
part (b) of Problem 4.7)

N = JL L) -
V = =)

N =% ! (12)
where £, is the frequency sensitivity of the VCO. Using Eqgs. (1), (3), and (12), we may write
7ir) = ( Gr/ 0 +280G 17 )]

S . s 2

L+2CGf/f)+ U/ f)
In light of the PLL theory presented herein, we may make two important observations for an
incoming FM signal of fixed frequency deviation produced by a sinusoidal modulating signal

m(r):
(i) The frequency response that defines the phase error ¢(f) is representative of a band-pass

filter, as shown by Eq. (10).
(i1) The frequency response of the PLL output v(£) is representative of a low-pass filter, as
shown by Eq. (13).
Therefore, by appropriately choosing the damping factor { and natural frequency f,, which
determine the frequency response of the PLL, it is possible to restrain the phase error ¢.(f) to
always remain small and yet, at the same time, the modulating (message) signal is reproduced
at the PLL output with minimum distortion.

@,(f) (13)
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Problem 5.1
(a) Using the material presented in Section 2.5, justify the mathematical relationships listed at the

bottom of the left-hand side of Table 5.1, which pertain to ideal sampling in the frequency

domain.
(b) Applying the duality property of the Fourier transform to part (a), justify the mathematical
relationships listed at the bottom of the right-hand side of this table, which pertain to ideal

sampling in the time-domain.

Solution
1. Entry I on the left-hand side of Table 5.1:

+ The relationship

> gt-mT) = [ Y Gnfe

M=o =—oo

where g(r) = G(f) and f; = /Ty, is a rewrite of Eq. (2.87) with one trivial change,
namely, the replacements of T, and f, by T and f;, respectively.
* The Fourier transform pair

Jj2nnf .t

S ety-m(T) =7, Y Gnf)S(f~ [,
is also a rewrite of Eq. (2.88) except for the replacement of 7, and f, with 7, and f;,
respectively.
2. Entry 2 on the right-hand side of Table 5.2:

+  The relationship
S g(nT e =/ Gf f-mfy)
is an exact reproduction of the equality in Eq. (5.2).

¢ The Fourier-transform pair

j2rnf.t

> g(nT)8(t—nTy) =/, Y G(f-mf)

is an exact reproduction of the Fourier-transform pair listed in Eq. (5.2).
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Problem 5.2
Show that as the sampling period 7, approaches zero, the formula for the discrete-time Fourier

transform G(f) approaches the Fourier transform G(f).

Solution
From Eq. (5.3), we have

Go(f) = i o35 e (-2 )

The sampling period T, =-1/(2W). We may therefore rewrite this equation as

Gs(f) = zg{n T,)exp(—j2rnT f)

n=ea

In the limit, as T, approaches zero, the discrete time nT, approaches continuous time ¢. Moreover,
the summation over n approaches the integral

[ gyexp(-j2mefyar

—0

Correspondingly, Gg(f) approaches the continuous Fourier transform G(f). We may therefore state
that the formula for the discrete Fourier transform Gg(f) given in Eq. (5.3) approaches the formula
for the Fourier transform:

G(f) = [ etexp(-j2mip)ds

as the sampling period T approaches zero.
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Problem 5.3
Show that

e e, N . _ sin2r Wt —nmn)
2LVI_.;-"Xp["ZE’((’ 211/)]“" QWi —nr)

sinc(2Wt—n)

Solution
W

] o~ n o1 1 o~ n 1"
2Wj-..uve"p["’2“f(’_W)]‘” T oW j21t(.f—rr/2W)'eXp[Jzn‘f({_Wﬂr._ .
1

= AR —n/2) Jexpjr(2Wt—n) —exp(—jrn(2Wt—n))]

_ sin(m(2Wt—n))
n(2Wt—n)
sinc(2Wt—n)
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Problem 5.4

This problem is intended to identify a linear filter for satisfying the interpolation formula of Eq.
(5.7), albeit in a non-physically realizable manner. Equation (5.7) is based on the premise that the
signal g(/) is strictly limited to the band -W < /< W. With this specification in mind, consider an
ideal low-pass filter whose frequency response H(f) is as depicted in Fig. 5.2(c). The impulse
response of this filter is defined by (see Eq. (2.25))

h(t) = sinc(2Wt), —co < [ < oo

Suppose that the correspondingly instantaneously sampled signal gg(¢) defined in Eq. (5.1) is
applied to this ideal low-pass filter. With this background, use the convolution integral to show
that the resulting output of the filter is defined exactly by the interpolation formula of Eq. (5.7).

Solution

From Eq. (5.5), we have

T - (.n __,imf_}“) .
G = 37 2 5(2»’)“'9( W) W<j<w

n=-co
According to this equation, G(f) is low-pass with its frequency content confined to the range
-W < f< W.Since G(f) is the Fourier transform of g(r), we can also write

. i n ;Ince — = L . 4 i —jﬁ”'fl) W<f<
Z 5(2 W)blnL(ZWf n) = X Z 3(2 W)cxp( 7 ) W<f<W
n=-co H==ca

Hence, the reconstruction filter defined by the left-hand side of this Fourier-transform pair is low-
pass with its passband confined to the range W <f< I.
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Problem 5.5
Specify the Nyquist rate and the Nyquist interval for each of the following signals:

(a) g(r) = sinc(200¢)
(b) g(1) = sinc?(2007)
(c) g(1) = sinc(200¢) + sinc?(2007)

Solution
(a) The highest frequency component of

g(t) = sinc(2001)
_sin(200mr)
~ T 200m
is 100 Hz. Hence, the Nyquist rate is 200 Hz and the Nyquist interval is 5 ms.

(b) The highest frequency component of

IO si1102(200r]
is twice that of g(f) in part (a); it is so because squaring a band-limited single has the effect of
doubling its highest frequency component. Hence, the Nyquist rate of

o(t) = sinc>(2Wr)
is 400 Hz and the Nyquist interval is 2.5 ms.

(c) The highest frequency component of the composite signal
a(1) = sinc(200¢) + sinc”(200¢)

is determined by the component sin 02(200.*) . Hence, the Nyquist rate of this third signal is
400 Hz and the Nyquist interval is 2.5 ms.
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Problem 5.6
Consider uniform sampling of the sinusoidal wave

g(r) = cos(mr)
Determine the Fourier transform of the sampled waveform for the following sampling period:

(a) T,=0.25s
(b) Ty=1s
(c)T,=1.5s
Solution

We are given
g(t) = cos(mi)
the frequency of which is 0.5 Hz.

(a) For the sampling period 7 = (.25, we have

> g(nT)8(1—nT,)

j1=-00

g5(1)

oo

- 2 cos(%)ﬁ{r —-nT,)

n=-ea

(b) For T, = 1s,

gs5(1) = Z cos(nm)d(t—nT )

Hn=-o00

Y ~1)'8(t-nT))

n=-ee

(c) ForT,=1.5,

gs(1) z cos(1.5nm)d(r—nT )

Nn=-oa
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Problem 5.7
Consider a continuous-time signal defined by

sin(ms)
.( e ]
g(1) =
The signal g(¢) is uniformly sampled to produce the infinite sequence {g(n T.\-)}:;m' Determine

the condition which the sampling period 7; must satisfy so that the signal g(7) is uniquely
recovered from the sequence {g(nTy)}.

Solution

The signal

sin(mr) _
119

is limited to the band -0.5 < f'< 0.5 Hz. The Nyquist rate for this signal must therefore exceed

2x 0.5 =1 Hz. Correspondingly, the permissible sampling interval must satisfy the condition
T,<ls.

g = sinc(f)
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Problem 5.8
Starting with Eq. (5.9), show that the Fourier transform of the rectangular pulse /(¢) is given by

H(f) = Tsinc(/T)exp(—jnfT)
What happens to H(f)/T as the pulse duration T approaches zero?

Solution
Given
I, O<t<T
_J1
k({) - - — =
3 t=0,t T

0, otherwise
the required Fourier transform is

H(f) = fmfa(r)e‘-’z"-”dr

T
= J, 1 exp(=j2nfoydr
_ [cxp{—_;‘zrc_m]’
—-j2nf (=0
| exp(—j2nfT)
j2nf Jj2nf

_ exp(=j2n/T) . B .
i Lexp(jrfT) - exp(—jnfT)]

Since
sin(n/T) = %lcxp{jnfi’) — exp(—/n/T)]

it follows that
S sin(m/7T)
H(f) B
sin(n/T)
nfT
= Tsinc(/T)exp(~jn/T)

exp(—jnfT)

=T exp (—=/n/T)
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Problem 5.9

Using Egs. (5.23) and (5.25), respectively, derive the slope characteristics of Egs. (5.24) and

(5.20).

Solution
(a) The logarithmic law is defined by (see Eq. (5.23)

log(1 + pim
W = (1 +plml)

log(1+p)
Therefore, differentiation with respect to |m| yields
Fd o R 1 u

dlm|  log(1+p) 1+ulm|
Equivalently, we may write
dm I+ u|m|

—_— = log(l +
dll"l 01:( I'l)

(b) The A-law is defined by (see Eq. (5.25):

Alm| 1
Mllc L W el 1% [l =t
Y TR 0<|m| < y
 Wal (e ) AR W WS

1 O e

Hence, differentiation of |v| with respect to |m]| yields

A 1

It A <lml <=

dh| _ 1+logAd’ 0_|m|_A
d|m

o 4 i Im| <1

Im[(1 +logd)’ A~

Equivalently, we may write

I +logA4 1

et a1 0<|m| <=
dlm| _ A Il A
d|v| o

[#)hnl, %E [m| <1
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Problem 5.10
The best that a linear delta modulator can do is to provide a compromise between slope-overload
distortion and granular noise. Justify this statement.

Solution
(a) In linear delta modulation, if we make the step-size A too small, then the system suffers from

slope overload distortion.

(b) On the other hand, if we make the step-size A too large relative to the local slope characteristic
of the message signal m(r), then the system suffers from granular distortion.

For a fived sampling rate 1/7; and with A as the only variable, the best that the linear delta

modulator can do is to choose a step-size A that will provide a compromise between these two

forms of quantization noise.
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Problem 5.11
Justify the two statements just made on sources of noise in a DPCM system.

Solution

1. When the step-size is too small and the input signal is changing too rapidly, the DPCM is
unable to track the input signal, resulting in slope-overload distortion similar to linear delta
modulation.

2. DPCM uses a quantizer in the transmitter. Hence, like pulse-code modulation, DPCM suffers
from quantization noise.
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Problem 5.12

(a) The PAM wave is defined by

oo

s(ty = D [1+um’(nT)]g(t—nT,), (1

J=-c0

where g(7) is the pulse shape, m’(1r) = m(t)/A, = cos(2nf ,t) and u is the modulation
factor. The PAM wave is equivalent to the convolution of the instantaneously sampled signal
[1+um’(t)] and the pulse shape g(), as shown by

s(t) = {ZII +um’(nT)]8(t—n T_\.)}*g(!}

HN=-oe

= {l +um’(t) Z S(I—HT_\_}}*g(.’} (2)

n=-oo

Let m’(t) = M'(f), g(t) = G(f), and s(t) = S(f).
The spectrum of the PAM wave is therefore,

. .. 1 - .oom ",
{[6(_f)+uM QILTDY 8./ —?)}o(_m

A

S

S m=-co

700 X [o(r-3)wr(r -] ©

For a rectangular pulse g(#) of duration 7= 0.45s and with A7 = 1, we have
G(f) = ATsinc (fT)

= sinc (0.45f)
For m’(t) = cos(2nfmt) and f,, = 0.25 Hz, we have

M (f) = z[8(f —0.25)+8(f +0.25)]

b —

For T, = ls, the ideally sampled spectrum is

Ss(f) = Y, [8(f =m)+uM'(f —m)] (4)

m=-oo
which is plotted in Fig. 2(c).
The actual sampled spectrum is defined by

S(f) =Y, sinc(045)[8(f —m)+uM (f —m)] (5)

m==ca

which is plotted in Fig. 1(b).

Continued on next slide
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Problem 5-12 continued

(b) The ideal reconstruction filter would retain the centre 3 delta functions of S(f). With no
aperture effect, the two outer delta functions would have amplitude w/2. The aperture effect
distorts the reconstructed signal by attenuating the high-frequency portion of the message

signal.

(a)

(b)

(c)

w2 w2
1 1 y
075 10 125 fiHz)

1
w2 w2
-0.25 0 025
S
1
0.984p 0.984
-0.25 0 0.25
1
0.984u T 0.9544
z H
-0.25 0 0.25
Figure 1

fiHz)
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Problem 5.13

At f'= 1/2T, which corresponds to the highest frequency component of the message signal for a

sampling rate equal to the Nyquist rate, we find from Eq. (5.17) that the amplitude response of the
equalizer normalized to that at zero frequency is defined by

1 _(m/2)UT/T))
sinc(0.57/T,)  sin[(n/2)(T/T,)] (1)

Ideally, the graph should be equal to one for all values of 7/7, as indicated by the dashed

horizontal line in Fig. 1. For a duty cycle of 25 percent, it is approximately equal to 1.04, which
exceeds the ideal case by about 4%.

1
sine (0.5 T'T) 1.1

Ideal condition

Figure 1

Duty cyele /T,
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Problem 5.14

)
= RO must be greater than
N

(a) The Nyquist rate for s,(7) and s5(7) is 160 Hz. Therefore, the factor

160, and the maximum R is 3.

(b) With R = 3, we may use the following signal format displayed in Fig. 1 to multiplex the
signals s(f) and s,(7) into a new signal, and then multiplex s5(#) and s4(7) and s5(7) including
markers for synchronization.

Marker Marker
1

—_— 8

300

F 3

h 4

- (1/2400)s

L1 1 1111 o 11 o | | o | | o
§3 54 5] §3 54 5y §3 5y 53 8y 53 84 53 8

_.| |<_( 1/7200)s

Figure |

-

53 Sy S35y 53 54 S| 53 53 5

® 7CI0 S{ll'll])lCS

Based on the signal format shown in Fig. 1, we may develop the multiplexing system shown in

Fig. 2.
2400Hz
o e e
] =8 300° 00
Delay Delay
Y v
| Qllla;let\':rlml | Sampler I‘—"‘ml Sampler |‘_":[”
— T
N J'\ P '—UU\
g Delay 71 Detay
Figure 2 -
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Problem 5.15
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A TN R PR . SN
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Problem:(5.15b)
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Problem 5.16

(a) An alternating sequence of 1’s and 0’s
On-off signaling: The signal g(f) consists of a periodic train of rectangular pulses with pulse
duration 7= Ty/2, where T is the period.
Bipolar return-to-zero signaling: The signal g(f) consists of a periodic train of pulses of
duration T and of alternating polarity.

(b) A long sequence of 1’s followed by a long sequence of 0’s
On-off signaling: The signal g(f) consists of a unit step function defined for negative time, tl
is, u(-1).
Bipolar return-to-zero signaling: The signal g(f) consists of pulses of alternating polari
followed by a long period of zero volts.

(c) An alternating sequence of 1’s followed by a single 0 and then a long sequence of 1’s
On-off signaling: The signal g(r) consists of a dc component minus a rectangular pulse (of1
same amplitude as the dc component).

Bipolar return-to-signal signaling: The signal g(r) consists of two identically perios
sequences of pulses separated by a period of zero volts.

The line codes just described are plotted in Fig. 1.

(a) An alternating sequence of 1’s and 0’s

On-off signaling

(a)

Bip[olar return-to-
zero signaling

(b) A long sequence of I's followed by a long sequence of 0’s

] 0
‘ On-off signaling

(b)

Bipolar return-to-
zero signaling

Continued on next slide
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Problem 5-16 continued

(c) A long sequence of 1’s followed by a single 0 and then a long sequence of 1’s

On-off signaling

(c)

Bipolar return-to-
zero signaling

Figure 1
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Problem 5.17

The quantizer has the following input-output curve plotted in Fig. 1

8k i—1+11 ]
-
6 R
4+ 1
2 2 I 1
S L
20 —
5 -2 J_
-4 _|
_6_ | -4
0004
_8_ 4
Figure I e 3 InpuP\fo\ls 5 1l0
At the sampling instants we have:
1 m(t) code
-3/8 -3\2 0011
-1/8 -3\2 0011
+1/8 3\2 1100
+3/8 3V2 1100

And the coded waveform is (assuming on-off signaling):

Time (seconds)

Figure 2
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Problem 5.18

We are given

- Audio signal bandwidth, W= 15 kHz

- Number of uniform quantization levels = 512 levels
- Encoding : binary

(a) The Nyquist rate is 2 = 30 kHz.

(b) To accommodate 512 quantization levels, we require a binary code with B bits, which would
have to satisfy the following requirement:
28=512
Hence, B = 9. The sampling period T = 1/30 milliseconds must be divided into 9 bits. The
minimum sampling rate is therefore
30 x 9 =270 kilobits/second
= (.27 megabits/second
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Problem 5.19

(a) We are given
- Video bandwidth = 4.5 MHz
- Sampling rate = 15% in excess of the Nyquist rate
- Uniform quantization using 1024 levels
- Binary encoding

(b) The Nyquist rate is 2 x 4.5 =9 MHz.
Actual sampling rate =9 x 1.15=10.35 MHz
The sampling period is therefore
1

= 1035 us

This sampling rate must be divided into B bits, where
28 =1024

Hence, B = 10. The bit duration is therefore

I 1

0 1035°

The permissible bit rate is therefore 103.5 megabits/s.
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Problem 5.20

The transmitted code words, representing the PCM waveform

.f.-"'Th code

001
010
011
100
101
6 110

o= b —

Accordingly, the sampled analog signal from which these code words are derived is shown in Fig.
1.

Figure 1 . L

0 3 (] 9 12 15 18

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only
to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that
permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.

STUDENTS-HUB.com Uploaded By: Malak Obaid



Problem 5.21

The modulating wave is
m(t) = A, cos(2nf 1)
The slope of m(r) is given by
dm(t) _

dr
The maximum slope of m(r) is therefore equal to 2nf, A4,

The maximum average slope of the approximating signal m,(f) produced by the delta

modulator is &/7;, where 9 is the step size and 7| is the sampling period. The limiting value of 4,,
is therefore given by

21 f, A, sin(2nf 1)

m

)
T

N

2nf A4, >

m

or

0
Aw> 2nf, T,

m

: : .2 .

Assuming a load of | ohm, the transmitted power is A;,/2 . Therefore, the maximum power that
2

(W mih

2
m

! ! ! A e 2 2l
may be transmitted without slope-overload distortion is equal to 8/ (dn” f
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Problem 5.22
Sampling rate = 64 kHz

Voice signal bandwidth = W= 3.1 kHz
Maximum signal amplitude 4,,,,, = 10 volts

(a) To avoid slope overload, we must satisfy the following requirement (see Problem 5.21)

A
A pax < ST,
Solving for the step size A, we write

1 [s
A - - 1

il Zn WT.\AITI&IX 2].[ WAIH{I.‘( ( }

Substituting the given values into Eq. (1) yields

64
ks 2rx 3.1 x 10
or
A>0.33 volts

Effectively, provided that the step size A is 0.33 volt, then slope-overload distortion is avoided.

(b) Let € () denote the granular noise, viewed as a function of time ¢. The average power of
granular noise (analogous to quantization noise in PCM), is defined by

2 AS2 b
Pli= (= € de
£ _A/2
i E[ c 3 A2
ANk € =-A/2
3

With A set at 0.33 volt, the average power of granular noise is therefore 0.03 watts (assuming
that the power is calculated for a load of 1 ohm).

(c) The minimum channel bandwidth needed to transmit the DM encoded signal is the inverse of
the sampling rate, that is, 64 kHz.
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Problem 5.23

The values calculated in parts (a), (b) and (c¢) of Problem 5.22 also hold for a sinusoidal signal of
peak amplitude 10 volts and frequency 3.1 kHz.
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Problem 5.24

The transmitting prediction filter operates on exact samples of the signal while the receiving
prediction filter operates on quantized samples. Hence, unlike the DPCM system described in
Section 5.8, the prediction filters in the transmitter and receiver of Fig. 5.26 operate on different

signals.
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Problem 5.25

(a) In theory, any physical signal (exemplified by audio and video signals) has a spectrum that
gradually decreases towards zero. From Fourier transform theory, we know that any signal
cannot simultaneously have finite duration and finite bandwidth. Therefore, theoretically
speaking, given a physical signal of finite duration, the band of frequencies occupied by that
signal is infinitely large. Accordingly, when the signal is sampled in accordance with the
Nyquist sampling theorem, there will always be some distortion produced by sampling the
signal due to the aliasing phenomenon.

(b) In practice, however, we usually limit the sampling rate to some finite value, depending on the
application of interest. For example, for telephonic communication, it has been found
experimentally that 3.1 kHz is considered to be adequate for describing the “effective”
bandwidth of a voice signal, be that for a male or female. Thus, choosing a rate of 8 kHz is
considered to be adequate for the uniform sampling of a voice signal in telephonic
communication. In reality, there is some distortion produced by the sampling process, but for
all practical purposes, the distortion is not significant enough to be perceived by a human
listener. Indeed, it is for this reason that a sampling rate of 8 kHz is the universally accepted
standard for the sampling of voice signals transmitted over a telephone line.

Similar remarks apply to the sampling of video signals; naturally, the sampling rate used
for video signals is much higher than 8 kHz,
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Problem 5.26

Let 2/ denote the bandwidth of a narrowband signal with carrier frequency f,.. The in-phase and

quadrature components of this signal are both low-pass signals with a common bandwidth of V.
According to the sampling theorem, there is no information loss if the in-phase and quadrature
components are sampled at a rate higher than 2/. For the problem at hand, we have

£, =100 kHz

2W=10kHz
Hence, W =5 kHz, and the minimum rate at which it is permissible to sample the in-phase and
quadrature components is 10 kHz.

From the sampling theorem, we also know that a physical waveform can be represented over the
interval —eo < f < oo by

oo

g() = Y a,0,(1) (1)

n==o0
where {¢,(7)} is a set of orthogonal functions defined as
sin{nf (t—n/f,)}
nf (t=n/f,)
where » is an integer and f; is the sampling frequency. If g(7) is a low-pass signal limited to /" Hz,

and f; > 2W, then the coefficient g, can be shown to equal g(n/f;). That is, for f; > 2W, the
orthogonal coefficients are simply the values of the waveform that are obtained when the
waveform is sampled every 1/f, second.

As already mentioned, the narrowband signal is two-dimensional, consisting of in-phase and
quadrature components. In light of Eq. (1), we may represent them as follows, respectively:

0,(t) =

g(1) = Y g(n/f)0,(1)

Hn=-c0

golt) = Y go(n/f)0,(1)

f=-00

Hence, given the in-phase samples g;(i) and quadrature samples gQ(i], we may reconstruct

/ N ’ X

the narrowband signal g() as follows:
g(t) = g (t)cos(2mf 1) —gQ(I)Sin{th_f(.f)

i [g‘,(%)cos(hcf(.r) - gg}(%)sila (211:_,(‘(_!)][1)”(.')

where f. = 100 kHz and f; > 10 kHz, and where the same set of orthonormal basis functions is
used for reconstructing both the in-phase and quadrature components.
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Problem 5.27

(a) The commutator at the output of the bipolar chopper switches between the direct path and
inverted path at the frequency f;. In effect, every 1/f; seconds, the output of the chopper

consists of the input x(¢) -- via the direct path -- for 1/2f; seconds followed by the inverted
version of x(f) -- via the inverted path -- for the remaining 1/2f; seconds of the commutation
period. For one period of the commutation process, we may thus write

x(t) for 0<t<1/(2f1))
() = ' (1)
-x(t) for 1/(2f)<t<1/f,

Equation (1) repeats itself every 1/f; seconds.

(b) Equation (1) may be equivalently expressed as follows:

y(1) = c(t)x(1) (2)
where ¢(/) consists of the square wave (see Fig. 1)

<r< ‘
() = 1+ for O_I__ 1/(2f)) | 3)
—1 for 1/Q2f)<t<1/f,

()
+]
-1, 12 0 12/, A

By inspection, we may make three observations from Fig. I:

(1) The dc component of c(7) is zero.

(i1) The Fourier series representation of ¢(f) consists of sine components with a
fundamental frequency f,.

(i) The even harmonic components of ¢(r) are all zero.

Accordingly, we may represent (/) by the Fourier series:

c(t) = bysin(2r f 1)+ bysin(6w f 1) + bssin(10m f 1) + ... (4)

where b, is defined by

11,
b =‘,f',.j“ c(t)sin2un f 1)dt

T \ Ve :
= ‘{_‘_JU sin(2rn ft)dt — f .\J'__sz‘ sin(2mn f 1)dt

-1 o 1/2
= 2]{”[305(2“!?.1,"]];_;}

1/,
=(1/21))

1 .
+
2m[cos(2nnlf <]

1 1
= _ — - —
2n”(c05(;1n) 1) 2nn(cos(m{) cos(nm))
2z forn=1,3,5,...
n
0 forn=0,2,4,...

Continued on next slide
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Problem 5-27 continued

We may thus express the Fourier series of the commutation function c(7) as
2 . ) 2 . . 2 . X .

= = + = + = -
c(t) nsm(Zn_{_\.r) 3nsm{6rc_f_\.!) Snsm( 107/ 0)+ ... (6)
Using Eq. (6) in (2) yields

2. o 2 . o 2 )
v(t) = Esm(Zn_}‘ Jx(n) + 3ﬂsm(6nj X))+ 5nsm(10:rcj_\.f) +... (7)
The Fourier transform of y(¢) is therefore defined by

Y(f) = LIX(f =S - X+ 1]
JT

1 : : ; ;
+ m[/\'(_)‘ =3f0-X(f+3f))]

1 S £ a2
+jTrr[XU —S f =X (T )]+ (8)

where X{f) is the Fourier transform of the input x(7).

Figure 2 displays the relationship between the two Fourier transforms: X{f) and Y(f). Note
that X{f) can only be recovered from ¥(f) only through a band-pass filter with bandwidth 2%
centered on f.

¥in
T

e /x\ /I\ e T
3, k—;_ﬂ 0 k_:::_‘ ER

Figure 2
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Problem 5.28

(a) Consider a periodic waveform x(7) whose Fourier transform is defined by

m

X(N) =Y e,8(f—kfy) (1)

k=—m
where f; is the fundamental frequency of x(7). In effect, we are assuming that x(7) is the result

of prefiltering a periodic signal with period 1/f; and all harmonic components in excess of the
mth component have been suppressed. The highest frequency of x(7) is therefore mf,,.

Suppose now x(r) is purposely sampled at the rate
f, =(l-a)f, (2)
where 0 < g < 1. The sampling rate f; is clearly less than the Nyquist rate 2mf, hence the
possibility of aliasing. From Eq. (5.2) in the text, recall that the Fourier transform of the
sampled version of x(7) is defined by

X = T X(f=if)

i=-c0

= Z X{.}(I_’..f‘u_i_(”,fn} (3)
Substituting Eci. (1) into (3) yields
XN = 3 T e -k S+ aify) 4)

i=-sa  Kk=—m

To proceed further with this equation, we will use induction to solve Problem 5.28.

(i) Let m =1, for which Eq. (1) reads as
X(f) = C(]S(,f) +c [6(1‘ _fu) + 6[}' + f{])] (5)
This spectrum represents a sinusoidal wave of amplitude 2¢;, superimposed on a dc bias of
co; see Fig. 1(a). For this case, Eq. (4) simplifies to
1

I?Xg(.f‘)

2 Z cd(f—(i+hk) fotafy)
=0 k=-1

oo

z [cod(f —ify+aify)

i=-co

+ (;6()( —(i+ l).fln + f”'fu)
+Ci8(f_(f_ l}f(]"'ff'-'.fn)] (6)
Evaluating Eq. (5) yields the sampled spectrum depicted in Fig. 1(b).

Continued on next slide
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Problem 5-28 continued
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(i1) Next, let m = 2, for which we deduce that the relationship between the original spectrum

X(f) and the sampled spectrum X(f)/f; is pictured as shown in Fig. 2. The results displayed

here follow from the evaluation of Eq. (4) for m = 2.

Based on the results depicted in Figs. | and 2, we may draw the following conclusions:

*  The part of the spectrum X(f)/f; centered on the origin /=0 is a compressed version of
the original spectrum X(f).

» The original spectrum X{(f) can be recovered from X5(f)/f; by using a low-pass filter,
provided there is no spectral overlap. In both figures, there is no spectral overlap. For
this to be so, in Fig. 1(b) with m = 1 we must choose
(f(} - f-’f(]) > a,f{]
or
a<l (7)

2
In the case of Fig. 2(b) with m =2, we must choose
(fo—2afy)>2af,
or

c1'<‘/_l1 (8)

Continued on next slide
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Problem 5-28 continued

Generalizing these two results, we may say that spectral overlap in the sampled
spectrum X3(f)/f; 1s avoided provided that we choose

1
<5
However, the choice of 1/2m does not leave any room for the design of a realizable
low-pass reconstruction filter. This last provision is made by choosing
1
a< IES] 9)
« From Fourier transform theory, we recall that spectral compression in the frequency
domain corresponds to signal expansion in the frequency domain. We therefore
conclude that provided the choice of parameter « satisfies Eq. (9), then we may use the
scheme described in Fig. 5.28 to expand the time display of a periodic waveform with
highest frequency component mf; and do so with a realizable reconstruction filter,

provided that parameter « satisfies the condition of Eq. (9).
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Problem 5.29

Consider Fig. 1(a) that shows the mirror rotating counter clockwise about the horizontal axis at a
rate of 27t/ radians per second. At a given time /, the angular position of the position of the narrow
horizontal strip on the television screen as seen in the mirror forms an angle of 2mff with respect to
the coordinate axes. The position of the narrow strip relative to the origin as seen in the mirror is
described by

X(Ty) = exp(j2rfTy)

which is the sampled version of the complex exponential

x(t) = exp(j2mft)

(a) If there is exactly one revolution of the mirror between frames on the television screen, then
the rotation speed of the mirror matches the sampling rate of the video signal. In this situation,
the horizontal strip on the television screen does not appear to be rotating, as illustrated in Fig.

I(a).

(b) If however the mirror rotates at an angle less than 1 radians between television frames, then
the rotation of the narrow strip as seen in the mirror appears like a left-to-right motion (i.e.,
backwards), as illustrated in Fig. 1(c). This situation implies that
2nfT,<m

That is, with 7, = 1/60 seconds, the rotation rate of the mirror defined by w =2nfis

w< 60m radians/second

which is one half of the television’s sampling rate. If the rotation rate of the mirror satisfies
this condition, then no aliasing occurs and the rotation of the mirror is visually consistent with
the left-to-right motion.

On the other hand, if the mirror rotates between m and 2n radians between television
frames, then the rotation of the mirror appears to be visually inconsistent with linear motion,
as illustrated in Fig. 1(d). This inconsistent situation occurs when
n<2nfT <2n

or, with 7 = 1/60 seconds,
30< f <60 hertz

Continued on next slide
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Problem 5-29 continued

(a)

CACACAC
URORONC

-—— Direction of travel

(c)
t=3 t=2 t=1

() -}— Direction of travel

t=20

Figure 1
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Problem 5.30

The first-order hold corresponds to extrapolating into the future with a straight line, as shown in
Fig.1.

N 1 : ,
(1] . r

Figure |

Specifically, the impulse response of the first-order hold may be expressed as

(t+T)/T for 0<t<T
h(t)y =3 —(t-~T)/T for T<t<2T (1)
0 elsewhere

Equivalently, we may express /(/) as
h(t) = u(t) + %u(!)—zu(r— T)

12T
T

_z%uu—r)ﬂfu—zrﬁ u(t—2T) (2)

where (1) is the unit step function.

(a) Taking the Fourier transform of Eq. (2) and using the Fourier-transform pairs of Table A6.2,
we may therefore express the frequency response of the first-order hold as

) | I 2 .

H = .+ - ——exp(—j2n/T
/) T T[_;'Zn{‘}z 7 exp (—j2n/T)
-2 e 4ARIT) + ———exp(-j4m/T)
r(janf)’ A T(j2nf)

which, after collecting and simplifying terms, yields

-~ — . 1 —exp (—,:‘21;{7‘})2
H(f) = T(1+ j2mT) e 3)

Continued on next slide
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Problem 5-30 continued

(b) Figure 2 shows the magnitude and phase responses of the first-order hold.

1HIT

AT =T 2T =T o 1T T T aT

freq.. 1
200
| ]

150{, [
100

50
E |
]
g

-50

-100

|
-150
|
T AT 2 am o 1T 2T 3m am

freq., f

Figure 2

(c) For perfect reconstruction of the original analog signal, we need an equalizer whose transfer
function is the inverse of H(f) of Eq. (3), as shown by
; I
H(f) = 77
_ 1 ( j2n/T )3
T(1+j2rfT)\1 — exp(—j2n/T)
For a duty cycle (7/7,) = 0.1, the use of Eq. (4) yields

4)

Heg(f)) = H(08732+0.0589)

(d) For the sinusoidal input
x(t) = cos(501)
and f, = 100Hz and 7 - 0.01, Fig. 3(c) shows the response produced by the first-order hold.

Part (b) of the figure shows the corresponding response of the sample-and-hold filter.
Comparing these two parts of Fig. 3, we may make the following observations:

Continued on next slide
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Problem 5-30 continued
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Problem 5.31

(a) Starting with the Fourier-transform pair
exp{—mz}\_—‘ exp(—ﬂ_f'z} (D
and applying the differentiation property of the Fourier transform to Eq. (1), we write
d
dr
or, equivalently

exp(—n’) = j2nfexp(-nf’)

—2mcxp{—m2} = j2njf'cxp(—n_,f'2) (2)
Multiplying the left-hand side of Eq. (1) by A4 and invoking the linearity property of the
Fourier transform, we go on to write

2ntdexp(-nt’) = j2nfdexp(-n /)

Simplifying terms:

tAdexp(-nt’) = jfAdexp(-nf7) 3)
Finally, applying the dilation property of the Fourier transform to Eq. (3). we get

A(‘%)exp(—n(%)z) = _jtfdexp(-nf1) 4)

The left-hand side of this transform pair is recognized as the time function (see Eq. (5.39))

v(1) = A(i)ex (—n(f)z) (5)
T p T
From Fig. 5.22, we see that the maximum value of v(7) is +1. To find this maximum, we
differentiate v(r) with respect to time ¢ and set the result equal to zero, obtaining
2
%exp(—n(%) )—A(%)(Zn!/t)exp(—mx”rz) =0

Cancelling common terms and solving for ¢,,,,./T, we get

! ax _ (l)uz ©6)
T 27

Using this value in Eq. (5):

V(fay) = A(ﬁ)me"f’(‘%)

With v(f,,,x) = 1, it follows that

A= (2n)"2exp(1) = 41327

2

(b) The formula used to plot the spectrum of Fig. 5.23 is defined by the Fourier transform on the
right-hand side of Eq. (4), that is,

V(f) = —j2nfdexp(-nfT) (7
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Problem 6.1

The pulse shape p(¢) of a baseband binary PAM system is defined by
. t

(1) = sIinc| —

p() = sine( -

where T}, is the bit duration of the input binary data. The amplitude levels at the pulse generator

output are +1 V or -1 V, depending on whether the binary symbol at the input is 1 or 0,

respectively. Sketch the waveform at the output of the receiving filter in response to the input data
001101001,

Solution

For the input data sequence 001101001, the waveform at the output receiving filter consists of the
positive sinc pulse +sinc(#/T},) every time symbol 1 is transmitted and the negative sinc pulse
-sinc(t/T}) every time symbol 0 is transmitted. Moreover, there will be no intersymbol
interference present in this waveform because the sinc pulse for a particularly symbol goes
through zero whenever another symbol is transmitted.
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Problem 6.2
Show that for positive frequencies, the area under the normalized raised-cosine curve of

P(f)/(JE/2 B,) versus f/B is equal to unity for all values of the roll-off factor in the range
0 <o < 1. A similar statement holds for negative frequencies.

Solution

For o = 0,the normalized raised-cosine curve reduces to the idealized Nyquist channel, for which
the area under this curve for the frequencies is immediately seen to be unity. For nonzero values
of o in the range 0 < o < 1, the raised-cosine curve is odd-symmetric about the value

P(_{')/(ﬁ2BU) = (.5. Consequently, the area under this normalized curve remains equal to
unity for positive frequencies.
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Problem 6.3
Given that P(f) is the Fourier transform of a pulse-like function p(f), we may state the following

theorem: !

The pulse p(r) decreases asymptotically with time as Vi provided that the following two
conditions hold:
1. The first k-1 derivatives of the Fourier transform P(f) with respect to frequency f are all
continuous.
2. The kth derivative of P(f) is discontinuous.
Demonstrate the validity of this theorem for the three different values of o plotted in Fig. 6.3(a).

Solution
Consider first the idealized Nyquist channel for which o = (0. With the brick-wall characteristic of
this limiting case, it is immediately apparent that the Fourier transform P(f) has no continuous
derivatives with respect to f. Hence, according to the theorem, the inverse Fourier transform p(f)
decreases asymptotically as 1/|¢]; this is confirmed by the formula of Eq. (6.14), where the
numerator ranges between -1 and +1, whereas the denominator is proportional to /.

Consider next the case of a raised-cosine pulse p(r) defined in Eq. (6.19), rewritten here as

sin(2nB,¢)( cos(2moB 1)
p(t) = JE 5 B:l ( > 22
TEol \1-160 Byt

In this case, we readily see that p(7) decreases asymptotically as 1/|¢]°, for 0 < o < 1. Examining
the two plots shown in Fig. 6.3(a), we see that the first derivative of P(f) for this range of values of
o is continuous, but the second derivative is discontinuous. Here again validity of the theorem is
established.

1. For a detailed discussion of this theorem, see Gitlin, Hayes and Weinstein (1992), p.258.
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Problem 6.4

Equation (6.17) defines the raised-cosine pulse spectrum P(f) as real-valued and therefore zero

delay. In practice, every transmission system experiences some finite delay. To accommodate this

practicality, we may associate with P(f) a linear phase characteristic over the frequency band
0<|f1=2By-£i-

(a) Show that this modification of P(f) introduces a finite delay into its inverse Fourier transform,
namely, the pulse shape p(7).

(b) According to Eq. (6.19), p(r) represents a non-causal time response. The delay introduced into
p(t) through the modification of P(f) has also a beneficial effect, tending to make p(r)
essentially causal. For this to happen however, the delay must not be less than a certain value
dependent on the roll-off factor o.. Suggest suitable values for the delay for o =0, 1/2, and 1.

Solution
(a) Let the linear phase characteristic appended to P(f) be
0(f) = 2xnft
where 1T is delay to be determined. Then, the modified raised-cosine pulse spectrum is defined
by
Plllonliﬁcd(-’(j il P{_f)(’ i
Jnft

il L4
Invoking the time-shifting property, we therefore have
pnmdiﬁed([] il 4 € it )
where p(f) is defined by Eq. (6.19).

(b) For piodifiea(t) to be causal, it has to be zero for £ < 0.
From Fig. 6.3(b) in the text, we deduce that we may essentially set
(1) t=S5sfora=0
(ii) t=3sfora=1/2
(iii) t=2.5s fora =1

Increasing o corresponds to increasing transmission bandwidth B, We therefore find that as
the transmission bandwidth By is increased, the necessary delay 1 is progressively reduced,
which is in accord with the inverse relationship that exists between behaviors of a function in
the time- and frequency-domains.

(c) The slope of 6(f) with respect to f'is
00(f) _
af
Hence,
(i) slope=-10x foro.=0
(i1) slope=-6n foro=1/2
(i11) slope = -5n for o= 1

2nT
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Problem 6.5
Starting with the formula of Eq. (6.24) and using the definition of Eq. (6.26), demonstrate the
property of Eq. (6.25).

Solution
Using f* = f—B, in Eq. (6.24), we may express the second line of Eq. (6.24) in the text for
positive frequencies

P.(f) = £{l + cos[

K{_f"’_ B(]__fllJ
4B, }

2(8(:__f|)
B[ T
43(] |+CO§[§+2(B”_.{])]
= £{I —sin[—ﬂ(‘m ]} for /1 =By< f"<0 (0

4B, 2(By= 1)
Similarly, we may express the third line of Eq. (6.24) as
JE | (( n(/) .
P,(f) = =—1sin [—D—l) for0< f"<B,- 2
From Egs. (1) and (2), we readily see that
P,(=f) = P,(f)

which is the desired property.
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Problem 6.6
Assume the following perfect conditions:
* The residual distortion in the data transmission system is zero.
* The pulse shaping is partitioned equally between the transmitter-channel combination
and the receiver.
» The transversal equalizer is infinitely long.

(a) Find the corresponding value of the equalizer’s transfer function in terms of infinite the overall
pulse spectrum P(f).

(b) For the roll-off factor oo = 1, demonstrate that a transversal equalizer of length 6 would
essentially satisfy the perfect condition found in part (a) of the problem.

Solution

(a) With the pulse-shaping shared equally between the transmit filter-channel combination and
receive filter, we may use an equalizer of transfer function P'(f) to realize the receive filter,
where P(f) is the raised cosine-pulse spectrum.

(b) For a roll-off factor o = 0, P(f) reduces to the idealized brick-wall function

JE .
P(f} _ Z—BU, for BU{“/ {B[]

0, otherwise

which defines the Nyquist channel. In light of the transfer function of the equalizer (used to
realize the receive filter) is defined by

£V4
. —, for By< f<B
P(f) = (230)1/‘ 0 0
0, otherwise

Correspondingly, the impulse response of the equalizer is required to pass through an infinite
number of time instants at 1 = £1/(28), £1/B,, £3/(2By),.... We may satisfy this idealized
requirement by using an equalizer of infinite length. Such an equalizer would have an infinite
number of adjustable parameters ... W, ..., W_,, W, W, ..., W, that can be used to
satisfy the zero-forcing basis of Eq. (6.43) of the text. In practice, however, the idealized
impulse response of the channel reduces effectively to zero at some large enough time f,
which, in turn, means that an equalizer of large enough length can be used to satisfy the
idealized Nyquist channel.

Note: In the first printing of the book, the following correction in the first line of part (b) of
Problem 6.6 should be made: - Roll-off factor o = 0.
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Problem 6.7

Since P(f) is an even real-valued function, its inverse Fourier transform may be simplified to the
formula

p(1) =2 j: P(f)cos 2nft)df (1)

The P(f) is itself defined by Eq. (6.17) which is reproduced here in the following form (ignoring
the scaling factor JE for convenience of presentation)

1 | .
2 0 !
P(f) =19 1 n(lA1=11) . : (2)
- + - _
3 n{] COS[ZBU—Zfl] , 1</ <2B,-f,
. 0, [f1>2By~ 1,
Hence, using Eq. (2) in (1) and recognizing that oo = (B, - f)/B,, we may write

"= cosanar

g .’Bu'.f.l
+— + cos
p(t Bn'[ cos(2nft)df 280 [l co&{ 2By

= [Si“(zﬂ?ﬂ')]_'_ [Sin{Z:r;,ﬁr):rBu--_f'.

2n Bt 4nByr 1y
2By 1 (f=1fD) 2B, 1
. o m(f=f)) . ( . T - .)
2nft + ————— sin| 21ft — —————
% 0 Sll‘l( i 28,00 ) +% / 2B
2ni+n/2Bga |, O 2mt+m/2By0 ,
- 4nB,t 4n Bt
| sin(2nf 1) + sin[2rt(2B, - /)] N sin(2rf 1)+ sin[2nt(2B, - f1)]
4B, 2nt—n/2B,0 2nt—1n/2B,0.
N . . Tl
= B—I_sm(2n]|!)+sm[2m{2B(, foll 5 -
0 ‘”‘V’ (2m1)’ - (n/2By0)°
1. . —“/(2800‘)2
= B—[sm(ZJtBU.f)cos(Z:n:(xBu)] 5 5
0 4nt[(2nt)” —n/(2B,0)" ]
= sinc(ZBt,r}cos(znaB(,r)[%] (3)
- 160 B,

Equation (3) is a reproduction of Eq. (6.19), except for the scaling factor //E which we ignored in
Eq. (2) for convenience of presentation.
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Problem 6.8

Starting with Eq. (3) in the solution to Problem 6.7, reproduced here for 0 <o < I:

) cos(2moB )

p(t) = sinc(2Byt)| ————
1 —160" Bt

For o = 1, this formula reduces to

, cos(2mB 1)
p(t) = sinc(2Byt)| ———~ (D
| - 1682

Next, using the trigonometric identity
sin(A4)cos(A) = %sin(ZA)

and the definition of the sinc function
sin(7x)

X
we may go on to write

sinc(x) =

sin(2nBr)cos(2nB 1)
2Bt
sin(4nBt)
T[)’Uf
sinc(4B,1) (2)
Accordingly, using Eq. (2) in (1), we get
sinc(4B1)

1- 1681

sinc(2Bt)cos(2nByt) =

pt) =

which is the desired result, except for the scaling factor JE
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Problem 6.9

The bandwidth B of a raised cosine pulse spectrum is 25y, - f, where By = 1/27}, and f} = By(1 - a).
Thus B = B(1 + o). For a data rate of 56 kilobits per second, By = 28 kHz.

(a) oo = 0.25,

B =28 kHzx 1.25=35kHz
(b)y x=0.5,

B =28kHzx 1.5=42kHz
(c) =0.75,

B =28x1.75=49kHz
(d) o= 1.0,

B = 28x2=56kHz
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Problem 6.10

The raised cosine pulse bandwidth By = 2B, - f;, where B, = 1/2T},. For this channel, By =75 kHz.
For the given bit duration, B, = 50 kHz. Then,

h = 2By-By
= 25kHz

o = 1-£/By
=05

The design parameters of the required raised-cosine pulse spectrum are f; =25 kHz and 0. = 0.5.
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Problem 6.11

The transmission bandwidth By is related to the excess bandwidth £, by the formula (see Egs.
(6.21) and (6.22))

Br = By+/,

where By = 1/(27};). We may therefore express the bit rate 1/7}, as a function of the excess
bandwidth £, as follows:

1 :

7 - 2Br—1,) (1)

b

From Eq. (1), we see that the bit rate 1/7}, decreases linearly with the excess bandwidth f,, for a
fixed channel bandwidth B Specifically, with By = 3 kHz, the bit rate versus excess bandwidth
graph takes the form shown in Fig. 1. Note that the excess bandwidth £, attains its largest value
when the roll-off factor o equals unity, in which case f,, = 3 kHz.

Bit rate
1Ty,
(kilobits/'s)

[ )

1 o1 2 3
FlgUI'e l Excess bandwidth, f, (kHz)
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Problem 6.12

We are given the following specifications:

B, =3 kHz
1 45 Kilobits/s
Th

(a) The transmission bandwidth is related to the roll-off factor by the formula (see Eq. (6.21))

By = By(l1+a) (1)
where
B, = 1/(2T})
Therefore, with (1/7},) = 4.5 kilobits/s, we have
B, = 2.25 kHz
Hence, solving Eq. (1) for the roll-off factor, we get
a = o—_ —
B(l
225
— l
3
(b) The excess bandwidth is defined (see Eq. (6.22))
S, = 0B,
- % x2.25
= (.75 kHz

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only
to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that

STU ngnﬂiftidéngﬂijrél.oé (ojrrlr(_)]S of the 1976 United States Copyright Act without the permission OUE) Tgﬁﬁﬁe OHHE? 1:1n féll ak O bal d



Problem 6.13

According to Eq. (6.30), the pulse-shaping criterion for zero-intersymbol interference is
embodied in the relation

Z P(j'—?) = constant (1)

where P(f) is pulse-shaping spectrum and 1/7is the signaling rate.

(a) The pulse-shaping spectrum of Fig. 6.13(a) is defined by

JE/(2B”) for f=0

R TIAY : @)
28!,( B()) for 0<f<B,
0 for f =B,

Substituting Eq. (2) into (1) leads to the following condition on the signaling rate

1By
T 2

or, equivalently,

B, =2/T (3)

(b) The pulse-shaping spectrum of Fig. 6.12(b) is defined by

JE/(2By) for 0<|f] < [,

Py =14 JE(,_ =7 e f )
230(1 BI}_-fI) for /', <f<B,

0 for /> B,

Substituting Eq. (3) into (1) leads to the following condition on the signaling rate
1 1

? = E(f| + B(])

Equivalently, for a given £}, we require that

By =21, 5)

(c) Among the four pulse-shaping spectra described in Figs. 6.2(a), 6.3(a), 6.12(a) and 6.12(b) the
prescriptions defined in Fig. 6.3(a) corresponding to the roll-oftf factor o = 1/2 and ot = | are
the preferred choices in practice for the following reasons:

»  Mathematical simplicity and therefore relative ease of practical realization.
* Improved signaling rate compared to the prescriptions described in Fig.s 6.12(c) and
6.12(b).
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Problem 6.14

The transmission bandwidth is maintained at the value
By = 3 kHz

In using an 8-level PAM system, the signaling rate is raised to

(log,8) x (l) Ty = bit duration

|
5 T,

3x45
13.5 kilobits/s
However, the symbol rate is maintained at 4.5 x 10° symbols/s. Hence, as in Problem 6.12,

(a) The roll-off factor remains at oc = 1/3.
(b) The excess bandwidth remains at f,, = 0.75 kHz.
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Problem 6.15

The codeword consists of log,(128) = 7 bits. With an additional bit added for synchronization, the

overall codeword consists of 8 bits. The method of data transmission is quaternary (i.e., 4-level)
PAM, and the roll-off factor oo = 1.

(a) For binary PAM, the signaling rate is defined by (see Eqs. (6.13) and (6.21))

1 2B
7, 1 +; S
For oo =1 and By= 13 kHz, the use of Eq. (1) yields
1 _2x13

T, 1+1

= 13 kilobits/s

The signaling rate of the quaternary PAM system is therefore

1 log,4
T T,

= 2x 13 kilosymbols/s

(b) Each element of the overall codeword of the PCM signal must fit into the bit duration

T, = %seconds
13 x 10
=77 us
With each code-word consisting of 8 bits, the code-word occupies the duration
r,=28T,

=8x77 = 616 us
The sampling rate applied to the analog signal is therefore
1

f\ = ?\
6
_ 10
" 516
= 162 kHz
The highest frequency component of the analog signal is therefore
W = % = 81 kHz
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Problem 6.16
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Problem 6.17

Problem: 6.17{a)~- Bit Rate,Rb= 1Hz, Nyq. freq.,.Bo = 0.5Hz

100 T T T T
g0t f\ 4
60} [ f 1 [ E
ol [ | 7} |
20t { A .
g o ~ e
_20 L -
_40 4
_60 b -
_80 - —
-100 . . . I
0 1 2 3 4 5 &
time,s
Problem (6.17(b))- Eye Diagram
100 T T '
80r
60
40F
o 20
0
c
a o—=
4
® -2
-40
=60
-80
=100 g . m
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Problem 6.18

(a) The impulse response of the data-transmission system is defined by (see Fig. 1)
¢, = 10.0,0.15,0.68,-0.22, 0.08 }
Using a three-tap transversal filter for zero-forcing equalization, we write in accordance with

Eq. (6.43):
0.68 0.15 0.0 || 0
-0.22  0.68 0.15]| wy| = |1 (1)
0.08 -0.22 0.68 W) 0

In Eq. (1), we have set J/JE = 1 to simplify the presentation. Solving this simultaneous
system of three equations, we obtain the tap-weight (parameter) vector,

, B I
Wi 0.68 0.15 0.0 0
w = 1wyl T [-022 068 0.15 1
W, | 0.08 —0.22 0.68] [0
[-0.2825
= | 1.2805 (2)
| 0.4475
Impulse
response { () 68
c(r)
0.15
[ T 0.08
27 -T 0 l 2T time t = nT
-0.22
Figure 1

Continued on next slide
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Problem 6-18 continued

(b) The residual intersymbol interference produced at the equalizer output is given by
Z = CW (3)

0.15 0.0 0.0
0.68 015 0.0
¢=1-022 068 0.5 4)
0.08 -0.22 0.68
0.0 0.08 -0.22]
Therefore, using Egs. (4) and (2) in (3), we get the residual interference vector

—-0.0424
0
z = | (5)
0
| 0.004

(c) From Eq. (5), we see that the largest contribution to the residual interference is
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Problem 6.19

In this problem, the transversal zero-forcing equalizer has five adjustable weights. As in Problem
6.18, the unequalized impulse response is defined by
c, = {0.0,0.15,0.68,-0.22, 0.08 }

Accordingly, application of Eq. (6.43) yields (again setting /E = 1 to simplify the presentation)

068 015 00 00 00f|"™2 o
-022  0.68 0.15 0.0 0.0]]|"-1 0
0.08 —-022 0.68 0.15 00]|wy| = [1 ()
0.0 0.08 —-0.22 0.68 0.15 W, 0
| 0.0 0.0 0.08 -0.22 0.68],, | 0]
[ w
Solving this system of five simultaneous equations for the tap-weight vector, we get
—0.0581
—-0.2635
w = | 12800 2)
0.4465
|—0.0061]

Comparing Eq. (1) of this problem with Eq. (1) of the previous problem, we see some basic

differences and therefore consequences:

(1) Unlike Problem 6.18, the 5-by-5 metric ¢ in Eq. (1) has a row (namely, the third row)
which completely describes the unequalized impulse response of the data-transmission
system.

(i)  As a consequence of point (i), the 5-by-1 parameter vector w produces complete
equalization of the system; that is, unlike Problem 6.18, there is no residual intersymbol
interference left after equalization.

(iii)  The zero residual interference is the result of using a five-tap equalizer which has
sufficient degrees of freedom to force each element of the impulse response {c,} down to

the desired value of zero.
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Problem 6.20

(a) When the two-level sequence embodying

+1 if symbol b, is 1
a, = (1)
-1 if symbol b, is —I

is applied to the duobinary conversion filter, the sequence is converted into a three-level output
defined by
Cp = aptag, (2)
The three levels of ¢ are -2, 0, and +2. One effect of transforming Eq. (1) into Eq. (2) is to
produce correlated three-level sequence ¢ from an uncorrelated two-level sequence a;.

The overall transfer function of the duobinary conversion filter is therefore defined by
H(f) = Hyyquin())1+ exp(~j2n/ T )]

= Hyyquis(exp (S T) + exp(=jnf Tj)lexp(—jnf T))

= 2 [!Nyqum (f) cos {ﬂl{ Th) exp (_;”1:){ Th) (3}
For an ideal Nyquist channel, B, = 1/2T},. Ignoring the scaling factor 1/T},, we may therefore
write

. 1, 1<1/2T,
‘”Nyquixl(-f} = { lfl ! (4}
0, otherwise
Substituting Eq. (4) into (3), we obtain
. . | <
HOP) = { 2cos(nf Ty)exp(—jnfTy). |f1<1/2T, )
0, otherwise

(b) From the first line of Eq. (3) and the defining Eq. (4), we find that the impulse response of the
duobinary conversion filter is

sin(mt/T) N sin[rn(t=T,)/T,]

h(t) =
"0 = T x(-1,/T,
B sin(mt/Ty) . sin[(nt/T,)—m]

_sin(nt/Ty)  sin(ne/T,)
nt/T, n(t-T,)/T,

 Tysin(mt/T))

(T, —1) ©

(¢) The original sequence may be detected from the duobinary-coded sequence using decision
feedback, as shown by

A major drawback of this detection rule is that for the current detection @, to be correct, the

previous detection @,_; has to be correct. If this requirement is not satisfied, we have error

propagation.
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Problem 6.21

To overcome the error-propagation problem experienced in Problem 6.20, we use precoding
before the duobinary coding, as shown in Fig. 6.14. The precoder is defined by

d, = b,®d,_ (H

where the symbol @ denotes modulo-two addition (i.e., EXCLUSIVE OR) According to Eq. (1),
we have

d, = { symbol 1 if either b, or d, is 1
symbol 0  otherwise

As before, the pulse-amplitude modulator output is therefore defined by a; = £1. Applying this

sequence to the duobinary conversion filter, we get

cp = aptag, (2)

Note that unlike the linear operation of duobinary coding of Eq. (2), the precoding of Eq. (1) is
nonlinear,
The combined use of Egs. (1) and (2) yields

0 if the original data symbol b, is 1
2 if b, is 0

Ck =

(3)

From Eq. (3), we therefore deduce the following decision rule for detecting the original data
sequence by from ¢y, as follows:
If el <1, say symbol by is 1
If e/ > 1, say symbol by is (4)
which can be realized by using a rectifier followed by a threshold device.

The solutions to parts (a), (b) and (c) of the problem in response to the input sequence
0010110 are presented in Table 1.

Table 1: Illustrating Example 3 on Duobinary Coding

Binary sequence {0y} o o 1 0 1 1 0
Precoded sequence {d} 1 | | 0 0 | 0 0
Two-level sequence {a;} +1 +1 +2 -1 -1 41 -1 -l
Duobinary coder output {c} +2 +2 0 -2 0 0 -2
Binary sequence obtained by applying 0O 0 1 0 1 1 0

decision rule of Eq. (7.76)
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Problem 6.22

(a) For the modified duobinary conversion filter shown in Fig. 6.15, we have
Cp = ap—d;, (1)
Here again, we find that a three-level sequence is generated. Specifically, for a; = £1, we find
from Eq. (1) that ¢; has three possible values: 2, 0, +2.

The overall transfer function of the modified duobinary conversion filter shown i Fig. 6.15
is therefore given by

H(f) = Hyyquia(/)1 = exp(-j4Tf T})]
= Hyyquin( L eXp (2T T,) — exp(=j2nf T ;) lexp(—j2nf T,)

= 2,jHN)'quisl(,fl) sm{anT;,J exp(_jﬂ,fTbJ (2)
With
. 1 fi 1<1/2T
Hyyquis(f) = { or Il ’ 3)
0  otherwise
we may therefore express H(f) as
Hf) = { 2jsin(2nf T,)exp(-j2nfT,) for |f]<1/2T, @
0 elsewhere

which is the form of a half-cycle sine function.

(b) The corresponding impulse response of the modified duobinary conversion filter follows from
the first line of Eq. (2); specifically,
sin(nt/T,) sin[n(t—2T,)/T,]

h(r) =

nt/T, n(-2T,)/T,
B sin(nt/T,) sin[n(t/T))—2m]
- m/T,  w(t-2T,)/T,

B sin(nt/T ) sin[nt/Tp]
- T mt/T, w®(t-2T,)/T,

 2Tjsin(nt/T)) .
2T, -1) )

(c) With the precoder in place at the front end of the modified duobinary conversion filter as
shown in Fig. 6.15, we have

d, = b, ®d,, (6)
where by is the incoming binary sequence and dj is the precoder output.

Assuming the use of a polar representation for the precoded sequence dj, we find that the
original data sequence b; may be detected from the encoded sequence ¢ by disregarding the
polarity; specifically,

Ifjeg] > 1, say symbol by is |
If |l <1, say symbol by is 0 (7

Continued on next slide
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Problem 6-22 continued

(d) The virtues of modified duobinary coding are two-fold:
» In the absence of channel noise, the detected binary sequence by is exactly the same as the

original data sequence by this statement also applies to the duobinary coding with
precoding.

* The use of Eq. (6) requires the addition of two extra bits to the precoded sequence by, in

accordance with Eq. (6). The composition of the decoded sequence f);,- using Eq. (7) is
invariant to the selection made for these two additional bits.

Z
)
=+
3

In the first printing of the book, the delay element of the precoder in Fig. 6.15 should read
2T}, to be consistent with Eq. 7.
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Problem 6.23

From Eq. (4) in the solution to Problem 6.22 we see that the transfer function of the modified

duobinary conversion filter (shown in Fig. 6.15) is zero at /= (. Hence, unlike the ordinary

duobinary conversion filter, the modified duobinary conversion filter can be used to handle single-

sideband transmission of data.
Specifically, Fig. 1(a) depicts the proposed data transmission system. The transmitter consists

of two functional blocks:

* Modified duobinary conversion filter, which transforms the incoming binary data into a new
format whose spectrum has low-frequency content around the origin.

* Single sideband modulator, which upconverts the transformed data to the desired band
occupied by the lower or upper sideband of the modulated wave.

Correspondingly, the receiver consists of two functional blocks (see Fig. 1(b))

»  Single sideband demodulator.

* Detector, consisting of a rectifier followed by decision device, for recovering the original
binary data stream.

X Modified -
Binary duobinary Single Modulated
data = Lonversion sideband  —— wave applied
filter modulator to the channel
(a) Transmitter
|
Channel Single | o Dexcision | Estimate
outpu sideband pi Rectifier [ device > of original
demodulator 1™ binary
L — — — Y g daa
(b) Receiver

Figure 1
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Problem 7.1
Invoking the band-pass assumption, show that

T,
J sin(2nf t)cos(2mf 1)dif =0
0

regardless of how the bit duration 77, is exactly related to f_. so long as f. >> |/T},

Solution
Let

I(T,) = j;r sin(2m f t)cos (21 f 1) d
Using the trigonomefric identity
sin(A)cos(A4) %sin(llA)

we may express /(7)) as

LT :
I(T,) = Ejn sin (47 f .1)dt

T
=0

11
2 4nf,
R S . B
— 8?1_}‘}.“05(4?.5'}“'?‘!)} 1]

cos{4ﬂ:_}"{,r)|

Solongas f > TL . we may set cos(4nf T,)= 1, in which case, /(T ) = 0. thereby obtaining
b

the desired result.
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Problem 7.2
Show that Eq. (7.8) is invariant with respect to the carrier phase ¢,. (i.e., it holds for all ¢,.).

Solution

Assuming a carrier phase ¢, the carrier is itself written as cos(2rn f f+¢_.). Then Eq. (7.7)
modifies to

r.f- 2

E, = s()"dt

p =], bl

}

1 (T 2, 1T 2 .
— | b +=| |b()| cos(4nf +20¢ )dt
7] 1OF + 7] 1D cos(4mf 1+ 20, )

where we have made use of the trigonometric identity

coszﬁ - %(COS(ZB))

Hence, with |r*)(.f)|2 remaining essentially constant over one complete cycle of cos(4mf 1 +20,.),

we have
T, )

_[ |b(0)|"cos(4n f t+ ¢ )dt =0 forall .
0

Correspondingly, we may write

T, 2
E, j |b(1)|” for all o,
’ 0
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Problem 7.3

Although QPSK and OQPSK signals have different waveforms, their magnitude spectra are iden-
tical; but their phase spectra differ by a nonlinear phase component. Justify the validity of this
two-fold statement.

Solution
In QPSK, the modulated signal is defined by (see Eq. (7115))

.s-QPSK[I) Ecos [(Zf— IJE] cos(2mf 1) - Esin [{2:‘— IJE] sin(2mf 1) (n

where 0 =< 7 < T the index 7 = 1,2,3.,4, depending on which particular dibit is sent. For a specific
index i, the in-phase component of Sgpg (7) is therefore

f21:' . n :
Sy QPSK(” = ?cos [{21 l)c_l] s 0=<t=T (2a)
and its quadrature component is

IZE . . n
So. Q|’SK.(") = Tsm [(2: [)Z] , 0<t=T (2b)

In OQPSK. the in-phase component is left intact but the quadrature component is delayed by 77/2
(half symbol period). Accordingly, for the same index / in QPSK, we may express the in-phase

component of OQPSK as
$7.00psk(1) = F?ECOSI:{ZE l)g], 0<r<T (3a)
and its quadrature component as
2F . . i T 3
S0, 00psk (1) = ‘TSH’II:(QI 1)3], SSIS3T (3b)

Let b/(f) denote a rectangular pulse of duration T representing the in-phase component of the
QPSK signal and b,(f) denote the corresponding quadrature component. Then, in light of Eqs.
(2) and (3). we may express the complex envelope of QPSK as

‘EQPSK(” h,f('()—}—jhg(”n UﬁfiT (4)
and

~ A T ) )
\UQPSK(!“} = J’)‘;(I}“F}’J‘)Q(.{—E), OSI!‘ET ())

Applying the Fourier transform to Eqs. (4) and (5), we correspondingly have

Continued on next slide
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Problem 7-3 continued
Sopsk () = B (f)+jBy([) (6)
and
Sogpsk (S) = B, (f)+ jBo(f)exp(—jn/T)
= B;(‘f'}+_;'BQ{_,{'}[COS(Tl;fT)jSin(T[fT)]

[B;(/)Bo([)sin(mfT)] + jBo([f)cos(n/T) (7)
From Eqs. (6) and (7), it therefore follows that for the QPSK
Borsk (N = BI() +By(f) (8a)
and
. _ =B, f)
arg[.\-QPSK(‘{}] tan (Bf{./')) (8b)

Similarly, for the OQPSK
Soopsk () = [B/(f) = Bysin(mfo)l* + [By(f)cos(mfT)]’

= Bi(/)+ By(f) = 2B,(/)By([)sin(m/T) (%)
and

By,(f)cos(nfT) } (9b)

B,(f)—=Bgsin(n/T)

-1
arg[Soopsk (/)] = tan I:
For a square wave input, we typically find that the cross-product term 2B/(f)Bo(f)sin(r/T) is small
compared to the composite term Bi(_{') + Bi,(f). Accordingly, from Eqs. (8a) and (9a), it fol-

lows that for all practical purposes, the magnitude spectra |Sopsi (/)| and |Soopsi ()] are

identical. In direct conftrast, however, from Eqs. (8b) and (9b), we find that the corresponding
phase spectra are not only different but the difference between them is a nonlinear function of
frequency f.

Note: In the problem statement, the following correction should be made:
The term “linear phase component™ is replaced by “nonlinear phase component™.
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Problem 7.4
Show that the modulation process involved in generating Sunde’s BFSK is nonlinear.

Solution

Let

S =S %Th" for symbol 1
and

. . 1 .
[y = f.+=——. forsymbol 0
2 27,

?
where f. is the unmodulated carrier frequency. We may therefore express the instantaneous fre-
quency of Sunde’s BFSK signal as

Jit) = fotks— 0=r=T, (1)

2Th

where

k= { +1 for symbol 1
-1 for symbol 0
Correspondingly, we may define the BFSK signal itself as

2FE, i
s(t) = |——-cos[2nf (]

I, “
'21'5; Tk

= |2 +
T LOb(zTEf 1 Tbi‘)
2E, ) 5 Ttk

= " Tt I —1
T, cos(2mf )cm sm( nf )sm(}_b )
’2F;, ;

= [|=—cos(2nf, t)n.oa s]n{Zﬂf r)‘;m( r) (2)
Th Tb

Recognizing that

cos(—A4) = cosA

and

sin(—A4) = —sinA

we may rewrite Eq. (2) in the new form

where 0 < 1 < T}, the minus sign corresponds to symbol 0 and the plus sign corresponds to sym-
bol 1. Equation (3) reveals the following two characteristics of Sunde’s BFSK:

(1) The in-phase component of s(f) is independent of the incoming binary data stream.

(1) The incoming binary data stream only affects the quadrature component.

It is because of property (ii) that we may go on to state that Sunde’s BFSK is nonlinear.
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Problem 7.5
To summarize matters, we may say that MSK is an OQPSK where the symbols in the in-phase

and quadrature components (on a dibit-by-dibit basis) are weighted by the basic pulse function

. i[73 [ 1
() = sin| — |rect] — — =
pln = s (2;5,) o (2r,, 2)
where T}, is the bit duration, and rect(f) is the rectangular function of unit duration and unit
amplitude. Justify this summary.

Solution

With £, — 4_11’; it follows that
1)

. . i . t 1
cos(2mfyt) = cos(mt/2T,) sm[{nr/z T,)+ 5] sm(n(ﬁ + E))

and

sin(2w fyf) = sin(nt/27T,)

Following Eqgs. (7.29) and (7.30), we next note that the binary waves a,(f) and a,(f), constituting
the MSK signal, are extracted from the incoming binary data stream through demultiplexing and
offsetting in a manner similar to OQPSK. Since (/) and a,(f) are themselves weighted by the
sinusoidal functions cos(2m/yf) and sin (2mf,f), we may go on to state that the in-phase and
quadrature components of the MSK signal are weighted (on a dibit-by-dibit basis) by the basic
pulse function
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Problem 7.6

The sequence 11011100 is applied to an MSK modulator. Assuming that the angle 8(7) of the
MSK signal is zero at time ¢ = 0, plot the trellis diagram that displays the evolution of 68(¢) over
the eight binary symbols of the input sequence.

Solution
Evolution of the phase 6(r) of the MSK signal produced by the sequence 11011100 is displayed
in Fig. 1.

Figure 1
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Problem 7.7
The process of angle modulation involved in the generation of an MSK signal is linear. Justify this

assertion.

Solution

We first recognize from Problem 7.5 that MSK is an OQPSK signal with only a basic difference:

(i) In OQPSK, the weighting applied to the in-phase and quadrature components of the
modulated signal (on a dibit-by-dibit basis) is in the form of a rectangular function. On the
other hand, in MSK, the corresponding weighting functions are sinusoidal.

(ii) The OQPSK is the result of a linear modulation process.

In light of these two points, we may therefore state that the angle modulation process involved in

generating MSK is a linear process.

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only
to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that

STU ngnﬂift?déngﬂijrélloé (())rrlr(_)]S of the 1976 United States Copyright Act without the permission OUE) rgﬁl&ﬁe OHHE? unmféll ak O bal d



Problem 7.8
A simple way of demodulating an MSK signal is to use a frequency discriminator, which was

discussed in Chapter 4 on angle modulation. Justify this use and specity the linear input-output
characteristic of the discriminator.

Solution
The MSK signal is basically an FSK signal, as shown by

2E, :
s(t) = ?cosmn‘/(..’ +0(1))
b

where
L
0(r) = t—
(7) 37,
The plus sign corresponds to symbol 1 and the minus sign corresponds to symbol 0.
We may therefore demodulate s(f) by using a frequency discriminator whose input-output
characteristic is described in Fig. 1

Output
voltage
I
v + input frequency f
L e e L
. k 4?',,/'& AT
Figure 1
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Problem 7.9
Starting with Eq. (7.41), prove the orthogonality property of Eq. (7.42) that characterizes M-ary
FSK.

Solution
From Eq. (7.41), we have

’ 7 i=0,1,.. M-
s, (1) = %cos[%{n+f‘]r] Ogré r )

Applying Eq. (7.42), we therefore have

r 2F (T T , I ,
j{, .s,.(r).\_;.(r)(ﬂ = TJ{} t,osl:?_{n t r}r]uos[?_(n } ‘,r):‘:lr.’r

Efd| I L . .
T“{LOSI:?[.ZH'FI"‘_}}.{I'FLOSI:T[I _;)r]}dr (1)

Let the integer k=2n +i+j,and i - j=/for i# j. We may then rewrite Eq. (1) as

r E T b b
j{] .s,-(f).\_),—(f)(ﬂ = F_J{}{LOS(}A() i Los(?fr)}dr

ETT . (m r . (n. 1"
—- = 4+ = _
T[!\'n sm( T!\f) I sm( TH)]F.}

0 for all integer k and /
which is the desired result.
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Problem 7.10
Justify Eqs. (7.47) and (7.49).

Solution
Starting with Eq. (7.47), we write

2 Iy 2 :
S| T—#JLT;, J-“ cos (2w f t)dt

] Ty 2 :
= ﬁJE_hj“ [cos (4T f 1) + 1]dt (1

For f. = n/T}, for some integer n, Eq. (1) takes the form

S J_b Ju [ 0\(4]-{:? ] f I]r.’!

‘Th

E,r T T,
_ «/_h[_hsin(élm:r)Jrr]

- T_h 4nn T,

= E[i sin(4nmn) + T :| n integer
Th 4 bl s

JE,

Similarly, for symbol 0, we have

$2 _«/E_h

0
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Problem 7.11

(a) The transmission bandwidth of the BASK signal is effectively defined by

2
B, = =
Th
where T, is the bit duration. With 7}, = I us, we therefore have
By = i{‘ Hz
10
= 2 MHz
(b)
Problem (7.11)-Synchronized ASK
1 T T T T T T -
0.5 B
-D.S =
-1 1 L 1 L 1 L -
Figlll‘e 1 0 1 2 3 4|'|mel| 5 (] 7 8

In the waveform plotted in Fig. 1, time # is measured in microseconds.
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Problem 7.12

Problem (7.12)-Asynchronized ASK
1F T T T T T T T

=1B 1 1 1 1 1 1 1
0 1 2 3 4 S G 7 ]
time,t

Figure 1, where time 7 is measured in microseconds

Comparing the BASK waveform plotted in Fig. | of this solution with that of the BASK signal
considered in Problem 7.11, we see that continuity in time is not maintained in Fig. 1 of the
solution to Problem 7.12, when a succession of s is transmitted.
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Problem 7.13

(a)

(b)

Notes:
(1)
(ii)

(iii)

Predlem (7.13a)-Synchranized PSK

ozt

time L

Figure 1

Problem {7,130 -Asynchronized PSK

timet

Figure 2

In both Figures | and 2, time 7 is measured in microseconds.

For clarity of presentation, the carrier frequency in both figures has been scaled down
from 7 MHZ to 1| MHZ.

In Fig. | of the solution, there is synchronism between the carrier phase and the times at
which the incoming data switch for symbol 1 or 0 or vice versa. No such synchronism
exists in Fig. 2.
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Problem 7.14

(a) The transmission bandwidth of the QPSK signal is
2 2 1
T 21, T,
where T is the symbol (dibit) duration and 7}, is the bit duration. With 7}, = lus, it follows
therefore that
|

By

B;,- = _—6 Hz
10
=1 MHz
(b)
Prablem (7.14)—- QPSK-For Gray Coding

o v} 1 2 3 4 5 G 7 &

Figure 1 time.t
Notes:
(1) Time 7 in Fig. | is measured in microseconds.
(i1) For clarify of presentation, we have plotted the QPSK waveform using a carrier of 1

MHz instead of 6 MHz.
(iii) ~ Synchronism between the timing waveform representing the incoming binary data
stream and the clock responsible for generating the carrier is assumed.
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Problem 7.15

(a) The transmission bandwidth of OQPSK is exactly the same as that of QPSK, which, for the
problem at hand, is | MHz.

(b)

Problem (7.15)-0QPSK
T T T

s(t)

Figure | time,t

In plotting the OQPSK waveform in Fig. |, we have followed the same notes made in the
solution to Problem 7.14 on QPSK.
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Problem 7.16

(a) The transmission bandwidth of Sunde’s BFSK is greater than that of the corresponding BPSK.
This means that for the problem at hand, it will be greater than 1 MHz. In particular,
examining the spectrum shown in Fig. 7.12, we see that the main lobe occupies a bandwidth
of 3 Hz for the bit duration T}, = Is. Therefore, scaling this result for 7j, = 1us, we may say that
the corresponding transmission bandwidth is
By =3 MHz

which is 50% greater than that of the corresponding BPSK.

(b)

Problem (7.16)- BFSK

T T T T T T T T

i1

0.6 B

0.4 | 4

0.2 b

sit)
o
.

-0.2 9

0.4 8

-0.6H 4

Figure 1 b

Notes:
In plotting the BFSK waveform in Fig. 1, we have followed the same notes outlined in the
solution to Problem 7.14.
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Problem 7.17

(a) Examining the continuous phase FSK waveform plotted in Fig. 7.1(c), we observe the
following two points (assuming that time 7 is measured in seconds):
(i) The carrier for symbol 00 occupies 3 complete cycles. Therefore,
. 1
= = 15 Hz
/2 (2 seconds)/(3 cycles)
(ii) The carrier for symbol 11 occupies 5 complete cycles. Therefore,

. 1
5
/i (2 seconds)/(5 cycles) 2.5 Hz

Hence, the frequency excursion is

Sf = f1- />
=25-15=1 Hz

(b) The frequency parameter f, is defined by (see Eq. (7.34))
L
4T,

S L 0.25 MHz

4x1 us

fo =
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Problem 7.18

Problem (7.18)-MSK

aI[I)
1
Lo

e 1+ 2 3 4 & & T 8 8
-4k "WV -, YY" TwT T, WY, 4
@ % 2 3 44 & & T 8 9

Figure 1 timet

In plotting the MSK waveform and its constituents shown in Fig. 1, the following two points

should be noted:

(i) Time 7 is measured in microseconds.

(ii) Synchronism is assumed between the timing waveform responsible for generating the
incoming binary sequences (and therefore the constituent sequences 5,(f) and s,(7)) and the
clock responsible for generating the carrier.
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Problem 7.19

The bit duration is

T, = ;1 seconds
20 % 10°
50 us
The carrier frequency is
f. = 50 MHz

From Eq. (7.19), the frequency excursion is
oo
o = 37

- Hz=10 kiz

2x50%10°
From Eqs. (7.21) and (7.22), we have
: . of
o=
fi= 13
= 50 MHz+5 kHz
= 50.005 MHz
. _ . of
=1, 5
= 50 MHz 5 kHz

= 49.995 MHz

(a) The instantaneous frequency of the MSK signal is therefore

) = { 50.005 MHz  for symbol I
o 49.995 MHz for symbol 0

Specifically, f{(f) alternates between these two values.

(b) When the incoming data sequence consists of all 1s, we have
(1) = 50.005 MHz forall time ¢

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only
to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that

STU ngnﬂift?déngﬂijrélloé (())rrlr(_)]S of the 1976 United States Copyright Act without the permission OUE) rgﬁl&ﬁe OHHE? 1:1n féll ak O bal d



Problem 7.20

Extraction of the bit-timing may proceed as follows:
(1) Given the MSK signal s(7), a band-pass analyzer is used to extract the in-phase component
s/(f) and quadrature component s (7).
(i) From the first line of Eq. (7.31), and Eqs. (7.33) and (7.34), we have
. _ .\'Q(f] _ nt _
r(t) 50 —tan(z—rh) —tan(6(¢))

which depends on the bit duration 7}, alone.

(iii)  From Eq. (7.32), we recall that whenever two successive binary symbols in the original
data stream are the same, then 0(7) is negative and therefore the ratio #(7) is positive. On
the other hand, from Eq. (7.33), we recall that whenever two successive binary symbols
are different, then 6(/) is positive and therefore the ratio r(f) is negative,

Hence, by observing the zero-crossings of the waveform obtained from r(f) = [so(7)/s/D)], it

should be possible to extract the timing waveform,
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Problem 7.21

The envelope of BFSK is constant with time, whereas the envelope of BASK is variable.
Accordingly, the noncoherent receiver of Fig. 7.18 for BFSK offers the following practical
advantages over the noncoherent receiver of Fig. 7.17 for BASK:

(1) Reduced sensitivity to nonlinear transmission.

(i1) Improved performance in the presence of channel noise and interference.
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Problem 7.22

For the noncoherent receiver of Fig. 7.29 to offer an identical performance to the noncoherent

receiver of Fig. 7.18, the following conditions must be satisfied:

(1) The bit-timing circuitry of both receivers must be equally accurate.

(i)  The common bandwidth of the band-pass filter must occupy at the minimum the main
spectral lobe of the incoming BFSK signal. As such, a reasonably good choice for this
bandwidth is the reciprocal of 273, where 7}, is the bit duration.

(iii) ~ With one band-pass filtered centred on f; and the other centred on f5, the frequencies f;
and /> must be separated from each other by at least 1/(27}).

These three conditions do not guarantee the exact equivalence of the two noncoherent receivers of

Figs. 7.18 and 7.19, but, for all practical purposes, would assure identical performance.
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Problem 7.23

(a) The transmission bandwidth of DSK signal is the same as that of the corresponding BPSK.
Therefore, for a bit duration 7}, = Ius, the bandwidth is
2 +6

By F; 2x10  Hz = 2 MHz

(b) In plotting the DPSK waveform shown in Fig. 1, we have followed three points:

(1) Time / is measured in microseconds.
(ii) For clarity of presentation, a carrier frequency f,. = 1 MHz has been used in place of
f.=6MHz

(ii1))  Synchronism is assumed between the timing circuitry responsible for line encoding
the incoming binary data stream and the clock responsible for generating the carrier.

Problem (7.23)-DPSK-first reference bit = 1

s{t)

Figure 1 smed

(¢) Decoding in the receiver is first accomplished by multiplying the received signal by cos(2mf.r)
and then low-pass filtering. Next, the low-pass filter output is applied to a DPSK decoder.
Thus, starting with a reference bit 1 and assuming perfect transmission (i.e., zero channel
noise), the receiver output is the same as the original binary sequence, namely, 11100101.

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only
to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that

STU ngwtidéngﬂij]él.oé (ojrrlr(_)IS of the 1976 United States Copyright Act without the permission OUE) Tgﬁﬁﬁe OHHE? un féll ak O bal d



Problem 7.24

(a) The noiseless PSK signal is given by
s(t) = At.cos[znf(,r+kt,,n-.=(f}]
- A(,cu:-;(27tj'(,:‘]cos[kﬂm(’.’)] A(,sin(2Tl:l,!'(_!)sin[kpr.=1[!)]
Since m(t) = £1, it follows that
cos[kpm(.f]] - cos(ikp) = cos(’kp)
sin[kpu-r(!}] = sin{if\'p} = isin(kp) = m(r)sin(kp}
Therefore,
s(t) = A cos(k )cos(2nf 1) = A m(1)sin(k ,)sin(2nf 1) (1)
The VCO output is
r(t) = A sm[2nf (+0(1)]

The multiplier output in the phase-locked loop is therefore

F(1)s(1) %A(_Arcos(kf,){ Sin[0(7)] + sin[47 /1 +0(1)]}

- EIA(_A Jm(r)sin (kp){ cos(0(r)) + cos[4mf r+0(1)]}

The loop filter removes the double-frequency components, producing the output
1

e(t) = E/I(,Al_cos[kﬂ}sin[@{f}] ElA(_A\_m[:‘)sin[kP}coslﬂ(!]]

Note that if k, = 7/2, (i.e., the carrier is fully deviated), there would be no carrier component
for the PLL to track.
(b) Since the error signal tends to drive the loop into lock (i.e., 8(f) approaches zero), the loop
filter output reduces to
1 .
e(t) —EA(,A.\S]n[f\p}m{f)

which is proportional to the desired data signal m(r). Hence, the phase-locked loop may be
used to recover the original message m(r).
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Problem 7.25
(a) The correlation coefficient of the signals sq(7) and s (1) is

T,
J{] so(1)s, (1)dt

U{T st )cﬂ v U{T s )a‘r]
AEJ': cos[Zn(.f(&—éA_)")r]cos[Zn(_r'(_ - %A_{'H

1 2 I/Z] 4 1/2
I:E 1: T!J] |:§ 1(_ Th]

T,
- ij [cos(2mAft) + cos(4n f .1)]dt
Tlo

1/2

| [sin(2nAfT,) N sin(4n f . T,)
2n T;,I: Af 2f. ]

Since f. >> Af, then we may ignore the second term in Eq. (1), obtaining
Sin(2nAfT,) ) .
p= W = sinc(2ZAfT,)
(b) The dependence of p on Afis as shown in Fig. 1. The two signals s(f) and s,(f) are orthogonal
when p = 0. Therefore, the minimum value of Af for which they are orthogonal is 1/27,
so(7) and s5(7) are orthogonal when p = 0. Therefore, the minimum value of Affor which they
are orthogonal is 1/27},

Correlation 1.0
coefficient
p
L4 07
121, 2T, T,

\ x y A
4 ! e A '
Ty ' T, X T,

I 0216

Figure 1
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Problem 7.26

(a) The given binary FSK signal is defined by

2[,,
cos{ZTc)‘ t+0,) for symbol 0
(1)
’T cos(2mf,1+6,) for symbol I

Equation (1) may be expressed in the equivalent form

Spsk (1) =

Spe (D) = 5,(1) +5,(1) (2)
where
5, (1) = /T cos(2m /1 +6,) for symbol 0 3)
0 for symbol 1
and
0 for symbol 0
$,5(1) 2E, (4)
- cos(2mf,f+6,) for symbol 1
b

The digitally modulated signals s,(f) and s,(f) are recognized as two complementary BASK
signals, operating in parallel. In light of Eqs. (1) through (4), we may construct the two-
transmitter equivalence depicted in Fig. 1.

(a)
Rinary
data -
stream » BESK —» ()
bir)
(a)
BASK(1) f—» 5117}
Rinary
data » 0
stream
bit)
BASK(2) |— 5200)
Figure | (b)

Continued on next slide
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Problem 7-26 continued

(b)

Problem (7.26)- f1=2Hz & {2=1Hz for BFSK

T T T T T T T T

T |

=)
=
r
w
.
o
@
~
@
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Problem 7.27

From the description of minimum-shift keying presented in Section 7.4, we recall the following:
* The transmission of symbol 1 increases the phase of the MSK signal by m/2 radians.
* The transmission of symbol 0 decreases the phase of the MSK signal by m/2 radians.
Accordingly, we may justify the entries listed in Table 7.4 as follows:
(a) When 0(0) = 0, the transmission of symbol 0 yields

0(T,) = —n/2 radians
(b) When 6(0) = m radians, the transmission of symbol | yields

0(T,) = n+n/2 = 3n/2 radians

which, in modulo-2m arithmetic, is equivalent to

6(T,) = 3n/2-2n = —n/2 radians

(c) When 6(0) = r radians, the transmission of symbol 0 yields
0(T,) = n—(n/2) = +n/2 radians

(d) When 8(0) = 0, the transmission of symbol | yields
0(7,) = 0+n/2 = +1n/2 radians
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Problem 7.28

The idea of quadrature multiplexing rests on the following premise: Two signals can be
transmitted over a common channel, provided that two conditions are satisfied:
(1) The two signals are orthogonal to each other.
(i1) They both occupy the same bandwidth.
This principle is satisfied by quadriphase-shift keying (QPSK), as demonstrated next.
Consider the QPSK signal defined by

’%COS(QT[‘,"(_I], dibit 00
F—;sin((mf‘fr},) dibit 01

s(r) = (1)
[Ecosanf i+, dibit 11
_ ’ZTECOS{.ZR_)“CI—%TI), dibit 10

This signal can be decomposed into the sum of two BPSK signals, defined as follows:

ECOS[ZR_,‘"{}), dibit 00
s (1) = (2)
‘2—}:?(:05(211,!'(,! + 1), dibit 11
and
Esinun‘f'(l’}. dibit 01
5,5(1) (3)

- /l:sin(zn_f‘,wn). dibit 10

In light of Egs. (1) through (3), we may write

sty = 5,(1) +s5,(1) 4)
which means that s(¢) and s,(f) can be transmitted simultaneously on a common channel and be
detected separately at the receiver. This statement is justified on two accounts:

Continued on next slide
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Problem 7.28 continued

(i) Both s,(#) and s,(f) occupy exactly the same bandwidth, as their magnitude spectra are
identical.
(i1) They are orthogonal over the symbol period 7, as shown by

J'T.\'I(.f)s,(!) IJ:ms(an .'} f]sm(Zn{ 1ydrt
0 - 0

= -ET'_ sind(m f t)dt

which is zero by the band-pass assumption, provided that the carrier frequency /. is high
enough.
The assertion embodied in Eq. (4) holds for any clockwise or counterclockwise rotation of the
QPSK constellation defined in Eq. (1).
Consider next the 8-PSK defined by

’%cos(an}"(_!)‘ symbol 000
’ZE ., T
== + .
T cos(Zn:_ft.I 4) symbol 001
’%COS(ZRJ'J f g) symbol 101
’2Ecoq(2nf g E) symbol 111
, T 4 .
s'(1) = ()
/%005[211;_!'(_.' t 1), symbol 011
‘2;,3 Loa.(zn}‘ I+%) symbol 010
ﬁf LO:-.(ETE{ g 2—“) symbol 110

’E;C(}‘Q(ZT[}' I+—%n), symbol 100

Following what we did with the QPSK signal of Eq. (1), we may decompose the 8-PSK of Eq. (5)
as follows:

s(t) = 5" (1) +575(1)
whose constituents are defined by

Continued on next slide

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only
to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that

STU ngnﬁft?déy i_ﬂjrél 07 or 108 of the 1976 United States Copyright Act without the permission oﬁjh r d)gl&rte oanéls un full ak O bal d



Problem 7-28 continued

’%COS{ZH‘}‘-(,I), symbol 000
‘%cos(2n_!'r} f g), symbol 101
s () = (6)

’%COS{EH‘}‘-(}-‘- m), symbol 011
F;_Ewb(Zrc,f e '57:1:), symbol 110

and

‘%cos(Zn‘f},r +§) symbol 001
F;_Ewb(hc,f e %n) symbol 111
s55 (1) = (7)

’2;(:0%(2111‘ i+ %) symbol 010
/2F n
+ —

T LOb(ZEf N 3 )

Basically, the signal x’,(r) is a rewrite of the QPSK signal s(f) of Eq. (1). The signal ,\"2(.') is a

symbol 100

rotated version of s(f). The two constituent QPSK signals s”,(f) and s,(f) satisfy the common
bandwidth requirement (i). However, they fail to satisfy requirement (ii). To demonstrate this
failure, let us test the first components of s*,(¢) and s’,(¢) for orthogonality by writing

T, , _ T 2F . 2E . T
L] 7 ()87 5(1) J‘“ ’TLOS(2T[‘}‘E,.‘} Tuos(2n‘f(_f+a)n"r

r
= 2—;5[“ COS(ZT'C_;"{_I)COS(ZT'E_;"(_I f g)a'r

7, ["05(4) - cos(4n /1 —)]m

:’:T!:.
TJ_T

The integral term of Eq. (8) may be set equal to zero under the band-pass assumption, provided

J CO‘;(-‘-htf I+ = )a‘r (8)
0 4

that the carrier frequency /. is high enough. But the first term, namely, E/ A2 is nonzero. We

therefore conclude that the orthogonality requirement is violated by the two QPSK signals 57, (1)

and s’,(7). Hence, The “conquer and divide™ approach theorem cannot be exploited beyond the
QPSK signal.
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Problem 7.29

To simplify the presentation, hereafter we concentrate on the complex envelope (i.e., complex
baseband signal) of the QPSK signal, and likewise for the OQPSK signal. Otherwise, the phase
spectra of the QPSK and OQPSK signals would become dominated by the contribution of the
carrier, which complicates the graphical plots.

Figure 1 plots the phase spectrum of the QPSK signal with a square wave applied to each
of the /- and O-channels. The phase spectrum has impulses spaced uniformly at the symbol rate,
corresponding to the phase discontinuities that occur at the symbol rate.

Figure 2 plots the phase spectrum of the corresponding OQPSK spectrum, with the same
square wave applied to each of the /- and O-channels. The phase spectrum of Fig. 2 is similar to
that of Fig. | for the QPSK in that both of them consist of a series of impulses. However, in Fig. 2
the impulses are shifted in frequency as well as amplitude. Moreover, the impulses in Fig. 2 are
spaced by twice the symbol rate, because every second harmonic is cancelled out.

The phase spectra plotted in figs. 1 and 2 depend on the symbol rate of the incoming
square wave and the way in which the square wave is positioned with respect to the origin (i.e.,
time ¢t = 0).

Finally, Fig. 3 plots the phase difference between the QPSK and OQPSK. From this figure
we readily see that this phase difference is a nonlinear function of frequency.

Note

The last sentence in the statement of Problem 7.29 should be corrected as follows:
“Hence, justify the assertion made in Drill Problem 7.3 that these two methods differ
by a nonlinear phase component.”

Also, add the following:
Hint: Use the complex envelope for the representation of QPSK and OQPSK signals.
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Problem 7-29 continued

Phase spectrum of QPSK with square wave in each of / and Q-channels
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Phase spectrum of OQPSK with square wave in each of 7 and O-channels
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Problem 7-29 continued

The phase ditference spectrum
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Problem 7.30

(a) Running the Matlab script provided in Appendix 7, the plots shown in Fig. 1 are obtained.
The top plot of the figure shows the time-domain version of the bandpass signal. The carrier
appears to show a small amount of amplitude modulation but this is due to the sampling
process; if the sampling rate is increased by a factor of four, this amplitude modulation
disappears as we would expect with rectangular pulse-shaping. The bottom plot of Fig. 1
shows the frequency-domain version of the bandpass signal. The plot is in the form of a
(sin x)/x spectrum that is centered at the carrier frequency of 10 Hz, and the first null is offset
by the bit rate of 1 Hz. The spectrum is not perfectly symmetric about the carrier due to
aliasing, which affects the higher frequency components.

(b) We modify the provided Matlab script by inserting the statement
b = blp + j*bQp;
and modifying the two statements
subplot(2,1,1), plot(t,real(b)); % time display
[spec.freq] = spectrum(b,nFFT.nFFT/4,nFFT/2,Fs);
With these changes, we obtain the plots shown in Fig. 2. The top plot of the figure shows the
time-domain sequence of random data with rectangular pulse shaping. The bottom plot shows
the (sin x )/x magnitude spectrum centered at the origin. In part (a), distortion of both the time-
domain and frequency domain signals was noted due to the limitations of the sampling rate. In
part (b), these distortions are much less evident. Consequently, if we simulate signals at
complex baseband, then we may use much lower sampling rates (and thus less computational
requirements) than for bandpass signals and obtain the same accuracy.

Amplitude

Spectrum (dB)

2 4 6 8 10 12 14 16
Frequency (Hz)

Figure 1
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Problem 7-30 continued

Amplitude
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Problem 7.31

We modity the script of Problem 7.30(a) by replacing

Pulse Shape = ones(1,Fs); % rectangular pulse shape

With the lines

B0 0.5; %% (HZ}

t =[-2.001: I/Fs : +2.001] % time scale for pulse shape
rcos = sinc(4*B0*t) ./ (1-16*B0"2*t.72); % from Eq.(6.20)
Pulse Shape = rcos;

Doing so, we obtain the graphs plotted in Fig. 1. The top graph of the figure shows the
time-domain version of the bandpass signal, including the amplitude modulation that occurs with
raised cosine pulse-shaping. The bottom graph of the figure shows the raised cosine spectrum of
the transmitted signal. Presence of the effects of aliasing is evident in the plot due to the spurious
signal present at 0 Hz in the magnitude spectrum.

[f we make changes similar to those of Problem 7.30(b), then we obtain the plots shown in
Fig. 2. The top graph of the figure shows the baseband /-channel consisting of a random data
stream with raised cosine pulse shaping. The bottom graph of the figure shows the magnitude
spectrum of the complex baseband signal. There is no evidence of significant aliasing effects in
this figure. The effects of aliasing are less evident in the raised-cosine case, because the spectrum
is much more constrained than it is with rectangular pulse-shaping.
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Problem 7-31 continued

Amplitude
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Problem 8.1 An information packet contains 200 bits. This packet is transmitted over a
communications channel where the probability of error for each bit is 10°. What is the probability that the
packet is received error-free?

Solution

Recognizing that the number of errors has a binomial distribution over the sequence of
200 bits, let x represent the number of errors with p = 0.001 and n = 200. Then the
probability of no errors is

P[x=0]=0-pf
= (1-.002)™
— .999200
=0.82
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Problem 8.2 Suppose the packet of the Problem 8.1 includes an error-correcting code that can correct
up to three errors located anywhere in the packet. What is the probability that a particular packet is received

in error in this case?

Solution
The probability of a packet error is equal to the probability of more than three bit errors.

This is equivalent to 1 minus the probability of 0, 1, 2, or 3 errors:

1-P[x <3]=1-(P[x = 0]+ P[x =1]+ P[x = 2]+ P[x = 3))
I N i SRR WSO

=1-(1- p)”‘s{(l— p)* +np(— p)? +@ p?(1- p)+—”(”_1g(n_2) pﬂ

=55x107°
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Problem 8.3 Continuing with Example 8.6, find the following conditional probabilities: P[X=0|Y=1]
and P[X =1|Y=0].

Solution
From Bayes’ Rule

Pl =1x =0fp[x = 0]

Plx =0l =1]= o -1]
_ PPo
~ ppo +(L- p)py
plx =1 ~0]- Pl = ol))EYzzllFi[x 1]
PPy

" pp,+ (- p)po
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Problem 8.4 Consider a binary symmetric channel for which the conditional probability of error
p =10™ and symbols 0 and 1 occur with equal probability. Calculate the following probabilities:

a) The probability of receiving symbol 0.
b) The probability of receiving symbol 1.
c) The probability that symbol 0 was sent, given that symbol 0 is received
d) The probability that symbol 1 was sent, given that symbol 0 is received.

Solution
(@)
P[y =0]=P[Y =0| X =0JP[X =0]+P[Y =0| X =1]P[X =1]
=1-p)p, + pp,

~.9999 % +.0001 %
-5

(b)
PlY =1]=1-P[v =0]

=7

(c)  From EQ.(8.30)
P[x =0y =0]= ; L=p)e,

1-p)p, + PP,
o -10)y
C[1-10")y+10" Yy
=1-10"*
(d) From Prob. 8.3
P[x =1v =0]= PP,
pp, + (1 p) Py
B 10y
10 4+ (1-10Y Y

=10"
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Problem 8.5 Determine the mean and variance of a random variable that is uniformly distributed
between a and b.

Solution
The mean of the uniform distribution is given by

b? —a?
“2(b-a)
=b+a

2

The variance is given by

El(x - uf |- [ox- w07 1, (00

[ (Xb—_ﬂ)2 i
1 (b-p) (a-p)

b-a 3 3

If we substitute u = b+Ta then

Efx - wp]= -2 {(b—a)g_(a—b)s}

b-a| 24 24
_(b-a)
12
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Problem 8.6 Let X be a random variable and let Y = (X-px)/ox. What is the mean and variance of the
random variable Y?

Solution

E[Y]:E{X _”X} E[X - _ 0 _

Oy Oy Oy

E(Y —p, ¥ =E[v?]= E(MJZ

Oy

EX-uy ) o)°
5 = =1
Oy Oy
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Problem 8.7 What is the probability density function of the random variable Y of Example 8.8? Sketch
this density function.

Solution
From Example 8.8, the distribution of Y is
0 y<-1
27 —2cos™
Fo(y)= > W) |yl
T
1 y>1
Thus, the density of Y is given by
0 y<-1
dF, (y) 1
= lyl<1
dy T1-y®
0 y>1

This density is sketched in the following figure.

f(y)

N |-

\J
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Problem 8.8 Show that the mean and variance of a Gaussian random variable X with the density
2
function given by Eq. (8.48) are uxand o

Solution
Consider the difference E[X]-ux:

S =

Lety = Xx— u, and substitute

E[X]-pe =] J_ax exp[_%axzjdy

=0

since integrand has odd symmetry. This implies E[X]: My . With this result
Var(X)= E(x ~ Hix )2
(x— gz )
=| —=2exps———"—dx
'[ N2roy p{ 20,°

In this case let

and making the substitution, we obtain

Var(X)=oy j Fexp{ y }dy

Recalling the integration-by-parts, i.e., J'udv = uv—jvdu , letu=yand

2

dv = yexp(_g de. Then

Continued on next slide
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Problem 8.8 continued

Var(X) =0’ %exp(— y%)

=0+0, ol

© o 1 y2
) +0y I_wﬁexp —? dy

2
=O'X

where the second integral is one since it is integral of the normalized Gaussian
probability density.
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Problem 8.9 show that for a Gaussian random variable X with mean px and variance 0')2( the
transformation Y = (X - px)/ox, converts X to a normalized Gaussian random variable.

Solution

Let y=2—#X Then
Ox

el )= [ vex Y4 o
=0

by the odd symmetry of the integrand. If E[Y] = O, then from the definition of Y,
E[X] = ux. In a similar fashion

- 2
ebr)- oo -2 o

= % : exp{— yg} °° + % '[_i exp(— y%jdy

=1

where we use integration by parts as in Problem 8.8. This result implies
2
E[X_IUX ] :l
Oy

and hence E(x — u, ) = o2
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Problem 8.10 Determine the mean and variance of the sum of five independent uniformly-distributed
random variables on the interval from -1 to +1.

Solution

Let X; be the individual uniformly distributed random variables for i = 1,..,5, and let Y be
the random variable representing the sum:

and

Var(Y) =E|(Y — u, ¥ |=E[v?]
=E[(in)2]
:éE[xthE[xixj]

i#]
Since the X; are independent, we may write this as

Var(Y)=5(%)+ZE[Xi]E[XJ]
:A+O
-7
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Problem 8.11 A random process is defined by the function
X (t,6) = Acos(27t + 0)

where A and f are constants, and @ is uniformly distributed over the interval 0 to 2x. Is X stationary to the
first order?

Solution
Denote
Y = X(t,,8) = Acos(2t, +8)

for any t;. From Problem 8.7, the distribution of Y and therefore of X for any t; is

0 y<—-A
27 —2cos™(y/ A)

Feo(y)= 7 lyl<A
1 y>A

Since the distribution is independent of t it is stationary to first order.
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Problem 8.12 Show that a random process that is stationary to the second order is also stationary to the
first order.

Solution

Let the distribution F be stationary to second order
Fy ()X (t) (Xl' X, ) =Fy (ty+7) X (ty+7) (Xl' X, )
Then,

Fy L)X () (Xl ) Oo) =Fy (tl)(xl)
=Fy (t+7) X (tp+7) (Xl ' OO)

= I:x (t+7) (Xl)

Thus the first order distributions are stationary as well.
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Problem 8.13 Let X(t) be a random process defined by
X (t) = Acos(2xft)

where A is uniformly distributed between 0 and 1, and f is constant. Determine the autocorrelation function
of X. Is X wide-sense stationary?

Solution

E[X (t, )X (t, )] = E[A? |cos(27t, )cos(2t, )
= E[A?Jcos(2f (t, —t,))+ cos 27 (t, +1, )]

1 1
E[AZ]: J.Oxzdx =31 =3

0

Since the autocorrelation function depends on t, +t, as well as t, —t,, the process is not
wide-sense stationary.
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Problem 8.14 A discrete-time random process {Yn: n = ...,-1,0,1,2, ...} is defined by

Yn = aOZn + alzn—l

where {Z,} is a random process with autocorrelation function R, (n) = *5(n) . What is the
autocorrelation function R, (n,m) = E[YnYm ]? Is the process {Y,} wide-sense stationary?

Solution

We implicitly assume that Z, is stationary and has a constant mean . Then the mean of
Yn is given by
E[Yn] = aoE[Zn]+ aE[Z, ]
= (ao o )/Uz

The autocorrelation of Y is given by
E[YnYm] = E[(O{OZn + aOZn—l )(aozm +0{12m_1)]

= aozE[Zan ] + alaoE[Zan—l] + aoalE[Zn—lzm ] + ale[Zm—lzn—l]

= alc?S(n-m)+ aa,025(M—1-n)+ aya,625(n—1-m)+ &’ 5(m-1-(n-1))

= (a2 + a2 )o?5(n - M)+ aga,0°[5(n - m = 1)+ 5(m —n —1)]

Since the autocorrelation only depends on the time difference n-m, the process is wide-
sense stationary with

R, (n) = (a2 + a2 Jo?5(n) + apa,0%(5(n—1)+ 5(n +1))
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Problem 8.15 For the discrete-time process of Problem 8.14, use the discrete Fourier transform to
approximate the corresponding spectrum. That is,

S, ()= 3R, (MW"

If the sampling in the time domain is at n/Ts where n =0, 1, 2, ..., N-1. What frequency does k correspond
to?

Solution

Let 5, = (0602 + af)02 and B, = a,a,0° . Then

sY<k>=fz_;[ﬂodn)wl(a(n—l)w(n+1>>]vvk"

= BW° +ﬂ1(W’k +W+k)
Sjek wjonk
:,Bo"'ﬂ{e Note N ]

_ 27K
=B, + 28 cos( g j

The term S, (k) corresponds to frequency kIIIS where f, =_|_i.
S
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Problem 8.16 Is the discrete-time process {Y,: n =1,2,...} defined by: Y, = 0 and
Y., =aY, +W_,

a Gaussian process, if W, is Gaussian?

Solution

(Proof by mathematical induction.) The first term Y, = aY, +W, is Gaussian since Y, =0
and W, are Gaussian. The second term Y, = aY, +W, is Gaussian since Y, and W, are
Gaussian. Assume Y, is Gaussian. Then Y, =aY, +W, is Gaussian since Y, and W, are
both Gaussian.
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Problem 8.17 A discrete-time white noise process {W,} has an autocorrelation function given by
Rw(n) = Nod(n).
(@) Using the discrete Fourier transform, determine the power spectral density of {W,}.
(b) The white noise process is passed through a discrete-time filter having a discrete-

frequency response
1- (W)™
Hk) = 1@V k)
1-aW
where, for a N-point discrete Fourier transform, W = exp{j2n/N}. What is the spectrum of the filter output?

Solution

The spectrum of the discrete white noise process is

The spectrum of the process after filtering is

Sy (k)=[H(k)"s(k)
1— (WM
1-aW*

2

=N0
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Problem 8.18 Consider a deck of 52 cards, divided into four different suits, with 13 cards in each suit
ranging from the two up through the ace. Assume that all the cards are equally likely to be drawn.

(a) Suppose that a single card is drawn from a full deck. What is the probability that this card is the ace of
diamonds? What is the probability that the single card drawn is an ace of any one of the four suits?

(b) Suppose that two cards are drawn from the full deck. What is the probability that the cards drawn are an ace
and a king, not necessarily the same suit? What if they are of the same suit?

Solution

(a)

P[Ace of diamonds]= El

52
P[Any ace]= %

(b)
P[Ace and king] = P[Ace on first draw]P[King on second] + P[King on first draw]P[Ace on seca
1 4 1 4
= X—4—XxX—
13 51 13 51
_8
663
P[Ace and king of same suit]= IV SN IV S
13 51 13 51
1
663
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Problem 8.19 Suppose a player has one red die and one white die. How many outcomes are possible in the
random experiment of tossing the two dice? Suppose the dice are indistinguishable, how many outcomes are
possible?

Solution
The number of possible outcomes is 6 x 6 = 36, if distinguishable.
If the die are indistinguishable then the outcomes are

(11) (12)...(16)
(22)(23)...(26)
(33)(34)...(36)
(44)(45)(46)
(55)(56)

(66)

And the number of possible outcomes are 21.
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Problem 8.20 Refer to Problem 8.19.

(a) What is the probability of throwing a red 5 and a white 2?

(b) If the dice are indistinguishable, what is the probability of throwing a sum of 7? If they are distinguishable,
what is this probability?

Solution

(a) P[Red 5 and white 2]=1><1 _1
6 6 36

(b) The probability of the sum does not depend upon whether the die are distinguishable
or not. If we consider the distinguishable case the possible outcomes are (1,6), (2,5),
(3,4), (4,3), (5,2), and (6,1) so

6

P[sum of 7]= -

ol
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Problem 8.21 Consider a random variable X that is uniformly distributed between the values of 0 and 1 with
probability ¥4 takes on the value 1 with probability % and is uniformly distributed between values 1 and 2 with
probability ¥2 . Determine the distribution function of the random variable X.

Solution
0 Xx<0
X
/ﬁ O0<x<1
F(X) = }é x=1
1

E+%(x—l) 1<x<2

1 X>2
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Problem 8.22 Consider a random variable X defined by the double-exponential density

where a and b are constants.

f, (x) = aexp(- b|x|) —0 < X<

(a) Determine the relationship between a and b so that fx(x) is a probability density function.

(b) Determine the corresponding distribution function Fy(x).
(c) Find the probability that the random variable X lies between 1 and 2.

Solution
(@)
[ fe(dx=1 = 2[aexp(~bx)dx =1
—0 0
2a 0
——expl—=bx) =1
b &Pl-bx)
:>§:1 or b=2a
b
(b)

F, (x)= fw aexp(—b|s|bs

— L exp(~b(- s))(X —0<x<0

b —

X
l+—Eexp(—bs 0<X<oo
2 b 0

%exp(bs) —0<x<0

%Jr%—%exp(—bs) 0< X<

%exp(bx) —0<x<0

1—%exp(—bx) 0< X<

(c) The probability that 1< X <2 is
1
Py (2)= Fy (1) = 5 [exp(=b)—exp(-2b)]
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Problem 8.23 show that the expression for the variance of a random variable can be expressed in terms of
the first and second moments as

Var(X) = E[x 2] (E[x ]}
Solution

Var(X )= E[(X ~E(X ))2]
—E(x? - 2xE(x)+ (E[X ]}?)
—E[x?]- 2E[X JE[X ]+ (E[X ]

—Elx?]- (E[xF
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Problem 8.24 A random variable R is Rayleigh distributed with its probability density function given by

r 2

—expl—r-/2b 0<r«<
fR(r) =1b p( ) *

0 otherwise

(a) Determine the corresponding distribution function

(b) Show that the mean of R is equal to \/b7z /2

(c) What is the mean-square value of R?
(d) What is the variance of R?

Solution
(a) The distribution of R is

(b) The mean value of R is
E[R]= J': sf. (s)ds

» §° —g?
=| —exp ds
0 b 2b
1 1 —s?
==2mh| ——| s?exp| — |ds
b |:\/27ZbJ-0 xp( Zb]}

The bracketed expression is equivalent to the evaluation of the half of the variance of a
zero-mean Gaussian random variable which we know is b in this case, so

elr)= Y2 1)

b 2

Continued on next slide
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Problem 8.24 continued

(c) The second moment of R is
E[rR?]= .[:Osz fo(s)ds

(d) The variance of R is
var(R) = E[R* |- (E[R]

- 2b_(M4T
~b2-77)
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Problem 8.25 Consider a uniformly distributed random variable Z, defined by

1
f,(z)=12x"
0, otherwise

0<z<2m

The two random variables X and Y are related to Z by X =sin(Z) and Y = cos(2).

(a) Determine the probability density functions of X and Y.
(b) Show that X and Y are uncorrelated random variables.
(c) Are X and Y statistically independent? Why?

Solution
(a) The distribution function of X is formally given by
0 x<-1
F,(x)=<P[-1< X <x] -1<x<1
1 x>1

Analogous to Example 8.8, we have

Pz —sin"(x) < Z < 27 +sin"'(x)] ~1<x<0

%+ Plo<Z <sin(x)]+ Pz —sin*(x)<z<z] o0<x<1

P
7 +2sin7(x) _1<x<0
_ 27
P
l+—25|n (x) 0<x<1
2 27
P
_Lsin() _1<x<1
2 T

where the second line follows from the fact that the probability for a uniform random
variable is proportional to the length of the interval. The distribution of Y follows from a
similar argument (see Example 8.8).

Continued on next slide
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Problem 8.25 continued
(b) Toshow X and Y are uncorrelated, consider

E[XY]=E[sin(Z )cos(z)]

L)

2

Thus X and Y are uncorrelated.

(c) The random variables X and Y are not statistically independent since

Pr[X ¥ ] Pr{x]
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Problem 8.26 A Gaussian random variable has zero mean and a standard deviation of 10 V. A constant
voltage of 5 V is added to this random variable.

(a) Determine the probability that a measurement of this composite signal yields a positive value.

(b) Determine the probability that the arithmetic mean of two independent measurements of this

signal is positive.

Solution
(@) Let Z represent the initial Gaussian random variable and Y the composite random

variable. Then
Y=5+Z7

and the density function of Y is given by

fy(y)=\/%aexp¥(y—u)2/2az>

where u corresponds to a mean of 5V and o corresponds to a standard deviation of 10V.
The probability that Y is positive is

1 * 2
PlIY >0|=——| expy-(y- 2
[ ] \/EO'J'O p{ (y /U)/ o }dy

1 0 2

= ﬁf—; exp(_ A )ds

ol Z#

-

where, in the second line, we have made the substitution

_Y~H
O

S

Making the substitutions for u and o, we have P[Y>0] = Q(- ¥). We note that in
Fig. 8.11, the values of Q(x) are not shown for negative x; to obtain a numerical
result, we use the fact that Q(-x) = 1- Q(x). Consequently, Q(-%2) = 1- 0.3 =0.7.

Continued on next slide
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Problem 8.26 continued

(b) Let W represent the arithmetic mean of two measurements Y; and Y», that is

It follows that W is a Gaussian random variable with E[W] = E[Y] = 5. The variance of W
IS given by

Var(w) = E[w — EW)) |

e (Yl +Y, E(M)+ E(Yz)jz
- 2 2

= Ll - B0 + (v, - B0 + 201, - ECONY, ~E))

The first two terms correspond to the variance of Y. The third term is zero because the
measurements are independent. Making these substitutions, the variance of W reduces to

Var[w | = U%

Using the result of part (a), we then have

Piw >0]= Q| —# =Q(—ij

a)) "
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Problem 8.27 Consider a random process defined by
X (t) = sin(272Wt)

in which the frequency W is a random variable with the probability density function

1

— O<w<B
fu (W) =3B

0 otherwise

Show that X(t) is nonstationary.

Solution
Attime t=0, X(0)=0 and the distribution of X(0) is

0 x<0
FX(O)(X)= 1 x>0

Attimet=1, X(1)=sin(2zw), and the distribution of X(1) is clearly not a step function
S0

Fy (1)(X) # l:x(o)(x)

And the process X(t) is not first-order stationary, and hence nonstationary.
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Problem 8.28 Consider the sinusoidal process

X (t) = Acos(24f.t)

where the frequency is constant and the amplitude A is uniformly distributed:

f(a)—l O<ax<l
AYYT10 otherwise

Determine whether or not this process is stationary in the strict sense.

Solution
Attime t =0, X(0) = A, and Fx()(0) is uniformly distributed over 0 to 1.
At time t = (4f;)™, X( (4f.)™") = 0 and

Thus, Fy o) (X) # Fy a1, (X) and the process X(t) is not stationary to first order.
Hence not strictly stationary.
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Problem 8.29 A random process is defined by
X (t) = Acos(24f.t)

where A is a Gaussian random variable of zero mean and variance o”. This random process is applied to an ideal
integrator, producing an output Y(t) defined by

Y (t) Zj‘X(T)dT

(a) Determine the probability density function of the output at a particular time.
(b) Determine whether or not is stationary.

Solution
(@) The output process is given by

Y(t)= J;X (r)tir
= j;Acos(Zfszr)dr

A .
= ﬁsm(ZﬂfCt)

c
At time to, it follows that Y (t,) is Gaussian with zero mean, and variance

sin(27f t,)

(2,

(b) No, the process Y(t) is not stationary as F, , # Fy, for all t; and to.

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only
to students enro Iﬁﬂ' courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that .
STU DEM&%S/‘H i r@l(ﬁ@mm of the 1976 United States Copyright Act without the permission ﬂpfﬁbﬁdﬁﬂn I¥/un Fak Obaid
page...8-35



Problem 8.30 Prove the following two properties of the autocorrelation function Ry(z) of a random process
X():

(a) If X(t) contains a dc component equal to A, then Ry(7) contains a constant component equal to A%

(b) If X(t) contains a sinusoidal component, then Ry(z) also contains a sinusoidal component of the same
frequency.

Solution
(a) Let Y(t)= X(t)— Aand Y(t) is a random process with zero dc component. Then

t) )+ AN(X(t+7)-A)+ A

E
=E[(X(t)- AYX(t+7)- A+ E(X(t+7)- A)A+E(X (t)A)+ A?
R

And thus Rx(7) has a constant component A,

(b) Let X(t)=Y(t)+ Asin(2f t) where Y(t) does not contain a sinusoidal component of
frequency f..

R (7)=E[X ()X (t+7)]
= E[(Y (t)+ Asin(2f )Y (t + )+ Asin(24f 1))+ E[A? sin(27f t)sin(27f, (t + 7))

2
= RY(r)+...+A7[00527zfct+c0327zfc(2t+r)+ 6]

2

=R, (r)+ A? cos(2f,7)

And thus Rx(7) has a sinusoidal component at f..
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Problem 8.31 A discrete-time random process is defined by

Y. =aY, , +W, n=..-10+1, ...

where the zero-mean random process W, is stationary with autocorrelation function Ry(k) = o®&(k). What is the
autocorrelation function Ry(k) of Y,? Is Y, a wide-sense stationary process? Justify your answer.

Solution
We partially address the question of whether Y, is wide-sense stationary (WSS) first by
noting that

E[Y,]=ElaY,, +W, ]
= oE[Y, ]+ EW, ]
= aE[Yn—l]

since E[W,] = 0. To be WSS, the mean of the process must be constant and consequently,
we must have that E[Y,] = 0 for all n, to satisfy the above relationship.

We consider the autocorrelation of Y, in steps. First note that Ry(0) is given by

R, (0) =E[Y,Y,]=E[?]
and that Ry(1) is

RY (l) = E[YnYn+l]
=E[Y,(aY, +W,)]
= oEV2|+E[r W, ]
Although not explicitly stated in the problem, we assume that W, is independent of Yp,
thus E[Y W] = E[Y,]E[W,] = 0, and so

Ry (@) = aR, (0)

We prove the result for general positive k by assuming Ry(k) = &*Ry(0) and then noting
that

R (k+) =E[Y,Y, ...
= E[Yn (aYn+k +Wn+k )]
= Q’E[Y Y ]+ E[Yan+k]

n ' n+k

Continued on next slide
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Problem 8.31 continued
To evaluate this last expression, we note that, since

Y, =aY,, +W,
=a’y, , +aW, , +W,

=a® _+a’ W _,+aW , +W,

we see that Y, only depends on Wy for k < n. Thus E[Y,Wn+«] = 0. Thus, for positive k, we
have

R, (k +1) = aR, (K)
— OCkHRY (O)

Using a similar argument, a corresponding result can be shown for negative k. Combining
the results, we have

R, (k) = "R, (0)

Since the autocorrelation only depends on the time difference k, and the process is wide-
sense stationary.
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Problem 8.32 Find the power spectral density of the process that has the autocorrelation function

2 2
S VY
0 otherwise

Solution
The Wiener-Khintchine relations imply the power spectral density is given by the Fourier

transform of Rx(z), which is (see Appendix 6)

S, (f)=ao?sinc’(f)
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Problem 8.33. A random pulse has amplitude A and duration T but starts at an arbitrary time t,. That is,
the random process is defined as

X(t) = Arect(t +t,)

where rect(t) is defined in Section 2.9. The random variable t, is assumed to be uniformly distributed over
[0,T] with density

1

— 0<s<T
ft0 (s)=+T

0 otherwise

(a) What is the autocorrelation function of the random process X(t)?
(b) What is the spectrum of the random process X(t)?

Solution
First note that the process X(t) is not stationary. This may be demonstrated by computing
the mean of X(t) for which we use the fact that

00 = [ £, (x]9)f, (5)ds

combined with the fact that

E[X () [t,]= Txfx (x| t5)dx

(A tyst<t+T
o otherwise

Consequently, we have

E[X (O] = [EIX®sF, (s)ds

0 t<0
At/T 0<t<T
A2-t/T) T<t<2T
0 t>2T

Thus the mean of the process is dependent on t, and the process is nonstationary.

Continued on next slide
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Problem 8.33 continued

We take a similar approach to compute the autocorrelation function. First we break the
situation into a number of cases:

)] Foranyt<0,s<0,t>2T, ors> 2T, we have that
E[X (t)X(s)]=0

i) For 0 <t <s<2T, we first assume tg is known

? t>t, s<t,+T, O<t, <T

otherwise

E[X ()X (5)]t,] = {;\

A? max(s —T,0) < t, < min(t,T)
0 otherwise

Evaluating the unconditional expectation, we have

E[XOX ()] [EX X () []F, (wehw

min(t,T)
I A? (Ejdw
T

max(0,s-T)
2

= A? max{{min(t, T) — max(0,s - T)},0}

where the second maximum takes care of the case where the lower limit on the
integral is greater than the upper limit.

iii) For 0 <s <t< 2T, we use a similar argument to obtain

A’ max(t —T,0) <t, < min(s,T)
0 otherwise

E[X(t)X<s>|to]={
and

E[X ()X (s)]= A? max{{min(s,T) — max(0,t - T)},0}

Continued on next slide
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Problem 8.33 continued

Combining all of these results we have the autocorrelation is given by

2

A?max{{min(t,T) ~max(0,s-T)},0} 0<t<s<2T

2

E[X )X (s)]= %max{{min(s,T)—max(O,t—T)},O} O<s<t<2T

0 otherwise

This result depends upon both t and s, not just t-s, as one would expect for a non-
stationary process.
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Problem 8.34 Given that a stationary random process X(t) has an autocorrelation function Ry(z) and a
power spectral density S(f), show that:
(@) The autocorrelation function of dX(t)/dt, the first derivative of X(t) is equal to the negative of the
second derivative of Ry(7).
(b) The power spectral density of dX(t)/dt is equal to 47°f*Sx(f).

Hint: Use the results of Problem 2.24.

Solution

(@) Let Y(t):%(t), and from the Wiener-Khintchine relations, we know the

autocorrelation of Y(t) is the inverse Fourier transform of the power spectral density of Y.
Using the results of part (b),

R, (f)=F"[s, ()]
= Ffar?t2s, ()]
= —F(j2nf )2 s, (1))

from the differential properties of the Fourier transform, we know that differentiation in
the time domain corresponds to multiplication by j2=f in the frequency domain.
Consequently, we conclude that

R, () =—F*|(j2rf)?s, ()]
d2
:_WRX (7)

Continued on next slide
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Problem 8.34 continued

(b) Let Y (t) = %( (t), then the spectrum of Y(t) is given by (see Section 8.8)

SY(f):lm%E[‘HTY(f)‘Z}

where HY (f) is the Fourier transform of Y(t) from —T to +T. By the properties of
Fourier transforms H. () = (j2#f )H (f) so we have

s, () :;@%E[\H:(f)ﬂ
~ lim (2 )1 (1) |
Zm%(mzfz)EUHTx on

= 47%£7S, ()

Note that the expectation occurs at a particular value of f; frequency plays the role of an
index into a family of random variables.
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Problem 8.35 Consider a wide-sense stationary process X(t) having the power spectral density Sx(f)
shown in Fig. 8.26. Find the autocorrelation function Ry(z) of the process X(t).

Solution

The Wiener-Khintchine relations imply the autocorrelation is given by the inverse
Fourier transform of the power spectral density, thus

R(z) =" sy (f)exp(j2aft)df

= [0~ £ )cos(2aft)f

where we have used the symmetry properties of the spectrum to obtain the second line.
Integrating by parts, we obtain

. 1 -
R, (1) = (L f)S|n(27zfz')| +Il S|n(27zfr)olf
2t |O o 2xr
1
—c0s(2747)
(27e) 0
_ 1—cos(277)
(27rz')2

Using the half-angle formula sin*(6) = ¥2(1-cos(26), this result simplifies to

_ 2sin?(z7)
Re(r)= (27n')2
= 148inc®(z)

where sinc(x) = sin(mx)/nx.
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Problem 8.36 The power spectral density of a random process X(t) is shown in Fig. 8.27.
(a) Determine and sketch the autocorrelation function Rx(z) of the X(t).
(b) What is the dc power contained in X(t)?

(c) What is the ac power contained in X(t)?
(d) What sampling rates will give uncorrelated samples of X(t)? Are the samples statistically

independent?

Solution
(a) Using the results of Problem 8.35, and the linear properties of the Fourier transform

R(z)=1+ ¥sinc®(f,7)

(b) The dc power is given by power centered on the origin

dc power = !SI_II;:[SX (f)df

:ngg_J;cY(f)df

=1
(c) The ac power is the total power minus the dc power
ac power =R, (0) —dc power
=R, (0)-1

=

(d) The correlation function Rx(7) is zero if samples are spaced at multiples of 1/f,.
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Problem 8.37 Consider the two linear filters shown in cascade as in Fig. 8.28. Let X(t) be a stationary
process with autocorrelation function Rx(z). The random process appearing at the first filter output is V(t)
and that at the second filter output is Y(t).

(a) Find the autocorrelation function of V(t).

(b) Find the autocorrelation function of Y(t).

Solution
Expressing the first filtering operation in the frequency domain, we have

V(F)=H,(F)X(f)

where Hy(f) is the Fourier transform of hy(t). From Eq. (8.87) it follows that the spectrum
of V(t) is

S, () =[H (F)[*Sx (f)
By analogy, we have

S, () =|H,(f)]’S, (f)

=|H, (F)[|H.(F)]"Sx (F)

Consequently, apply the convolution properties of the Fourier transform, we have
R, (r)=0,(t)* 0, (0 * R, (f)

where * denotes convolution; ga(t) and ga(t) are the inverse Fourier transforms of |H(f)|?
and |Ha(f)[, respectively.
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Problem 8.38 The power spectral density of a narrowband random process X(t) is as shown in Fig. 8.29.
Find the power spectral densities of the in-phase and quadrature components of X(t), assuming f. = 5 Hz.

Solution
From Section 8.11, the power spectral densities of the in-phase and quadrature
components are given by

S(f+f)+S(f-f) f|<B
0 0>B

50 (1)=5,(1)

Evaluating this expression for Fig. 8.29, we obtain

1—m 1<|f|<2

2
Sy, (f)=8,,(f)= [2-3@} 0<|f|<1
0 otherwise
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Problem 8.39 Assume the narrow-band process X(t) described in Problem 8.38 is Gaussian with zero

2
mean and variance © X .

2
(@) Calculate Ox.
(b) Determine the joint probability density function of the random variables Y and Z obtained by
observing the in-phase and quadrature components of X(t) at some fixed time.

Solution
(@) The variance is given by

(b) The random variables Y and Z have zero mean, are Gaussian and have variance o5 . If
Y and Z are independent, the joint density is given by

1 —y2 1 2
f, (Y, Z)=————ex V ]-—ex (—Z/ ]
Y'Z( ) N2roy p( 207 N2roy P 207

1 ( y? + ZZJ
= —exp| - ———
270y 20y
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Problem 8.40 Find the probability that the last two digits of the cube of a natural number (1, 2, 3, ...)
will be 01.

Solution
Let a natural number be represented by concatenation xy where y represents last two
digits and x represents the other digits. For example, the number 1345 hasy =45 and x =
13. Then

(xy)? = (x00 + y)’ = (x*000000)+ 3(x?0000 )y + 3(x00)y? + y?

where we have used the binomial expansion of (a+b)®. The last digits of the first three
terms on the right are clearly 00. Consequently, it is the last two digits of y* which
determines the last two digits of (xy)*. Checking the cube of all two digit numbers for 00
to 99, we find that: (a) y° ends in 1, only if y ends in 1; and (b) only the number (01)
gives 01 as the last two digits. From this counting argument, the probability is 0.01.
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Problem 8.41 Consider the random experiment of selecting a number uniformly distributed over the
range {1, 2, 3, ..., 120}. Let A, B, and C be the events that the selected number is a multiple of 3, 4, and 6,
respectively.

a) What is the probability of event A, i.e. P[A]?

b) What is P[B]?

¢) What isP[A B]?

d) What is P[A U B]?

e) Whatis P[ANC]?

Solution
(@) From a counting argument, P(A) = 40 1
’ 120 3
30 1
b P(B)=——=
®) (B)= 120 4
12 1
c P(AnB
© ( )= 120 10
(d)

P(AUB)=P(A)+P(B)-P(AnB)
20 +15 6 29
_}/ }/ }/0_ " 60

20 1

) P(ANC)= F>(c:):@_g
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Problem 8.42 A message consists of ten “0”s and “1”s.

a) How many such messages are there?

b) How many such messages are there that contain exactly four “1”s?

c) Suppose the 10th bit is not independent of the others but is chosen such that the modulo-2 sum of
all the bits is zero. This is referred to as an even parity sequence. How many such even parity
sequences are there?

d) If this ten-bit even-parity sequence is transmitted over a channel that has a probability of error p
for each bit. What is the probability that the received sequence contains an undetected error?

Solution
(a) A message corresponds to a binary number of length 10, there are thus 2%
possibilities.

(b) The number of messages with four “1”s is

10 !
( j_ 10! _10x9x8x7 _ 0 o o o0

4 _E_ 4x3x2

(c) Since there are only 9 independent bits in this case, the number of such message is 2°.

(d) The probability of an undetected error corresponds to the probability of 2, 4, 6, 8, or
10 errors. The received message corresponds to a Bernoulli sequence, so the
corresponding error probabilities are given by the binomial distribution and is

@ijza_ of +GOJ p*(L-p)° +[tojp6(1— p) +@O] p*(1-p)’ +@8J p*
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Problem 8.43 The probability that an event occurs at least once in four independent trials is equal to
0.59. What is the probability of occurrence of the event in one trial, if the probabilities are equal in all
trials?

Solution

The probability that the event occurs on a least one trial is 1 minus the probability that the
event does not occur at all. Let p be the probability of occurrence on a single trial, so 1-p
is the probability of not occurring on a single trial. Then

P[at least one occurence]=1—(1- p)’
0.59=1—(1— p)*

Solving for p gives a probability on a single trial of 0.20.
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Problem 8.44 The arrival times of two signals at a receiver are uniformly distributed over the interval
[0,T]. The receiver will be jammed if the time difference in the arrivals is less than <. Find the probability
that the receiver will be jammed.

Solution
Let X and Y be random variables representing the arrival times of the two signals. The
probability density functions of the random variables are

— O0<x<T
fx(x):

0, otherwise

and fy(y) is similarly defined. Then the probability that the time difference between
arrivals is less than zis given by

P[X —Y|<z]=P[X -Y|<z| X >YP[X >Y]+P[X -Y|<z|Y > X [P > X]
=P[X -Y|<z|X >Y]

where the second line follows from the symmetry between the random variables X and Y,
namely, P[X>Y]=P[Y > X]. If we only consider the case X >Y, then we have the
conditions: 0<X<T and 0<Y<X< Y. Combining these conditions we have
Y <X <min(T, #+Y). Consequently,

T min(T,r+y)

Pl ~Y|<z]=[ [ (0% ()dxdy

0

] min('].,ﬁy)( 1 jz b d
= — | OX
y T y

0
1

= | min(T. 7+ y)-yjdy

O ey, =

Combining the two terms of the integrand,
1T
P[x -Y|< r]:T—ijm(T —y, 7)dy
0
T
1 . 2
=—,min| Ty - I , Y
T 2 .
. (1 7
=minf —,—
2T
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Problem 8.45 A telegraph system (an early version of digital communications) transmits either a dot or
dash signal. Assume the transmission properties are such that 2/5 of the dots and 1/3 of the dashes are
received incorrectly. Suppose the ratio of transmitted dots to transmitted dashes is 5 to 3. What is the

probability that a received signal as the transmitted if:
a) The received signal is a dot?
b) The received signal is a dash?

Solution
(a) Let X represent the transmitted signal and Y represent the received signal. Then by
application of Bayes’ rule

P(Y =dot)=P(X = dot | No error)P(No dot error) + P(X = dash | error)P(dash error)
-%(3%)-341%)
=%+ )8= 2

(b) Similarly,
P[Y =dash]=P[X = dash | noerror]P(no dash error)+ P(X = dot)P[dot error]
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Problem 8.46 Four radio signals are emitted successively. The probability of reception for each of them
is independent of the reception of the others and equal, respectively, 0.1, 0.2, 0.3 and 0.4. Find the
probability that k signals will be received where k =1, 2, 3, 4.

Solution
For one successful reception, the probability is given by the sum of the probabilities of
the four mutually exclusive cases

P= pl(l_ pz)(l_ ps)(l_ p4)+
(1_ pl)pz(l_ ps)(l_ p4)+
(1_ pl)(l_ pz)ps(l_ p4)+
(1_ pl)(l_ pz)(l_ pa)p4
=1.8-7-6+9-2.7-6+9-8.-3-6+.9-8-.7-4
=0.4404

For k = 2, there six mutually exclusive cases

P =p,p,(L- ps)L-p,)+

pl(l_ pz)ps(l_ p4)+

pl(l_ pz)(l_ pa)p4+

(1_ pl)pzps(l_ p4)+

(L= p)p (- ps)p, +

(L= p )= p,)psP,
d1.2.7-6+.1-8.3-6+.1-8-.7-4+9-2-3-6+.9.2.-7-4+.9.-8-3-4
0.2144

For k =3 there are four mutually exclusive cases

P= p1p2p3(1_ p4)+
p.(1- p,)psp, +
P.P, (L ps)p, +
(- p,)p,PsP,
~1.2.3-6+.1.8-3-4+1.2-7-4+9.2.3-.4
— 0.0404

For k = 4 there is only one term

P= PP, P3P,
=1.2-3-4
=0.0024
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Problem 8.47 In a computer-communication network, the arrival time zbetween messages is modeled
with an exponential distribution function, having the density
ie—lr
fr(z)=14

0 otherwise

20

a) What is the mean time between messages with this distribution?
b) What is the variance in this time between messages?

Solution (Typo in problem statement, should read fr(t)=(1/A)exp(-t/A) for >0)
(a) The mean time between messages is

#®; (r)dr

r//”td

Aal«\

=]

0

[ e

0

=—rexp(-7/ ), +Texp(—r//1)dr
0

=0-Aexp(-7/ A)|;
=A

where the third line follows by integration by parts.

(b) To compute the variance, we first determine the second moment of T

Ehz]:Trzﬁ(ﬂdr

o

o0

2

T
= [Zexp(-z/A)d
!}Lexp( r/ )z

=—7? exp(—r/ﬂj: + 2Irexp(—r//1)dr
0

=0+ 24E[T]
=22

Continued on next slide
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Problem 8.47 continued

The variance is then given by the difference of the second moment and the first moment
squared (see Problem 8.23)

Var(T) =Efr2]- (E[T )}
=242 - }?
=1
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Problem 8.48 If X has a density fx(x), find the density of Y where
a) Y= aX +b for constants a and b.

b)Y=X?2.
¢) Y =4/ X , assuming X is a non-negative random variable.

Solution
(@) If Y =aX +b, using the results of Section 8.3 for Y = g(X)

f (g ‘1(y)*—dg(;y(y)‘

y—-b)1
I A e
X[a}a

f, (y)

(b) If Y = X2, then
1
fo(y)= (fx(— ﬁ)+ fx(+ ﬁ){m}

(c) IfY = VX', then we must assume X is positive valued so, this is a one-to-one
mapping and
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Problem 8.49 Let X and Y be independent random variables with densities fx(x) and fy(y), respectively.
Show that the random variable Z = X+Y has a density given by

L) = [ £, @-9)1, (5)ds

Hint: P[Z <z]=P[X <z,Y <z-X]

Solution (Typo in problem statement - should be “positive” independent random
variables)

Using the hint, we have that F;(z) = P[Z < z] and
F.(2) = [ [ 001, (y)dydx

—00 —00

To differentiate this result with respect to z, we use the fact that if
b
9(2) = j h(x, z)dx

then

da

a9(2) _ j% h(x, z)dx + h(b, z)%— @z @

dz

Inspecting Fz(z), we identify h(x,z)
h(x,2) = [ £, () F, (y)dy
and a =-wand b =z. We then obtain

f (Z)— ;R (2)

- ] (=)
—;ﬁﬂnﬁwmyw+jfmfwmw——ij@fwmyO

d 7—X
a;ljfx(x)fv(y)dy dx

Continued on next slide
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Problem 8-49 continued
where the second term of the second line is zero since the random variables are positive,

and the third term is zero due to the factor zero. Applying the differentiation rule a
second time, we obtain

fz(Z)ZJ.{0+f ) f, (z—x)———= ( X) — £, (), (_oo)d( 00)}

—00!

= [ £, () f, (z-x)dx
which is the desired result.

An alternative solution is the following: we note that

PlZ<z|X=x]=P[X +Y <z|X =x]
=P[x+Y <z|X =x]
=P[x+Y <]
=P[Y <z-x]

where the third equality follows from the independence of X and Y. By differentiating
both sides with respect to z, we see that

fZ|X (Z | X) = fY (Z - X)
By the properties of conditional densities
fz,x (Z, X) = fx (X) fz|x (Z | X) = fx (X) fv (Z - X)

Integrating to form the marginal distribution, we have

f,(z) = ]9 f (x) f, (z—x)dx

If Y is a positive random variable then fy(z-x) is zero for x >z and the desired result
follows.
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Problem 8.50 Find the spectral density S,(f) if
Z(t) =X ()Y ()

where X(t) and Y(t) are independent zero-mean random processes with
Ry (r)=ae ™ and R, (r)=ae .

Solution
The autocorrelation of Z(t) is given by

R, (z)=E[z(t)z(t+7)]
=E[XO)X({t+7) @)Y (t+7)]
=E[X )X (t+2)[E[Y )Y (t +7)]
=Ry (T)RY (T)

By the Wiener-Khintchine relations, the spectrum of Z(t) is given by

S; (f ) = Fil[Rx (T)RY (T)]
= F*{a,a, exp(- (e, + )|r|)]

_ 28,8, (al + az)
(o, + a,)? + (24 )

where the last line follows from the Fourier transform of the double-sided exponential
(See Example 2.3).
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Problem 8.51 Consider a random process X(t) defined by
X (t) = sin(24f,t)

where the frequency f. is a random variable uniformly distributed over the interval [0,W]. Show that X(t) is
nonstationary. Hint: Examine specific sample functions of the random process X(t) for, say, the frequencies
W/4, W/2, and W.

Solution
To be stationary to first order implies that the mean value of the process X(t) must be
constant and independent of t. In this case,

E[X (t)]= E[sin(24f t)]
= Wiv.fsin(Zﬂwt)dw

_ —cos(2zwt )"
2wt |,
_ 1—cos(22Wt)
S 27wt

This mean value clearly depends on t, and thus the process X(t) is nonstationary.
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Problem 8.52 The oscillators used in communication systems are not ideal but often suffer from a
distortion known as phase noise. Such an oscillator may be modeled by the random process

Y (t) = Acos(24f t + ¢(t))

where @(t) is a slowly varying random process. Describe and justify the conditions on the random process
@(t) such that Y(t) is wide-sense stationary.

Solution
The first condition for wide-sense stationary process is a constant mean. Consider t = to,
then

E]Y (to)] = E[Acos(27f.t, + ¢ (t,))]

In general, the function cos @ takes from values -1 to +1 when @ varies from 0 to 2x. In
this case & corresponds to 2xnfcty + #(to). If @(to) varies only by a small amount then &
will be biased toward the point 2rfcty + E[#(to)], and the mean value of E[Y(tp)] will
depend upon the choice of to. However, if ¢(t) is uniformly distributed over [0, 2] then
2nfcto + @(to) will be uniformly distributed over [0, 2] when considered modulo 2x, and
the mean E[Y(to)] will be zero and will not depend upon to.

Thus the first requirement is that ¢(t) must be uniformly distributed over [0,27] for all t.

The second condition for a wide-sense stationary Y(t) is that the autocorrelation depends
only upon the time difference

E[Y (t,)Y (t,)] = E[Acos(27f t, + ¢(t,))Acos(24f t, + ¢(t,))]
= A? Elcos(2f, (t, +1,) + ¢(t,) + #(t,)) + cos(2f, (t, — t,) + #(t,) — #(t,))]

where we have used the relation cos AcosB = % (cos(A+ B)+cos(A—B)). In general,

this correlation does not depend solely on the time difference t,-t;. However, if we
assume:

We first note that if ¢#(t;) and ¢(t,) are both uniformly distributed over [0,2x] then so is
v =¢(t,) + ¢(t,) (modulo 2r), and

Elcos(27, (¢, +1,) + )] Zizfcos(zyzfc (t, +1,) +p)dy "
T 0

=0

Continued on next slide
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Problem 8.52 continued

We consider next the term Ry(ty,t2)= E[cos(2f, (t, —t,) + ¢(t,) — #(t,))] and three special
cases:

(a) if At =t;-t, is small then ¢(t,) = #(t,) since (1) is a slowly varying process, and
A2
R, (t,t,) = > cos(24f, (t, —t,))

(b) if At is large then ¢(t;)) and ¢(t;) should be approximately independent and
#(t,) — 4(t,) would be approximately uniformly distributed over [0,2x]. In this case

Ry (t,,t,) =0
using the argument of Eq. (1).

(c) for intermediate values of At, we require that
P(t,) —o(t,) ~ gt —t,)
for some arbitrary function g(t).

Under these conditions the random process Y(t) will be wide-sense stationary.
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Problem 8.53 A baseband signal is disturbed by a noise process N(t) as shown by
X (t) = Asin(0.37t)+ N(t)
where N(t) is a stationary Gaussian process of zero mean and variance ¢

(a) What are the density functions of the random variables X; and X, where
Xy =X,
X2 =X (t)|t:2
(b) The noise process N(t) has an autocorrelation function given by
R, (r) =0 exp(—|r|)
What is the joint density function of X; and X,, thatis, fy , (X;,X,) ?

Solution
(a) The random variable X; has a mean

E[X (t)]= E[Asin(0.37)+ N ()]
= Asin(0.37) + E[N(t,)]
= Asin(0.37)

Since X; is equal to N(t) plus a constant, the variance of X; is the same as that of N(t;). In
addition, since N(t;) is a Gaussian random variable, X; is also Gaussian with a density
given by
f (9 = ——expl (x— ) 1207
! \N2ro
where 1, = E[X (tl)]. By a similar argument, the density function of X; is

f, () = ﬁexp{— (x— 1)1 257}

where 1, = Asin(0.67).

Continued on next slide
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Problem 8-53 continued

(b) First note that since the mean of X(t) is not constant, X(t) is not a stationary random
process. However, X(t) is still a Gaussian random process, so the joint distribution of

N Gaussian random variables may be written as Eq. (8.90). For the case of N = 2, this
equation reduces to

(0 = — oz expl- (x— A (x— )T /2]
27r|A|

where A is the 2x2 covariance matrix. Recall that cov(X1,Xz) =E[(X1-241)(X2-12)], so that
A [cov(X,, X;) cov(X,, Xz)}

Lcov(X,, X;) cov(X,, X,)

[Ry(0) Ry@
“|Ry@) Ry (0)

o’ o’ exp(—l)}

L o”exp(-1) o’
If we let p=exp(-1) then
A =o' @-p?)

and

ol T
c*l-p*)-p 1

Making these substitutions into the above expression, we obtain upon simplification

2 2
fxl,xz (X, Xy) = ﬁexp{— (X —4)" + (X, _/”22) - 2:2()(1 — 1)(X, _ﬂz)}
21— p 20°(1-p°)
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Problem 9.1 In practice, we often cannot measure the signal by itself but must measure
the signal plus noise. Explain how the SNR would be calculated in this case.

Solution
Let r(t) = s(t) + n(t) be the received signal plus noise. Assuming the signal is independent
of the noise, we have that the received power is

R, =E[r* ()]
= E[(s(t) + n(t))Z]
= E[s>(®)]+ 2E[s)n(t)]+ E[n> )]
= E[s>(t)]+ 2E[st) E[n(t)]+ E[n* v)]
=S+0+N

where S is the signal power and N is the average noise power. We then measure the noise
alone

R, =E[n*(®)]
~N

and the SNR is given by

RO_RI

SNR =
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Problem 9.2 A DSC-SC modulated signal is transmitted over a noisy channel, having a
noise spectral density No/2 of 2x107"7 watts per hertz. The message bandwidth is 4 kHz
and the carrier frequency is 200 kHz. Assume the average received power of the signal is
-80 dBm. Determine the post-detection signal-to-noise ratio of the receiver.

Solution
From Eq. (9.23), the post-detection SNR of DSB-SC is

2
P
SNR > = AP
2N W

2
The average received power is A;P = —80 dBm = 10" watts. With a message bandwidth

of 4 kHz, the post-detection SNR is

10711
SNRPSB — =62.5~18.0dB

P (4%x107'7)4000
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Problem 9.3. For the same received signal power, compare the post-detection SNRs of
DSB-SC with coherent detection and envelope detection with K, = 0.2 and 0.4. Assume
the average message power is P = 1.

Solution
DSB AC2 P
From Eq. (9.23), the post-detection SNR of DSB-SC with received power — is
DSB A2
P
SNRPSE = A
2N W

AM A2
From Eq. (9.30), the post-detection SNR of AM with received power 2A° (1 + kaZP) is

AM 2k2P
SNR,?;\; =L
2N W

So, by equating the transmit powers for DSB-Sc and AM, we obtain

TAP A L)

2
AM A2 DSB A2
LA LTA P
2 2 1+k]P

Substituting this result into the expression for the post-detection SNR of AM,

DSB A 2 2
AM _ Ac P ka P _ DSB
SNR2Y = N {1+ ” 2PJ =SNR2¥A

Where the factor A is

2
With k,= 0.2 and P= 1, the AM SNR is a factor A = §20)4 =.04 less.

2
With k= 0.4 and P = 1, the AM SNR is a factor A :ﬂzﬁz 0.14 less.
1+.16 1.16
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Problem 9.4. In practice, there is an arbitrary phase #in Eq. (9.24). How will this affect
the results of Section 9.5.2?

Solution
Envelope detection is insensitive to a phase offset.
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Problem 9.5. The message signal of Problem 9.2 having a bandwidth W of 4 kHz is
transmitted over the same noisy channel having a noise spectral density No/2 of 2x107"”
watts per hertz using single-sideband modulation. If the average received power of the
signal is -80 dBm, what is the post-detection signal-to-noise ratio of the receiver?
Compare the transmission bandwidth of the SSB receiver to that of the DSB-SC receiver.

Solution
From Eq. (9.23)

2
P

SNRE® = A
2NW

2
with AZZP =-80dBm, W =4kHz,and N, =4x10"" . The

SNR>8 =18 dB

post

The transmission bandwidth of SSB is 4 kHz, half of the 8 kHz used with DSB-SC.
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Problem 9.6 The signal m(t) = cos(2000xnt) is transmitted by means of frequency
modulation. If the frequency sensitivity ki is 2 kHz per volt, what is the Carson’s rule
bandwidth of the FM signal. If the pre-detection SNR is 17 dB, calculate the post-
detection SNR. Assume the FM demodulator includes an ideal low-pass filter with
bandwidth 3.1 kHz.

Solution
The Carson Rule bandwidth is B; = 2(k, A+ f,, )= 2(2(1) + 2) = 8 kHz . Then from

Eq.9.59),

SNRFM:3Afka: Al 3k$PBT
PN W? 2NB, | WP

We observed that the first factor is the pre-detection SNR, and we may write this as

.02
SNR™ —sNR™ | 22 Zg
(3.1)
=SNR™ x1.61

pre

~19.2dB

(There is an error in the answer given in the text.)
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Problem 9.7 Compute the post-detection SNR in the lower channel for Example 9.2 and
compare to the upper channel.

Solution

The SNR of lower channel is, from Eq. (9.59)

3A%K(P/2)
SNR™M =2 1 2 7
post 2N W°

where we have assumed that half the power is in the lower channel. Using the
approximation to Carson’s Rule B; = 2(kf P"? + D)z 2k, P’2 = 200 kHz, that s,

k?P =B} /4 this expression becomes

2 3(B./2)

SNRII;I:/S[t: '% _(BT )
2N,B, 2 W
3(B, Y
=SNR™MZ| L
o]

With a pre-detection SNR of 12 dB, we determine the post-detection SNR as follows

3
SNR™ =SNR™ E(@j

post pre 8 19
=10""°%0.375%(10.53)°
=6.94x10°
~38.4dB

(The answer in the text for the lower channel is off by factor 0.5 or 3 dB.) For the upper
channel, Example 9.2 indicates this result should be scaled by 2/52 and

3
w2

SNR™ =SNR'™ 3
19 ) 52

post pre o

~24.3dB

So the upper channel is 10log;¢(52/2) = 14.1 dB worse than lower channel.
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Problem 9.8 An FM system has a pre-detection SNR of 15 dB. If the transmission
bandwidth is 30 MHz and the message bandwidth is 6 MHz, what is the post-detection
SNR? Suppose the system includes pre-emphasis and de-emphasis filters as described by
Egs. (9.63) and (9.64). What is the post-detection SNR if the f345 of the de-emphasis filter
is 800 kHz?

Solution
From Eq. (9.59), (see Problem 9.7), the post-detection SNR without pre-emphasis is

post pre 4

3
SNR™ =SNR™ 3(Br
W
~15dB+19.7 dB
=34.7dB

From Eq. (9.65), the pre-emphasis improvement is

(6/0.8)
3[(6/0.8)—tan™'(6/0.8)) |
=232
~13.6dB

With this improvement the post-detection SNR with pre-emphasis is 48.3 dB.
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Problem 9.9 A sample function
X(t) = A, cos(2af t) + w(t)

is applied to a low-pass RC filter. The amplitude A and frequency f; of the sinusoidal
component are constant, and w(t) is white noise of zero mean and power spectral density
No/2. Find an expression for the output signal-to-noise ratio with the sinusoidal
component of X(t) regarded as the signal of interest.

Solution

The noise variance is proportional to the noise bandwidth of the filter so from Example
8.16,

E[nz(t)]: By N, :ﬁNo

and the signal power is A’ /2 fir a sinusoid, so the signal-to-noise ratio is given by

sNR=— A _2ARC

2 NO NO
4RC
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Problem 9.10 A DSC-SC modulated signal is transmitted over a noisy channel, with the
power spectral density of the noise as shown in Fig. 9.19. The message bandwidth is
4 kHz and the carrier frequency is 200 kHz. Assume the average received power of the
signal is -80 dBm, determine the output signal-to-noise ratio of the receiver.

Solution

From Fig. 9.19, the noise power spectral density ate 200 kHz is approximately 5x107"°
W/Hz. Using this value for Ny/2 (we are assuming the noise spectral density is
approximately flat across a bandwidth of 4 kHz), the post-detection SNR is given by

2
SNR = 2P
2N W

107"
T 4x10°x5%10°"°
=5x10°
~37dB

where we have used the fact that the received power is -80 dBm implies that
A’P/2=10"" watts .
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Problem 9.11 Derive an expression for the post-detection signal-to-noise ratio of the
coherent receiver of Fig. 9.6, assuming that the modulated signal s(t) is produced by
sinusoidal modulating wave

m(t) = A, cos(2af 1)

Perform your calculation for the following two receiver types:

(a) Coherent DSB-SC receiver

(b) Coherent SSB receiver.
Assume the message bandwidth is fy,. Evaluate these expressions if the received signal
strength is 100 picowatts, the noise spectral density is 10> watts per hertz, and fy, is
3 kHz.

Solution
(a) The post-detection SNR of the DSB detector is

SNRDSB: ACZP — AC2An21
INW 4N, f,

(b) The post-detection SNR of the SSB detector is

SNRSSB: AczP — ACZAri
ANW 8N, f,

Although the SNR of the SSB system is half of the DSB-SC SNR, note that the SSB
system only transmits half as much power.
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Problem 9.12 Evaluate the autocorrelation function of the in-phase and quadrature
components of narrowband noise at the coherent detector input for the DSB-SC system.
Assume the band-pass noise spectral density is Sn(f) = No/2 for |f-f¢| < Br.

Solution
From Eg. (8.98), the in-phase power spectral density is (see Section 8.11)

Sy, (F)=Sy, ()
_{%(f—h)+%(f+ﬁ) [f|<B; /2

0 otherwise

_{NO [f|<B, /2

0 otherwise

From Example 8.13, the autocorrelation function corresponding to this power spectral
density is

Ry, (7)= Ry, (7)=N,B;sinc(B;7)
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Problem 9.13 Assume a message signal m(t) has power spectral density

am [fl<w
Suy(F)=1"w

0 otherwise

where a and W are constants. Find the expression for post-detection SNR of the receiver
when

(a) The signal is transmitted by DSB-SC.
(b) The signal is transmitted by envelope modulation with ky = 0.3.
(c) The signal is transmitted with frequency modulation with ki = 500 hertz per
volt.
Assume that white Gaussian noise of zero mean and power spectral density No/2 is added
to the signal at the receiver input.
Solution

(a) with DSB-SC modulation and detection, the post-detection SNR is given by

SNRDSB — ACZP
2NW

For the given message spectrum, the power is
P= J'SM (f)df

ot
zzja—df

W
=aW

where we have used the even-symmetry of the message spectrum on the second line.
Consequently, the post-detection SNR is

SNR DSB — Acza'
2N,

(b) for envelope detection with k; = 0.3, the post-detection SNR is

Continued on next slide
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Problem 9.13 continued

2N W

'%za k2

2N,
2

_ .09 %2

0

(c) for frequency modulation and detection with ki = 500 Hz/V, the post-detection
SNR is

3A’k;P
2N W?

_Aa ke
2N, (W

SNR™ =

2
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Problem 9.14 A 10 kilowatt transmitter amplitude modulates a carrier with a tone
m(t) = sin(2000xtt), using 50 percent modulation. Propagation losses between the
transmitter and the receiver attenuate the signal by 90 dB. The receiver has a front-end
noise No = -113 dBW/Hz and includes a bandpass filter By = 2W = 10 kHz. What is the
post-detection signal-to-noise ratio, assuming the receiver uses an envelope detector?

Solution
If the output of a 10 kW transmitter is attenuated by 90 dB through propagation, then the
received signal level R is

R=10*x10"""

(1)
=107 watts
For an amplitude modulated signal, this received power corresponds to
2
R:%(ijP) )

From Eq. (9.30), the post-detection SNR of an AM receiver using envelope detection is

2y, 2

k,'P

SNR AP
2N W

Substituting for Ka, P, and A’ /2 (obtained from Eq. (2)), we find

M R kP
SR =15 k2P NW
_ 107 L 025x05
1+0.25x0.5 (5x107%)(5x10%)
=44.4

where ky = 0.5 and P =0.5.
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Problem 9.15 The average noise power per unit bandwidth measured at the front end of
an AM receiver is 10 watts per Hz. The modulating signal is sinusoidal, with a carrier
power of 80 watts and a sideband power of 10 watts per sideband. The message
bandwidth is 4 kHz. Assuming the use of an envelope detector in the receiver, determine
the output signal-to-noise ratio of the system. By how many decibels is this system
inferior to DSB-SC modulation system?

Solution
For this AM system, the carrier power is 80 watts, that is,

2
ACT = 80 watts (1)

and the total sideband power is 20 watts, that is,

2
Achaz P =20 watts )

Comparing Eq.s (1) and (2), we determine that kP = }; . Consequently, that post-
detection SNR of the AM system is

2y, 2

kP

sNRi = fe Ko P
2N W

20
10°° x 4000
— 5000

~37dB

For the corresponding DSB system the post detection SNR is given by

1+k*P

SNR P =——2— SNR.Y
1+
b7
=5xSNR
~ 7dB higher
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Problem 9.16 An AM receiver, operating with a sinusoidal modulating wave and 80%
modulation, has a post-detection signal-to-noise ratio of 30 dB. What is the
corresponding pre-detection signal-to-noise ratio?

Solution
We are given that k, = 0.80, and for sinusoidal modulation P = 0.5. A post-detection SNR
of 30 dB corresponds to an absolute SNR of 1000. From Eq.(9.30),

2 2
k,” P
SNR2 = 2o
2 NW

2
1000 = —* _(0.8)20.5
2N W

0

Re-arranging this equation, we obtain

2
A 3105
2N W

From Eq. (9.26 ) the pre-detection SNR is given by

o _ A 1+K,P)

pre 2N, B,
2
:L(ijp)
2N, (2W)

:%(H(O.S)Zo.s)

=2062.5

where we have assumed that Br = 2W. This pre-detection SNR is equivalent to
approximately 36 dB.
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Problem 9.17. The signal m(t) = cos(4007t)is transmitted via FM. There is an ideal

band-pass filter passing 100 < |f| < 300 at the discriminator output. Calculate the post-
detection SNR given that ki= 1 kHz per volt, and the pre-detection SNR is 500. Use
Carson’s rule to estimate the pre-detection bandwidth.

Solution
We begin by estimating the Carson’s rule bandwidth

B, =2(k,A+f,)
= 2(1000(1) +200)
= 2400 Hz

We are given that the pre-detection SNR is 500. From Section 9.7 this implies

A
SNR?Y =&
2N, B,
A
2N, 2400

Re-arranging this equation, we obtain

2
A =1.2x10°Hz
2N

0

The nuance in this problem is that the post-detection filter is not ideal with unity gain
from 0 to W and zero for higher frequencies. Consequently, we must re-evaluate the post-
detection noise using Eq. (9.58)

N -100 300
Avg. post - detection noise power = —g[ j fdf + J‘ f 2df }
-300 100

2N
3A50 [300° —100°]

2N, 2.6x107

2

The post-detection SNR then becomes

Continued on next slide
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Problem 9.17 continued
3AK;P

SNR™ = -
PO, (2.6%107)

A kP
2N, J2.6x107

2
=3(1.2><106)M
2.6%10

=69230.8

where we have used the fact that ki = 1000 Hz/V and P = 0.5 watts. In decibels, the post-
detection SNR is 48.4 dB.
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Problem 9.18. Suppose that the spectrum of a modulating signal occupies the frequency
band f, < | f | < f,. To accommodate this signal, the receiver of an FM system (without

pre-emphasis) uses an ideal band-pass filter connected to the output of the frequency
discriminator; the filter passes frequencies in the interval f S|f|£ f,. Determine the

output signal-to-noise ratio and figure of merit of the system in the presence of additive
white noise at the receiver input.

Solution

Since the post detection filter is no longer an ideal brickwall filter, we must revert to Eq.
(9.58) to compute the post-detection noise power. For this scenario (similar to Problem
9.17)

. . N, | ¢ f
Avg. post - detection noise power = —- I f2df + I f 2df
-1, f,

= iig [f23 - f13]

Since the average output power is still kP, the post detection SNR is given by

PN (S -
For comparison purposes, the reference SNR is

2
Rref = AC
2N0( fz - fl)

The corresponding figure of merit is

: . SNR
Figure of merit =
SNR

3A’k;P A2
TN, (f7 - 1)) 2N (F, - f))
3K2P

BEEEE RS
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Problem 9.19. An FM system, operating at a pre-detection SNR of 14 dB, requires a
post-detection SNR of 30 dB, and has a message power of 1 watt and bandwidth of 50
kHz. Using Carson’s rule, estimate what the transmission bandwidth of the system must
be. Suppose this system includes pre-emphasis and de-emphasis network with f34g of 10
kHz. What transmission bandwidth is required in this case?

Solution
We are given the pre-detection SNR of 14 dB (~25.1), so
2

SNR;, = A _rsi
2N,
and the post-detection SNR of 30 dB (~1000), so
3A’k;P
SNR'Y, = L-=1000
2N W
Combining these two expressions, we obtain
SNRTY  3k;P
b = 3BT =39.8
SNR W

pre

Approximating the Carson’s rule for general modulation B, = 2(kf P2 +W ) ~ 2k P"?,

and if we replace k;P with B /4 in this last equation, we obtain

SNR™ 3
post 3By =39.8

SNRT™ — aw?

pre

Upon substituting W = 50 kHz, this last equation yields Br = 187.9 kHz.
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Problem 9.20. Assume that the narrowband noise Nn(t) is Gaussian and its power spectral
density Sn(f) is symmetric about the midband frequency f.. Show that the in-phase and
quadrature components of n(t) are statistically independent.

Solution
The narrowband noise n(t) can be expressed as:

n(t) =n, (t)cos(27 f 1) —n, (t)sin(27 f 1)
= Re[ 2(t)e*" | ’

where ni(t) and ng(t) are in-phase and quadrature components of n(t), respectively. The
term z(t) is called the complex envelope of n(t). The noise n(t) has the power spectral
density Sy(f) that may be represented as shown below

We shall denote R,,(7), R, , (7)and RnQnQ () as autocorrelation functions of n(t), n(t)
and Nng(t), respectively. Then

R, (7)= E[n(t)n(t + 2')]

-E {[n (t) cos(27 f.t) — N, () sin(27 f.t) |- [ 0, (t+7) cos(27 T, (t+7)) — Ny (t+ 7)sin(27z ,(t + r))]}

[R (0)+ Ry, (r)}cos(Zﬂ f.7) +—[Rnlnl (0)=Ryp, (r)]cos(zﬁ f (2t+1))
~[Ryn (- Rnn(rﬂsnmznfr)——{ R (1) Ry (1) ]sin(r £, 21+ 7))

Since n(t) is stationary, the right-hand side of the above equation must be independent of
t, this implies

W@ =R (@ (1)
n%vyfaﬂu) @)

Continued on next slide
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Problem 9.20 continued
Substituting the above two equations into the expression for Rnn(7), we have

Rin(?)=R,, (r)cos(27z f.7) - R (7)sin(27 f.7) ?3)

The autocorrelation function of the complex envelope z(t) =n, (1) + jn, (t) is

R,(0)=E[Z'(D)z(t+7) ] "
=2R,, (1)+ 2R, (7)

From the bandpass to low-pass transformation of Section 3.8, the spectrum of the
complex envelope z is given bye

SZ(”:{SN(nfc) f>—f,

otherwise

Since Sn(f) is symmetric about fc, Sz(f) is symmetric about f=0. Consequently, the
inverse Fourier transform of Sz(f) = Rx(7) must be real. Since R,,(7) is real valued, based

on Eq. (4), we have
Ryn (1)=0,

which means the in-phase and quadrature components of n(t) are uncorrelated. Since the
in-phase and quadrature components are also Gaussian, this implies that they are also
statistically independent.
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Problem 9.21. Suppose that the receiver bandpass-filter magnitude response |HBP(f)|

has symmetry about *f_ and noise bandwidth Br. From the properties of narrowband

noise described in Section 8.11, what is the spectral density Sy(f) of the in-phase and
quadrature components of the narrowband noise n(t) at the output of the filter? Show that
the autocorrelation of n(t) is

Ry (7) = p(r)cos(2x f.7)
where p(7)=F" [SN (f )] ; justify the approximation p(z7)~1 for |r| <1/B;.

Solution
Let the noise spectral density of the bandpass process be SH(f) then

N 2
SH(f):70|HBP(f)|

From Section 8.11, the power spectral densities of the in-phase and quadrature
components are given by

SN(f)z{SH(f_fc“SH(”fc), |f|<B, /2

, otherwise

Since the spectrum Sy(f) is symmetric about f;, , the spectral density of the in-phase and
quadrature components is

SN(f):{LHBP(f—fcﬂ N, |f[<B. /2 0

otherwise

Note that if |Hgp(f)| is symmetric about f; then |Hgp(f-fc)] will be symmetric about 0.
Consequently, the power spectral densities of the in-phase and quadrature components
are symmetric about the origin. This implies that the corresponding autocorrelation
functions are real valued (since they are related by the inverse Fourier transform). In
Problem 9.20, we shown that if the autocorrelation function of the in-phase component is
real valued then autocorrelation of n(t) is Ry (7) =R, , (z)cos(27 f.7). If we denote

p(r)= Rn|n| (r)=F" [SN(f)] = NOF_l DHBP(f - fc)|2:|

Continued on next slide
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Problem 9.21 continued
then the autocorrelation of the bandpass noise is

Ry (7) = p(7) cos(27zfct)

For |z|[ 1/B, (there is a typo in the text), we have

p(r) = T Sy (f)exp(—j2z fr)df

IS (f)cos 27Z'f2')df
0

due to the real even-symmetric nature of Sy(f). If the signal has noise bandwidth By then

B,
p(1) = I Sy (f)cos (27 fr)df

where the second line follows from the assumption that |2'| 0 1/B; . With suitable scaling

the constant can be set to one.
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Problem 9.22. Assume that, in the DSB-SC demodulator of Fig. 9.6, there is a phase
error ¢ in the synchronized oscillator such that its output is cos(2zf.t+¢). Find an

expression for the coherent detector output and show that the post-detection SNR is
reduced by the factor cos” ¢ .

Solution
The signal at the input to the coherent detector of Fig. 9.6 is x(t) where

X(t) =s(t)+n, (t)cos(27 f t) —ny (1) sin(27 f t)
= Am(t)cos(2z f t) +n, (1) cos(27 f ) —ng () sin(27 1)

The output of mixer2 in Fig. 9.6 is

V(t) = x(t)cos(2z ft+ @)
= [A:m(t) +n, (t)] cos(2rz ft)cos(2z f t+ @) —n, (t)sin(27z f t) cos(27 f t + @)

= é[ﬂm(t) +n, (t)] cos¢+ % N, (t)sin ¢ +%[Am(t) +n, (t)]cos(47r f.t+9) —%nQ (t)sin(4z f.t+¢)

With the higher frequency components will be eliminated by the low pass filter, the
received message at the output of the low-pass filter is

y(t) :%ﬂm(t) cos¢5+%nI (t) cos¢+%nQ (t)sing

To compute the post-detection SNR we note that the average output message power in
this last expression is

1 2 2
— P
4& cos” ¢

and the average output noise power is

%-2NOW cosz¢+%-2N0W sin2¢=i-2N0W

where E[n,2 (t)] = E[né (t)] = N W . Consequently, the post-detection SNR is

_1/4A’Pcos’¢  A’Pcos’ ¢
1/42NW  2NW

SNR

Compared with (9.23), the above post-detection SNR is reduced by a factor of cos’ ¢ .
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Problem 9.23. In a receiver using coherent detection, the sinusoidal wave generated by
the local oscillator suffers from a phase error &t) with respect to the carrier wave
cos(2z f t). Assuming that At) is a zero-mean Gaussian process of variance o, and that

most of the time the maximum value of A1) is small compared to unity, find the mean-
square error of the receiver output for DSB-SC modulation. The mean-square error is
defined as the expected value of the squared difference between the receiver output and
message signal component of a synchronous receiver output.

Solution
Based on the solution of Problem 9.22, we have the DSB-SC demodulator output is

y(t) = % A.m(t)cos [6?('[)] + % n, (t)cos [e(t)] + % n, (t)sin [H(t)]
Recall from Section 9. that the output of a synchronous receiver is
Lam®+inw
2 2

The mean-square error (MSE) is defined by
1 2
MSE = EH y(t) 5 Acm(t)) }
Substituting the above expression for y(t), the mean-square error is

MSE = EH% Am(t)[ cos(O(t)) 1] +%n, (t)cos(@(t))+%nQ (t)sin(@(t))} }

- %E[mz(t)[cos(a(t))—lﬂ+%E[nf(t)cos2 (0(t))}+%E[n§ (D)sin’ (1)) ]

where we have used the independence of m(t), ni(t), no(t), and At) and the fact that
E[n®]= E[nQ (t)] =0 to eliminate the cross terms.

Continued on next slide
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Problem 9.23 continued

MSE = %ZE[”‘Z(U] E[(l —COS(G(t)))z}% E[n:(t)|E[cos® (61)) ] +iE[né () |E[sin’ (@)
= Ai P E[(l —cos(e(t)))z} +% NWE [ cos’ (6(1)) ] +% N WE [ sin (O(t) ]
NW

_ AiP E[(l—cos(@(t)))z}r

where we have used the equivalences of E[m*(t)] = P, and E[nl2 (t)] = E[né (t)] =2N,W .

The last line uses the fact that cos*(&t))+sin’(&t)) = 1. If we now use the relation that
1-cos A = 2sin*(A/2), this expression becomes

MSE = AfPE{sin4 (@ﬂ + M
2 2

Since the maximum value of At) << 1, sin(At)) = A1) and we have

MSE =~ A@PEKHS)] }L NW

2

where we have used the fact that if @ is a zero-mean Gaussian random variable then
Elo*|=3(E[e* | =30

The mean square error is therefore % AP, +% NW .
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Problem 9.24. Equation (9.59) is the FM post-detection noise for an ideal low-pass filter.
Find the post-detection noise for an FM signal when the post-detection filter is a second-
order low-pass filter with magnitude response

H(H)|=——

(1+(f /W)4)1/2

Assume [Hg, (f + )" ~1 for |f|<B; /2 and B >>2W .

Solution
We modify Eq. (9.58) to include the effects of a non-ideal post-detection filter in order to
estimate the average post-detection noise power:

N, 1

Woo 2 _No w 2
Ej_wf |Hgo ()] df_EI_Wf —1+(f/w)4df
2N, (W 1
- 2. df
Al ) 1+(f /W)

This can be evaluated by a partial fraction expansion of the integrand but for simplicity,
we appeal to the formula:

x>dx 1 |1, x*—2kx+2k? o 2kx a
I o= —log— ~+tan” ——— |, ab>0, k=34—
a+bx” 4bk|2 7 x”+2kx+2k 2k —x 2b
Using this result, we get the average post-detection noise power is

. W3{ 2-2
log

2N .
A 42 2+42

3
+ n} = 0.4 MW

Avg. post-detection noise power =
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Problem 9.25. Consider a communication system with a transmission loss of 100 dB and
a noise density of 10™"* W/Hz at the receiver input. If the average message power is P = 1
watt and the bandwidth is 10 kHz, find the average transmitter power (in kilowatts)
required for a post-detection SNR of 40 dB or better when the modulation is:

(a) AM with k; = 1; repeat the calculation for ky = 0.1.
(b) FM with ki= 10, 50 and 100 kHz per volt.

In the FM case, check for threshold limitations by confirming that the pre-detection SNR
is greater that 12 dB.

Solution
(a) In the AM case, the post detection SNR is given by

2k2p
SNRAM = 6P
2N W

lof — Ak
2(2x107*)(10%)

2k2
Ac a =2X10—6

where an SNR of 40 dB corresponds to 10* absolute and No/2 = 10"'* W/Hz. For the
different values of kj

k,=1= A>=4x10"°
k,=0.1= A>=4x10"*

Average modulated signal power at the input of the detector is %Aj (1+k2P).
k,=1= %Af(ukjp) =4x107°

k,=0.1=> %A@(HK:P) =2.02x107"

The transmitted power is 100dB (10'°) greater than the received signal power so
ka= 1= transmitted power = 4x10* =40 kW
ka= 0.1 = transmitted power = 2.02x10° = 2020 kW

Continued on next slide
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Problem 9.25 continued

(b) In the FM case, the post detection SNR is

3AK;P
SNR ™ —
2N W
3ACKT (1)

4

T 2(2x107%)(10%)

2k2
A°2f = 0.667x10°

For the different values of kj
2

A
k, =10kHz/V = 2° =0.667x107°

2

A
k, =50kHz/V = 2° =26.667x107"

2

A
k, =100kHz/V = 2° =0.667x107°

The transmitted power is 100dB (10') greater than the received signal power so

ki= 10 kHz/V = transmitted power = 0.667x10* W = 6.67 kW
ki=50 kHz/V = transmitted power = 26.667x10' W =0.27 kW
ki = 100 kHz/V = transmitted power = 0.667x10° W = 0.07 kW

To check the pre-detection SNR, we note that it is given by :

A A

SNREM = ~ _
"¢ T2N,B, 4N, (k,P"Z+W)

2
where from Carson’s rule B, =2(k,P"? +W). From the above A’ = 4;(120
f

, SO

M 4x10° 10°
SNRpre =2 1/2 PR -14 4
3k; x4N,(k, P +W)  3k; x2x107"(k, +10%)

For the different values of ks, the pre-detection SNR is

k, =10kHz= SNR' =10"/12=29dB >12dB

pre

k; =50kHz= SNR’Y =11.11=10.45dB <12dB

pre

k, =100kHz = SNR'" =1.515=1.8dB <12dB

pre
Continued on next slide
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Problem 9.25 continued

Therefore, for ki = 50 kHz and 100 kHz, the pre-detection SNR is too low and the
transmitter power would have to be increased by 1.55 dB and 10.2 dB, respectively.
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Problem 9.26 In this experiment we investigate the performance of amplitude
modulation in noise. The MatLab script for this AM experiment is provided in Appendix
8 and simulates envelope modulation by a sine wave with a modulation index of 0.3, adds
noise, and then envelope detects the message. Using this script:

(a) Plot the envelope modulated signal.

(b) Using the supporting function “spectra”, plot its spectrum.

(c) Plot the envelope detected signal before low-pass filtering.

(d) Compare the post-detection SNR to theory.

Using the Matlab script given in Appendix 7 we obtain the following plots

(a) By inserting the statements
plot(t,AM)
xlabel("Time")
ylabel('Amplitude’)

at the end of Modulator section of the code, we obtain the following plot of the envelope
modulated signal:

15

0.5

Amplitude
= . o
(63} = (61 o
[EE— =

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time

Continued on next slide
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Problem 9.26 continued

(b) The provided script simulates 2 seconds of the AM signal. Since the modulating
signal is only 2 Hz, this is not a sufficient signal length to accurately estimate the
spectrum. We extend the simulation to 200 seconds by modifying the statement

t =1[0:1/Fs:200];

To plot the spectrum, we insert the following statements after the AM section

[P,F] = spectrum(AM,4096,0,4096,Fs);

plot(F,10*log10(P(:,1)))

xlabel(*Frequency")

ylabel('Spectrum’)
We use the large FFT size of 4096 to provide sufficient frequency resolution. (The
resolution is Fs (1000 Hz) divided by the FFT size. We plot the spectrum of decibels
because it more clearly shows the sideband components. With a linear plot, and this low
modulation index, the sideband components would be difficult to see. The following
figure enlarges the plot around the carrier frequency of 100 Hz.

30+

20t

10}

Spectrum
AN
o

20+
30+t
401
50+
85 9‘0 9‘5 160 165
Frequency

(¢) To plot the envelope-detected signal before low-pass filtering, we insert the
statements (Decrease the time duration to 2 seconds to speed up processing for this
part.)

plot(AM_rec)
xlabel(*Time samples")
ylabel("Amplitude’)
The following plot is obtained and illustrates the tracking of the envelope detector.
Continued on next slide
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Problem 9.26 continued

0.5

Amplitude

0.5 ‘ ‘ ‘
0 500 1000 1500 2000

Time samples

(d) To compare the simulated post detection SNR to theory. Create a loop around the
main body of the simulation by adding the following statements

for kk = 1:15
SNRdBr =10 + 2*kk

PreSNR(kK) = 20*10g10(std(RxAM)/std(RXAMN-RXAM)):
No(kk) = 2*sigma”2/Fs;

SNRdBpost(kk) = 10*log10(C/error);

W =50; P=0.5;

Theory(kk) = 10*log10 ( A*2*ka”2*0.5 / (2*No(kk)*W));
end

plot(PreSNR, SNRdBpost)
hold on,
plot(PreSNR, Theory,'g’);

The results are shown in the following chart.

Continued on next slide
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Problem 9.26 continued

35

30+

Simulation

15+

Post-detection SNR (dB)

10+

0 ! ! ! ! !
10 15 20 25 30 35 40

Pre-detection SNR (dB)

These results indicate that the simulation is performing slightly better than theory? Why?
As an exercise try adjusting either the frequency of the message tone or the decay of the
envelope detector and compare the results.
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Problem 9.27. In this computer experiment, we investigate the performance of FM in
noise. Using the Matlab script for the FM experiment provided in Appendix 8:

(a) Plot the spectrum of the baseband FM phasor.

(b) Plot the spectrum of the band-pass FM plus noise.

(c) Plot the spectrum of the detected signal prior to low-pass filtering.

(d) Plot the spectrum of the detected signal after low pass filtering.

(e) Compare pre-detection and post-detection SNRs for an FM receiver.

In the following parts (a) through (d), set the initial CNdB value to 13 dB in order to be
operating above the FM threshold.

(a) By inserting the following statements after the definition of FM, we obtain the
baseband spectrum
[P,F] = spectrum(FM,4096,0,4096,Fs);
plot(F,P(:,1))
xlabel('Frequency (Hz)")
ylabel('Spectrum’)

An enlarged snapshot of the spectrum near 0 Hz is shown here. It shows the tones at the
regular spacing that one would expect with FM tone modulation. Note that initial plot
shows the “negative frequency” portion of the spectrum just below Fs = 500 Hz. This is
due to the nature of the FFT and the sampling process.
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Continued on next slide
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Problem 9.27 continued

(b) The spectrum of the bandpass FM plus noise is obtained by inserting the statements
[P,F] = spectrum((FM+Noise).*Carrier,4096,0,4096,Fs);
plot(F,10*log10(P(:,1)))
xlabel(*Frequency (Hz)")
ylabel(*Spectrum’)

An expanded view of the result around the carrier frequency of 50 Hz is shown below.

The spectrum has been plotted on a decibel scale to show both the FM tone spectrum and

the noise pedestal.

20+ -

20+ _

40 _

Spectrum(dB)

-60
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10 20 30 40 50 60 70 80 90 100

Frequency (Hz)

(c) To plot the spectrum of the noisy signal before low-pass filtering, we insert the
following statements in the FM discriminator function, prior to the low pass filter
[P,F] = spectrum(BBdec,1024,0,1024,Fsample/4)
plot(F,10*log10(P(:,1)))
xlabel(‘Frequency (Hz)")
ylabel('Spectrum(dB)")

Continued on next slide
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Problem 9.27 continued

The following plot is obtained when expanded near the origin. We plot the spectrum in
decibels in order to show the noise and the non-flat nature of its spectrum more clearly.
The decibel scale also illustrates some low-level distortion that has been introduced by
the demodulation process as exhibited by the small second harmonic at 2 Hz and the low
dc level.
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(d) To plot the spectrum of the noisy signal before low-pass filtering, we insert the
following statements in the FM discriminator function, after the low-pass filter
[P,F] = spectrum(Message,1024,0,1024,Fsample/4)
plot(F,10*log10(P(:,1)))
xlabel('Frequency (Hz)")
ylabel('Spectrum(dB)’)

The following plot is obtained when expanded near the origin. Again we plot the
spectrum in decibels in order to show the noise and, in this case, the effect of the low-
pass filtering. The low-pass filtering does not affect the distortion introduced by the
demodulator in the passband.

Continued on next slide
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Problem 9.27 continued

Spectrum(dB)

L L | L L
5 10 15 20 25
Frequency (Hz)

(@) Running the code as provided produces the following comparison of the post-
detection and pre-detection SNR.

Post-detection SNR (dB)

o
o k--2
=
o
=
o
N
[}

25
CIN (dB)
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Problem 10.1. Let H, be the event that a O is transmitted and let R, be the event that a

0 is received. Define H; and Ry, similarly for a 1. Express the BER in terms of the
probability of these events when:

(a) The probability of a 1 error is the same as the probability of a O error.

(b) The probability of a 1 being transmitted is not the same as the probability of a 0 being
transmitted.

Solution
In both cases, the probability of error may be expressed as

Plerror]=P(R,|H, JP(H,)+P(R,|H, JP(H,) (1)
(@) The BER is the same as the P[error] and with P(Rg|H1) = P(R1/Hp) = p then
Plerror]= p[P(H,)+P(H,)]=p
since P(Hy)+P(Ho) = 1.

(b) With P(Ho) = P(H,), the answer is given by the general result of Eq. (1).
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Problem 10.2. Suppose that in Eqg. (10.4), r(t) represents a complex baseband signal
instead of a real signal. What would be the ideal choice for g(t) in this case? Justify your
answer.

Solution
Inspecting the Schwarz inequality of Eq. (10.12), we see that equality is achieved with

g(T-t)=cs(t)
if s(t) is complex.
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Problem 10.3 If g(t) =c rect {M} determine c such g(t) satisfies Eq. (10.10)
where o > 1.

Solution
From the definition of the rect(.) function,

g(t) =crect (@]

e [t=T72<T I2ax)
|0 otherwise

Substituting this into Eq. (10.10)

T =joT\g (t)\zdt
, (T/24TIQa)
- J-TIZ—T/(Za)

=cT/a

Andso c=+a .
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Problem 10.4. Show that with on-off signaling, the probability of a Type Il error in
Eq.(10.23) is given by

PIY > 711,10 Z

Solution
A Type Il error probability is

_ 1 -+ y2
P[Y>}/|HO]_\/ZGJ.” EXp( 202

I3

PLY > 7| H,] =%j2exp[—%]ds = Q(gj

using the definition of the Q-function given in Section 8.4.

Let s= 1, and then

o
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Problem 10.5 Prove the property of root-raised cosine pulse shape p(t) given by Eg.
(10.32), using the following steps:
(@) If R(f) is the Fourier transform representation of p(t), what is the Fourier

transform representation of p(t-1T)?

(b) What is the Fourier transform of q(z) = jp(r—t) p(t—1T)dt? What spectral
shape does it have? 7

(c) What q(7)? What is q(kT)?
Use these results to show that Eq. (10.32) holds.

Solution
(a) From the time-shifting property of Fourier transforms (see Section 2.2 ), we have that

Flp(t—1T)]= R(f)exp(~ j2A4IT)
(b) From the convolution property of Fourier transforms (See Section 2.2) we have that

Q(f)=Flq(r)]
=F[p®)F[p(t-IT)]
= R?(f)exp(~ j2fT)

(c) Since R(f) is the root-raised cosine spectrum, R*(f) is the raised cosine spectrum and
so q(z) corresponds to a raised cosine pulse. In particular, using the time-shifting
property of inverse Fourier transforms

q(r) =m(z - IT)

where m(7) is the raised cosine pulse shape. Using the properties of the raised cosine
pulse shape (see Section 6.4)

q(KT) =m(kT —IT)
1 k=1
:{o ks
)

and Eqg. (10.32) holds.
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Problem 10.6 Compare the transmission bandwidth required for binary PAM and BPSK
modulation, if both signals have a data rate of 9600 bps and use root-raised cosine pulse
spectrum with a roll-off factor of 0.5.

Solution

For BPSK modulation (bandpass signal), the transmission bandwidth is B, =2x 1;Tﬁ ,
where £is the roll-off factor (0.5) and T is the symbol duration (1/9600 sec). Therefore,

Br = (1+0.5)x9600 = 14.4 kHz.

For binary PAM modulation (baseband signal), B, = %z 7.2 kHz.
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Problem 10.7 Sketch a block diagram of a transmission system including both
transmitter and receiver for BPSK modulation with root-raised cosine pulse shaping.

Solution

The BPSK transmitter with root-raised cosine pulse shaping is shown in (a), and the
corresponding BPSK receiver is shown in (b).

(@)
s(t) = £m(t)sin(2af t
Data Modulated Root (t) (t)sin(2Af t)
—> Impulse - Cgllssiﬁe
frain Filter
sin(2f t)
(b)

Root Data
r(t) Raised /

Cosine
Filter
T-spaced
Sample
Clock

sin(27f t)
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Problem 10.8 Show that the integral of the high frequency term in Eq. (10.53) is
approximately zero.

Solution
Consider the integral over the period from 0 to T of the high frequency term in

Eq. (10.53):

EACTzcos(M ft+24(t)) dt = 8?}: sin (47 f.t+2¢(t))|;

c

- sf}: [sin(4zf.T +24(T))-sin(2¢4(0))

A
Arf,

c

<

where the first line follows since ¢(t) is constant over a symbol interval. By the bandpass
assumption f, >> 1, so this last line is small.
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Problem 10.9. Use Egs. (10.61), (10.64), and (10.66) to show that N; and N, are
uncorrelated and therefore independent Gaussian random variables. Compute the
variance of N;-No.

Solution
The correlation of N; and N, is

E(N,N,) [ZI I w(s)w(t) cos(2z ft)cos(27 f, s)dsdt}
:ZI _[ [w(s)w(t)]cos (27 f,t)cos (27 f,s)dsdt
:270”50—3)cos(27zf1t)cos(27zfzs)ds dt

= NOJ'OT cos(2z f,t)cos(27 f,t)dt
=0

where the last line follows from Eq.(10.61). Since N; and N, are uncorrelated
E[(N=N, )" |=E[(N,)" [+ 2E[N,N, ]+ E[ (N, )|
~E[(N,)" [+E[ (N,)’ |

The variance of the N; term is
E(N,N,) [2.[ J' w(s)w(t) cos (27 f,t)cos(27 f, s)dsdt}
= ZJ' J' [w(s)w(t)]cos (27 f,t)cos(27 f,s) dsdt
= 270”50 —s)cos(2z f,t)cos(27 f,s)ds dt
= NOJ'OT cos? (27 f,t)dt
Using the double angle formula 2cos?6= 1+2cos6, we have

E[(N,)] :%j{j (1+cos4z ft)dt
T
0

N

2

The derivation of the variance of N is similar and the combined variance is NgT.
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Problem 10.10. Plot the BER performance of differential BPSK and compare the results
to Fig. 10.16.

Solution
The bit error probability of differential BPSK is (Eg. (10.75))

PP = O.5exp£—5).
N

0

The following Matlab script plots this performance
EbNodB=[0:0.25:12];
EbNo = 10.*(EbNodB/10);
BER = 0.5*exp(-EbNo);
semilogy(EbNodB,BER)
grid
xlabel('Eb/No (dB)')
ylabel('BER of DPSK")
axis([0 20 1E-7 0.1])

This script produces the following plot.
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The performance of DPSK is slightly worse than BPSK and QPSK. The relative loss with
DPSK is less than 1 dB at E,/Ny of 8 dB and higher. The loss at lower Ep/Np ratios is
greater.
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Problem 10.11. A communication system that transmits single isolated pulses is subject
to multipath such that, if the transmitted pulse is p(t) of length T, the received signal is

s(t) = p(t)+ap(t-7)
Assuming that o and t are known, determine the optimum receiver filter for signal in the
presence of white Gaussian noise of power spectral density No/2. What is the post-
detection SNR at the output of this filter?
Solution

We first note that the pulse is non-zero over the interval 0<t<T +7z. From Section 10.2
the appropriate linear receiver is

Y :.[Omg(l' +7—u)r(u)du
and the optimum choice for g(t) is
g(T+7-t)=c(p(t)+ap(t—1))

where ¢ is chosen such that

T+r
| g dt=T +7
0
With this filtering arrangement, if follows from the modified Eq. (10.9) that

E[NZ}: NO('; +t)

Continued on next slide
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Problem 10.11 continued

The corresponding signal level S is

T+7

szcjg(r-n(mo+apa+r»dt

T+7

=c [ (p()+ap(t+7)) dt

=T+7
which follows from the normalization properties of c. The received signal to noise is
then
2
SNR = S _ T+7
E[N°] N,/2

Although the units on this expression may appear unusual, note that the units of Ny are
(volt)’/Hz = (volt)®sec. The units of the numerator are also (volt)®-sec, although the
(volt)® has been suppressed. Consequently, the SNR is dimensionless, as it should be.
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Problem 10.12. The impulse response corresponding to a root-raised cosine spectrum,
normalized to satisfy Eq.(10.10), is given by

q (1+a)7zt}+ T Sin{(l—a)ﬂt}

4 CO[ T Aot T
a
9(027 4at 2
1_(0‘]
T

where T = 1/2By is the symbol period and « is the roll-off factor. Obtain a discrete-time
representation of this impulse response by sampling it at t = 0.1nT for integer n such that
—-3T <t < 3T. Numerically approximate match filtering (e.g. with Matlab) by performing
the discrete-time convolution

60
g =0.1>.9,9,.,

n=-60

where g, = g(0.1nT). What is the value of gx = q(0.1kT) for k = +20, +10, and 0?

Solution

A Matlab script for this problem is shown below. Note the starting time of -3.01 is used
to avoid divide-by-zero problems. Using the filter function is just one way the discrete
convolution can be performed.

alpha =0.5;
BO =0.5;
T =1/(2*B0);

t=[-3.01:0.1:3] * T;

%-- root raised cosine impulse response

g = cos( (1+alpha)*pi*t/T) + (T/4/alpha) ./ t .* sin( (1-
alpha)*pi*t/T);

g=g./(1- (4*alpha*t/T)."2);

g = 4*alpha/pi * g;

%--- discrete convolution -----

q = 0.1*filter(g,1, [g zeros(1,60)]);
tp =[-6.01:0.1:6] * T;

stem(tp,q)

xlabel(*Time (T)")
ylabel('Amplitude’)

axis([-4 4 -.2 1]), grid on

Continued on next slide
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Problem 10.12 continued

The plot of gk is shown below for = 0.5 . At k = 20 and +10, the amplitude is
approximately zero. At k = 0 the amplitude is 1.
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Problem 10.13. Determine the discrete-time autocorrelation function of the noise
sequence {N} defined by Eq. (10.34)

N, = [ p(T —tw(t)dt

where w(t) is a white Gaussian noise process and the pulse p(t) corresponds to a root-

raised cosine spectrum. How are the noise samples corresponding to adjacent bit intervals
related?

Solution
The autocorrelation function of the noise at samples spaced by T is

RN (n) = E[Nka+n]
- E[ [ p(kT —tywdt [ p((k+n)T - s)w(s)ds}
= j“; ["; p(KT —t) p((k +n)T —s)E[w(t)w(s)]dtds

= [ [ p(T =t p((k +m)T —s)%a(t —s)dtds

where we have interchanged integration and expectation on the third line, and the fourth
line follows from the uncorrelated properties of the white noise. We next apply the sifting
property of the delta function to obtain

Ru(m =] p(kT —t) p((k+n)T —t)%dt

=%j°‘; p(KT —t) p(t - (k + n)T)dt

NO
=—25(n
5 (n)
where the second line follows from the even symmetry property of the raised cosine

pulse, and third line follows from Eq. (10.32). Therefore, noise samples corresponding to
adjacent bit intervals are not correlated.
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Problem 10.14. Draw the Gray-encoded constellation (signal-space diagram) for 16-
QAM and for 64-QAM. Can you suggest a constellation for 32-QAM?

Solution

A general hint for Gray encoding is to

(a) first Gray encode two bits and assign one pair of the resulting encoding to each
quadrant.

(b) Gray encode the remaining bits within one of the quadrants.

(c) obtain the Gray encodings for the remaining quadrants by reflecting the result across
the in-phase and quadrature axes.

16-QAM constellation:

64-QAM constellation:

° ° ° e o ° ° °
° ° ° e o ° ° °
° ° ° e o ° ° °

0000
° ° ° e o ° ° °
° ° ° e o ° ° ° 0100
° ° ° e o ° ° ° 3A
° ° ° e o ° ° ° 1100
° ° ° e o ° ° °

1000

Continued on next slide

0001

0101

1101

1001
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Problem 10.14 continued

32-QAM constellation: (There does not appear to be a Gray encoding for 32-QAM)

° ° ° °
° ° ° ° ° °
° ° o o ° °
° ° o o ° °
° ° o o ° °
10000 10001 1
° o o °

10101 0000C 00001 C

10100 00100 00101 C

11100 01100 01101 C

11101

01000 01001 C
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Problem 10.15. Write the defining equation for a QAM-modulated signal. Based on the
discussion of QPSK and multi-level PAM, draw the block diagram for a coherent QAM
receiver.
Solution

The QAM modulated signal can be defined as:

s(t) = [ b h(t —KT) cos(27 1) + boh(t—KT)sin(2z f.) |,

where by, by, are different modulation levels on the | and Q channels, respectively. T is

the QAM symbol duration, h(t) is the pulse shape and is nonzero during 0 <t<T, and f,
is the carrier frequency.

The block diagram for a coherent QAM receiver is

4>®—> > > -
A
-«—— cos(2x f t)
. - Y
sin(2z f t)
> > -
Matchec
filter
Received

nal x(f)
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Problem 10.16. Show that if T is a multiple of the period of f;, then the terms
sin(2z f.t)and cos(27 f t) are orthogonal over the interval [tO,T +t0].

Solution
T+
ty

'[t:+t°sin(27r f.t)cos(27 f,)dt =] t°%sin(47z f t)dt

1
=~ [—cos(4rft
87”[ cos(4z f t)]

c

T+ty
)

_ _&[Lf[cos(mz f(t, +T)) - cos(4r f.t,)]

c

= _—1fsin(47z ft,+27fT)-sin(2zfT)

4rf,

where we have used the equivalence cosA - cosB = 2sin[(A+B)/2]sin[(B-A)/2)]. If Tis a
multiple of the period of f;, then f.T = integer, and sin(24f . T) =0.

Therefore, f°+T sin(2f.t) cos(24f t)dt = 0. That is, sin(2af t) and cos(24f.t) are
orthogonal over the interval [to, to+T].
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Problem 10.17. For a rectangular pulse shape, by how much does null-to-null
transmission bandwidth increase, if the transmission rate is increased by a factor of three?

Solution
Without loss of generality, consider the baseband BPSK signal:

s(t) = Zbkh(t —KkT),

where T is the symbol duration, by = +1 or -1 for transmitted 1 or 0, respectively. The
pulse h(t) is rectangular,

h(t) = rect(t ull /ZJ.

The Fourier transform H(f) of h(t) is

H(f)=Tsinc(fT)-e /27"
sin(x fT) o
zfT

=T

Inspecting a plot of the sinc function, we see the null-to-null transmission bandwidth of
H(f) is B = 2/T. When the transmission rate is increased by a factor three, we have the
new symbol duration T'=T /3. The null-to-null bandwidth B'=2/T'=3B, increased by
a factor of 3.
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Problem 10.18. Under the bandpass assumptions, determine the conditions under which
the two signals cos(2x f,t) and cos(2x f;t) are orthogonal over the interval from 0 to T.

Solution
For two signals to be orthogonal over the interval from 0 to T, they must satisfy

|| cos(2af ) cos(2f,tydt = 0.

To verify this we perform the integration as follows:
|| cos(2r ,t) cos(2z fitydt = % [[ [cos(@z(f, + £,)t) +cos(2z(, - £,)t)]dt

sin(2z(f, + £)[1 + sin(27(f, - f,))]5

1
4n(f,+ ) 4r(f,— 1)

= msm(27r( f,+ f)T) +msm(2z( f,— £)T)

By the bandpass assumption (fo+f;) >> 1 so the first term in the last line is negligible. For
the second term to be zero it must satisfy
2n(f,—f )T =nx

where n is an integer. This implies that (fo - f;)= n/2T.
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Problem 10.19. Encode the sequence 1101 with a Hamming (7,4) block code.

Solution
Coded bit sequence ¢ = x-G, where G is defined by (10.89).

1000101
0100111
0010110
0001011
= [1101001]

c=[1101]-
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Problem 10.20. The Hamming (7,4) encoded sequence 1001000 was received. If the
number of transmission errors is less than two, what was the transmitted sequence?

Solution
Wsyndrome of the received sequence is S = R[H where H is defined by (10.92).
S=R-H
(101 |
111
110
=[1001000]-| 011
100
010
1 001 |
=[110]

Based on Table 10.4, the error vector E = [0010000]. The transmitted sequence is
E @ R =[1011000].
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Problem 10.21. A Hamming (15,11) block code is applied to a BPSK transmission
scheme. Compare the block error rate performance of the uncoded and coded systems.
Explain how this would differ if the modulation strategy was QPSK.

Solution
1) For the uncoded system, the probability of a bit error with BPSK is

2E
P, = b
The probability of a block error with block length of 15 bits, assuming independent
errors is:

Pbuncoded =1— (1_ Pe )15
2) For the coded system, with a (15,11) Hamming code, the probability of block error is

15
PbCOded — 1_ (l— F)el)lS _(1 ](1_ F)e!)l4 Pe! ,

where P.is the bit error probability of coded bit, since the code can correct a single
bit error. The probability of bit error in this case is:

| [2E.
2o 25|

where E. is the coded bit energy, and E; = 11/15Ey,. Therefore
P'—0 22E,
15N,

To compare the block error probabilities of uncoded and coded systems, we use

Matlab to plot the block error rate curves for P"** and P versus Ep/No (dB), as
shown below

Continued on next slide
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Problem 10.21 continued
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The Matlab script that generates the above plot is
EbNodB=[0:0.25:12];
EbNo = 10.(EbNodB/10);
Pe  =0.5*erfc(sqrt(EbNo));
Puncoded = 1 - (1-Pe)."15;
EcNo =11/15* EbNo;
Peprime = 0.5*erfc(sqrt(EcNo));
Pcoded =1 - (1-Peprime).*15 - 15*(1-Peprime).”14.*Peprime;
semilogy(EbNodB,Puncoded)
grid
xlabel("Eb/No (dB)")
ylabel('Block Error Rate’)
axis([0 20 1E-7 0.1])
hold on, semilogy(EbNodB,Pcoded,'g"), hold off

3) Since for QPSK modulation, bit error probabilities of uncoded bits P, and coded bits
P, are unchanged compared with BPSK modulation, the block error probabilities of

two systems are also the same as those of BPSK modulation.
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Problem 10.22. Show that the choice y = /2 minimizes the probability of error given
by Eqg. (10.26). Hint: The Q-function is continuously differentiable.

Solution
From (10.26), we have the average probability of error as:

() =59 £2L )+ 29 2]

Recall the definition of Q-function:
1 o
Q(X) =—=—| exp(-s*/2)ds
=l
(letu =-s)
1 )
=——=| exp(-u“/2)du
T Lexeuti2)
So the derivative is given by

dQ() _ =1 exp(-x?/2) <0

dx N2

Substituting this result into the definition of P¢() we obtain

() 1 -1 (-7 )11 -1 y' )1
=_. .exp| — . .exp| - P
dy 2 2 p( 20° O'+2 27 P 20° ) o

1 (u-y)° y
= e — —e S A—
2@0‘{ Xp[ 207 P 20°
Setting % =0 implies
Y

=t
exp[ = j_exp[ 262)

(u-7)=r°
y=ul2

Continued on next slide
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Problem 10.22 continued

Checking the second derivative, we have

d*R()_ 1 | 2u-y) (u=-1)?°) 2 Y
d?y 2270|207 P 207 " 20° P 20°

>0
when y= /2. Therefore at y = 1/2, P,(y) has a minimum value.
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Problem 10.23. For M-ary PAM,
(a) Show that the formula for probability of error, namely,

M-1 A
P=2 —
Sl
holds for M = 2, 3, and 4. By mathematical induction, show that it holds for all M.

(b) Show the formula for average power, namely,
(M? —1) A?

3
holds for M = 2, and 3. Show it holds for all M.

P=

Solution
(a) M-ary PAM with the separation between nearest neighbours as 2A. Assume that all M
symbols are equally transmitted.

(i) For M=2, we have the result given in the text for binary PAM

PeZPAM:Q(gj
M -1 A
Y Q[Ej

forM=2.

(if) For M = 3, the constellation is:

———— & —— 0

P .= % Ply>-A|(-2A)is transmitted]+% P[y>Aory<—A]|0is transmitted|

jdy

(y 2A) ]

+% P[y < Al(2A) is transmitted

lee 1 (y+2A)? leo 1
=2 —= _ATE Wy +=
3.[_A\/Eo_exp( 252 y+3J.A \/_O.EXp

et — exp(

e

Continued on next slide
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Problem 10.23 continued

From the formula P, = %Q(AJ , Wwhen M=3, P, = %Q(AJ. Thus the formula
o

O
P, :MQ(AJ holds for M = 3.
M o

(iii) For M = 4, the constellation is:

L G——

-3A -A +A + 3A
P.= % Ply>-2A[(-3A)is transmitted]+%P[y <—2Aory>0|-Ais transmitted|
+% Ply<Oory>2A|+Ais transmitted]+% P[y <2A](3A) is transmitted]

le= 1 (y +3A)*
==| —exp|-———20d
4 J-—ZA N Xp( 20° y

1w 1 (y+AY 122 1 (y+A)
2| = T dy = —— ST A
" [4Io ﬂgeXp{ 20° ]y+4jw \/Zaex'o( 20° 4

1ea 1 (y-3A)°
+— exp| ————n
4= 2ro p( 202 )Y

)

where the factor 2 in the third last line, comes from the symmetry of the second and third

terms of the first equation. From the formula P, = %Q[é] , when M=4,
(o2

P = %Q(Aj . Thus the formula P, = %Q(Aj holds for M = 4.
O

o

(iv) Assume that the formula of P holds for (M-1)-ary PAM. By mathematical induction,
we need to show it also holds for M-ary PAM. The (M-1)-ary PAM constellation may be
illustrated as shown:

]

Continued on next slide
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Problem 10.23 continued

By adding one point P2 on the (M-1)-ary PAM constellation, which has the distance 2A
from point P1, we obtain M-ary PAM constellation as follows (in practice, the average or
dc level may be adjusted as well but this has no effect on the symbol error rate):

—

Since error probabilities of P1 symbol on the (M-1)-ary PAM is the same as that of P2
point on the M-ary PAM, the error probability of M-ary PAM is

M-1
M

P M-ary _

——pMaY = M -symbol error prob. of P1symbol on M-ary (1)

where 1/M is the probability that P1 is transmitted and (M-1)/M is the probability that one
of the other constellation points is transmitted. The probability of error formula for
(M-1)-ary PAM is given by

(M—l)—ary (M 2)
i 5 %s) 24

The symbol error rate of P1 symbol on M-ary PAM is
P, = ﬁ Ply <(u—A),ory>(u+A)|P1is transmitted|

where 4 is the signal level of P1 symbol.
B PO B € ) PV O o (y-n)?
P = iP exp( 2o dy +— v J;HAexp 252 dy
) (A 3)
“wels)
Substituting Eqgs. (2) and (3) into (1), we obtain the symbol error probability of M-ary
PAM
M 1 M-2 (A} 2 A
PM—PAM — 4+ — R
) M M-1 Q[ ) M Q(oj
M :

el

Continued on next slide
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Problem 10.23 continued

The formula holds for M-ary PAM. Therefore, by mathematical induction, the formula
holds for all M.

(b) To compute the average symbol power we note:

2 2
M holds for

i) For M = 2, the average symbol power is A* and the formula P =
M=2.

i) For M = 3, the average symbol energy is

l 2 2 2 8 2
Pzg((zA) +0%+(2A) )=§A :

(M2 —1)A2

The formula P = holds for M=3.

iii) For general even M, the M-ary PAM constellation points are
{—(M -DA,---,-3A,-A A3A:---, (M —1)A}.

The average symbol energy is
_ 2[(M =1)° +(M =3)* +---+ 3" +1] A2
M

2 M/2
_2A Z(Zk 1)2

~ [4|v|(|v|/2+1)(|v| +1)_4|v|(|v| ’2+1)+M}
M 26 27 2

_(MZ-pA?
3
where we have used the summation formulas of Appendix 6.

iv) For general odd M, the M-ary PAM constellation points are

(=M =DA,---,—2A,0,2A,---(M -1)A}.

Continued on next slide
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Problem 10.23 continued

The average symbol energy is

o_ 2[(M =1’ +(M =3)* +---+2° | N

M
2 . 2 . 2
_2A 52 (M 1) +(M 3) T
M 2 2
:g(wu)/zkz
M =
_8AP (M -)(M +1)(M)
M 226
_(M?-1)A?

3

where the fourth line uses the summation formula found in Appendix 6.
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Problem 10.24. Consider binary FSK transmission where (f, — f,)T is not an integer.

(a) What is the mean output of the upper correlator of Fig. 10.12, ifa 1 is
transmitted? What is the mean output of the lower correlator?
(b) Are the random variables N; and N, independent under these conditions? What is

the variance of N; — N,?
(c) Describe the properties of the random variable D of Fig. 10.12 in this case.

Solution:
(a) Ifalistransmitted,
r(t) = A, cos(24f,t) + n(t)

where n(t) is a narrow band Gaussian noise. The output of the upper correlator is Y;:
Y, = [ r(t2 cos(ar,t)dt
= [ V2, cos(2s,t) cos(2rf,t)dt + || v2n(t) cos(2f,t)dt

\/_ACT + j J2n(t) cos(2Af t)dt

The expected value of Yq is E[Y,] = % AT , since n(t) has zero mean.

The output of the lower correlator is Y5:

Y, = [ r(tv2 cos(f tydt
= IT V2 A, cos(27f,t) cos(2f,t)dt + jT \/En(t) cos(2xf,t)dt

\/_ j cos(2z(f, + f,)t)dt +—= j cos(2z(f, — f,)t)dt ++/2 jgn(t)cos(zﬁfzt)dt

=7 jo cos(2z(f, — f,)t)dt + jo J2n(t) cos(2f t)dt

Continued on next slide
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Problem 10.24 continued

where the first term of the third line is negligible due to the bandpass assumption. The
expected value of Y, is

E[Y,]= % [| cos(@a(f, - ,)t)at

1 ,

=%'27z(fl—f )sm (27 (- ,)t][s
sinz(f,—f,)T)

A
22z (f,-1,)
which clearly differs from the orthogonal case.

(b) The random variables N; and N; are given by
N, = [ v/2n(t) cos(af, et

N, = [} \2n(t) cos(af t)et
Since n(t) is a Gaussian process, both N; and N, are Gaussian. To show N; and N, are
correlated consider

E[N,N,]= E[ [ n@cos(2r fydt- [ n(e) cos(2 fzr)dr}
= [ [ EInn(r)]cos(2z ) cos(2z f,7)dtd 7
- j jo —°§(t r)cos(27 f,t) cos(2r f,z)dtdr
- 70 jo cos(2x f,t) cos(2x f,t)dt

_No r [cos(2x(f, + f,)t) +cos(2z(f, - f,)t)]dt

N_ n(2z(f, + fz)t)‘T +sin(27z(fl— fz)t)‘T
4 2x(f+f) 1° 27(f,—1,) "°
N,
4

~

Esinc(2(f,— f,)T)

Continued on next slide
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Problem 10.24 continued

where the first term of the second last line is assumed negligible due to the bandpass
assumption. Since N; and N, are correlated, they are not independent. The variance of
(N1-Np) is

var[N, —N,]=var[N,]+ var[N,] - 2E[N,N,]

=N, —%sinc(Z(fl— f,)T)

(c) The random variable D is Gaussian with zero mean and variance var[N1-Na].
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Problem 10.25. Show that the noise variance of the in-phase component n;(t) of the
band-pass noise is the same as the band-pass noise n(t) variance; that is, for a band-pass
noise bandwidth By

E[nf(t) ] = NoB,
Solution
Recall the spectra of narrowband noise n(t) and its in-phase component n, (t) shown in

Figure 8.23. The variance of a random process x(t) =R, (0) = J.jc X (f)df , where X(f) is
the power spectral density of x(t). Therefore,

Var[n(t)] = E[ n*(t) |
= f;sN (f)df
_2.No op

2

=N, 2B

Where we have used the fact that for a bandpass signal Br = 2B, that is twice the
lowpass bandwidth. Similarly, the variance of the in-phase noise is

Var[n, ()] =E[ n (1) ]

=["s, (f)df
=N, 2B
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Problem 10.26 In this problem, we investigate the effects when transmit and receive
filters do not combine to form an ISI-free pulse shape. To be specific, data is transmitted
at baseband using binary PAM with an exponential pulse shape g(t)=exp(-t/T)u(t) where
T is the symbol period (see Example 2.2). The receiver detects the data using an
integrate-and-dump detector.

(@) With data represented as +1, what is magnitude of the signal component at the
output of the detector.

(b) What is the worst case magnitude of the intersymbol interference at the output of
the detector. (Assume the data stream has infinite length.) Using the value
obtained in part (a) as a reference, by what percentage is the eye opening reduced
by this interference.

(©) What is the rms magnitude of the intersymbol interference at the output of the
detector? If this interference is treated as equivalent to noise, what is the
equivalent signal-to-noise ratio at the output of the detector? Comment on how
this would affect bit error rate performance of this system when there is also
receiver noise present.

(Typo in problem statement, there should be minus sign in exponential.)

Solution
(a) For a data pulse

g(t) = Aexp(—t/T)u(t)

where A is the binary PAM symbol (£1). The desired output of an integrate-and-dump
filter in the n™ symbol period is

(n+1)T
= j g(t—nT)dt

nT

= .T[ A exp(-t/T)dt

= AT (1-exp(-1))

G

n

If the data is either +1, then magnitude of the output is T(1-e™%).

(b) In the "™ symbol period the received signal is
y(t)= D Ag(t—KT)
k=—c0

Continued on next slide
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Problem 10.26 continued

The output of the detection filter in the n" symbol period is

(n+)T

Y = j y(t)dt
(n+)T o
- j > Acexp(—(t—KkT)/T )t
(n+)T » (N+1)T
= j A, exp(—(t—nT)/T)dt+> j A, exp{—(t—(n—K)T)/T}dt

where, due to the causality of the pulse shape, the symbols An.1 and later due not cause
intersymbol interference into symbol A,. The first term in the above is the desired signal
and the second term is the intersymbol interference. By letting s = t— (n-k)T, we can

express this interference as
o (k+1)T

3= [ Acexp(-t/T)dt

k=l kT

=S AT (exp(—k) - exp(~(k +1))

where each term in the summation corresponds to the interference caused by a previous
symbol. For worst case interference we assume that all of the A, have the same sign.
Then this worst case interference is given by

[
>

Il
s

AT (exp(—k) —exp((k +1)))

=
Il
LN

<T (1-exp(-1)) > exp(—k)

k=1

To simplify the notation, we let . = exp(-1). Then

Jr =T (1—a)iak
k=1

(04
T(1 a)l—a
=al
Comparing this worst case interference to the desired signal level G, the eye-opening is
reduced by
I 100=— 1% +100-58%
G, T(1-a)

Continued on next slide
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Problem 10.26 continued

(c) From part (b), we found that K™ preceding symbol contributes an interference
i =A_ (1-a)a"

The total interference is

S =

N

AT (1-a)"

=~
Il

1

Since all symbol intervals are equivalent, we drop the subscript n on J,. The mean value
of this interference is E[J] = 0 since E[An«] = 0. The variance of this interference is

Var(J)=E[J?]

where we have assumed the symbols are independent so that E[AiA;] = 0 if i # j. The rms
interference is given by the square root of the variance so

JI’ITIS :(ZT :l-_—a
l+a

=0.25T
which is clearly less than the worst case interference J™.

If we represent the signal power by S, the noise power by N, then the equivalent signal-
to-noise ratio taking account of the intersymbol interference is

S
N+J2

rms
The intersymbol interference will further degrade performance. In fact, if the worst case
interference is large enough such that the eye closes, it will result in a lower limit on the

bit error rate regardless of how little noise there is.

SNR =

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only
to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that

STU D;ﬁrﬂﬁdéngfmrél% 8 r17(%8 of the 1976 United States Copyright Act without the permission O(Tf) fgglgfte oangi)s/t:m éllak Obal d



Problem 10.27. A BPSK signal is applied to a matched-filter receiver that lacks perfect
phase synchronization with the transmitter. Specifically, it is supplied with a local carrier
whose phase differs from that of the carrier used in the transmitter by ¢ radians.
(a) Determine the effect of the phase error ¢ on the average probability of error of
this receiver.
(b) As a check on the formula derived in part (a), show that when the phase error is
zero the formula reduces to the same form as in Eq. (10.44).

Solution
(a) With BPSK, assume the transmitted signal is (10.36):

s(t) = Ai bh(t—kT)cos(2xft),

where by = +1 for a 1 and by = -1 for a 0, h(t) is the rectangular pulse rect(t _I /2) .

The received signal is

X(t) =s(t) + n(t)
= ﬂibkh(t —KkT)cos(27 f.t) +n, (t)cos(2x f t) —n, (t)sin(27 f 1)

The receiver matched filter is the integrate-and-dump filter. The output for the k™ symbol
after down-conversion with phase error ¢ and match filtering is:

Y, = j “ _x(t)cos(2z ft+ gt

[Acb +n, (t)]cos(27 f t) cos(2r f .t + g)dt — jkil Ny (t)sin(2z f ) cos(27 f.t + ¢)dt

(k-1)T

« mE[ACb +n, (t)][cos¢ +cos(4rx f .t +¢)]dt — J'( T3 Q(t)[sm(47zft+¢5)+sm( ¢)]dt

:%Ab COS ¢+ J' ,(t)cos¢dt+I n(t)sin¢dt

=T5Abk cosg+ N,

where we define
1 pxr ]
Ny =2 J e T (D COS P+ j g (t)sin gt

Continued on next slide
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Problem 10.27 continued

The random variable Ny has zero mean and variance

var[N, ] = cos’ ¢5¥+sin2 ¢ij|’

= NOT =O‘2
4

Let = % A, cos¢ . Then the probability of bit error P is

P, =PIb =1JPLY, <0[b, =1]+P[b, =-1]P[Y, >0|b =-1]

1o 1 (y—m)* Lpe 1 (y+up)*
== exps ———L dy+— exp< — d
2.[—m /272.0_ p{ 0.2 y+2jo /272.0. p 0_2 y

=0

2
with E, =%,ﬂ=gp&cos¢,a:?/NoT , we have P, :Q[

2E, cos¢g
NO

(b) When the phase error ¢=0, P, = Q( %] as the same as Eq. (10.44).

0
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Problem 10.28. A binary FSK system transmits data at the rate of 2.5 megabits per
second. During the course of transmission, white Gaussian noise of zero mean and power
spectral density 10°%° watts per hertz is added to the signal. In the absence of noise, the
amplitude of the received signal is 1 puV across 50 ohm impedance. Determine the
average probability of error assuming coherent detection of the binary FSK signal.

Solution
The average probability of error for coherent FSK is

Eb
Pe _Q[ N_0]

from Eq. (10.68). For this example, we have noise power spectral density is

N, = 2x10*° watts/ Hz

and the energy per bit is

2
Eb :l A:T ’
2 R
In the text, we have nominally assumed the resistance is 1 ohm and omitted it. In this
problem we use the resistance of R = 50 ohms. The symbol duration is
T= Tllofsseconds and the amplitude of received signal is A; = 1uV. Therefore,
O X

1 1x107% 1
=—X X

2 50 2.5x10°
=4x10*watts/Hz

=

Substituting the above values into the expression for P, and we have the probability of
error is

P.=Q(0.2)
0.26

N
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Problem 10.29. One of the simplest forms of forward error correction code is the
repetition code. With an N-repetition code, the same bit is sent N times, and the decoder
decides in favor of the bit that is detected on the majority of trials (assuming N is odd).
For a BPSK transmission scheme, determine the BER performance of a 3-repetition code.

Solution

With 3-repetition code, the decoder will output the correct bit if there are one or fewer
errors in the 3-bit code. Thus, assuming bit errors are independent, the bit error rate is

3
R = (1- af{ljpe(l—a)z

=(1-PR)*(1+2R)

where P; is the bit error rate of channel bit. With BPSK, the formula for bit error
probability is
2E
P = ¢
_ 2Eb ’
B Q[\/ 3N, ]

since ratio of channel bit energy to information bit energy is given by E. = 1/3E,.
Therefore, the bit error probability of the 3-repetition code is

s [+ [ 2E)) 2E,
e ={ieaf ) el B )
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Problem 10.30 In this experiment, we simulate the performance of bipolar signalling in
additive white Gaussian noise. The Matlab script included in Appendix 7 for this
experiment:
e generates a random sequence with rectangular pulse shaping
e adds Gaussian noise
e detects the data with a simulated integrate-and-dump detector
With this Matlab script
(a) Compute the spectrum of the transmitted signal and compare to the theoretical.
(b) Explain the computation of the noise variance given an Ep/Ny ratio.
(c) Confirm the theoretically predicted bit error rate for Ep/No from 0 to 10 dB.

Solution
(a) The provided script plots the simulated spectrum before noise is added. If we add the
statement
hold on, plot(F, abs(2*sinc(F)).*2,'g'), hold off

at the same point, we obtain the following comparison graph. The two graphs agree
reasonably well. There are two reasons for the differences observed with the simulated
spectrum. The first is the relatively short random sequence used for generating the plot
and the second is an aliasing effect.

4.5 T

] |

3.5 \/ i

3 |

25| i
2l \x ]
15] ]
1t \ ,

Spectrum

0.5F \/\ -

0 I I I [ ./M il

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Frequency
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Problem 10.30 continued

(b) The calculation of the noise variance in a discrete time simulation proceeds as
follows. We are given the sampling rate Fs and the required Ep/Ng to simulation. We then
note that

E, = j Ip(t)[ dt

zZ|pk|2Ts

where p(t) is the pulse shape, {p«} is its sample version and Ts = 1/F is the sample
interval. On the other hand, if generate noise of variance o due to Nyquist
considerations this can only be distributed over a bandwidth Fs, thus the noise spectral

density is

(1)

2
o

o0 _= 2
F )

Re-arranging Eq. (2) and substituting Eg. (1) and the knowns, we have

o’ =&F

2
ok
(8] 5w
3(5) S

which agrees with what is used in the script (except that in the script we have suppressed
Fs and T, knowing they would cancel).

Continued on next slide
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Problem 10.30 continued

(c) To compute the bit error rate for 0 to 10 dB, we add the following statements around
the provided script

for kk =0:10
Eb_NO = 10"(kk/10);
Nbits = 100000; % increase for higher Eb/NO
...(provided script)
BER(kk+1) = Nerrs/Nbits

end

semilogy([0:10], BER)

xlabel("Eb/No (dB)")

ylabel('BER’)

grid on

hold on, semilogy([0:10], 0.4*erfc(sqrt(10.~([0:10]/10))),'g")

The following plot is then produced by the Matlab script which shows good agreement
between theory and simulation.
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Problem 10.31 In this experiment, we simulate the performance of bipolar signalling in
additive white Gaussian noise but with root-raised-cosine pulse shaping. A Matlab script
is included in Appendix 7 for doing this. With this simulation:

(a) Compute the spectrum of the transmitted signal and compare to the theoretical. Also
compare to the transmit spectrum with rectangular pulse shaping

(b) Plot the eye diagram of the received signal under no noise conditions. Explain the
relationship of the eye opening to bit error rate performance.

(c) Confirm the theoretically predicted bit error rate for E,/No from 0 to 10 dB.

Solution
(a) We compare the spectra by inserting the following statements prior to noise being
added to the signal
[P,F] = spectrum(S,256,0,Hanning(256),Fs);
plot(F,P(:,1));
midpt = floor(length(F)/2);
hold on, plot(F, abs([(1+cos(pi*F(1:midpt)))/2; 0*F(midpt+1:end)]),'g"), hold off
xlabel(*Frequency'), ylabel('Spectrum®)

The comparison plot is shown below.

1.4

121 B

g |
" ,

0.2 \ ]
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Spectrum

(b) To plot the eye diagram we eliminate the noise by setting Ex/No to a high value
Eb_NO = 2000;

Then running the Matlab script produces the following eye diagram.

Continued on next slide
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Problem 10.31 continued
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(c) We simulate the bit error rate by commenting out the plotting statements and adding a
set of statements similar to those used in Problem 10.30.
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Problem 10.32 In this experiment, we simulate the effect of various mismatches in the
communication system and their effect on performance. In particular, modify the MatLab
scripts of the two preceding problems to:

(@) Simulate the performance of a system using rectangular pulse shaping at the
transmitter and raised cosine pulse shaping at the receiver. Comment on the performance
degradation.

(b) In the case of matched root-raised cosine filtering, include a complex phase rotation
exp(jo) in the channel. Plot the resulting eye diagram for & being the equivalent of 5, 10,
20, and 45°. Compare to the case of 0°. Do likewise for the BER performance. What
modification to the theoretical BER formula would accurately model this behaviour?

Solution
(a) We can create this mismatch by inserting the statements:
pulseTx = ones(1,Fs);

pulseRx =[ 0.0064 0.0000 -0.0101 0.0000 0.0182 -0.0000 -0.0424 ...
0.0000 0.2122 0.5000 0.6367 0.5000 0.2122 -0.0000 ...
-0.0424 0.0000 0.0182 -0.0000 -0.0101 0.0000 0.006417;

Delay = floor((length(pulseTx)-1)/2 + (length(pulseRx)-1)/2 + 1);

Eb = sum(pulseTx."2);

And by modifying the statements

S =filter(pulseTx,1,[b_delta zeros(1,Delay)]);

De = filter(pulseRx,1,R);
Then we obtain the performance shown below. Part of the loss seen is due to the filter
mismatch but part of it is also due to a timing error; with the arrangement of the
simulation the optimum sampling point for the data falls between the discrete samples.
This sampling time loss could be recovered by interpolation.

Continued on next slide
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Problem 10.32 continued

BER

)]

Eb/No (dB)

(b) Implementation of the phase rotation requires simulation of the complete complex
baseband. To do this we must modify the channel portion of the simulation to the

following

%--- add Gaussian noise ----
Noise = sqrt(N0/2)*(randn(size(S))+j*randn(size(S)));

R =S+ Noise;
R = R*exp(j*10/180*pi);
R =real(R);

Where we have now included the quadrature component of the noise. Note the receiver
only uses the in-phase portion (real part) of the signal to characterize this degradation.
The resulting performance for rotations of 10, 20 and 45° are shown below. Note that the

45° rotation results in a 3 dB loss in performance.

Continued on next slide
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Problem 10.32 continued

10

(ol N

BER
[any
o

10*

4 = L

4

10°

Eb/No (dB)

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only
to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that

STU D;ﬁrﬂﬁdéngfmrél% 8 rlﬁS of the 1976 United States Copyright Act without the permission OU}% fgglgfte oangi)s/t:m éllak Obal d



Problem 11.1 What is the root-mean-square voltage across a 10 Mega-ohm resistor at
room temperature if measured over a 1 GHz bandwidth? What is the available noise
power?

Solution
Following Example 11.2, the available noise power is
P, =kTB,
=1.38x10"%* x 290x10°
= 4x10 " watts

The root-mean-square voltage across a 10 mega-ohm resistor is

V... =+/PR

rms

=+/4x10™" x10’

= 6.3 millivolts
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Problem 11.2 What is the available noise power over 1 MHz due to shot noise from a
junction diode that has a voltage differential of 0.7 volts and carries average current of

0.1 milliamperes, if the current source of the Norton equivalent circuit has a resistance of
250 ohms?

Solution
From Eq. (11.9), the saturation current for a junction diode is given by

lg=—F7r—+—
exp(g\_/l_j -1

=1.8x107]

Consequently, the noise contribution from the saturation current may be ignored. From
Eqg. (11.10) the expected current variance is then

E[ Lo |=20(1 +21,)B,
= 2qIB,
= 2><(1.6><10_19)><(0.1><10_3)><106
=3.2x107"" Amp?

The corresponding noise power with an equivalent resistance of 250 ohms is

F)N = E[I shotz]R
=8x107" watts
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Problem 11.3 An electronic device has a noise figure of 10 dB. What is the equivalent
noise temperature?

Solution
From Eq. (11.7), the equivalent noise temperature is

T.=T,(F-1)
=290(10-1)
=2610°K
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Problem 11.4. The device of Problem 11.3 has a gain of 17 dB and is connected to a
spectrum analyzer. If the input to the device has an equivalent temperature of 290°K and
the spectrum analyzer is noiseless, express the measured power spectral density in
dBm/Hz. If the spectrum analyzer has a noise figure of 25 dB, what is the measured
power spectral density in this case?

Solution
For the device of Problem 11.3, the total output noise is, from Eqg. (11.15),

N = Gk(T +Te) BN
= GKTFB,
_ (1017/10 )(1.38 ><1043 )(290) (1010/10 ) BN

=2.0x10"*B,,

The noise spectral density at the device output is approximately

Bﬁ =2.0x107"® W/Hz

N

~-147 dBm/Hz

If the spectrum analyzer has a noise figure of 25 dB, then we must use the results of the
following section. Specifically, Eq. (11.21), to obtain the total noise figure of

F=FK+ el
G,
10%/10
= (1010/10 ) + 107710
=16.3
~12.1dB

Since the overall noise figure is increased 2.1 dB by the spectrum analyzer, the noise
spectral density at the spectrum analyzer output is (assuming unity gain for the spectrum
analyzer) -144.9 dBm/Hz. (There is an error in the second answer given in the text.)
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Problem 11.5 A broadcast television receiver consists of an antenna with a noise
temperature of 290°K and a pre-amplifier with a gain of 20 dB and a noise figure of 9 dB.
A second-stage amplifier in the receiver provides another 20 dB of gain and has a noise
figure of 20 dB. What is the noise figure of the overall system?

Solution
From Eq (11.21), after converting from decibels to absolute

F-1 F-1
Gl GlGZ
7.94-1 99

+_
1 100
=2+6.94+.99
~9.93

F=F+

=2+

Converting this result back to decibels, the overall noise figure is 9.97 dB.
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Problem 11.6 A satellite antenna has a diameter of 4.6 meters and operates at 12 GHz.
What is the antenna gain if the aperture efficiency is 60%? If the same antenna was used
at 4 GHz what would be the corresponding gain?

Solution
From Eq (11.25), the antenna gain is

AP
G 7
The effective area is given by Eq.(11.24)
Ay =nA
ﬂd 2
=9.97 m?

where the efficiency is 60% and the diameter is 4.6 meters. At 12 GHz, the wavelength
A = c/f =0.025 meters. Consequently, the antenna gain is

G =2000458.7
~53.0dB

With a transmission frequency of 4 GHz, the wavelength A = 0.075 m and the antenna
gain is
G =22273.2
~43.5dB

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only
to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that

STU Dpﬁrﬂﬁdéngﬂjr@l% 8 rlﬁS of the 1976 United States Copyright Act without the permission oUhf) f%glﬂﬂe oanéi)s/lfnwiféllak Obal d



Problem 11.7 A satellite at a distance of 40,000 kilometers transmits a signal at 12 GHz
with an EIRP of 10 watts towards a 4.6 meter antenna that has an aperture efficiency of
60%. What is the received signal level at the antenna output?

Solution
From Eq.(11.32), the path loss due to free-space transmission of a 12 GHz signal over

40,000 kilometers is
dar
L, =20log,,| —
200,42

47740 x10°
= 20log,g [W)

~206.1dB

Substituting this result in Eq (11.29), the received power is

P, =EIRP-L, +G,
=10 dBW —206.1dB +53.0 dB
= -143dBW

where we have used the antenna gain of 53 dB from Problem 11.6.
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Problem 11.8 The antenna of Problem 11.7 has a noise temperature of 70°K and is
directly connected to a receiver with an equivalent noise temperature of 50°K and a gain
of 60 dB. What is the system noise temperature? If the transmitted signal has a bandwidth
of 100 kHz, what is the carrier-to-noise ratio? If the digital signal has a bit rate of 150
kbps, what is the E,/Ng?

Solution
From Eq. (11.22), the combined system noise temperature is

T,=T +Ti
1

ant
=70° +50°
=120°K

where the electrical gain of the antenna is 1. For a bandwidth of 100 kHz the available
noise power is

N =kT.B
=1.38x10*.120-10°
=1.66x107*® watts
~ -157.8 dBW

Comparing to the result for Problem 11.7, we have that the C/N is 14.8 dB.
To convert the C/Ng to an Ep/Ng, we use the formula

C E

~ B R
0 0

where the bit rate R relates the energy per bit E;, to the power C. In decibels,

(EJ :[EJ +10log,, R
NO dB—Hz NO dB

Continued on next slide
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Problem 11.8 continued

(Ej :[gj —10log,, R
NO dB NO dB—Hz

= (2) +10log B, —10log,, R
N daB

=14.8+50-51.8
=13dB

Re-arranging, we have
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Problem 11.9 Transmitting and receiving antennas for a 4 GHz signal are located on top
of 20 meter towers separated by 2 kilometers. For free-space propagation, what is the
maximum height permitted for an object located midway between the two towers?

Solution
The radius of the first Fresnel zone with d; = d, = 1 kilometer and A = ¢/f = 0.075 m is

ho [ Add,
d,+d,
_ \/(.075)(1000)(1000)

2000

=6.1m

Consequently, the maximum height of intermediate object is 20 m - 6.1m = 13.9 m, if we
require free-space propagation conditions.
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Problem 11.10 A measurement campaign indicates that the median path loss at 900 MHz
in a suburban area may be modeled with a path-loss exponent of 2.9. What is the median
path loss at a distance of 3 kilometers using this model? How does this loss compare to
the free-space loss at the same distance?

Solution
From Eq (11.37), the free-space path loss at one meter, with a transmission frequency of

900 MHz, is
A Y (.333)
B, = ::(' j — 000704
4rr, Ar

with ro =1 m. From Eq.(11.37), the path loss with the terrestrial propagation model is

PR _ ﬁO

P (rir,)"
0007
(3000)*°

=5.8x10"
~ —132dB

The free-space loss over the same distance is given by

&_(LJZ
P A7y
=7.8x1071

~-101.1dB

or 31 dB less.

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only
to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that

STU Dpﬁrﬂﬁdéngﬂjr@l% (c_))r rlﬁS of the 1976 United States Copyright Act without the permission oUhf) i:gglg{lte oangi)s/lfnwiféllak Obal d



Problem 11.11 Express the true median of the Rayleigh distribution as a fraction of the
Rrms Value? What is the decibel error in the approximation Rmegian = Rrms?

Solution
The median of the distribution satisfies P[R < r] =0.5. Consequently, from Eqg. (11.38)

we have that the median r satisfies

_r2
1—exp{Rz }z%

rms

Solving for r we obtain

Consequently, there is a 2010g;0(0.83) =1.62 dB error when using the rms value of the
amplitude instead of the median value.
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Problem 11.12 Compute the noise spectral density in watts per hertz of:
(a) an ideal resistor at nominal temperature of 290°K;
(b) an amplifier with an equivalent noise temperature of 22,000°K.

Solution
(a) From Eq. (11.19), the noise power spectral density is

N, =KT,
=1.38x107%° %290
=4.0x10"" W/Hz

(b) From Eq. (11.19), the noise power spectral density is
N, = KT,

=1.38x107%x 22000
=3.04x107"° W/Hz
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Problem 11.13 For the two cases of Problem 11.12, compute the pre-detection SNR
when the received signal power is:

(a) -60 dBm and the receive bandwidth is 1 MHz;

(b) -90 dBm and the receive bandwidth is 30 kHz.

Express the answers in both absolute terms and decibels.

Solution
(a) The signal power is obtained by converting -60 dBm to watts

S =10C%19 —10°mwW =10"°W

The noise power from the ideal resistor is from Eq. (11.13)

N =KT,B,
=4.0x107% x (10°%)
=4.0x10"°W
The SNR is the ratio of the two
-9
sNR=> =10 _55.10°~540B
N 4.0x10

A similar calculation for the amplifier of the previous problem results in

107

YYMTEOwT 2.94x10° ~ 34.7 dB
. X X

SNR:i:
N

(b) The signal power is obtained by converting -90 dBm to watts
S =10 =10 mwW =10""W

The noise power from the ideal resistor is from Eq. (11.13)

Continued on next slide
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Problem 11.13 continued

N =KT,B,
=4.0x107" x (30x10°%)
=1.2x10"°W
The SNR is the ratio of the two
-12
SNR =§=L_16=8.3><103 ~39.2dB
N 1.2x10

A similar calculation for the amplifier of the previous problem results in

107

—1.1x10% ~ 20.4dB
3.04x107% x(30><103)

SNRziz
N
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Problem 11.14 A wireless local area network transmits a signal that has a noise
bandwidth of approximately 6 MHz. If the signal strength at the receiver input terminals
is =90 dBm and the receiver noise figure is 8 dB, what is the pre-detection signal-to-noise
ratio?

Solution
The signal power is obtained by converting -90 dBm to watts

S =109 =10°mw =10"%W
The noise power with an 8 dB noise figure F is from Egs. (11.15) and (11.16)

N =kT,FB
=1.38x107% x (290) x10**° x (6x10°)
=1.52x10"°W

The pre-detection SNR is the ratio of the two

12
ZL:6.6~8.2dB

SNR = > —
N 1.52x10
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Problem 11.15 A communications receiver includes a whip antenna whose noise
temperature is approximately that of the Earth, that is, 290°K. The receiver pre-amplifier
has a noise figure of 4 dB and a gain of 25 dB. What is the equivalent noise temperature
of the antenna and the pre-amplifier? What is the combined noise figure?

Solution

(a) Following Example 11.4, the combined noise temperature of the antenna and pre-
amplifier is, from Eq. (11.17)

T

Tsys = lant +Tamp
=290+ 290(F —1)

=728K

(b) From Eq. (11.16), the combined noise figure is

= T+T, 290+728

= =3.51~5.45dB
T 290
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Problem 11.16 A parabolic antenna with a diameter of 0.75 meters is used to receive a
12 GHez satellite signal. What is the gain in decibels of this antenna? Assume the antenna
efficiency is 60%.

Solution
From Eq.(11.25), the antenna gain is

Ar Ay
Gy = 7

(1)

The signal wavelength is 4 =c/f =3x10°/12x10° =0.025m, and the effective area is

A _nnd2 _0.607(7®)’
o= =0.
4

Substituting these two results into Eq. (1), the antenna gain is

A7

Gr =—x(0.6)

(0.025)°

2
7075 _ g 33,10° ~ 37.3dB

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only
to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that

STU Dpﬁrﬂﬁdéngﬂjr@l% 8 rlﬁS of the 1976 United States Copyright Act without the permission oUhFe) f%glﬂﬂe oanéi)s/lfnwiféllak Obal d



Problem 11.17 If the system noise temperature of a satellite receiver is 300°K, what is
the required received signal strength to produce a C/N, of 80 dB?

Solution
(There is a typo in problem statement, the units should be “dB-Hz"’.)
From Eq. (11.19), the noise power spectral density is

N, = KT,

=1.38x107 x (300)
=4.14x10*"W/Hz
~-203.8 dBW/Hz

In decibels, the carrier to noise density is given by

(C/ NO)dB—Hz =(C) sew _(NO)dBW—HZ
80=(C),,, —(-203.8)

dBW

Solving for C, we obtain C =-123.8 dBW =-93.8 dBm.
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Problem 11.18 If a satellite is 40,000 km from the antenna of Problem 11.16, what
satellite EIRP will produce a signal strength of —110 dBm at the antenna terminals?
Assume the transmission frequency is 12 GHz.

Solution
The received power is given by Eq. (11.29)

P, =EIRP+G; - L; (1)

where all quantities are in decibels. From Problem 11.16, the antenna gain is
Gr = 37.3 dB. The free-space path loss is given by Eq. (11.32)

L, =20log,, (%)

From Problem 11.16, the wavelength is A = 0.025m at 12 GHz. So, at a distance
r = 40,000 km, the path loss is

47(40000x10°
0.025

L, =20 Iogm£ J =206.1dB

Substituting these in Eq.(1) with a received power of -110 dBm, we obtain

—-110dBm = EIRP +37.3dB -206.1dB

Solving this equation, we find the require EIRP is 58.8 dBm.
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Problem 11.19 Antennas are placed on two 35-meter office towers that are separated by
ten kilometers. What is the minimum height of a building between the two towers that
would disturb the assumption of free-space propagation?

Solution
From Eq. (11.35), the radius of the first Fresnel zone is

he Ad,d,
d, +d,
This radius is maximized midway between the two towers and must be kept clear to
approximate free-space propagation. With d; = d, = 5km, the radius in meters is

h =+/25004 =504

The maximum building height (in meters) is

b=35-h
—35-502

For example, at a transmission frequency of 4 GHz, the maximum height is b =21.3 m.
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Problem 11.20 If a receiver has a sensitivity of =90 dBm and a 12 dB noise figure what
is minimum pre-detection signal-to-noise ratio of an 8 kHz signal?

Solution
The noise in an 8 kHz bandwidth for a receiver with an 8 dB noise figure is, from Egs.
(11.15) and (11.16),

N =KkT,FB
=1.38x107% x (290) x (10" ) x (8x10°)
=5.07x10"°W
The receiver sensitivity is defined as the minimum received signal power that will

provide a demodulated signal with acceptable performance, thus the minimum signal
power is S = -90 dBm ~ 10" W. The minimum pre-detection SNR is the ratio of the two

-12
SNR = % __ 10 =1.97x10° ~32.9dB

5.07x107%
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Problem 11.21 A satellite antenna is installed on the tail of an aircraft and has a noise
temperature of 100°K. The antenna is connected by a coaxial cable to a low-noise
amplifier in the equipment bay at the front of the aircraft. The cable causes 2 dB
attenuation of the signal. The low-noise amplifier has a gain of 60 dB and a noise

temperature of 120°K. What is the system noise temperature? Where would a better place
for the low-noise amplifier be?

Solution
Following Example 11.4, the system noise temperature is

T
Ts — Tant + Tcable + amp
ant Gcable
=100+ @ + —120
1 631
=580K

where we have used the facts that the antenna does not provide any electrical gain, thus
Gant = 1; and the fact the fact that cable causes a 2 dB 10ss 50 Geapie = 102%° = 0.631.
Locating the low-noise amplifier in the tail of the aircraft, close to the antenna would be a
better system design. With the amplifier in the antenna tail, the system noise temperature
would be approximately 220 K.
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Problem 11.22 A wireless local area network transmitter radiates 200 milliwatts.
Experimentation indicates that the path loss may be accurately described by

Lp, =31 + 33 logso(r)

where the path loss is in decibels and r is the range in meters. If the minimum receiver
sensitivity is -85 dBm, what is the range of the transmitter?

Solution

Since the problem says nothing about the transmit and receive antennas, we shall assume
they are omni-directional with a gain of 0 dB. In this case, the Friis equation (in decibels)
for the received signal strength reduces to

1
=P —(31+33log,, r) 1)

With a transmit power of 200 mW, equivalent to 23 dBm, and a minimum signal strength
of -85 dBm, Eq. (1) becomes

—85=23—(31+33log,, r)

Solving this equation for the maximum range, we find r is 215.4 meters.
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Problem 11.23 A mobile radio transmits 30 watts and the median path loss may be
approximated by

L, = 69 + 31 logio(r)

where the path loss is in decibels and r is the range in kilometers. If the receiver
sensitivity is -110 dBm and 12 dB of margin must be included to compensate for
variations about the median path loss, what is the range of the transmitter?

Solution

Since the problem says nothing about the transmit and receive antennas, we shall assume
they are omni-directional with a gain of 0 dB. In this case, the Friis equation for the
received signal strength reduces to

R=Rh-L-L 1)
=P —(69+3llog,,r)-L,

where Lo represents the required margin. A transmit power of 30 W is equivalent to 14.8
dBW, and a minimum signal strength of -110 dBm is equivalent to -140 dBW. Thus, Eq.
(1) becomes

-140=14.8—(69+31log,, r)-12

Solving this equation for the maximum range, we find r is 240.2 kilometers. In practice,
the range will likely be somewnhat less than this due to the curvature of the earth and
depending on the height of the base station antenna.
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Problem 11.24 A cellular telephone transmits 600 milliwatts of power. If the receiver
sensitivity is =90 dBm, what would the range of the telephone be under free space
propagation? Assume the transmitting and receiving antennas have unity gain and the
transmissions are at 900 MHz. If propagation conditions actually show a path-loss
exponent of 3.1 with a fixed loss £ = 36 dB, what would the range be in this case?

Solution
(a) The Friis equation for the received power in decibels is

P.=R +G;+G; - L, (1)

where the antenna gains are Gg=Gr = 0dB. The transmit power of 600 mW is
equivalent to or 27.8 dBm. For free-space propagation, the path loss is

L, = 20l0g,, (%}

At 900 MHz, the wavelength is A=c/f =3x10°/900x10° =0.33m. Making these
substitutions, we have

~90=27.8+0+0-20log,, (ﬂj
0.33

Solving this equation for the maximum range, we find the r is 20.4 kilometers.

(b) In this case, the Friis equation still applies but the path loss is given by Eq. (11.37)

10736/10 -1

~36+31log,,(r)

Substituting the second line into Eqg. (1), we have

-90=27.8+0+0-(36+31log,,r)

Solving this equation for the maximum range, we find that r is 435 meters. Clearly, the
propagation conditions can make a huge difference on the range.

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only
to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that

STU Dpﬁrﬂﬁdéngﬂjr@l% 8 rlﬁS of the 1976 United States Copyright Act without the permission oUhf) f%glﬂﬂe oangi)s/tgnwiféllak Obal d



Problem 11.25 A line-of-sight 10-kilometer radio link is required to transmit data at a
rate of 1 megabit per second at a center frequency of 4 GHz. The transmitter uses an
antenna with 10 dB gain and QPSK modulation with a root-raised cosine pulse shape
spectrum having a roll-off factor of 0.5. The receiver also has an antenna with 10 dB gain
and has a system noise temperature of 900 K. What is the minimum transmit power
required to achieve a bit error rate of 10°?

Solution

From the BER performance of QPSK in Fig. 10.16, we find that a BER of 10™ implies an
En/No of 9.5 dB is required. From this, we obtain the required C/Ny using knowledge of
the transmission rate R = 1 Mbps.

(3] =(5] +10log,, R
NO dB—Hz NO dB

=69.5 dB-Hz

The system noise temperature of 900 K implies

N, =KT,
=1.38x107°x900

=1.24x10"%° W/Hz
~-199.1 dBW/Hz

Using this information, the received power level may be calculated from

P, =C
C

= [N_Ode-Hz + ( N, )dBW—HZ

=69.5+(-199.1)
=-129.6 dBW

We now appeal to the decibel form of the Friis equation:
P.=R +G, +G; - L; (1)

where the antenna gains are Gg = Gt = 10 dB. Since the problem sight says line-of-sight
transmission, we shall assume free-space propagation, and the path loss is

Continued on next slide
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Problem 11.25 continued

L, = 20l0g,, (%}

At 4 GHz, the wavelength is 1=c/f =3x10°/4x10° =0.075m. Making all these
substitutions into Eq. (1) with a range r = 10 km, we obtain

3
~129.6=F +10+10-20log,, (%J

Solving this equation for the transmitted power, we find that the required Pt is
-25.1 dBW or 4.9 dBm.
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Problem 11.26 A land-mobile radio transmits 128 kbps at a frequency of 700 MHz. The
transmitter uses an omni-directional antenna and 16-QAM modulation with a root-raised
cosine pulse spectrum having a roll-off of 0.4. The receiver has an antenna with 3 dB
gain and a noise figure of 6 dB. If the path loss between the transmitter and receiver is
given by

L, (r) =30+ 28log,,(r) dB

where r is in meters, what is the maximum range at which the bit error rate of 10 may be
achieved?

Solution

From the BER performance of 16-QAM in Fig. 10.16, we find that a BER of 10™ implies
an Ex/No of 13 dB. From this, we obtain the C/No by using knowledge of the transmission

rate R = 128 kbps.
[Ej (E_] +1010g, R
NO dB-Hz NO dB

=64.1dB-Hz

The noise figure of 6 dB implies
N, =kFT,
=1.38x107x(10°*)x(290)
=1.59x10"° W/Hz
~—-198.0 dBW/Hz

and the received power level is

C

P =C :(_j +(N0)dBW—HZ
dB—Hz

0

— 64.1+(~198.0)
= -133.9dBW

We now appeal to the decibel form of the Friis equation:

P.=R +G, +G; - L, 1)

Continued on next slide
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Problem 11.26 continued

where the antenna gains are Gg = Gt = 0 dB. The path loss is

L, =30+28log,, (r)

Making all these substitutions into Eq. (1), we obtain

-133.9=P; +0+0—(30+28log,, r)
or

r= 1O(PT +103.9)/28

In the following figure, we plot the range in kilometres versus the transmit power in
dBW.
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For example, with a transmit power of 10 W or 10 dBW, we find that range is 11.7 km.
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