o
BIRZEIT UNIVERSITY

Objects
& Classes

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

S-HUB.com Uploaded By: Jibreel Bornat

OO Programming Concepts

¢ Object-oriented programming (OOP) involves
programming using objects.

*» An object represents an entity in the real world that
can be distinctly identified.

*» For example, a student, a desk, a circle, a button,
and even a loan can all be viewed as objects.

*» An object has a unique identity, state, and
behaviors.

= The state of an object consists of a set of data fields (also
known as properties) with their current values.

g@- The behavior of an object is defined by a set of methods.

TS-HUB.com Uploaded By: Jibreel Bornat

Objects and Classes

¢+ An object has both a state and behavior.

* The state defines the object, and the behavior
defines what the object does.

*» Classes are constructs that define objects of the
same type.

«» A Java class uses variables to define data fields
and methods to define behaviors.

*» Additionally, a class provides a special type of

methods, known as constructors, which are
Invoked to construct objects from the class.

%TS—HUB.com Uploaded By: Jibreel Bornat

Objects and Classes cont.

Class Name: Circle

Data Fields:
radius 1s

MMethods:
getArea

<

Circle Object 1

Data Fields:
radiusis 10

Circle Object 2

Data Fields:
radiusis 25

Circle Object 3

Data Fields:
radiusis 125

\

/

%TS—HUB.com

|

A class template

Three objects ot
the Circle class

Uploaded By: Jibre€l Bornat

Circle Class

}

class Circle |

J/** The radius of this circle */
double radius = 1.0; <€

/** Construct a circle object */ —j
Circle() {
}

/** Construct a circle object */
Circle(double newRadius) {
radius = newRadius;

}

/** Return the area of this circle */

Data field

— Constructors

double getAreal() { -«
return radius #* radius *# 3.14159;

}

Method

%TS—HUB.Com

Uploaded By: Jibre€l Bornat

UML Class Diagram

Circle < Class name
radius: double < Data fields
UML Class Diagram
Circle() < Constructors and
Circle(newRadius: double) methods
getArea(): double

circlel: Circle circle2: Circle circle3: Circle

radius= 1.0 radius =25 radius= 125

\ }
|

UML notation

for objects
TS-HUB.com Uploaded By: Jibre€l Bornat

Constructors

¢ Constructors are a special kind of
methods that are invoked to construct objects.

Circle() {
}

Circle(double newRadius) {
radius = newRadius;

}

%TS—HUB.com Uploaded By: Jibreel Bornat

Constructors cont.

¢ A constructor with no parameters is referred to as
a no-arg constructor.

% Constructors MUSt have the same name as the
class itself.

¢ Constructors do not have a return type—not even
void.

¢ Constructors are invoked using the new operator
when an object is created.

¢ Constructors play the role of initializing objects.

%TS—HUB.com Uploaded By: Jibreel Bornat

Creating Objects Using Constructors

new ClassName();

Example:

new Circle();

new Circle(5.0);

%TS—HUB.com Uploaded By: Jibreél Bornat

Default Constructor

*» A class maybe defined without constructors.

*» In this case, a no-arg constructor with an
empty body is implicitly declared in the class.

< This constructor, called a default
constructor, is provided automatically

O N LY I F Nno constructors are

explicitly defined in the class.

%TS—HUB.com Uploaded By: Jibre#l Bornat

Declaring Object Reference Variables

¢ To reference an object, assign the object
to a reference variable.

» To declare a reference variable, use the
syntax:

ClassName objectRefVar;
Example:

Circle myCircle;

%TS—HUB.com Uploaded By: Jibre€!l Bornat

Declaring/Creating Objects in a Single Step

ClassName objectRefVar = new ClassName();

Assign object reference

Example: PN

Circle myCircle =

%TS—HUB.Com

|

new Cii:cle)k

Uploaded By: Jibre®l Bornat

Create an object

Accessing Object’s Members

*** Referencing the object’s data:
objectRefVar.data

e.g., MmyCircle.radius
*** Invoking the object’s method:

objectRefVar.methodName(arguments)

e.g., myCircle.getArea()

%TS—HUB.com Uploaded By: Jibretl Bornat

Reference Data Fields

¢ The data fields can be of reference types.

" |f a data field of a reference type does not reference
any object, the data field holds a special literal value,

null.

" For example, the following Student class contains a
data field name of the String type.

public class Student {
String name; // name has default value null
int age; // age has default value 0
boolean isScienceMajor; // default false
char gender; // default value "\u0000'

%TS—HUB.com Uploaded By: Jibre&l Bornat

Default Value for a Data Field

** The default value of a data field is:

null for a reference type
0 for a numeric type
false for a boolean type

"\u0000' for a char type

< However, Java assigns NO default value
to a local variable inside a method.

%TS—HUB.com Uploaded By: Jibre€l Bornat

Example

« Java assigns NO default value to a local
variable inside a method.

public class Test {
public static void main(String[] args) {
int x; // x has no default value
String y; // vy has no default value
System.out.printin("x is " + x);
System.out.printin("y is " +vy);

}
}

%T Compilation error: variables not initialized

S-HUB.com Uploaded By: Jibre® Bornat

Differences between Variables of
Primitive Data Types and Object Types

Primitive type imti=1 1 1

Created usinjﬂ:w Circle()

Object type Circle ¢ C reference » ¢ Circle

radius = 1

%TS—HUB.com Uploaded By: Jibreel Bornat

Copying Variables of Primitive Data
Types and Object Types

Primitive type assignment i=j

Before: After:
1 1 1 2
j 2 i 2

Object type assignment ¢l = ¢2

Before: After:

cl cl

==

cl: Circle C2: Circle cl: Circle C2: Circle
TS-HUH c&pfius =5 radius =9 radius = 5 tadivaced By: Jibredl Bornat

Garbage Collection

¢ As shown in the previous figure, after the
assignment statement cl1 = c2, c1 points to
the same object referenced by c2.

¢ The object previously referenced by c1 is
no longer referenced.

<+ This object is known as garbage.
** Garbage is automatically collected by JVM.

%TS—HUB.com Uploaded By: Jibre&l Bornat

The Date Class

¢ Java provides a system-independent encapsulation of
date and time in the java.util.Date class.

¢ You can use the Date class to create an instance for the
current date and time and use its toString method to return

the date and time as a string.

java.util Date

The + sign indicates

public modifer ——|+Date() Constructs a Date object for the current time.
+Date(elapseTime: long) Constructs a Date object fora given time in
milliseconds elapsed since January 1, 1970, GMT.
+toSting(): String Returns a string representing the date and time.
+getTime(): long Returns the number of milliseconds since Januarv 1,
1570, GMT.

+setTime(elapseTime: long): void | Sets anew elapse time in the object.

%TS—HUB.com Uploaded By: Jibre€l Bornat

The Date Class Example

** For example, the following code:
java.util.Date date = new java.util.Date();
System.out.printin(date.toString());
= displays a string like:
Mon Nov 04 19:50:54 IST 2013

%TS—HUB.com Uploaded By: Jibre€l Borna

The Random Class

+** You have used Math.random() to obtain a random double
value between 0.0 and 1.0 (excluding 1.0).

** A more useful random number generator is provided in
the java.util.Random class.

java.util. Random

+Random()
+Random(seed: long)
+nextInt(): int
+nextInt(n: int): int
+nextLong(): long
+nextDouble(): double
+nextFloat(): float

+nextBoolean(): boolean

%TS—HUB.Com

Constructs a Random object with the current time as its seed.
Constructs a Random object with a specified seed.

Returns a random int value.

Returns a random int value between 0 and n (exclusive).
Returns a random long value.

Returns a random double value between 0.0 and 1.0 (exclusive).
Returns a random float value between 0.0F and 1.0F (exclusive).

Returns a random boolean value.

Uploaded By: Jibre&l Bornat

Instance Variables, and Methods

** Instance variables belong to a
specific Instance.

* Instance methods are invoked
by an instance of the class.

%TS—HUB.com Uploaded By: Jibre&l Bornat

Static Variables, Constants, and Methods

*» Static variables are shared by all the
Instances of the class.

*» Static methods are not tied to a specific
object.

+» Static constants are final variables shared
by all the instances of the class.

+» To declare static variables, constants, and

methods, use the statiC modifier.

%TS—HUB.com Uploaded By: Jibre€l Bornat

Static

Aftertwo Circle
Objects were created,
numberOfObjects
is 2.

UML Notation: inetantiate
underline: static > circlel: Circle Memory
varlablcsor methods |] hl_, radius
Circle number0fObjects = 2
radius: double
numberOfObjects: int >)
getNumberOfObjects(): int _ , number0OfObjects
getArea(): double [nstantiate cirele2: Circle
S gy e anattll KL

*TS—HUB.com Uploaded By: Jibre&l Bornat

Static Variable

** It is a variable which belongs to the class and
not to the object (instance).

+* Static variables are initialized only once, at the
start of the execution. These variables will be
initialized first, before the initialization of any
instance variables.

*** A single copy to be shared by all instances of
the class.

¢ A static variable can be accessed directly by
the class name and doesn’t need any object.

%émgcggn(: <class-name>. <staltic-valriglggggea@cgmgg)mat

Static Method

* It is a method which belongs to the class and not to the
object (instance).

s A static method can access only static data. It can not
access non-static data (instance variables).

** A static method can call only other static methods and
can not call a non-static method from it.

** A static method can be accessed directly by the class
name and doesn’t need any object.

Syntax : <class-name>.<static-method-name>

¢ A static method cannot refer to “this” or “super”
keywords in anyway.

main method is static, since it must be accessible for an
TS-HUB.gpplication to run, before any instantiation takesplac¢el By: Jibreel Bornat

Static example

class Student {
int a; //initialized to zero
static int b; //initialized to zero only when class is loaded

Student(){
//Constructor incrementing static variable b
b++;
1
J

public void showbData(){

System.out.println("value of a = "+a);
System.out.println("value of b = "+b);
1
J
//public static void increment(){
//a++;
/1}

1
J

class Demo{
public static void main(String args[]){

Student s1 = new Student(); -
s1.showbData(); cn C:\WINDOWS\system32\cmd.exg

:\workspace>java Demo
alue of a

Student s2 = new Student();
s2.showData();

//Student.b++; alue of b

: //s1l.showData(); oy A 2
NT$-HUB.com alue of b
)

Static example cont.

¢ Following diagram shows , how reference
variables & objects are created and static variables
are accessed by the different instances.

Ny b ¥

]
....
@
...

%NTS—HUB.com Uploaded By: Jibreel Bornat

Visibility Modifiers

¢ By default, the class, variable, or method can be
accessed by any class in the same package.

<= puU blic: The class, data, or method is visible to any

class in any package.

& private: The data or methods can be accessed only

by the declaring class.
<+ The get and set methods are used to read and modify
private properties.

%TS—HUB.com Uploaded By: Jibre#l Bornat

package p1l;

public class C1 {
public 1int x;
int y;
private int z;

public void m1() {

}
void m2() {

}

private void m3() {

}

}

package pl;

public class C2 {
void aMethod() {
Cl o = new C1Q);
can access 0.X;
can access 0.Y;
cannot access 0.Z;

can invoke o.m1();
can invoke o.m2();
cannot invoke o0.m3();

package p2;

public class C3 {
void aMethod() {
Cl o = new C1Q);
can access 0.X;
cannot access 0.Y;
cannot access 0.z;

can invoke o.m1();
cannot invoke o0.m2();
cannot invoke 0.m3():

package pl;
class C1 {

: e

package pl;

public class C2 {
can access C1

}

package p2;

public class C3 {
cannot access (C1;
canh access (C2;

}

The private modifier restricts access to within a class.

The default modifier restricts access to within a package.
‘*}I’Sh@d}%blic modifier enables unrestricted ageesS: jirea Bormat

NOTE

¢ An object cannot access its private members, as
shown in (b). It is OK, however, if the object is
declared in its own class, as shown in (a).

public class C {
private boolean x;

private int convert() {
return x 7 1 : -1;

}

}

public class Test {
public static void main(String[] args) {
C c = new CQO;
System.out.printin(c.x);
System.out.printin(c.cghvert());

¥
¥

(a) This is okay because object C is used inside the class C.

*TS—HUB.com

4
(b) This is wrong because X and convert are private in class C.

Uploaded By: Jibre&l Bornat

Example of Data Field Encapsulation

Circle

The - sign indicates
private modifier =3 -radius: double

pumberOfObiects: i

+Circle()

+Circle(rads: double)

+getR adius(): double

+setR adu s(radius: double): void
+getNumberOfObject(): int
+getArea(): double

%TS—HUB.com

The radms o this crcle (default: 1.0).

The number of circle objects created.

Constructs adefault circle object.

Constructs acircle object with the specified radius.
Retums the radius of this circle.

Set s anew radius forthis circle.

Retums the number of circle objects created.

Retums the area of this circle

Uploaded By: Jibre&l Bornat

Overloading Methods and Constructors

** In a class, there can be several methods

with the same name. However they must
have different signature.

** The signature of a method is comprised of
its name, its parameter types and the order
of its parameter.

¢ The signature of a method
is not comprised of its return type nor its
visibility nor its thrown exceptions.

%TS—HUB.com Uploaded By: Jibreel Bornat

Passing Objects to Methods

» Passing by value for primitive type
value (the value is passed to the
parameter).

» Passing by value for reference type
value (the value is the reference to
the object).

*TS—HUB.com Uploaded By: Jibre#&l Borna

Passing Objects to Methods

public class TestPassObject {
public static void main(String[] args) {

Circle myCircle = new Circle(1);
// Print areas for radius 1, 2, 3, 4, and 5.
intn=25;
printAreas(myCircle, n);
System.out.printIn("\n" + "Radius is " + myCircle.getRadius());
System.out.printin("nis " + n);

}

/** Print a table of areas for radius */
public static void printAreas(Circle c, int times) {
System.out.printIn("Radius \t\tArea");
while (times >= 1) {
System.out.printIn(c.getRadius() + "\t\t" + c.getArea());
c.setRadius(c.getRadius() + 1);
times--;

}

}
%TS—HbB.com Uploaded By: Jibre# Bornat

Array of Objects

Circle[] circleArray = new Circle[10];
¢ An array of objects is actually an array
of reference variables.

¢* So invoking circleArray[1].getArea()
involves two levels of referencing as
shown in the next figure.

circleArray references to the entire array.
circleArray[1] references to a Circle object.

%TS—HUB.com Uploaded By: Jibre&l Bornat

Array of Objects

Circle[] circleArray = new Circle[10];

circ]eArray‘jiﬁfzﬂfi}---*-circ1eArray[0]

Circle object 0

circleArray[1]

Circle object 1

circleArray[9]

%TS—HUB.com

11

Circle object9

circleArray[0] = new Circle();
circleArray[1] = new Circle();

circleArray[9] = new Circle();
Uploaded By: Jibreel Bornat

Immutable Objects and Classes

* If the contents of an object

(instance) can't be changed once
the object is created, the object is

called animmutable object
and its class is called an

immutable class.

%TS—HUB.com Uploaded By: Jibre# Bornat

Immutable Objects and Classes

* If you delete the ,pjic class Circle {

set method in the private double radius = 1;

Circle class, the

class would be public double getArea() {
immutable return radius * radius * Math.Pl;

because radius is }

private and cannot public void setRadius(double r) {
be changed radius = r;

without a set ;

method. }

%TS—HUB.com Uploaded By: Jibre€l Bornat

Immutable Objects and Classes

** A class with all private data fields
and without mutators is not
necessarily immutable.

*** For example, the following class
Student has all private data fields
and no mutators, but it is
mutable!!!

%TS—HUB.com Uploaded By: Jibreel Bornat

import java.util.Date;

Exa m p I e public class Student {

private int id;
private Date birthDate;

public Student(int ssn, Date newBD) {
id = ssn;
birthDate = newBD;

}

publicint getld(){ returnid; }

public Date getBirthDate() { return birthDate; }
}

public class Test {
public static void main(String[] args) {
java.util.Date bd = new java.util.Date();
Student student = new Student(111223333, bd);
java.util.Date date = student.getBirthDate();
date.setMonth(5); // Now the student birthdate is changed!

}
TS}HUB.Com Uploaded By: Jibreel Borpat

What Class is Immutable?

¢ For a class to be immutable:
" [t must mark all data fields private.
® Provide no mutator methods.

= No accessor methods that would
return a reference to a mutable data
field object.

%TS—HUB.com Uploaded By: Jibre€&l Bornat

Scope of Variables

** The scope of instance and static variables is the
entire class. They can be declared anywhere
inside a class.

** The scope of a local variable starts from its
declaration and continues to the end of the
block that contains the variable.

< A local variable MUST be initialized explicitly
before it can be used.

%TS—HUB.com Uploaded By: Jibre&l Bornat

Scope of Variables

*** What is the output?

public class A{
int year = 2014;

void p() {

System.out.printIn(“Year: ”+ year);

int year = 2015;

System.out.printIn(“Year: ”+ year);

J

*TS—HUB.com

Uploaded By: Jibreel Bornat

The this Keyword

¢ The this keyword is the name of a reference

that refers to an Object itself.

¢ One common use of the this keyword is
reference a class’s hidden data fields.

¢ Another common use of the this keyword to
enable a constructor to invoke another
constructor of the same class.

%TS—HUB.com Uploaded By: Jibre®d Bornat

Reference the Hidden Data Fields

public class F
private int 1 = 5;
private static double k = 0;

void setI(int 1) {
this.i = i;

}

static wvoid setE (double k) |
F.k = k;
}
]

Suppose that fl1 and f2 are two objects of F.
F f1 = new F(); F £Z2 = new F():

Invoking fl.setI(10) 1s to execute
this.1 = 10, where this refers fl

Invoking f2.setI (45) 1s to execute
TS-HUB.cothis.1 = 45, where this refers f£2Uploaded By: Jibre#l Bornat

Calling Overloaded Constructor

public class Circle {
private double radius;

public Circle (double radius) {
this.radius = radius;

}
this must be explicitly used to reference the data

public Circle () { field radius of the object being constructed
this(1.0) ;

}

—> this is used to invoke another constructor

public double getArea () {
return this.radius * this.radius * Math.PI;

] |

Every instance variable belongs to an instance

represented by this, which is normally omitted
TS-HUB.com Uploaded By: Jibre&l Bornat

