
Chapter 6
Semantics

Recall :

Programming Language syntax means what the language constructs look like.

Programming Language semantics means what those language constructs actually

do (meaning).

Programming language semantics are much more complex to express than the

syntax. Programming language semantics can be specified by :

1. The Programming language reference manual (most common and simple).

2. Translator (Compiler or Interpreter).

 By Experiment. Execute programs to find out what they do.

 Machine dependent (generally it is not portable).

3. Formal Definition (mathematical model). It is complex and abstract.

We will mainly be using the first method.

We will also use ALGOL-like languages in our discussion

Binding

Using names or identifiers in a programming language is a basic, fundamental

abstraction - variable names, constant names, procedure and function names

are all examples of this.

Related to names is the concept of:

 location. Simply put, the location is the address of the name in memory.

Value. Another thing related to the name is the value, which is the storable

quantity in memory.

But how is the meaning of names determined?

Answer: It is determined by its attributes (properties associated with it).

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

For example :

const n = 15;

in this declaration, we associated 2 attributes :

1. It is a constant name.

2. it has a value of 15.

Another example :

var

x:integer;

again, 2 attributes are associated with the name x :

1. It is a variable name.

2. It is of integer type.

Another example :

function compute (n:integer, x:Real):Real;

Begin

.

.

end;

Associated with the name compute (function name) is :

1. It's type : a function name.

2. Number and type of parameters : it takes 2 parameters, one of type integer .

and one of type Real .

3. It's return value : The function returns Real .

4. The code body of the function.

 Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Another example :

var

 y : ^ integer;

Associated with the name y is :

1. It's a variable name.

2. It is of a pointer to an integer type.

Notice that in all the examples above, all attributes are determined at declaration.

However, we can assign attributes outside the declaration.

For example :

 x := 2;

this means that we add a new attribute to the name x , which is the value.

In the example,

var

 y : ^ integer;

If we say,

 New(y);

Then, in this case, we add a third attribute to the variable y which is the location.

When we first declared y, it pointed to junk (something random). When we used

new(y) , pascal reserved a place in the memory the size of an integer and changed the

reference to it (without having to name it, unlike C).

The process of associating attributes to names is called Binding. This happens at

Binding Time.

Binding Time : The time during the translation(compilation) process when the

attribute is computed and associated to the name.

 Uploaded By: Ayham NobaniSTUDENTS-HUB.com

There are 2 kinds of binding times.

1. Static Binding : binding which occurs before execution. We call those attributes

static attributes.

2. Dynamic Binding : binding which occurs during execution.

Examples :

1. const n = 15;

is a static attribute. This is because the attributes constant name and value=15

are assigned during compilation.

2. x:integer

The attributes variable name & integer type are also static attributes.

However, when we say x:=2 , the attribute value=15 is a dynamic attribute because

it is assigned during execution.

3. y^:integer ;

 the attributes variable name & pointer to integer type are static attributes , while

new(y) , the added attribute location is a dynamic attribute.

Binding can be performed prior to translation.

As an examples in Pascal:

- Binding reserved words(names), Data structure types, and Array storage layout

are predetermined at language definition time.

- Binding the values for the integer type (Range of integers) and the values for

the Boolean type (true, false), The constant maxint in Pascal are defined at

implementation time.

In short, Binding can be performed at :

 Language definition time.

 Language implementation time.

 Translation time.

 at lexical analysis.

 at syntax analysis.

 at code generation.

 All the above bindings are static.

 Execution time. This binding is dynamic. Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Symbol Table

The Symbol Table is a special data structure used to maintain the binding during the
translation process

Environment

The Environment is the memory allocation part of the execution process. ie, binding

names to the storage locations is called Environment.

Memory

Memory is the binding the storage locations to values.

Declarations and Blocks

Declarations are the principle method to establish binding. There are 2 types of
declarations:

1- Explicit Declaration:

Pascal:

 Var

 X:integer;

 Ok:Boolean;

Algol68:

 Begin

 Integer x;

 Boolean ok;

 End

Ada:

 Declare

 X:integer;

 Ok:Boolean;

C:

 Int x;

2- Implicit Declaration:

The variable is declared when it is used.

for example, in C: int n = 10

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Declarations are associated with blocks. There are 2 types of blocks:

1- Main Program Block.

2- Procedure or function block.

For Example in Pascal:

In Algol:

In Ada:

Declarations bind different attributes to names especially the static type of attributes.

Note that the declaration itself has an attribute, which is the position of the declaration

in the program. This is important to determine the scope/visibility of the variable.

Program Test;

Var

.

Procedure P;

Var

.

Begin

.

.

End;

function q:integer;

Var

.

Begin

.

.

End;

Begin(*main*)

.

.

End.

Begin

Integer X;

Boolean Y;

.

X := 2;

Y ;= True

.

 End

Declare

X : Integer;

Y : Boolean;

Begin

X := 2;

Y := 0;

End;

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Scope of Declaration

The scope of declaration is :

The region of the program over which the declaration covers. In block structured languages, such

as PASCAL , the scope of declaration is limited to the block in which is declared/appears and all

other nested blocks. Contained within this block.

In fact, a language like PASCAL has the following scope rule :

RULE: The scope of declaration extends from the point it is declared to the end of the

block.

for example :

In Algol 60:

x, y have scope both in blocks A & B, while c, d have scope in block B only.

Program scope;

VAR X : Integer;

Procedure P;

 VAR X:Real;

BEGIN

.

.

END;

Procedure q;

 VAR Z:Boolean;

 BEGIN

 .

 .

 End;

BEGIN(*main*)

.

.

END.

A:BEGIN

Integer X;

Boolean Y;

X:=2;

.

.

.

B:BEGIN

Integer c,d;

.

.

End;

.

.

End

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

In Modula-2:

Module Ex;

 Procedure P;

 begin

 x:=2;

 end P;

var

 x:integer;

begin

 .

 .

End Ex.

In Modula-2 the declaration extends all over the block backward & forward not just from the

Point of declaration.

The scope of x extend all over the program block.

Important Note:

In block structured languages such as Pascal is that:

The declarations in nested blocks takes precedence over previous declarations.

Ex:

Program ex;

Var x:integer;

Procedure P;

 Var x:Real; (*x local to P *)

 Begin

 X:=3.5;

 .

 End;

Begin

 X :=2; (* x is the global *)

 .

End.

That is, the global x can’t be accessed inside P, we say the “global X” has a scope hole

inside P.

That is why we differentiate between scope and visibility.

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Visibility: The area where the name apply(excluding holes).

Scope: Including holes.

Symbol Table

All the declarations and binding are established by a structure called the symbol

table. In addition, the symbol table must maintain the scope of declaration. Different

data structures can be used in the symbol table :

1. Hash Table --> static.

2. Linked List --> dynamic.

3. Tree Structure --> dynamic.

To maintain the scope of declarations correctly, the declarations should be processed

using the stack concept(FILO). When entering a block, declarations are processed

and attributes are added/bound to the symbol table (pushed to stack). When exiting

from the block, the binding (the attributes) provided in the block are removed/popped

from the stack.

Think of the symbol table as a set of names, each of which has a stack of declarations

associated with it. The top of the stack is the current active declaration.

For example, consider the following pascal program :

Program symbol-table;

Var X:integer;

 Y:boolean;

Procedure P;

 Var X:boolean;

 Procedure Q;

 Var y:integer;

 Begin

 .

 End; (*Q*)

 Begin

 .

 End; (*P*)

Begin (*main*)

 .

End.

There are 4 names declared in the program, X ,Y, P, Q Uploaded By: Ayham NobaniSTUDENTS-HUB.com

After Processing the global variables X, Y and procedure P, the symbol table
looks like:

After processing procedure Q inside P ,

After exiting from the body of procedure Q

After exiting from the body of procedure P

This scheme of scoping is called Lexical scoping or Static Scoping.

X

Integer
Global

Boolean
local to P

Y P

Procedure
Global

Boolean
Global

X P Y Q

Procedure
local to P

Procedure
Global

Integer
local to Q

Boolean
Global

Boolean
local to P

Integer
Global

Procedure
local to P

Procedure
Global

Boolean
Global

Boolean
local to P

Integer
Global

Q P Y X

Procedure
Global

Boolean
Global

Integer
Global

X P Y Q

Y X P

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

There are two types of scoping:

1- Lexical (static) scoping.

2- Dynamic scoping.

Example:

Program Scoping;
Var X:integer;

Procedure P;

Begin
 Write(X);
End; (*P*)

Procedure Q;
 Var X:integer;
Begin
 X:=2;
 P; .
End; (*Q*)

Begin (*main*)
 X:=1;
 Q;
End.

 Now using the Lexical Scoping, the symbol table looks like:

The value 1 is printed.

 Using Dynamic Scoping, the symbol table processes declarations as they are

encountered in the ECXECUTION.

The value 2 is printed. Most block structured languages perform Lexical scoping. LISP

Dynamic scoping.

Procedure
Global

Integer
Global

X P

Integer
Global

Integer
local to Q

Procedure
Global

Boolean
Global

Q P X

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Allocation and Environment

 Symbol table maintains in the declaration and the binding of attributes to names.

 Environment is binding names (or associating names) to locations.

 Environment may be constructed :

1. Statically (at load time) - Fortran.

2. Dynamically (at execution time) - Lisp.

3. Mixture (block structured languages such as Pascal, C, Modula-2, Ada, . . .)

Some allocations are performed statically and some dynamically.

Global variables: statically.

Local variables: dynamically.

Some names are not bound to locations at all, for example:

const n=10;

The compiler replaces all occurrences of n by 10 in the block during execution with no need

to allocate space for n.

 Environment in block structured languages binds locations to local variables in a

stack-based fashion.

 During execution, on entering each block, the variables declared at the beginning of

the block are allocated. On exit from that block, the same variables are deallocated.

Example:

 Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Program Test;
Var x, y : integer;

Procedure A(x:integer);
Var y, z : real;

Begin
 .
End; (*A*)

Procedure B(n:boolean);
 Var y, z : real;

 Procedure C(h,p:real);

Var x,y : integer;
 Begin
 .
 End; (*C*)

Begin
 .
End; (*B*)

Begin (*main*)
 .
 .
End.

Then the stack will look like:

After Entry to procedure A:

After Exit from A:

y

x

z

y

x

y

x

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

After Entry B & C:

Exit from C:

Generally, in block structured languages, there are 3 kinds of allocation in the Environment:

1) Static – Global variables.

2) Automatic – Local variables.

3) Dynamic – Pointers.

y

x

p

h

z

y

n

y

x

z

y

n

y

x

Static- Global variables

Automatic-Stack

Local Variables

↓

Both stack & heap

grow in opposite

direction

↑

Dynamic- Heap

Pointers

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

	Chapter 6
	Semantics
	Binding
	Symbol Table
	Environment
	Memory
	Declarations and Blocks
	Scope of Declaration

