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Fourier Series

Any function that periodically repeats
itself can be expressed as the sum of
sines and/or cosines of different
frequencies, each multiplied by a
different coefficients. This sum is
called a Fourier series

f(t)=a,+ ) a,cosnwyt+b, sin nwt

1 to+To
8= — [ gt
0 t,
to+To
a, =— _[ g(t) cosnw,t dt
T, ¢
to+To

jg(t)sm nw,t dt
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FIGURE 4.1 The function at the bottom is the sum of the four functions above it.
Fourier’s idea in 1807 that periodic functions could be represented as a weighted sum
of sines and cosines was met with skepticism.
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Fourier Transform

A function that is not periodic but the area under its
curve is finite can be expressed as the integral of
sines and/or cosines multiplied by a weighing
function. The formulation in this case is Fourier
transform.

S{fe) = Fa = | feo e

* We can reconstruct f(t) back using

SUFw) =f(1) = | Flw ™ du
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The Fourier Transform and its Inverse
The Fourier transform F(u) :
F(u) = f; f (x)e 127" dx
The inverse Fourier transform f(x) :

f(X) = j F(u)e/™du

Two variables Fourier transform F(u, v) :
F(u,v) = f f f (X, y)e 27 W dxdy

The inverse transform f(x, y) :

f(x,y)= _[: foo F (u,v)e!” "W dudv
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Fourier Transform 1D - Example

6|
1 The Fourier Transform of One Continuous Variable
Fu) = AWSIH(EMW) = AW sinc(muW )
W

-1 Usually we work with the magnitude of F(u)

Fu )| = | aw 22 - |sinc(mv )
Tul ‘
,fgr) F(p) [F(w)l
AW
—W/2 0 W/)2 . ..._Z/W/fo \\2/%:”. -

1w 1yw
abc

FIGURE 4.4 (a) A simple function; (b) its Fourier transform; and (c) the spectrum. All functions extend to_.
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Fourier Transform 2D - Example
EEE N =

sin(mul )| |sin(mvl)

Fouv)=AT7

mul T/

ab

FIGURE 4.13 (a) A 2-D function, and (b) a section of its spectrum (not to scale). The
block is longer along the f-axis, so the spectrum is more “contracted” along the p-axis.
Compare with Fig. 4.4.
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The one dimensional DFT and its Inverse
8 |

o The discrete Fourier Transform F(u) :
1 M-1 _
F(u):MZf(x)e“z"“X’M for u=01---,M -1
x=0

1 The inverse DFT :

M -1 _
f(x)=> Fu)e>™ ™ for x=01---,M-1
u=0
o Apply euler’s formula :

M -1
F(u) :ﬁ > f(x)[cos2zux/ M — jsin 2zux/ M]
x=0
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The two dimensional DFT and its Inverse
"o

-1 The discrete fourier transform of a function f(x,y) of size M x N :

M-1IN-1

1 ZZ .l: (X, y)e—jZﬂ(UX/M+Vy/N)

F(U,V) :W
x=0 y=

= The inverse Fourier transform :

M-1N-1

f ()(, y) — ZZ F(u’v)ejZﬂ(ux/M+vy/N)

u=0 v=0
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Some Properties of the 2-D DFT - Periodicity

It is more convenient for processing and display to shift
the spectrum to the middle of domain by multiplying
the sampled function by (-1)**Y

f(x,v) o 27 g/ M+y/N) (U= tig 01y )
if welet uy=M /2 andvy=N /2

f(x})e‘f( @F(;{—V[QU N/2)

f(;h:,},r)(—l)(ﬂy SF(u-M/20-N/2)
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Some Properties of the 2-D DFT - Periodicity

M -1

Z f (X)e—jZﬂule
x=0

From DFT: 1
F(u)=—
( ) M

ettt ettt Lt s L

-N 0 N 2N

\

We display only in this range

DFT repeats itself every N points (Period = N) but we usually
STUgI':'%PLaIyUgJM n=0 A N-1 Uploaded By: Jibreel Bornat



Some Properties of the 2-D DFT - Periodicity

12 |
0 Conventional Display for 1-D DFT

F(u)
fix)

0 ¢ N-1 0

It [
\_/

Time Domain Signal

High frequency
area

Low frequency
area
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Some Properties of the 2-D DFT - Periodicity

13|
o Conventional Display for 1-D DFT

FFT Shift: Shift center of the
graph F(u) to O to get better
Display which is easier to
understand.

[iis

\o/

Low frequency area

)-
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Periodicity of 2-D DFT

M-1IN-1

2-D DFT: F(U V) i ZZ .I: (X y)e j2z(ux/M+vy/N)

x=0 y=0

a(x,y)

For an image of size NxM
pixels, its 2-D DFT repeats

0 itself every N points in x-
direction and every M points
in y-direction.

We display only
in this range

2M
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F(u,v) has low frequency areas

at corners of the image while high
frequency areas are at the center }
of the image which is inconvenient -z 0 T

ft——ne period ———w]

to interpret.
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0
Display of 2D DFT
M After FFT Shift
IM Original display
of 2D DFT
-N 0 N 2N
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Example of 2-D DFT

18 _

Image Spectrum
without
shifting

Spectrum
after Spectrum
shifting After shifting
and log

transformation
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Some Properties of the 2-D DFT

Fourier Spectrum and Phase Angle

The 2-D DFT is complex in general and usually is expressed
as two separate functions in the frequency domain

The Magnitude F )| =[R3(x, y)+ 17(x, y)I?

Phase

I(u,v)}

#(u,v) =tan" {R(u,v)

The power spectrum  P(u,v) :\F(u,v)\2 =R*(u,v)+1%(u,v)

The magnitude of F(0,0) (dc component) is proportional to the
average value of f(x,y) and is typically the largest component in
the spectrum
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Some Properties of the 2-D DFT

Image Spectrum Phase
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Some Properties of the 2-D DFT

Fourier Spectrum and Phase Angle

The components of the spectrum of the DFT reflects the
amplitudes of the sinusoids that combine to represent the
images.

A large amplitude at any frequency implies greater
prominence of that frequency in the image, and vice versa.

The phase of the spectrum is a measure of the
displacement of various sinusoids with respect to their
origin.

We can say that the magnitude of the DFT is an array
whose components determine the intensities in the image

while the phase angle carry the information about where
discernable objects are located
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Some Properties of the 2-D DFT

22 |
-1 Fourier Spectrum and Phase Angle

Magnitude of Spectrum Phase of Spectrum

Image Reconstructed Image Reconstructed
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Some Properties of the 2-D DFT
23

abc
de f

FIGURE 4.27 (a) Woman. (b) Phase angle. (¢) Woman reconstructed using only the
phase angle. (d) Woman reconstructed using only the spectrum. (e) Reconstruction
using the phase angle corresponding to the woman and the spectrum corresponding to
the rectangle in Fig. 4.24(a). (f) Reconstruction using the phase of the rectangle and the
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Some Properties of the 2-D DFT

24y
-1 Zero padding

f(m) flm)

oon g
— e TS .

FIGURE 4.28 Left
: : i P column:
— mooeeed o I { ek m  convolution of
v 200400 0 200 400 two discrete
functions
obtained using the
approach
discussed in
. — i H Section 3.4.2. The

0 200 400 0 200 400 result in (e) is
h(—m) h(—m) correct. Right
column:
Convolution of
—ey greseeey pessmaeesy the same

: i N functions. but
taking into
B —m) B — m) account the
) periodicity
implied by the
e I U DFT. Note in (j)

: how data from

——— -m 5 i3 i i s m  adjacent periods
0 200 400 0 200 400 produce
f(x) 8 ) f)*g() wraparound error,
vielding an

1200 .
1200 —- e “_/—\ s incorrect
600 | e 6004— N < o convolution

. - o result. To obtain
0 200 400 600 80 0 200 400 the correct result,
! Range of ™~ function padding
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Some Properties of the 2-D DFT

Zero padding

A simple solution is to zero-pad both functions f(x,y) and
h(x,y) such they are of equal size P that satisfies

P>A+B-1

where A and B are the size of the original functions B

If we perform convolution after zero-padding the result will
be periodic and each period contains the desired result

flx)®* glx)
‘

1M -
® . "k)‘A /-\7 o ®
______ e - - + $ - | §

| XN 40D &0 N

STUDENTS-HUB.com Uploaded By: Jibreel Bornat




Some Properties of the 2-D DFT

Zero padding

* For two 2-D functions f(x,y) and h(x,y) with sizes AxB
and CxD, zero-padding should be performed in both
directions such that the new size is PxQ

P>A+C—-1 and QO>B+D-1

* |f the two function/arrays/images are of the same size,
padding is achieved by

P>22M -1 and (Q=2N -1

* The padded zeros are to be removed once we have the
final result

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



Some Properties of the 2-D DFT

Zero padding - Example

STUDENTS-HUB.com |F(u,v)| X H(u,v) OutpulUpIoaded By: Jibreel Bornat



Some Properties of the 2-D DFT

Zero padding - Example

Original - padded |F(u,v)]| H(u,v)

-

STUDENTS-HUB.com |F(U,V)| X H(u,v) OutputUpIoaded By: Jibreel Bornat




Some Properties of the 2-D DFT

-2 4
-1 Zero padding — Example

= Note
m More blurring in the image that was padded
m Blurring near the image borders is symmetric in the padded case

Output without padding Output with padding
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Fundamentals of Frequency Filtering
30

* When the image is represented in frequency domain using
Fourier transform, it is almost impossible to make direct
association between the pixel values and their transform

* However, the following generalization can be made
regarding the relation between the two representations

e Since frequency is related to spatial rates of change, we
can associate frequencies in the Fourier transform with
pattern of intensity variations in the image

* For example

The slowest frequency component (u=v=0) is associated with
average intensity (DC component)

Smooth intensity variations correspond to low frequencies such
as walls or cloudless sky

High frequencies correspond to higher levels or abrupt intenisty

STUDENTSW@&%”S such as edges and noise Uploaded By: Jibreel Bornat



Fundamentals of Frequency Filtering

31
* Example

e Note

® The correspondence between the strong edges at angles
45 and -45 and the presence of high intensity frequencies
in the same direction

e A little variation that is off the vertical access in the
frequency domain which is associated by the oxide

sTUDERIQIBISIPN variation in the vertical axis in the,isRRESy: Jibreel Borat



Fundamentals of Frequency Filtering

32
* Generally,image filtering in the frequency domain consists
primarily of the following steps

1) Computing the Fourier transform of the image

2) Modifying the magnitude of image spectrum using specific
operation

3) Taking the inverse Fourier transform of the result
* The basic filtering operation can be expressed as
g(x,y)=3""[H(pv)F(uv)]
where H(u,v) is called the filter function and it is of same

size as F(u,v)

* Filtering is performed usually by using real filter functions
H(u,v) as we don’t want to modify the structure of the

STlJIBEI@'&eHM%h!)Gh iS contaiHEd in the PhB.SE‘.‘ Of F(U,\") Uploaded By: Jibreel Bornat



Fundamentals of Frequency Filtering
33

* One simple filter is

(0, u=0=0
Huo)== #

1, otherwise

* Simply this filter sets the average intensity value (the dc
value) to zero.We should expect the output image to be
darker than the original

5 [H(/.z,v)F(/(,v)]
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Fundamentals of Frequency Filtering

34
* Common filter functions

o Lowpass filter:it is used to attenuate high frequency components
of the image. Thus, the output image appears blurred

o Highpass filter: it is exactly the opposite of lowpass filter, i.e. it
attenuates low frequency components. It enhances sharp details in
the image but reduces image contrast

Attenuation of
high frequencies

) .
.
AL

N2 M2

Lowpass Filter
STUDENTS-HUB.com

Attenuation of
low frequencies

.
.
......
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.
"
"
.

u 3 v

Highpass Filter ,
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Fundamentals of Frequency Filtering
I

e Common filter functions

e Example

\

Original Lowpass Filtered Highpass Filtered
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Fundamentals of Frequency Filtering

36|
* Filter Function Desigh Considerations

o Effect on the phase: the filtering equation

g(x,y)=3"'[H(u,v)F(u,0)]

can be written as
g(x,y)=3" |H(p,0)Real(F(u,v))+ jH( p,v)imag(F(u,v))|

Thus, if H(u,v) is real (we call it zero-phase-shift filter) , then the
bhase of F(u,v) is not changed.This is an essential requirement
since as we saw earlier, the phase of the spectrum specifies the
structure of the image objects

* So it’'s important to preserve the phase of the original image

when filtering
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Fundamentals of Frequency Filtering

* Filter Function Design Considerations
o Effect of changing the phase - example

Original Image reconstructed by multiplying Image reconstructed by multiplying
the phase by 0.5 without changing the phase by 0.25 without changing
IF(u,v)] [F(u,v)|
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Fundamentals of Frequency Filtering

I
* Filter Function Desigh Considerations

* Padding filters with Zeros: the filtering equation
g(x,y)=3"[H(uv)F(uo)]

implies convolution in the spatial domain and requires H(u,v) to be
of the same size as F(u,v). So, do we pad the filter in the spatial
domain or in the frequency domain to avoid wraparound errors ??

* Answer: we usually zero-pad the original image such that its size
is at least 2Mx2N then we specify the desired filter in the
frequency domain with the same size as the padded image

e Why? We are concerned about the filter shape in the frequency
domain. If we define the filter in the frequency domain, find its
IDFT, pad it with zeros, and then computing the DFT of the padded
filter, the padded filter in the frequency domain is not exactly the

same as the original unpadded filter
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Fundamentals of Frequency Filtering
39

abc

FIGURE 4.32 (a) A simple image. (b) Result of blurring with a Gaussian lowpass filter without padding.
(c) Result of lowpass filtering with padding. Compare the light area of the vertical edges in (b) and (c).
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Fundamentals of Frequency Filtering
40

* Filter Function Design Considerations
» Padding filters with Zeros — |D Example

1.2 0,04 i

1
003 -

08
002

Filter specified 0o~ Filter in spatial
domain

in frequency 04 001 - :

roquency  wf IDFT |
0 :

llllllllllll

0.03 —

08— .
Filter in spatial o002
Domain padded

with zeros "'

0

s . Uplogded-By; Jibreel Bornat



Fundamentals of Frequency Filtering

e
» Steps for Filtering in the Frequency Domain

1)
2)

3)
4)

5)
6)

7)

Multiply f(x,y) by (-1)**Y to center its transform

For a MxN input image f(x,y), zero pad the image with M zeros in the
vertical direction and N zeros in the horizontal direction to form the
padded image f,(x.y)

Compute the DFT, F(u,v), of fp(x,y)

Generate a real, symmetric filter function, H(u,v), of size 2Mx2N that is
centered at M and N

Perform filtering by computing the product G(u,v) = H(u,v)F(u,v)
Obtain the processed image by computing the IDFT of G(u,v)
gp(x.y)=3" [H(uwv)F(po)|(-1)"™

Obtain the processed image by extracting the MxN region from the
top-left quadrant of g,(xy)
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Fundamentals of Frequency Filtering

» Steps for Filtering in the Frequency Domain - Example

DFT

By

Padding

Original image Original multiplied by (-1)*v
Size MxN ° P Vi)

Original padded with zeros
Size 2Mx2N
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Fundamentals of Frequency Filtering

» Steps for Filtering in the Frequency Domain - Example

Maﬂ“““": of Spectrum Specified Filter H(u,v) G(u,v) = [H(u,v) F(u,v)|
IF(uV)] Size 2Mx2N Size 2Mx2N
Size 2Mx2N
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Fundamentals of Frequency Filtering

» Steps for Filtering in the Frequency Domain - Example

Extract

Filtered image g(x,y)
Size MxN

Filtered image g, (x,y)
Size 2Mx2N
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Fundamentals of Frequency Filtering

*» Correspondence Between Spatial and Frequency
Filtering
e According to the convolution theorem, multiplication in

frequency domain is equivalent to convolution in the spatial
domain

* As we saw earlier, the filter function is of the same size as the
Image.

* However, when we discussed spatial filtering, we used smaller
filter masks !! How can we explain this ?!

* We usually use the IDFT of the filter function h(x,y) as a
guidance in reconstructing small spatial filtering masks that
would achieve the same task

Faster processing

The spatial mask coefficients are selected to capture the essence of full

filter function
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Fundamentals of Frequency Filtering

46
* Correspondence Between Spatial and Frequency

Filtering
o |[-D Example

Hiw)

hix)

:> i 1or| 1| 1|1 | q16%| 2|42
jI/ 1|11 1|21

Hiu)

L fi(x)
& 1 -1)|-1 0O|-1|0
1|-1]-1 0|-1|0

|
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Fundamentals of Frequency Filtering
22

“1] 0 ab
cd

=21 0

il @ FIGURE 4.39
(a) A spatial
mask and

perspective plot
of its
corresponding
frequency domain
filter. (b) Filter
shown as an
image. (c) Result
of filtering
Fig.4.38(a) in the
frequency domain
with the filter in
(b).(d) Result of
filtering the same
image with the
spatial filter in
(a). The results
are identical.

/

/ /,%
/l
,,/,/////,,,;,///

= ///////////II/I/I “‘ ‘“\
o o X ‘ \

/I/
o'lll Ul
"" ",II/II/”%I/

N:,I ,/////////

Image
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Fundamentals of Frequency Filtering
48

* Correspondence Between Spatial and Frequency
Filtering f Filtering in the spatial domain \

il * 1725
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Smoothing Using Frequency Filtering

* Smoothing or blurring is achieved in the frequency domain
by using lowpass filters

* As the name indicates, lowpass filters preserve the low
frequency components of the image while attenuating the
high frequency components

* Common lowpass filters
¢ |deal
e Butterworth

e Gaussian

* |n the following, we compare the performance of these
types
» Keep in mind that we are talking about discrete filters that

are centered in the middle of the spectrum
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Smoothing Using Frequency Filtering

I I EE——
* Ideal Lowpass Filter (ILPF)

o |LPF passes all frequencies within a circle of radius D, from
the center of the spectrum (P/2,Q/2) and cuts all frequencies
outside this circle

e The ILPF is defined as
1, D(u,v) < Dy
H(uv)=
0,Du,v) < D,

where

7 7 1/2
D(pv)=|(u=P/2] +(0-0/2)* |
is the distance from each pixel to the center of the spectrum
(P/2,Q/2)
o The radius D, is called the cutoff frequency
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Smoothing Using Frequency Filtering

s H(n:, v)
1
U~
= ,
Dy (u, v)
abc

FIGURE 4.40 (a) Perspective plot of an ideal lowpass-filter transfer function. (b) Filter displayed as an image.
(c) Filter radial cross section.
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Smoothing Using Frequency Filtering

* Using Power Spectrum in Defining Filters

* One way to define the cutoff frequency is to compute circles
that enclose specified amounts of total image power P+ which
is defined as

P-1 0-1 pP-1 O-1
PT = ZZ Plu,v) :ZZ ‘F(R?J:V)‘z

u=0 v=0 =0 v=0

If the DFT of the filter is centered, then a circle with radius
D, with origin at the center of frequency rectangle encloses
a-percent of the power

a=100> > P(uyv)/F

1_|

and summation is for all values of u and v that fall inside the
STUDF@ﬁFEi@UB.com Uploaded By: Jibreel Bornat



Smoothing Using Frequency Filtering

* Using Power Spectrum in Defining Filters

o

- Dy L7

aaaadaaadd

10
30
60
160

460
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Smoothing Using Frequency Filtering

_54 | :
* ldeal Lowpass Filter - example

* Let’'s smooth the image in the previous slide with ILPF with
cutoff frequencies 10,30,60, 160, and 460

RELLL amm s
ooca oooa/
|
N
aaaaaaaa L..oaolll‘
| D, =10 D, =30

.o..-. ........ ........
oooa .:.a | oooa
I T = I -
saaannaa aaaaaaad 1aaaaaaa
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Smoothing Using Frequency Filtering

* ldeal Lowpass Filter
* Why Ringing Effects ?
We saw earlier that the cross section of ILPF in the frequency

domain is a pulse. It is expected that the IDFT of ILPF h(x,y) is a
sinc function.

According to the convolution theorem, the multiplication
performed in the frequency domain implies convolving the h(x,y)
with f(x,y).

If we think of f(x,y) as set of impulses, each with a weight that
represents pixel intensity, then convolution simply replaces a
replica of h(x,y) at each impulse.

The main lobs of the sinc function are responsible for blurring
while the side lobs are responsible for ringing

As the radius of the ILPF increase, its IDFT (the sinc function)

approaches an impulse. In this case blurring and ringing is

educed. |
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Smoothing Using Frequency Filtering

Ideal Lowpass Filter - Why Ringin;Effects !

ILPF
H{u,v)

e S
STUDENTS-H}IUB. =

comg™g

ILPF

h(x,y)

)
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Smoothing Using Frequency Filtering

* Butterworth Lowpass Filter (BLPF)

e The BLPF is defined as

Huo)= —
1+|D(p,v)/ Dy|

* n is called the order of the filter. As n increases, the steepness
of BLPF increases and approaches that of |[LPF

e Unlike ILPF, the BLPF has no sharp discontinuity that gives a
clear cutoff between filtered and passed frequencies

e The cutoff frequency is usually defined as the locus of points

for which H(u,v) is down to a certain fraction of its maximum
value; usually 50% (-3dB).
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Smoothing Using Frequency Filtering
58

* Butterworth Lowpass Filter (BLPF)

BLPF Displayed as image

Filter Radial Cross Section

' :0 ; 1'0
STUDENTS-HUB.com
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Smoothing Using Frequency Filtering

59 |
* Butterworth Lowpass Filter (BLPF)

» Effect of Changing BLPF order - Frequency Domain
Hiu, v)

A
1.0

0.5

=[)u, v)

Dy

As n increases, the BLPF approaches ILPF
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abcd

FIGURE 4.46 (a)-(d) Spatial representation of BLPFs of order 1,2, 5, and 20, and corresponding intensity
profiles through the center of the filters (the size in all cases 1s 1000 < 1000 and the cutoff frequency is 3).
Observe how ringing increases as a function of filter order.
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* Butterworth Lowpass Filter (BLPF) - Example
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e J
» Gaussian Lowpass Filter (GLPF)

¢ The GLPF is defined as

D*(uw)

2
H(uv)=e >0

e Unlike ILPF, the GLPF has no sharp discontinuity that gives a
clear cutoff between filtered and passed frequencies

e The cutoff frequency is usually defined as the locus of points
for which H(u,v) is down to a certain fraction of its maximum

value; usually 50% (-3dB).

e Note: GPLF has no ringing at all since its IDFT is also

a gaussian
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0.667

alble

FIGURE 4.47 (a) Perspective plot of a GLPF transfer function. (b) Filter displayed as an image. (c) Filter
radial cross sections for various values of D,.
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* Gaussian Lowpass Filter (GLPF) - Example
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Historically, certain computer
programs were written using
only two digits rather than
four te define the applicable
year. Accordingly, the
company's software may
recognize a date using 00"

as 1900 rather than tr
2060.

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recognize a date using "00"

as 1900 rather than tr
2000.

-

STUDENTS-HUB.com
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ab

FIGURE 4.49

(a) Sample text of
low resolution
(note broken
characters in
magnified view).
(b) Result of
filtering with a
GLPF (broken
character
segments were
joined).
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FIGURE 4.50 (a) Original image (784 X 732 pixels). (b) Result of filtering using a GLPF with D, = 100.
(c) Result of filtering using a GLPF with D, = 80. Note the reduction in fine skin lines in the magnified
sections in (b) and (¢).
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FIGURE 4.51 (a) Image showing prominent horizontal scan lines. (b) Result of filtering using a GLPF with
D, = 50. (c) Result of using a GLPF with D, = 20. (Original image courtesy of NOAA..)
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* Enhancing sharp details and edges is performed by using
highpass filters
* Highpass filters preserves the high frequency components

of the image (which correspond to edges, abrupt changes ,
or noise) while attenuating the low frequency components

* A highpass filter is obtained from a low pass filter using
Hyp(pv)=1=Hp(uv)

* Common High filters
¢ |deal
e Butterworth

e Gaussian
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* ldeal Highpass Filter (IHPF)

o |LPF passes all frequencies within a circle of radius D, from
the center of the spectrum (P/2,Q/2) and cuts all frequencies
outside this circle

e The |LPF is defined as

H(ﬂ:ﬂ){

where

7 2 1/2
Dipo)=|(u=P/2) +(v-0/2)|
is the distance from each pixel to the center of the spectrum

(P/2,Q/2)
e The radius D, is called the cutoff frequency
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* ldeal Highpass Filter
* Ringing effects is unavoidable in IHPF as it is derived from the ILPF
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. IDFT )

IHPF H(u,v) IHPF h(x,y)
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* ldeal Highpass Filter - example

* Result of highpass filtering using DO = 30, 60, and 160
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* Butterworth Highpass Filter (BHPF)
e The BHPF is defined as H(uv)= 1 _
1+[D0/ D( u,v)]
BHPF Transfer Function ————— .BHFF Displayed as image ‘-

v
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* Butterworth Highpass Filter - example
* Result of highpass filtering using DO = 30, 60, and 160 and n = 2

--«nmE B
IIIa
11111
aaaaaaadd

D, =60 D, =160

* Note that ringing effects decrease as we increase D,

* Similar to BLPF the ringing in BHPF increases as we increase n
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* Gaussian Highpass Filter (GHPF)

e The GHPF is defined as D2 (up)
H(uo)=1-e

0

1 1 1 1 1 1 1 1 1
5 12 15 0 25 3 35 L 4s 50 ==

Filter
STUDENTS-HUB.com Dijuv) Uploaded By: Jibreel Bornat

2
bah]
Q
3
0
q
o
w
7]
7
®
o
=
o
=



Sharpening Using Frequency Filtering

* Gaussian Highpass Filter - example
» Result of highpass filtering using DO = 30, 60, and 160

<
1

uaﬂaaaaa

D, =30 D, =60 D, =160

* Note that GHPF has no ringing effects
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* Applications — Example

Original Filtered using BHPF n =4 Threshold Image

e Note how the highpass filtered image has lost gray tones
because the DC component was removed

e Thresholding was applied to point out ridges in the
fingerprint
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* The Laplacian in Frequency Domain

e [t can be shown that the Laplacian can be implemented in
frequency domain as a filter H(u,v) as

H(uv)=—41(u* +0°)

e And with respect to the center of the frequency rectangle

H(ﬁ,n):—4?r2((y—P/2)2 +(B—Q/2)2):—4?I2D(ﬂ,ﬂ)

e Thus, the Laplacian of an image f(x,y) is

V2f(x,y)=3"[H(uo)F(uv)]
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* The Laplacian in Frequency Domain

e Enhancement using Laplacian is achieved by

g(x,y)=f(x.y)-V>f(x,y)

e Or, in frequency domain
g(x,y)=3"[F(uv)=H(u0)F(wv)]
=3 [(1-H(pu.0)F(uv)]
= 37 (14 422D w0 ))F (w0 )]

e Although this formulation is elegant, it is hard to find the
scaling factors in the frequency domain. So, we usually find the
IDFT of the Laplacian then we carry out enhancement in

spatial domain by normalizing the Laplacian to ~[-1,1]
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a b
d e
€

FIGURE 4.27 (a) 3-D plot of Laplacian in the frequency domain. (b} Image representation of (a).
(c} Laplacian in the spatial domain obtained from the inverse DFT of {b}. {d) Zoomed section of the origin

STUDENTS-HtiIB1gefray-level profile through the center of (d). (f) Laplacian mask used in Section 3.7. Up|0aded By: Jibreel Bornat
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* The Laplacian in Frequency Domain - Example

Original Enhanced Image Using Laplacian
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Selective Filtering

* The lowpass and highpass filters discussed so far
operate over the entire range of the frequency
rectangle

* In several applications, the interest is usually about
specific frequency bands or smaller regions of the
frequency rectangle

e Filters in the first category are called Bandreject
and Bandpass filters

e Filters in the second category are called notch

filters
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* Bandreject Filters

e They are used to reject a certain band of frequencies

e They can be easily reconstructed using the filter types we

discussed earlier

W _ W
Ideal HI!_(‘H,U): 0: DH-EED(H’UJEDG_F?
1, otherwise
| |
H(‘HJU) - in
Butterworth . DIV
qu’ﬁ,uj—ﬂg—l
Gaussian _ — _
Hfuov)=1—e ]

W ig the width of the reject band and Dy is the radial center O[JEhe

.C
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* Bandreject Filters

) o ) GBRF Displayed as image
Gaussian BRF — P
DO=20W =238

Filter Radial Cross Section o W =W W 4 _wm @ 70 80 % i
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* Bandreject Filters - Example

Frequency
Corrupted Spectrum
Image of Image
Gaussian Filtered
Band-Reject Image
Filter
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* Bandpass Filters

e They are used to pass a certain band of frequencies

e They can be easily reconstructed from bandreject filters using

Hpp(u,v)=1-Hpp(uv)

100

BBPF Displayed as image

Butterworth Bandpass Filter

naf [ |I |
5 el | f
I

o4 |

|
ozl | \ | {

| " /
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» Bandpass Filters - Example

Frequency
Corrupted Spectrum
Image of Image
Gaussian Extracted
Bandpass Degradation
Filter
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Selective Filtering

e Notch Filters

e They are the most useful of selective filters

e They can be used to pass (notch-pass) or reject (notch-
reject) frequencies in a predefined neighborhood about the
center of the frequency rectangle

e Notch filters are required to be symmetric around the origin.
This implies that a notch centered at (uy,Vv,) must have a
corresponding notch at (-ug,-v,)

=

20

STUBGNESHH RE®A-Reject Filter

150 EII:I:I E%ZI 300
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* Notch Filters

e Notch filters are reconstructed as the product of two
highpass filters whose centers are translated to the center of
the notches

0
HM(#rU) - HHk (#rU)H—k(#rv)
k-1

H,(u,v) and H_(u,v) are the highpass filters centered at (u,v,) and (-u.-v,)
Q is the number of notch pairs

e The centers of the highpass filters are specified with respect

to the center (M/2,N/2)
5 ,1/2
Dy(pv)=| (u=M /2= +(0=N/2-0; )" |

5 - 1/2
D_i(mo)=|(u=M /2+ 1 ) +(0-N/2+0; )* |
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* Notch Filters - Example

e Notch filter with three notch pairs that is constructed using

BHPF

1
VR('”*‘U) H 2n , 12n
1+[ Doy kaf’,u,u)]' 1+ Doy / D_ip(1,0)]

* Notch-pass Filters
® They can be constructed using Hyp( 1,0 )=1—Hyn(1,0)

|deal
Notch-pass Filter

100

STUDENTS-HUB.com v | u Uploaded By: Jibreel Bornat



Selective Filtering
T

* Notch-reject Filters - Example

Frequency
Corrupted Spectrum
Image of Image
-
Butterworih Filtered
Notch-reject
Filter IisagE
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* Notch-pass Filters - Example

Frequency
Image of Image
Butterworth Extracted
Bandpass Degradation
Filter
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Homomorphic Filtering

* The image formation model using illumination and reflectance

iIs given by
f(x,y)=i(x,y)r(x,y)

e This equation can’t be used to operate on the illumination or
reflectance functions separately in the frequency domain since
the product of the two functions in the spatial domain is not
equivalent to multiplying their transforms

o However, if we define
3(_;{’ J,-') =In [f(,}sj_‘, b4 )] —In [i(x,y);-(x,y)]
— In [i(x,y)] + In [r(x,y)]
e Then

S{z(x. )} =3{In[ f(x)]}
= 3{Infi(x,p)]} + S{In[r(x.)]}
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Homomorphic Filtering

J940
* Now, we filter Z(u,v) by a filter H(u,v)

S(puv) =Z(puv)H(u,v)
=H(pv)F,(uo) +H(uv)F.(uo)
e The filtered image in the spatial domain is

s(x,v)=3" {S(u.0)}
= 3 {H(wo)F(wo)y + 3 {H(wo)F, (o)}
 |f we define
5y) = S {H (10 (1)
)= S 00 ) (0]
e then

S(J{f, .};) — I‘-’(x’ .}5) _|_ & -"'(x’ .};)
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* The output image is computed by exponentiation

g(x,y)=e"*"
— .E':'IT If,}’) + ‘}“Tx:.v)

_ i) r(xy)

= Ip(x. )1 (x,y)

e This approach is called homomorphic filtering which is
summarized in the figure below

FIGURE 4.60

Summary of steps )
: homogmrphif ) > In DFT = H(u o) o >{(DFT) 2> exp o> 8(6))

filtering.

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



Homomorphic Filtering

* Homomorphic filtering is of great importance if we want to
operate on the illumination and reflectance components

separately

* The illumination component is characterized with slow
variations while the reflectance tends to vary greatly;
especially at the borders of dissimilar objects

* We can design a single filter that affects the low and high
frequencies in different controllable ways

Hiu, v}
i

VL —

du, vl

3 3
D= (u,v)/ Dy
H(uv)=(yg —7r) 1—.‘51"?ir L
STUDENTS-HUB.com Uploaded By: Jibreel Bornat



Homomorphic Filtering

» Example
A PET image that is blurred and many of its low-intenisty features are
obscured by the high intensity of the hot spots

Use the filter in the previous slide with 7= =2, /1 =0.25, ¢=I,and
D0 =80

&~

Homomorphic
Filtering
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ab

FIGURE 4.33

(a) Original
image. (b) Image
processed by
homomorphic
filtering (note
details inside
shelter).
(Stockham.)
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