Data Structures
COMP24?2

Ala’ Hasheesh
ahashesh@birzeit.edu

Queues

S el e -2
BIRZEITUNIVERSITY
STUDENTS-HUB.com Uploaded By: anonymous

Stack

A stack is a data structure in which elements are added and removed from one end!

It can allow us to insert elements and retrieve them in opposite order!

Operations

1. Push: Insert/Add a new element to top the stack
2. Pop: Remove/Delete top element in the stack
3. Peek: Examine element at the top of the stack

top

STUDENTS-HUB.com Uploaded By: anonymous

Stack

Stacks are called (LIFO): Last In First Out
Last element that gets pushed is the first element that gets popped!
They are also called (FILO): First In Last Out

First element that gets pushed is the last element that gets popped!

STUDENTS-HUB.com

77
15
10

top

Uploaded By: anonymous

Queue

Queues are called (FIFO): First In First Out

First element that is enqueued/inserted is the first element that gets dequeued/removed!

STUDENTS-HUB.com Uploaded By: anonymous

Queue

Queues are called (FIFO): First In First Out

First element that is enqueued/inserted is the first element that gets dequeued/removed!

’PR

Back Front

Dequeue
Enqueue

STUDENTS-HUB.com Uploaded By: anonymous

Queue

A queue is a data structure in which elements are added from one end (e.g. Front)
And removed from the other end (e.g. Rear)

Operations

Enqueue/insert: Insert/Add a new element to rear element in the queue
Dequeue/remove: Remove/Delete front element in the queue

peek: Examine element at the front of the queue

Others: size, isEmpty, ...

B wN e

front rear

STUDENTS-HUB.com Uploaded By: anonymous

Queue

A queue is a data structure in which elements are added from one end (e.g. Front)
And removed from the other end (e.g. Rear)

Operations queue.enqueue(77);

1. Enqueue/insert: Insert/Add a new element to rear element in the queue
2. Dequeue/remove: Remove/Delete front element in the queue
3. peek: Examine element at the front of the queue
4. Others: size, isEmpty, ...
_ 77 ~
front rear

STUDENTS-HUB.com Uploaded By: anonymous

Queue

A queue is a data structure in which elements are added from one end (e.g. Front)
And removed from the other end (e.g. Rear)

Operations queue.enqueue(15);
1. Enqueue/insert: Insert/Add a new element to rear element in the queue
2. Dequeue/remove: Remove/Delete front element in the queue
3. peek: Examine element at the front of the queue
4. Others: size, isEmpty, ... 15
o 77

front rear

STUDENTS-HUB.com Uploaded By: anonymous

Queue

A queue is a data structure in which elements are added from one end (e.g. Front)
And removed from the other end (e.g. Rear)

Operations queue.enqueue(61);

1. Enqueue/insert: Insert/Add a new element to rear element in the queue
2. Dequeue/remove: Remove/Delete front element in the queue 61
3. peek: Examine element at the front of the queue
4. Others: size, isEmpty, ... 15
o 77
front rear

STUDENTS-HUB.com Uploaded By: anonymous

Queue

A queue is a data structure in which elements are added from one end (e.g. Front)
And removed from the other end (e.g. Rear)

Operations queue.dequeue();

Enqueue/insert: Insert/Add a new element to rear element in the queue
Dequeue/remove: Remove/Delete front element in the queue 61
peek: Examine element at the front of the queue

15

Others: size, isEmpty, ...
77

front rear

B wN e

STUDENTS-HUB.com Uploaded By: anofymous

Queue

A queue is a data structure in which elements are added from one end (e.g. Front)
And removed from the other end (e.g. Rear)

Operations queue.dequeue();

1. Enqueue/insert: Insert/Add a new element to rear element in the queue
2. Dequeue/remove: Remove/Delete front element in the queue 61
3. peek: Examine element at the front of the queue
4. Others: size, isEmpty, ... 15
77
front rear

STUDENTS-HUB.com Uploaded By: anohymous

Queue

A queue is a data structure in which elements are added from one end (e.g. Front)
And removed from the other end (e.g. Rear)

Operations queue.enqueue(11);
1. Enqueue/insert: Insert/Add a new element to rear element in the queue 11
2. Dequeue/remove: Remove/Delete front element in the queue 61
3. peek: Examine element at the front of the queue
4. Others: size, isEmpty, ... 15
77
front rear

STUDENTS-HUB.com Uploaded By: anofiymous

Queue

A queue is a data structure in which elements are added from one end (e.g. Front)
And removed from the other end (e.g. Rear)

Operations queue.enqueue(13);

1. Enqueue/insert: Insert/Add a new element to rear element in the queue 11

2. Dequeue/remove: Remove/Delete front element in the queue 61

3. peek: Examine element at the front of the queue

4. Others: size, isEmpty, ... 15

13 v~
Imagine the array is circular and we reach the end we reset back to 0.
front rear

(Last element is connected with the first one)

STUDENTS-HUB.com Uploaded By: anohymous

Queue (Applications)

1. Real world examples:
1. People waiting inside a bank (without priority for now).
2. People waiting in a doctor office/barber.
3. Carsin asingle small road.

2. Operating System:
1. Tasks to print.
2. Simple process scheduling/execution.

3. Programming:

1. Create a system to model line of customers/orders.
2. Breadth First Search

STUDENTS-HUB.com Uploaded By: anofnymous

Queue (Array Implementation)

: capacity =10
public class Queue<T> {

private int capacity;
private int size;
private int front;
private int rear;

T[] array;

size=0

public Queue() {
this(10);
}

public Queue(int capacity) {
this.capacity = capacity;
this.size = 0;
this.front = -1;
this.rear = -1;
array = (T[]) new Object[capacity];

front=-1 rear=-1

O R N W & U1 OO N 0O

Queue<Integer> queue = new Queue<>();

}
STUDENTS-HUB.com Uploaded By: anofiymous

Queue (Array Implementation)

| | capacity =10
public boolean isEmpty() {
return (front == -1 && rear ==-1) || size == 0; 9 size =0

}

8

7

6

5

4

3

2

_ 1
front = -1 rear =-1
0

Queue<Integer> queue = new Queue<>();

STUDENTS-HUB.com Uploaded By: anofymous

Queue (Array Implementation)

: . capacity =10
public boolean isEmpty() {
return (front == -1 && rear ==-1) || size == 0; 9 size =0
}
8
public boolean isFull() { 7
return rear + 1 == front | | size == capacity; 6
}
5
How do we make array circular? 4
3
2
_ 1 _
front=-1 rear = -1
0

Queue<Integer> queue = new Queue<>();

STUDENTS-HUB.com Uploaded By: anohymous

Queue (Array Implementation)

_ . capacity = 10
public boolean isEmpty() {
return (front == -1 && rear ==-1) || size == 0; 9 size = 0
}
8
public boolean isFull() { 7
return (rear + 1) % capacity == front | | size == capacity; 6
}
5
4
3
2
_ 1 _
front=-1 rear=-1
0

Queue<Integer> queue = new Queue<>();

STUDENTS-HUB.com Uploaded By: anofymous

Queue (Array Implementation)

capacity =10
public boolean isEmpty() {
return (front == -1 && rear ==-1) || size == 0; 9 size = 0
}
8
public boolean isFull() { 7
return (rear + 1) % capacity == front | | size == capacity; 6
}
5
public void enqueue(T element) { 4
rear = (rear + 1) % capacity; 3
array[rear] = element;
Size++; 2
} front=-1 1 rear=-1
0

What h ns if array is full?
at happens if array is fu Queue<Integer> queue = new Queue<>();

STUDENTS-HUB.com Uploaded By: anohymous

Queue (Array Implementation)

capacity =10
public boolean isEmpty() {
return (front == -1 && rear ==-1) || size == 0; 9 size = 0
}
8
public boolean isFull() { 7
return (rear + 1) % capacity == front | | size == capacity; 6
}
5
public void enqueue(T element) { 4
rear = (rear + 1) % capacity; 3
array[rear] = element;
Size++; 2
} front=-1 1 rear=-1
0

What h ns if array is full?
at happens if array is fu Queue<Integer> queue = new Queue<>();

STUDENTS-HUB.com Uploaded By: anofymous

Queue (Array Implementation)

_ . capacity = 10
public boolean isEmpty() {
return (front == -1 && rear ==-1) || size == 0; 9 size = 0
}
8
public boolean isFull() { 7
return (rear + 1) % capacity == front | | size == capacity; 6
}
5
public void enqueue(T element) { 4
if (isFull()) { 3
throw new OutOfMemoryError("Queue is Full");
} 2
: front=-1 1 rear=-1
rear = (rear + 1) % capacity; 0
array[rear] = element;
} SIZE+E; Queue<integer> queue = new Queue<>();

What happens if array is empty? front = -1 and rear = -1
STUDENTS-HUB.com PP y Yy Uploaded By: anofhymous

Queue (Array Implementation)

_ . capacity = 10
public boolean isEmpty() {
return (front == -1 && rear ==-1) || size == 0; 9 size = 0
}
8
public boolean isFull() { 7
return (rear + 1) % capacity == front | | size == capacity; 6
}
5
public void enqueue(T element) { 4
if (isFull()) { 3
throw new OutOfMemoryError("Queue is Full");
} 2
: front=-1 1 rear=-1
rear = (rear + 1) % capacity; 0
array[rear] = element;
} SIZE+E; Queue<integer> queue = new Queue<>();

What happens if array is front = -1 and rear = -1
STUDENTS-HUB.com PP y Uploaded By: anofiymous

Queue (Array Implementation)

: . capacity =10
public boolean isEmpty() {
return (front == -1 && rear ==-1) | | size == 0;
}

size=0

public boolean isFull() {
return (rear + 1) % capacity == front | | size == capacity;

}

public void enqueue(T element) {
if (isFull()) {
throw new OutOfMemoryError("Queue is Full");

}

if (front ==-1) {

}

rear =-1

O R N W & U1 OO N 0O

rear = (rear + 1) % capacity;
array[rear] = element;
size++;

STUDENTS-HUB.com Uploaded By: anofymous

Queue<Integer> queue = new Queue<>();

Queue (Array Implementation)

: . capacity =10
public boolean isEmpty() {
return (front == -1 && rear ==-1) | | size == 0;
}

size=1

public boolean isFull() {
return (rear + 1) % capacity == front | | size == capacity;

}

public void enqueue(T element) {
if (isFull()) {
throw new OutOfMemoryError("Queue is Full");

}

if (front ==-1) {
front++; front = 0

}

rear=0

O R N W & U1 OO N 0O

10
gueue.enqueue(10);

rear = (rear + 1) % capacity;
array[rear] = element;
size++;

STUDENTS-HUB.com Uploaded By: anofymous

Queue<Integer> queue = new Queue<>();

Queue (Array Implementation)

: . capacity =10
public boolean isEmpty() {
return (front == -1 && rear ==-1) | | size == 0;
}

size=2

public boolean isFull() {
return (rear + 1) % capacity == front | | size == capacity;

}

public void enqueue(T element) {
if (isFull()) {
throw new OutOfMemoryError("Queue is Full");

}

if (front ==-1) {
front++; front = 0

}

13
10

rear=1

O R N W & U1 OO N 0O

gueue.enqueue(13);
rear = (rear + 1) % capacity;
array[rear] = element;
size++;

STUDENTS-HUB.com Uploaded By: anofiymous

Queue<Integer> queue = new Queue<>();

Queue (Array Implementation)

| | capacity =10
public boolean isEmpty() {

return (front == -1 && rear ==-1) || size == 0;

}

size=3

public boolean isFull() {
return (rear + 1) % capacity == front | | size == capacity;

}

public void enqueue(T element) {
if (isFull()) {
throw new OutOfMemoryError("Queue is Full");

}
7

13
10

if (front ==-1) {
front++; front = 0

}

rear=2

O R N W & U1 OO N 0O

gueue.enqueue(7);
rear = (rear + 1) % capacity;
array[rear] = element;
size++;

STUDENTS-HUB.com Uploaded By: anofymous

Queue<Integer> queue = new Queue<>();

Queue (Array Implementation)

: capacity =10
public T dequeue() {

if (iIsEmpty()) {
return null;

}

size=3

T element = array[front];
if (front == rear) {
front = rear = -1;
} else {
front = (front + 1) % capacity;

}
7

13
10

size--;

rear =2
return element;

front=0

O R N W & U1 OO N 0O

Queue<Integer> queue = new Queue<>();

STUDENTS-HUB.com Uploaded By: anofymous

Queue (Array Implementation)

: capacity =10
public T dequeue() {

if (iIsEmpty()) {
return null;

}

size=2

T element = array[front];
if (front == rear) {
front = rear = -1;
} else {
front = (front + 1) % capacity;

}
7

13
16

size--;
return element;
} gueue.dequeue();

front=1 rear=2

O R N W & U1 OO N 0O

Queue<Integer> queue = new Queue<>();

STUDENTS-HUB.com Uploaded By: anofymous

Queue (Array Implementation)

: capacity =10
public T dequeue() {

if (iIsEmpty()) {
return null;

}

size=1

T element = array[front];
if (front == rear) {
front = rear = -1;
} else {
front = (front + 1) % capacity;

}
7

13
16

size--;
return element;
} gueue.dequeue();

front =2 rear=2

O R N W & U1 OO N 0O

Queue<Integer> queue = new Queue<>();

STUDENTS-HUB.com Uploaded By: anofymous

Queue (Array Implementation)

: capacity =10
public T dequeue() {

if (iIsEmpty()) {
return null;

}

size=0

T element = array[front];
if (front == rear) {
front = rear = -1;
} else {
front = (front + 1) % capacity;

}
7

13
16

size--;
return element;
} gueue.dequeue();

front=-1 rear=-1

O R N W & U1 OO N 0O

Queue<Integer> queue = new Queue<>();

STUDENTS-HUB.com Uploaded By: anofiymous

Queue (Array Implementation)

: capacity =10
public T front() {
if (isEmpty()) { 9 size = 0
return null;
8
}
7
return array[front]; 6
}
5
4
Get element at the front of the queue! 3
2 +
front=-1 1 += rear = -1
0 10

Queue<Integer> queue = new Queue<>();

STUDENTS-HUB.com Uploaded By: anofhymous

Queue (Array Implementation)

: capacity =10
public T front() {
if (isEmpty()) { 9 size=0
return null;
8
}
7
return array[front]; 6
}
5
public T rear() { 4
if (isEmpty()) { Get element at the back of the queue! 3
return null;
} 2 +
return array[rear]; front = -1 : i rear = -1
! 0 10

}

Queue<Integer> queue = new Queue<>();

STUDENTS-HUB.com Uploaded By: anofiymous

Queue (Array Implementation)

: : : capacity =10
public void print() {
// This is an exercise 9 size = 0
}
8
public void clear() { 7
// This is an exercise 6
}
5
4
e ° o 3
This is an exercise
2 +
1. You need to know the size front = -1 1 3 rear = -1
2. You could use (front + i) % capacity 0 10

Queue<Integer> queue = new Queue<>();

STUDENTS-HUB.com Uploaded By: anohymous

Queue (LinkedList)

head/first last

\ N
R R .
0 1 2 3

Where is the front and rear?

STUDENTS-HUB.com Uploaded By: anohymous

Queue (LinkedList)

head/first last
\ N\
i .
rear 0 1 2 3

front

Where is the front and rear?

Assume that rear = first and front = last

STUDENTS-HUB.com Uploaded By: anofiymous

Queue (LinkedList)

head/first last
\ N\
i .
rear 0 1 2 3

front

Where is the front and rear?

Assume that rear = first and front = last

enqueue() -> addFirst(); // O(1)

STUDENTS-HUB.com Uploaded By: anohymous

Queue (LinkedList)

head/first last
\ N\
i .
rear 0 1 2 3

front

Where is the front and rear?

Assume that rear = first and front = last
enqueue() -> addFirst(); // O(1)

dequeue() -> removelast(); // O(n)

STUDENTS-HUB.com Uploaded By: anofiymous

Queue (LinkedList)

head/first last
/ﬂ-—'-—»-—,!—
rear 0 1 2 3
front
Where is the front and rear?
Assume that rear = first and front = last This is valid because it’s FIFO (First In First Out)

enqueue() -> addFirst(); // O(1)

dequeue() -> removelast(); // O(n)

STUDENTS-HUB.com Uploaded By: anohymous

Queue (LinkedList)

head/first last
/ﬂ-—-—»-—,!—
front 0 1 2 3
rear
Where is the front and rear?
Assume that rear = last and front = first This is valid because it’s FIFO (First In First Out)

enqueue() -> addLast(); // O(1)

dequeue() -> removeFirst(); // O(1)

STUDENTS-HUB.com Uploaded By: anofiymous

Queue (LinkedList Implementation)

public class Node<T> {
public T val;
public Node<T> next;

public Node(T val) {
this(val, null);

}

public Node(T val, Node<T> next) {
this.val = val;
this.next = next;

}
}

STUDENTS-HUB.com

Uploaded By: anofiymous

Queue (LinkedList Implementation)

public class Queue<T> {

int size = 0; front
Node<T> front; \
Node<T> rear; null
/

public Queue() { rear

front = rear = null;

size = 0;
}

}

size=0

STUDENTS-HUB.com Uploaded By: anohymous

Queue (LinkedList Implementation)

public boolean isEmpty() {

return size == 0; front
} \
null
public int size() { —
return size; rear
}

size=0

STUDENTS-HUB.com Uploaded By: anofiymous

Queue (LinkedList Implementation)

// Exactly like addLast
public void enqueue(T element) { front
Node<T> node = new Node<>(element); \
if (size == 0) { null
front = rear = node; —_—
}else { rear

rear.next = node;
rear = rear.next;

}

Size++;

}

size=0

STUDENTS-HUB.com Uploaded By: anofiymous

Queue (LinkedList Implementation)

// Exactly like addLast
public void enqueue(T element) { front enqueue(10);
Node<T> node = new Node<>(element); \
if (size == 0) { null
front = rear = node; —_—

else N

rear.next = node;
rear = rear.next;

}

Size++;

}

size=0

STUDENTS-HUB.com Uploaded By: anofiymous

Queue (LinkedList Implementation)

// Exactly like addLast front
public void enqueue(T element) { enqueue(10);
Node<T> node = new Node<>(element);

if (size == 0) { n-
front = rear = node; /

} else {
rear
rear.next = node;

rear = rear.next;

}

Size++;

}

size=1

STUDENTS-HUB.com Uploaded By: anofiymous

Queue (LinkedList Implementation)

// Exactly like addLast front
public void enqueue(T element) {
Node<T> node = new Node<>(element);

if (size == 0) { n- m-
/

enqueue(81);

front = rear = node;

} else {
rear.next = node;

rear = rear.next;

}

rear

Size++;

size=1

STUDENTS-HUB.com Uploaded By: anohymous

Queue (LinkedList Implementation)

// Exactly like addLast front
public void enqueue(T element) {
Node<T> node = new Node<>(element);

if (size == 0) { n-_’m-
/

enqueue(81);

front = rear = node;

} else {
rear.next = node;

rear = rear.next;

}

rear

Size++;

size=1

STUDENTS-HUB.com Uploaded By: anofiymous

Queue (LinkedList Implementation)

// Exactly like addLast front
public void enqueue(T element) { enqueue(81);
Node<T> node = new Node<>(element);

if (size == 0) { n-_’m-

front = rear = node;

} else {
rear.next = node; rear
rear = rear.next;

Size++;

}

size=2

STUDENTS-HUB.com Uploaded By: anohymous

Queue (LinkedList Implementation)

// Exactly like addLast front
public void enqueue(T element) { enqueue(17);
Node<T> node = new Node<>(element);

if (size == 0) { n-_’m-

front = rear = node;

} else {
rear.next = node; rear
rear = rear.next;

Size++;

}

size=2

STUDENTS-HUB.com Uploaded By: anofiymous

Queue (LinkedList Implementation)

// Exactly like addLast front
public void enqueue(T element) {
Node<T> node = new Node<>(element);

f (size == 0) { 10 | pug 81 gug 17 |

enqueue(17);

front = rear = node; /
} else {
rear.next = node; rear
rear = rear.next;
Size++;

size=3

STUDENTS-HUB.com Uploaded By: anofiymous

Queue (LinkedList Implementation)

// Exactly like removefFirst
. front
public T dequeue() { enqueue(17);
if (front == null) {

A -—>-—*-

rear

T element = front.data;

// Check if we have one element only
if (front == rear) {

front = rear = null;
} else {

front = front.next;

}

_ size=3
size--;
return element;

}

STUDENTS-HUB.com Uploaded By: anohymous

Queue (LinkedList Implementation)

// Exactly like removefFirst
. front
public T dequeue() { dequeue();
if (front == null) {

A -—>-—*-

rear

T element = front.data;

// Check if we have one element only
if (front == rear) {

front = rear = null;
} else {

front = front.next;

}

_ size=3
size--;
return element;

}

STUDENTS-HUB.com Uploaded By: anofiymous

Queue (LinkedList Implementation)

// Exactly like removeFirst front
public T dequeue() { dequeue();
if (front == null) {

A l!l-—*-

rear

T element = front.data;

// Check if we have one element only
if (front == rear) {

front = rear = null;
} else {

front = front.next;

}

. size=2
size--;

return element;

}

STUDENTS-HUB.com Uploaded By: anofiymous

Queue (LinkedList Implementation)

public T front() { front
if (front == null) { dequeue();
return null;
} ENE— EI
return front.data; /
} rear

Get element at the front of the queue!

size=2

STUDENTS-HUB.com Uploaded By: anofAymous

Queue (LinkedList Implementation)

How to loop on a queue?

STUDENTS-HUB.com Uploaded By: anofmymous

Queue (LinkedList Implementation)

How to loop on queue?

while (!queue.isEmpty()) {
int x = queue.dequeue();
// Do something with x

}

// queue is empty here!

STUDENTS-HUB.com Uploaded By: anoRymous

Queue (Exercise)

You have a queue of random integers!

Random random = new Random();

Queue<integer> queue = new Queue<>();

for (inti=0;i<10;i++) {
gueue.enqueue(random.nextint());

}

O R N W & U1 OO N 0O

STUDENTS-HUB.com

587
473
315
94
37
63

1025

77
10

Uploaded By: anofnymous

Queue (Exercise)

You have a queue of random integers!

9 587
Random random = new Random(); 8 473
Queue<integer> queue = new Queue<>(); . 315
for (inti=0;i<10;i++) {
queue.enqueue(random.nextint()); 6 94
} 5 37
4 63
1. Find max in queue without destroying it! 3 1025
2 1
int max =0;
while (!queue.isEmpty()) { 1 77
max = Math.max(max, queue.dequeue()); 0 10

}

// queue is empty here! We don't want that!
STUDENTS-HUB.com Uploaded By: anohymous

Queue (Exercise)

You have a queue of random integers!

Random random = new Random();

Queue<integer> queue = new Queue<>();

for (inti=0;i<10;i++) {
gueue.enqueue(random.nextint());

}

1. Find max in queue without destroying it!
2. Print queue without destroying it!
3. Write a function to clear a queue

STUDENTS-HUB.com

O R N W & U1 OO N 0O

587
473
315
94
37
63
1025

77
10

Uploaded By: anofiymous

Queue (Exercise)

Which data structure represents a waiting line and limits insertions to be made at the back
and limits removals to be made from the front?

Fill the following table.

enqueue() O(1) O(1)
dequeue()
front() or rear()

Space efficiency

STUDENTS-HUB.com Uploaded By: anofiymous

Queue (Exercise)

Which data structure represents a waiting line and limits insertions to be made at the back
and limits removals to be made from the front?

Fill the following table.

enqueue() O(1) O(1)
dequeue()
front() or rear()

Space efficiency

STUDENTS-HUB.com Uploaded By: anofiymous

Queue (Exercise)

Assume you have this code:

Queue<integer> queue = new Queue<>();
gueue.enqueue(13);

queue.enqueue(5);

qgueue.dequeue();

gueue.enqueue(19);

gueue.enqueue(17);

qgueue.dequeue();

qgueue.dequeue();

gueue.enqueue(23);

What is the state of the queue after running the code:
1. Where are the front and rear pointing at?
2. What is the size?

STUDENTS-HUB.com Uploaded By: anofiymous

