
Data Structures
COMP242

Ala’ Hasheesh
ahashesh@birzeit.edu

Queues

1Uploaded By: anonymousSTUDENTS-HUB.com

Stack

2

A stack is a data structure in which elements are added and removed from one end!

It can allow us to insert elements and retrieve them in opposite order!

Operations

1. Push: Insert/Add a new element to top the stack
2. Pop: Remove/Delete top element in the stack
3. Peek: Examine element at the top of the stack

top

Uploaded By: anonymousSTUDENTS-HUB.com

Stack

3

77

15

10
top

Stacks are called (LIFO): Last In First Out

Last element that gets pushed is the first element that gets popped!

They are also called (FILO): First In Last Out

First element that gets pushed is the last element that gets popped!

Uploaded By: anonymousSTUDENTS-HUB.com

Queue

4

Queues are called (FIFO): First In First Out

First element that is enqueued/inserted is the first element that gets dequeued/removed!

Uploaded By: anonymousSTUDENTS-HUB.com

Queue

5

Queues are called (FIFO): First In First Out

First element that is enqueued/inserted is the first element that gets dequeued/removed!

Uploaded By: anonymousSTUDENTS-HUB.com

Queue

6

A queue is a data structure in which elements are added from one end (e.g. Front)
And removed from the other end (e.g. Rear)

Operations

1. Enqueue/insert: Insert/Add a new element to rear element in the queue
2. Dequeue/remove: Remove/Delete front element in the queue
3. peek: Examine element at the front of the queue
4. Others: size, isEmpty, …

rearfront

Uploaded By: anonymousSTUDENTS-HUB.com

Queue

7

A queue is a data structure in which elements are added from one end (e.g. Front)
And removed from the other end (e.g. Rear)

Operations

1. Enqueue/insert: Insert/Add a new element to rear element in the queue
2. Dequeue/remove: Remove/Delete front element in the queue
3. peek: Examine element at the front of the queue
4. Others: size, isEmpty, …

77

rearfront

queue.enqueue(77);

Uploaded By: anonymousSTUDENTS-HUB.com

Queue

8

A queue is a data structure in which elements are added from one end (e.g. Front)
And removed from the other end (e.g. Rear)

Operations

1. Enqueue/insert: Insert/Add a new element to rear element in the queue
2. Dequeue/remove: Remove/Delete front element in the queue
3. peek: Examine element at the front of the queue
4. Others: size, isEmpty, … 15

77

rearfront

queue.enqueue(15);

Uploaded By: anonymousSTUDENTS-HUB.com

Queue

9

A queue is a data structure in which elements are added from one end (e.g. Front)
And removed from the other end (e.g. Rear)

Operations

1. Enqueue/insert: Insert/Add a new element to rear element in the queue
2. Dequeue/remove: Remove/Delete front element in the queue
3. peek: Examine element at the front of the queue
4. Others: size, isEmpty, …

61

15

77

rearfront

queue.enqueue(61);

Uploaded By: anonymousSTUDENTS-HUB.com

Queue

10

A queue is a data structure in which elements are added from one end (e.g. Front)
And removed from the other end (e.g. Rear)

Operations

1. Enqueue/insert: Insert/Add a new element to rear element in the queue
2. Dequeue/remove: Remove/Delete front element in the queue
3. peek: Examine element at the front of the queue
4. Others: size, isEmpty, …

61

15

77

rearfront

queue.dequeue();

Uploaded By: anonymousSTUDENTS-HUB.com

Queue

11

A queue is a data structure in which elements are added from one end (e.g. Front)
And removed from the other end (e.g. Rear)

Operations

1. Enqueue/insert: Insert/Add a new element to rear element in the queue
2. Dequeue/remove: Remove/Delete front element in the queue
3. peek: Examine element at the front of the queue
4. Others: size, isEmpty, …

61

15

77

rearfront

queue.dequeue();

Uploaded By: anonymousSTUDENTS-HUB.com

Queue

12

A queue is a data structure in which elements are added from one end (e.g. Front)
And removed from the other end (e.g. Rear)

Operations

1. Enqueue/insert: Insert/Add a new element to rear element in the queue
2. Dequeue/remove: Remove/Delete front element in the queue
3. peek: Examine element at the front of the queue
4. Others: size, isEmpty, …

11

61

15

77

rearfront

queue.enqueue(11);

Uploaded By: anonymousSTUDENTS-HUB.com

Queue

13

A queue is a data structure in which elements are added from one end (e.g. Front)
And removed from the other end (e.g. Rear)

Operations

1. Enqueue/insert: Insert/Add a new element to rear element in the queue
2. Dequeue/remove: Remove/Delete front element in the queue
3. peek: Examine element at the front of the queue
4. Others: size, isEmpty, …

11

61

15

13

rearfront

queue.enqueue(13);

Imagine the array is circular and we reach the end we reset back to 0.
(Last element is connected with the first one)

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (Applications)

14

1. Real world examples:
1. People waiting inside a bank (without priority for now).
2. People waiting in a doctor office/barber.
3. Cars in a single small road.

2. Operating System:
1. Tasks to print.
2. Simple process scheduling/execution.

3. Programming:
1. Create a system to model line of customers/orders.
2. Breadth First Search

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (Array Implementation)

15

public class Queue<T> {
 private int capacity;
 private int size;
 private int front;
 private int rear;
 T[] array;

 public Queue() {
 this(10);
 }

 public Queue(int capacity) {
 this.capacity = capacity;
 this.size = 0;
 this.front = -1;
 this.rear = -1;
 array = (T[]) new Object[capacity];
 }
}

9

8

7

6

5

4

3

2

1

0

Queue<Integer> queue = new Queue<>();

rear = -1

capacity = 10

front = -1

size = 0

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (Array Implementation)

16

public boolean isEmpty() {
 return (front == -1 && rear == -1) || size == 0;
}

9

8

7

6

5

4

3

2

1

0

Queue<Integer> queue = new Queue<>();

rear = -1front = -1

capacity = 10

size = 0

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (Array Implementation)

17

public boolean isEmpty() {
 return (front == -1 && rear == -1) || size == 0;
}

public boolean isFull() {
 return rear + 1 == front || size == capacity;
}

9

8

7

6

5

4

3

2

1

0

Queue<Integer> queue = new Queue<>();

rear = -1front = -1

capacity = 10

size = 0

How do we make array circular?

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (Array Implementation)

18

public boolean isEmpty() {
 return (front == -1 && rear == -1) || size == 0;
}

public boolean isFull() {
 return (rear + 1) % capacity == front || size == capacity;
}

9

8

7

6

5

4

3

2

1

0

Queue<Integer> queue = new Queue<>();

rear = -1front = -1

capacity = 10

size = 0

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (Array Implementation)

19

public boolean isEmpty() {
 return (front == -1 && rear == -1) || size == 0;
}

public boolean isFull() {
 return (rear + 1) % capacity == front || size == capacity;
}

public void enqueue(T element) {
 rear = (rear + 1) % capacity;
 array[rear] = element;
 size++;
}

9

8

7

6

5

4

3

2

1

0

Queue<Integer> queue = new Queue<>();

rear = -1front = -1

capacity = 10

size = 0

What happens if array is full?

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (Array Implementation)

20

public boolean isEmpty() {
 return (front == -1 && rear == -1) || size == 0;
}

public boolean isFull() {
 return (rear + 1) % capacity == front || size == capacity;
}

public void enqueue(T element) {
 rear = (rear + 1) % capacity;
 array[rear] = element;
 size++;
}

9

8

7

6

5

4

3

2

1

0

Queue<Integer> queue = new Queue<>();

rear = -1front = -1

capacity = 10

size = 0

What happens if array is full?

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (Array Implementation)

21

public boolean isEmpty() {
 return (front == -1 && rear == -1) || size == 0;
}

public boolean isFull() {
 return (rear + 1) % capacity == front || size == capacity;
}

public void enqueue(T element) {
 if (isFull()) {
 throw new OutOfMemoryError("Queue is Full");
 }

 rear = (rear + 1) % capacity;
 array[rear] = element;
 size++;
}

9

8

7

6

5

4

3

2

1

0

Queue<Integer> queue = new Queue<>();

rear = -1front = -1

capacity = 10

size = 0

What happens if array is empty? front = -1 and rear = -1
Uploaded By: anonymousSTUDENTS-HUB.com

Queue (Array Implementation)

22

public boolean isEmpty() {
 return (front == -1 && rear == -1) || size == 0;
}

public boolean isFull() {
 return (rear + 1) % capacity == front || size == capacity;
}

public void enqueue(T element) {
 if (isFull()) {
 throw new OutOfMemoryError("Queue is Full");
 }

 rear = (rear + 1) % capacity;
 array[rear] = element;
 size++;
}

9

8

7

6

5

4

3

2

1

0

Queue<Integer> queue = new Queue<>();

rear = -1front = -1

capacity = 10

size = 0

What happens if array is front = -1 and rear = -1
Uploaded By: anonymousSTUDENTS-HUB.com

Queue (Array Implementation)

23

public boolean isEmpty() {
 return (front == -1 && rear == -1) || size == 0;
}

public boolean isFull() {
 return (rear + 1) % capacity == front || size == capacity;
}

public void enqueue(T element) {
 if (isFull()) {
 throw new OutOfMemoryError("Queue is Full");
 }

 if (front == -1) {
 front++;
 }

 rear = (rear + 1) % capacity;
 array[rear] = element;
 size++;
}

9

8

7

6

5

4

3

2

1

0

Queue<Integer> queue = new Queue<>();

rear = -1front = -1

capacity = 10

size = 0

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (Array Implementation)

24

public boolean isEmpty() {
 return (front == -1 && rear == -1) || size == 0;
}

public boolean isFull() {
 return (rear + 1) % capacity == front || size == capacity;
}

public void enqueue(T element) {
 if (isFull()) {
 throw new OutOfMemoryError("Queue is Full");
 }

 if (front == -1) {
 front++;
 }

 rear = (rear + 1) % capacity;
 array[rear] = element;
 size++;
}

9

8

7

6

5

4

3

2

1

0 10

Queue<Integer> queue = new Queue<>();

rear = 0front = 0

capacity = 10

size = 1

queue.enqueue(10);

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (Array Implementation)

25

public boolean isEmpty() {
 return (front == -1 && rear == -1) || size == 0;
}

public boolean isFull() {
 return (rear + 1) % capacity == front || size == capacity;
}

public void enqueue(T element) {
 if (isFull()) {
 throw new OutOfMemoryError("Queue is Full");
 }

 if (front == -1) {
 front++;
 }

 rear = (rear + 1) % capacity;
 array[rear] = element;
 size++;
}

9

8

7

6

5

4

3

2

1 13

0 10

Queue<Integer> queue = new Queue<>();

rear = 1front = 0

capacity = 10

size = 2

queue.enqueue(13);

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (Array Implementation)

26

public boolean isEmpty() {
 return (front == -1 && rear == -1) || size == 0;
}

public boolean isFull() {
 return (rear + 1) % capacity == front || size == capacity;
}

public void enqueue(T element) {
 if (isFull()) {
 throw new OutOfMemoryError("Queue is Full");
 }

 if (front == -1) {
 front++;
 }

 rear = (rear + 1) % capacity;
 array[rear] = element;
 size++;
}

9

8

7

6

5

4

3

2 7

1 13

0 10

Queue<Integer> queue = new Queue<>();

rear = 2front = 0

capacity = 10

size = 3

queue.enqueue(7);

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (Array Implementation)

27

public T dequeue() {
 if (isEmpty()) {
 return null;
 }

 T element = array[front];
 if (front == rear) {
 front = rear = -1;
 } else {
 front = (front + 1) % capacity;
 }

 size--;
 return element;
}

9

8

7

6

5

4

3

2 7

1 13

0 10

Queue<Integer> queue = new Queue<>();

rear = 2front = 0

capacity = 10

size = 3

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (Array Implementation)

28

public T dequeue() {
 if (isEmpty()) {
 return null;
 }

 T element = array[front];
 if (front == rear) {
 front = rear = -1;
 } else {
 front = (front + 1) % capacity;
 }

 size--;
 return element;
}

9

8

7

6

5

4

3

2 7

1 13

0 10

Queue<Integer> queue = new Queue<>();

rear = 2front = 1

capacity = 10

size = 2

queue.dequeue();

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (Array Implementation)

29

public T dequeue() {
 if (isEmpty()) {
 return null;
 }

 T element = array[front];
 if (front == rear) {
 front = rear = -1;
 } else {
 front = (front + 1) % capacity;
 }

 size--;
 return element;
}

9

8

7

6

5

4

3

2 7

1 13

0 10

Queue<Integer> queue = new Queue<>();

rear = 2front = 2

capacity = 10

size = 1

queue.dequeue();

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (Array Implementation)

30

public T dequeue() {
 if (isEmpty()) {
 return null;
 }

 T element = array[front];
 if (front == rear) {
 front = rear = -1;
 } else {
 front = (front + 1) % capacity;
 }

 size--;
 return element;
}

9

8

7

6

5

4

3

2 7

1 13

0 10

Queue<Integer> queue = new Queue<>();

rear = -1front = -1

capacity = 10

size = 0

queue.dequeue();

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (Array Implementation)

31

public T front() {
 if (isEmpty()) {
 return null;
 }

 return array[front];
}

9

8

7

6

5

4

3

2 7

1 13

0 10

Queue<Integer> queue = new Queue<>();

rear = -1front = -1

capacity = 10

size = 0

Get element at the front of the queue!

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (Array Implementation)

32

public T front() {
 if (isEmpty()) {
 return null;
 }

 return array[front];
}

public T rear() {
 if (isEmpty()) {
 return null;
 }

 return array[rear];
}

9

8

7

6

5

4

3

2 7

1 13

0 10

Queue<Integer> queue = new Queue<>();

rear = -1front = -1

capacity = 10

size = 0

Get element at the back of the queue!

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (Array Implementation)

33

public void print() {
 // This is an exercise
}

public void clear() {
 // This is an exercise
}

9

8

7

6

5

4

3

2 7

1 13

0 10

Queue<Integer> queue = new Queue<>();

rear = -1front = -1

capacity = 10

size = 0

This is an exercise

1. You need to know the size
2. You could use (front + i) % capacity

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (LinkedList)

34

5 10 1

head/first

0 1 2
13

3

last

Where is the front and rear?

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (LinkedList)

35

5 10 1

head/first

0 1 2
13

3

last

Where is the front and rear?

Assume that rear = first and front = last

rear front

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (LinkedList)

36

5 10 1

head/first

0 1 2
13

3

last

Where is the front and rear?

Assume that rear = first and front = last

enqueue() -> addFirst(); // O(1)

rear front

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (LinkedList)

37

5 10 1

head/first

0 1 2
13

3

last

Where is the front and rear?

Assume that rear = first and front = last

enqueue() -> addFirst(); // O(1)

dequeue() -> removeLast(); // O(n)

rear front

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (LinkedList)

38

5 10 1

head/first

0 1 2
13

3

last

Where is the front and rear?

Assume that rear = first and front = last

enqueue() -> addFirst(); // O(1)

dequeue() -> removeLast(); // O(n)

This is valid because it’s FIFO (First In First Out)

rear front

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (LinkedList)

39

5 10 1

head/first

0 1 2
13

3

last

Where is the front and rear?

Assume that rear = last and front = first

enqueue() -> addLast(); // O(1)

dequeue() -> removeFirst(); // O(1)

This is valid because it’s FIFO (First In First Out)

front rear

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (LinkedList Implementation)

40

public class Node<T> {
 public T val;
 public Node<T> next;

 public Node(T val) {
 this(val, null);
 }

 public Node(T val, Node<T> next) {
 this.val = val;
 this.next = next;
 }
}

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (LinkedList Implementation)

41

public class Queue<T> {
 int size = 0;
 Node<T> front;
 Node<T> rear;

 public Queue() {
 front = rear = null;
 size = 0;
 }
}

front

null

rear

size = 0

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (LinkedList Implementation)

42

public boolean isEmpty() {
 return size == 0;
}

public int size() {
 return size;
}

front

null

rear

size = 0

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (LinkedList Implementation)

43

// Exactly like addLast
public void enqueue(T element) {
 Node<T> node = new Node<>(element);
 if (size == 0) {
 front = rear = node;
 } else {
 rear.next = node;
 rear = rear.next;
 }

 size++;
}

front

null

rear

size = 0

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (LinkedList Implementation)

44

// Exactly like addLast
public void enqueue(T element) {
 Node<T> node = new Node<>(element);
 if (size == 0) {
 front = rear = node;
 } else {
 rear.next = node;
 rear = rear.next;
 }

 size++;
}

front

null

rear

size = 0

enqueue(10);

10

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (LinkedList Implementation)

45

// Exactly like addLast
public void enqueue(T element) {
 Node<T> node = new Node<>(element);
 if (size == 0) {
 front = rear = node;
 } else {
 rear.next = node;
 rear = rear.next;
 }

 size++;
}

front

rear

size = 1

enqueue(10);

10

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (LinkedList Implementation)

46

// Exactly like addLast
public void enqueue(T element) {
 Node<T> node = new Node<>(element);
 if (size == 0) {
 front = rear = node;
 } else {
 rear.next = node;
 rear = rear.next;
 }

 size++;
}

front

rear

size = 1

enqueue(81);

10 81

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (LinkedList Implementation)

47

// Exactly like addLast
public void enqueue(T element) {
 Node<T> node = new Node<>(element);
 if (size == 0) {
 front = rear = node;
 } else {
 rear.next = node;
 rear = rear.next;
 }

 size++;
}

front

rear

size = 1

enqueue(81);

10 81

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (LinkedList Implementation)

48

// Exactly like addLast
public void enqueue(T element) {
 Node<T> node = new Node<>(element);
 if (size == 0) {
 front = rear = node;
 } else {
 rear.next = node;
 rear = rear.next;
 }

 size++;
}

front

rear

size = 2

enqueue(81);

10 81

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (LinkedList Implementation)

49

// Exactly like addLast
public void enqueue(T element) {
 Node<T> node = new Node<>(element);
 if (size == 0) {
 front = rear = node;
 } else {
 rear.next = node;
 rear = rear.next;
 }

 size++;
}

front

rear

size = 2

enqueue(17);

10 81

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (LinkedList Implementation)

50

// Exactly like addLast
public void enqueue(T element) {
 Node<T> node = new Node<>(element);
 if (size == 0) {
 front = rear = node;
 } else {
 rear.next = node;
 rear = rear.next;
 }

 size++;
}

front

rear

size = 3

enqueue(17);

10 81 17

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (LinkedList Implementation)

51

// Exactly like removeFirst
public T dequeue() {
 if (front == null) {
 return null;
 }

 T element = front.data;

 // Check if we have one element only
 if (front == rear) {
 front = rear = null;
 } else {
 front = front.next;
 }

 size--;
 return element;
}

front

rear

size = 3

enqueue(17);

10 81 17

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (LinkedList Implementation)

52

// Exactly like removeFirst
public T dequeue() {
 if (front == null) {
 return null;
 }

 T element = front.data;

 // Check if we have one element only
 if (front == rear) {
 front = rear = null;
 } else {
 front = front.next;
 }

 size--;
 return element;
}

front

rear

size = 3

dequeue();

10 81 17

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (LinkedList Implementation)

53

// Exactly like removeFirst
public T dequeue() {
 if (front == null) {
 return null;
 }

 T element = front.data;

 // Check if we have one element only
 if (front == rear) {
 front = rear = null;
 } else {
 front = front.next;
 }

 size--;
 return element;
}

front

rear

size = 2

dequeue();

81 17

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (LinkedList Implementation)

54

public T front() {
 if (front == null) {
 return null;
 }

 return front.data;
}

front

rear

size = 2

dequeue();

81 17

Get element at the front of the queue!

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (LinkedList Implementation)

55

How to loop on a queue?

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (LinkedList Implementation)

56

How to loop on queue?

while (!queue.isEmpty()) {
 int x = queue.dequeue();
 // Do something with x
}

// queue is empty here!

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (Exercise)

57

You have a queue of random integers!

Random random = new Random();
Queue<Integer> queue = new Queue<>();
for (int i = 0; i < 10; i++) {
 queue.enqueue(random.nextInt());
}

9 587

8 473

7 315

6 94

5 37

4 63

3 1025

2 1

1 77

0 10

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (Exercise)

58

You have a queue of random integers!

Random random = new Random();
Queue<Integer> queue = new Queue<>();
for (int i = 0; i < 10; i++) {
 queue.enqueue(random.nextInt());
}

9 587

8 473

7 315

6 94

5 37

4 63

3 1025

2 1

1 77

0 10

1. Find max in queue without destroying it!

int max = 0;
while (!queue.isEmpty()) {
 max = Math.max(max, queue.dequeue());
}

// queue is empty here! We don't want that!

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (Exercise)

59

You have a queue of random integers!

Random random = new Random();
Queue<Integer> queue = new Queue<>();
for (int i = 0; i < 10; i++) {
 queue.enqueue(random.nextInt());
}

9 587

8 473

7 315

6 94

5 37

4 63

3 1025

2 1

1 77

0 10

1. Find max in queue without destroying it!
2. Print queue without destroying it!
3. Write a function to clear a queue

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (Exercise)

60

Which data structure represents a waiting line and limits insertions to be made at the back
and limits removals to be made from the front?

Fill the following table.

Array LinkedList

enqueue() O(1) O(1)

dequeue()

front() or rear()

Space efficiency

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (Exercise)

61

Which data structure represents a waiting line and limits insertions to be made at the back
and limits removals to be made from the front?

Fill the following table.

Array LinkedList

enqueue() O(1) O(1)

dequeue()

front() or rear()

Space efficiency

Uploaded By: anonymousSTUDENTS-HUB.com

Queue (Exercise)

62

Assume you have this code:

Queue<Integer> queue = new Queue<>();
queue.enqueue(13);
queue.enqueue(5);
queue.dequeue();
queue.enqueue(19);
queue.enqueue(17);
queue.dequeue();
queue.dequeue();
queue.enqueue(23);

What is the state of the queue after running the code:
1. Where are the front and rear pointing at?
2. What is the size?

Uploaded By: anonymousSTUDENTS-HUB.com

