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Stack

A stack is a data structure in which elements are added and removed from one end!

It can allow us to insert elements and retrieve them in opposite order!

Operations

1. Push: Insert/Add a new element to top the stack
2. Pop: Remove/Delete top element in the stack
3. Peek: Examine element at the top of the stack

top
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Stack

Stacks are called (LIFO): Last In First Out
Last element that gets pushed is the first element that gets popped!
They are also called (FILO): First In Last Out

First element that gets pushed is the last element that gets popped!
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Queue

Queues are called (FIFO): First In First Out

First element that is enqueued/inserted is the first element that gets dequeued/removed!
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Queue

Queues are called (FIFO): First In First Out

First element that is enqueued/inserted is the first element that gets dequeued/removed!

’PR

Back Front

Dequeue
Enqueue
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Queue

A queue is a data structure in which elements are added from one end (e.g. Front)
And removed from the other end (e.g. Rear)

Operations

Enqueue/insert: Insert/Add a new element to rear element in the queue
Dequeue/remove: Remove/Delete front element in the queue

peek: Examine element at the front of the queue

Others: size, isEmpty, ...

B wN e

front rear
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Queue

A queue is a data structure in which elements are added from one end (e.g. Front)
And removed from the other end (e.g. Rear)

Operations queue.enqueue(77);

1. Enqueue/insert: Insert/Add a new element to rear element in the queue
2. Dequeue/remove: Remove/Delete front element in the queue
3. peek: Examine element at the front of the queue
4. Others: size, isEmpty, ...
_ 77 ~
front rear
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Queue

A queue is a data structure in which elements are added from one end (e.g. Front)
And removed from the other end (e.g. Rear)

Operations queue.enqueue(15);
1. Enqueue/insert: Insert/Add a new element to rear element in the queue
2. Dequeue/remove: Remove/Delete front element in the queue
3. peek: Examine element at the front of the queue
4. Others: size, isEmpty, ... 15
o 77

front rear
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Queue

A queue is a data structure in which elements are added from one end (e.g. Front)
And removed from the other end (e.g. Rear)

Operations queue.enqueue(61);

1. Enqueue/insert: Insert/Add a new element to rear element in the queue
2. Dequeue/remove: Remove/Delete front element in the queue 61
3. peek: Examine element at the front of the queue
4. Others: size, isEmpty, ... 15
o 77
front rear
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Queue

A queue is a data structure in which elements are added from one end (e.g. Front)
And removed from the other end (e.g. Rear)

Operations queue.dequeue();

Enqueue/insert: Insert/Add a new element to rear element in the queue
Dequeue/remove: Remove/Delete front element in the queue 61
peek: Examine element at the front of the queue

15

Others: size, isEmpty, ...
77

front rear

B wN e
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Queue

A queue is a data structure in which elements are added from one end (e.g. Front)
And removed from the other end (e.g. Rear)

Operations queue.dequeue();

1. Enqueue/insert: Insert/Add a new element to rear element in the queue
2. Dequeue/remove: Remove/Delete front element in the queue 61
3. peek: Examine element at the front of the queue
4. Others: size, isEmpty, ... 15
77
front rear
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Queue

A queue is a data structure in which elements are added from one end (e.g. Front)
And removed from the other end (e.g. Rear)

Operations queue.enqueue(11);
1. Enqueue/insert: Insert/Add a new element to rear element in the queue 11
2. Dequeue/remove: Remove/Delete front element in the queue 61
3. peek: Examine element at the front of the queue
4. Others: size, isEmpty, ... 15
77
front rear
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Queue

A queue is a data structure in which elements are added from one end (e.g. Front)
And removed from the other end (e.g. Rear)

Operations queue.enqueue(13);

1. Enqueue/insert: Insert/Add a new element to rear element in the queue 11

2. Dequeue/remove: Remove/Delete front element in the queue 61

3. peek: Examine element at the front of the queue

4. Others: size, isEmpty, ... 15

13 v~
Imagine the array is circular and we reach the end we reset back to 0.
front rear

(Last element is connected with the first one)
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Queue (Applications)

1. Real world examples:
1. People waiting inside a bank (without priority for now).
2. People waiting in a doctor office/barber.
3. Carsin asingle small road.

2. Operating System:
1. Tasks to print.
2. Simple process scheduling/execution.

3. Programming:

1. Create a system to model line of customers/orders.
2. Breadth First Search
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Queue (Array Implementation)

: capacity =10
public class Queue<T> {

private int capacity;
private int size;
private int front;
private int rear;

T[] array;

size=0

public Queue() {
this(10);
}

public Queue(int capacity) {
this.capacity = capacity;
this.size = 0;
this.front = -1;
this.rear = -1;
array = (T[]) new Object[capacity];

front=-1 rear=-1

O R N W & U1 OO N 0O

Queue<Integer> queue = new Queue<>();

}
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Queue (Array Implementation)

| | capacity =10
public boolean isEmpty() {
return (front == -1 && rear ==-1) || size == 0; 9 size =0

}

8

7

6

5

4

3

2

_ 1
front = -1 rear =-1
0

Queue<Integer> queue = new Queue<>();
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Queue (Array Implementation)

: . capacity =10
public boolean isEmpty() {
return (front == -1 && rear ==-1) || size == 0; 9 size =0
}
8
public boolean isFull() { 7
return rear + 1 == front | | size == capacity; 6
}
5
How do we make array circular? 4
3
2
_ 1 _
front=-1 rear = -1
0

Queue<Integer> queue = new Queue<>();
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Queue (Array Implementation)

_ . capacity = 10
public boolean isEmpty() {
return (front == -1 && rear ==-1) || size == 0; 9 size = 0
}
8
public boolean isFull() { 7
return (rear + 1) % capacity == front | | size == capacity; 6
}
5
4
3
2
_ 1 _
front=-1 rear=-1
0

Queue<Integer> queue = new Queue<>();
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Queue (Array Implementation)

capacity =10
public boolean isEmpty() {
return (front == -1 && rear ==-1) || size == 0; 9 size = 0
}
8
public boolean isFull() { 7
return (rear + 1) % capacity == front | | size == capacity; 6
}
5
public void enqueue(T element) { 4
rear = (rear + 1) % capacity; 3
array[rear] = element;
Size++; 2
} front=-1 1 rear=-1
0

What h ns if array is full?
at happens if array is fu Queue<Integer> queue = new Queue<>();
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Queue (Array Implementation)

capacity =10
public boolean isEmpty() {
return (front == -1 && rear ==-1) || size == 0; 9 size = 0
}
8
public boolean isFull() { 7
return (rear + 1) % capacity == front | | size == capacity; 6
}
5
public void enqueue(T element) { 4
rear = (rear + 1) % capacity; 3
array[rear] = element;
Size++; 2
} front=-1 1 rear=-1
0

What h ns if array is full?
at happens if array is fu Queue<Integer> queue = new Queue<>();
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Queue (Array Implementation)

_ . capacity = 10
public boolean isEmpty() {
return (front == -1 && rear ==-1) || size == 0; 9 size = 0
}
8
public boolean isFull() { 7
return (rear + 1) % capacity == front | | size == capacity; 6
}
5
public void enqueue(T element) { 4
if (isFull()) { 3
throw new OutOfMemoryError("Queue is Full");
} 2
: front=-1 1 rear=-1
rear = (rear + 1) % capacity; 0
array[rear] = element;
} SIZE+E; Queue<integer> queue = new Queue<>();

What happens if array is empty? front = -1 and rear = -1
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Queue (Array Implementation)

_ . capacity = 10
public boolean isEmpty() {
return (front == -1 && rear ==-1) || size == 0; 9 size = 0
}
8
public boolean isFull() { 7
return (rear + 1) % capacity == front | | size == capacity; 6
}
5
public void enqueue(T element) { 4
if (isFull()) { 3
throw new OutOfMemoryError("Queue is Full");
} 2
: front=-1 1 rear=-1
rear = (rear + 1) % capacity; 0
array[rear] = element;
} SIZE+E; Queue<integer> queue = new Queue<>();

What happens if array is front = -1 and rear = -1
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Queue (Array Implementation)

: . capacity =10
public boolean isEmpty() {
return (front == -1 && rear ==-1) | | size == 0;
}

size=0

public boolean isFull() {
return (rear + 1) % capacity == front | | size == capacity;

}

public void enqueue(T element) {
if (isFull()) {
throw new OutOfMemoryError("Queue is Full");

}

if (front ==-1) {

}

rear =-1

O R N W & U1 OO N 0O

rear = (rear + 1) % capacity;
array[rear] = element;
size++;
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Queue (Array Implementation)

: . capacity =10
public boolean isEmpty() {
return (front == -1 && rear ==-1) | | size == 0;
}

size=1

public boolean isFull() {
return (rear + 1) % capacity == front | | size == capacity;

}

public void enqueue(T element) {
if (isFull()) {
throw new OutOfMemoryError("Queue is Full");

}

if (front ==-1) {
front++; front = 0

}

rear=0

O R N W & U1 OO N 0O

10
gueue.enqueue(10);

rear = (rear + 1) % capacity;
array[rear] = element;
size++;
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Queue (Array Implementation)

: . capacity =10
public boolean isEmpty() {
return (front == -1 && rear ==-1) | | size == 0;
}

size=2

public boolean isFull() {
return (rear + 1) % capacity == front | | size == capacity;

}

public void enqueue(T element) {
if (isFull()) {
throw new OutOfMemoryError("Queue is Full");

}

if (front ==-1) {
front++; front = 0

}

13
10

rear=1

O R N W & U1 OO N 0O

gueue.enqueue(13);
rear = (rear + 1) % capacity;
array[rear] = element;
size++;

STUDENTS-HUB.com Uploaded By: anofiymous

Queue<Integer> queue = new Queue<>();



Queue (Array Implementation)

| | capacity =10
public boolean isEmpty() {

return (front == -1 && rear ==-1) || size == 0;

}

size=3

public boolean isFull() {
return (rear + 1) % capacity == front | | size == capacity;

}

public void enqueue(T element) {
if (isFull()) {
throw new OutOfMemoryError("Queue is Full");

}
7

13
10

if (front ==-1) {
front++; front = 0

}

rear=2

O R N W & U1 OO N 0O

gueue.enqueue(7);
rear = (rear + 1) % capacity;
array[rear] = element;
size++;
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Queue (Array Implementation)

: capacity =10
public T dequeue() {

if (iIsEmpty()) {
return null;

}

size=3

T element = array[front];
if (front == rear) {
front = rear = -1;
} else {
front = (front + 1) % capacity;

}
7

13
10

size--;

rear =2
return element;

front=0

O R N W & U1 OO N 0O

Queue<Integer> queue = new Queue<>();
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Queue (Array Implementation)

: capacity =10
public T dequeue() {

if (iIsEmpty()) {
return null;

}

size=2

T element = array[front];
if (front == rear) {
front = rear = -1;
} else {
front = (front + 1) % capacity;

}
7

13
16

size--;
return element;
} gueue.dequeue();

front=1 rear=2

O R N W & U1 OO N 0O

Queue<Integer> queue = new Queue<>();
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Queue (Array Implementation)

: capacity =10
public T dequeue() {

if (iIsEmpty()) {
return null;

}

size=1

T element = array[front];
if (front == rear) {
front = rear = -1;
} else {
front = (front + 1) % capacity;

}
7

13
16

size--;
return element;
} gueue.dequeue();

front =2 rear=2

O R N W & U1 OO N 0O

Queue<Integer> queue = new Queue<>();
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Queue (Array Implementation)

: capacity =10
public T dequeue() {

if (iIsEmpty()) {
return null;

}

size=0

T element = array[front];
if (front == rear) {
front = rear = -1;
} else {
front = (front + 1) % capacity;

}
7

13
16

size--;
return element;
} gueue.dequeue();

front=-1 rear=-1

O R N W & U1 OO N 0O

Queue<Integer> queue = new Queue<>();
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Queue (Array Implementation)

: capacity =10
public T front() {
if (isEmpty()) { 9 size = 0
return null;
8
}
7
return array[front]; 6
}
5
4
Get element at the front of the queue! 3
2 +
front=-1 1 += rear = -1
0 10

Queue<Integer> queue = new Queue<>();

STUDENTS-HUB.com Uploaded By: anofhymous



Queue (Array Implementation)

: capacity =10
public T front() {
if (isEmpty()) { 9 size=0
return null;
8
}
7
return array[front]; 6
}
5
public T rear() { 4
if (isEmpty()) { Get element at the back of the queue! 3
return null;
} 2 +
return array[rear]; front = -1 : i rear = -1
! 0 10

}

Queue<Integer> queue = new Queue<>();
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Queue (Array Implementation)

: : : capacity =10
public void print() {
// This is an exercise 9 size = 0
}
8
public void clear() { 7
// This is an exercise 6
}
5
4
e ° o 3
This is an exercise
2 +
1. You need to know the size front = -1 1 3 rear = -1
2. You could use (front + i) % capacity 0 10

Queue<Integer> queue = new Queue<>();
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Queue (LinkedList)

head/first last

\ N
R R .
0 1 2 3

Where is the front and rear?
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Queue (LinkedList)

head/first last
\ N\
i .
rear 0 1 2 3

front

Where is the front and rear?

Assume that rear = first and front = last
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Queue (LinkedList)

head/first last
\ N\
i .
rear 0 1 2 3

front

Where is the front and rear?

Assume that rear = first and front = last

enqueue() -> addFirst(); // O(1)
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Queue (LinkedList)

head/first last
\ N\
i .
rear 0 1 2 3

front

Where is the front and rear?

Assume that rear = first and front = last
enqueue() -> addFirst(); // O(1)

dequeue() -> removelast(); // O(n)
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Queue (LinkedList)

head/first last
/ﬂ-—'-—»-—,!—
rear 0 1 2 3
front
Where is the front and rear?
Assume that rear = first and front = last This is valid because it’s FIFO (First In First Out)

enqueue() -> addFirst(); // O(1)

dequeue() -> removelast(); // O(n)
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Queue (LinkedList)

head/first last
/ﬂ-—-—»-—,!—
front 0 1 2 3
rear
Where is the front and rear?
Assume that rear = last and front = first This is valid because it’s FIFO (First In First Out)

enqueue() -> addLast(); // O(1)

dequeue() -> removeFirst(); // O(1)
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Queue (LinkedList Implementation)

public class Node<T> {
public T val;
public Node<T> next;

public Node(T val) {
this(val, null);

}

public Node(T val, Node<T> next) {
this.val = val;
this.next = next;

}
}

STUDENTS-HUB.com
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Queue (LinkedList Implementation)

public class Queue<T> {

int size = 0; front
Node<T> front; \
Node<T> rear; null
/

public Queue() { rear

front = rear = null;

size = 0;
}

}

size=0
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Queue (LinkedList Implementation)

public boolean isEmpty() {

return size == 0; front
} \
null
public int size() { —
return size; rear
}

size=0

STUDENTS-HUB.com Uploaded By: anofiymous



Queue (LinkedList Implementation)

// Exactly like addLast
public void enqueue(T element) { front
Node<T> node = new Node<>(element); \
if (size == 0) { null
front = rear = node; —_—
}else { rear

rear.next = node;
rear = rear.next;

}

Size++;

}

size=0
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Queue (LinkedList Implementation)

// Exactly like addLast
public void enqueue(T element) { front enqueue(10);
Node<T> node = new Node<>(element); \
if (size == 0) { null
front = rear = node; —_—

else N

rear.next = node;
rear = rear.next;

}

Size++;

}

size=0

STUDENTS-HUB.com Uploaded By: anofiymous



Queue (LinkedList Implementation)

// Exactly like addLast front
public void enqueue(T element) { enqueue(10);
Node<T> node = new Node<>(element);

if (size == 0) { n-
front = rear = node; /

} else {
rear
rear.next = node;

rear = rear.next;

}

Size++;

}

size=1
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Queue (LinkedList Implementation)

// Exactly like addLast front
public void enqueue(T element) {
Node<T> node = new Node<>(element);

if (size == 0) { n- m-
/

enqueue(81);

front = rear = node;

} else {
rear.next = node;

rear = rear.next;

}

rear

Size++;

size=1
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Queue (LinkedList Implementation)

// Exactly like addLast front
public void enqueue(T element) {
Node<T> node = new Node<>(element);

if (size == 0) { n-_’m-
/

enqueue(81);

front = rear = node;

} else {
rear.next = node;

rear = rear.next;

}

rear

Size++;

size=1
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Queue (LinkedList Implementation)

// Exactly like addLast front
public void enqueue(T element) { enqueue(81);
Node<T> node = new Node<>(element);

if (size == 0) { n-_’m-

front = rear = node;

} else {
rear.next = node; rear
rear = rear.next;

Size++;

}

size=2
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Queue (LinkedList Implementation)

// Exactly like addLast front
public void enqueue(T element) { enqueue(17);
Node<T> node = new Node<>(element);

if (size == 0) { n-_’m-

front = rear = node;

} else {
rear.next = node; rear
rear = rear.next;

Size++;

}

size=2
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Queue (LinkedList Implementation)

// Exactly like addLast front
public void enqueue(T element) {
Node<T> node = new Node<>(element);

f (size == 0) { 10 | pug 81 gug 17 |

enqueue(17);

front = rear = node; /
} else {
rear.next = node; rear
rear = rear.next;
Size++;

size=3
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Queue (LinkedList Implementation)

// Exactly like removefFirst
. front
public T dequeue() { enqueue(17);
if (front == null) {

A -—>-—*-

rear

T element = front.data;

// Check if we have one element only
if (front == rear) {

front = rear = null;
} else {

front = front.next;

}

_ size=3
size--;
return element;

}
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Queue (LinkedList Implementation)

// Exactly like removefFirst
. front
public T dequeue() { dequeue();
if (front == null) {

A -—>-—*-

rear

T element = front.data;

// Check if we have one element only
if (front == rear) {

front = rear = null;
} else {

front = front.next;

}

_ size=3
size--;
return element;

}
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Queue (LinkedList Implementation)

// Exactly like removeFirst front
public T dequeue() { dequeue();
if (front == null) {

A l!l-—*-

rear

T element = front.data;

// Check if we have one element only
if (front == rear) {

front = rear = null;
} else {

front = front.next;

}

. size=2
size--;

return element;

}
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Queue (LinkedList Implementation)

public T front() { front
if (front == null) { dequeue();
return null;
} ENE— EI
return front.data; /
} rear

Get element at the front of the queue!

size=2
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Queue (LinkedList Implementation)

How to loop on a queue?
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Queue (LinkedList Implementation)

How to loop on queue?

while (!queue.isEmpty()) {
int x = queue.dequeue();
// Do something with x

}

// queue is empty here!
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Queue (Exercise)

You have a queue of random integers!

Random random = new Random();

Queue<integer> queue = new Queue<>();

for (inti=0;i<10;i++) {
gueue.enqueue(random.nextint());

}

O R N W & U1 OO N 0O
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Queue (Exercise)

You have a queue of random integers!

9 587
Random random = new Random(); 8 473
Queue<integer> queue = new Queue<>(); . 315
for (inti=0;i<10;i++) {
queue.enqueue(random.nextint()); 6 94
} 5 37
4 63
1. Find max in queue without destroying it! 3 1025
2 1
int max =0;
while (!queue.isEmpty()) { 1 77
max = Math.max(max, queue.dequeue()); 0 10

}

// queue is empty here! We don't want that!
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Queue (Exercise)

You have a queue of random integers!

Random random = new Random();

Queue<integer> queue = new Queue<>();

for (inti=0;i<10;i++) {
gueue.enqueue(random.nextint());

}

1. Find max in queue without destroying it!
2. Print queue without destroying it!
3. Write a function to clear a queue

STUDENTS-HUB.com
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473
315
94
37
63
1025

77
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Queue (Exercise)

Which data structure represents a waiting line and limits insertions to be made at the back
and limits removals to be made from the front?

Fill the following table.

enqueue() O(1) O(1)
dequeue()
front() or rear()

Space efficiency
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Queue (Exercise)

Which data structure represents a waiting line and limits insertions to be made at the back
and limits removals to be made from the front?

Fill the following table.

enqueue() O(1) O(1)
dequeue()
front() or rear()

Space efficiency
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Queue (Exercise)

Assume you have this code:

Queue<integer> queue = new Queue<>();
gueue.enqueue(13);

queue.enqueue(5);

qgueue.dequeue();

gueue.enqueue(19);

gueue.enqueue(17);

qgueue.dequeue();

qgueue.dequeue();

gueue.enqueue(23);

What is the state of the queue after running the code:
1. Where are the front and rear pointing at?
2. What is the size?
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