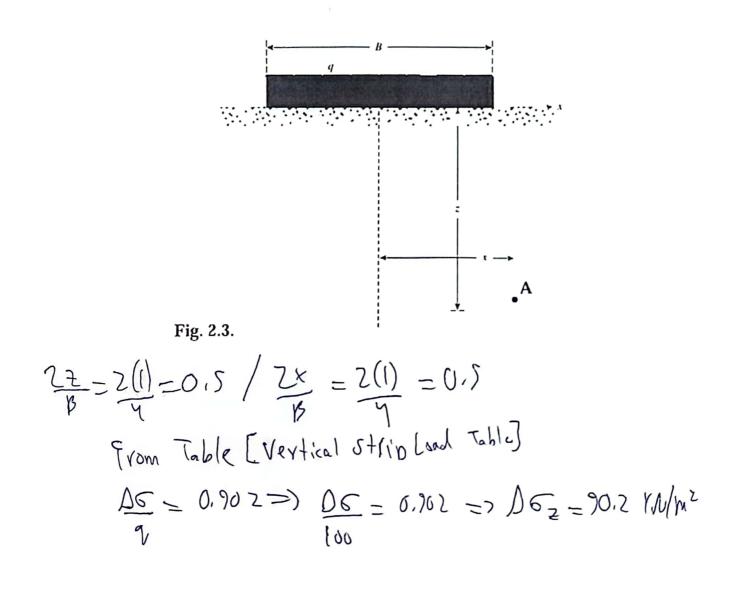
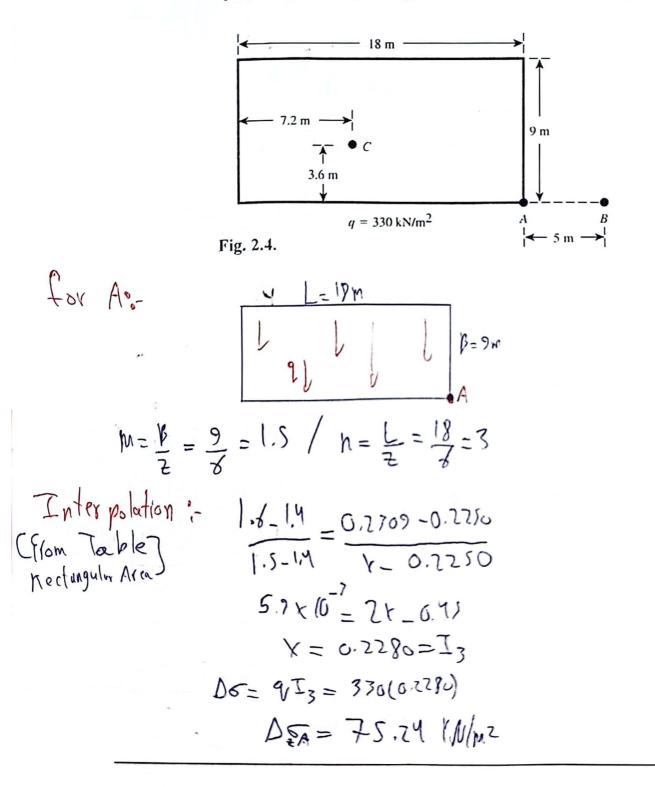

Birzeit University Soil Mechanics, ENCE 331 Homework Assignment 2 (Due to 23 Jan 2024, 10:00 p.m.)

Student Name: Youhanna MuSleh	Inst.: Eng. Saheem Murshid	
Student ID: 1211224	T.A.: Eng. Tamer AL-Shyoukhi	
Submission Date: 1/22/2024		

 Point loads of magnitude 125, 250, and 500 kN act at A, B, and C, respectively. Determine the increase in vertical stress at a depth 10 m under point D, see Fig. 2.1.



2. Determine the increase of stresses at point A due to two line-loads as shown in Fig. 2.2.


3. For the Fig. 2.3, given B = 4 m, $q = 100 kN/m^2$, z = 1 m, and x = 1 m. Find $\Delta \sigma_z$ at point A.

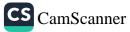
Homework Assignment 2

4. A flexible rectangular area is subjected to a uniform distributed load of $q = 330 \ kN/m^2$. Determine the increase in vertical stress; $\Delta \sigma_z$, at a depth of $z = 6 \ m$ under points A, B, and C, see Fig. 2.4.

for B:

$$\frac{1}{3n} = \frac{5n}{3} = \frac{5n}{3}$$
Part 0

$$\frac{1}{3n} = \frac{1}{2} = \frac{1}{3} = \frac{1}{3}$$


$$\frac{1}{3n} = \frac{1}{2} = \frac{1}{3} = \frac{1}{3}$$

$$\frac{1}{3n} = \frac{1}{2} = \frac{23}{3} = \frac{1}{3} = \frac{1}{3}$$

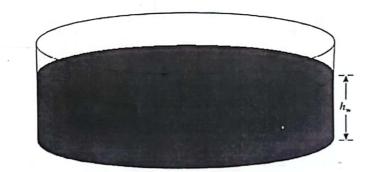
$$\frac{1}{3n} = \frac{1}{2} = \frac{23}{3} = \frac{3}{3} = \frac{3}{3} = \frac{1}{3}$$

$$\frac{1}{3n} = \frac{1}{2} = \frac{23}{3} = \frac{3}{3} = \frac{3}{3} = \frac{1}{3}$$

$$\frac{1}{3n} = \frac{1}{2} = \frac{23}{3} = \frac{3}{3} = \frac{$$

$$f_{01}(C:-) = \frac{|g_{M}|}{|g_{12,4M}|g_{2}|} = 0$$

$$f_{01}(C:-) = \frac{|g_{M}|}{|g_{12}|} = 0$$


$$f_{01}(G:-) = \frac{|g|}{|g|} = 0$$

$$f_{01}(G:-) = \frac{|g|}{|g|}$$

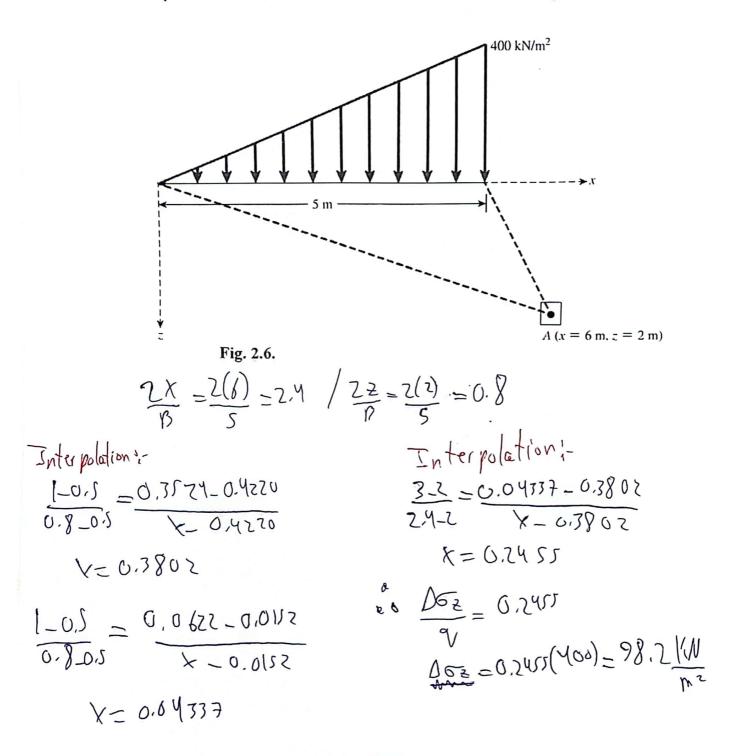
Total stiess In(:
$$DG_{c} = DG_{0} + DS_{0} + DG_{0} + DG_{0}$$

= $b2.667 + s8.641 + s0.193 + 47.223$
 $DG_{c} = 218.724$ (W/m²

5. Fig. 2.5 shows the schematic of a circular water storage facility resting on the ground surface. The radius of the storage tank, R = 2.5 m, and the maximum height of water, $h_w = 4$ m. Determine the vertical stress increase, $\Delta \sigma_z$, at points 0, 2, 4, 8, and 10 m below the ground surface along the centerline of the tank.

DG (Á+B)

$h_{w=4n}$ (1) $q=h_{w}y_{w}=u(10)$	K=2.5m	
$q = h_w y_w = Y(10)$)-40 (W	/m 2


$$\begin{cases} f_{0r} = 0 \\ = 0 \\ \frac{2}{K} = 0 \\ K = 0 \end{cases} = 0 = 0 \\ \dot{K} = 0.57551 \\ \dot{K} = 0.3091 \end{cases}$$

DO= 40(0.37531+0.38071)= 30.2492 Ku/m2

6. Referring to Fig. 2.6. For the linearly increasing vertical loading on an infinite strip of width 5 m, determine the vertical stress increase, $\Delta \sigma_z$, at A.

