CHAPTER 5

Limiting
Distributions

5.1 Convergence in Distribution

In some of the preceding chapters it has been demonstrated by
example that the distribution of a random variable (perhaps a statistic)
often depends upon a positive integer n. For example, if the random
variable X is b(n, p), the distribution of X depends upon n. If X is the
mean of a random sample of size n from a distribution that is N(y, ¢%),
then X is itself N(u, o*/n) and the distribution of X depends upon n. If
S?is the variance of this random sample from the normal distribution
to which we have just referred, the random variable nS%/a” is y(n — 1),
and so the distribution of this random variable depends upon n.

We know from experience that the determination of the probability

_ density function of a random variable can, upon occasion, present
rather formidable computational difficulties. For example, if X is the
mean of a random sample X, X, .. ., X, from a distribution that has
the following p.d.f.
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234 Limiting Distributions |Ch. §

fx) =1, 0<x<l,
=0 elsewhere,
then (Exercise 4.85) the m.g.f. of X is given by [M(¢/n)l", where here

1
M(t)=J e'*dx="':1, £ #£0,
¢

Hence

t/n

_ M 1\"
E@e¥) = (‘” ') . 1#0,

= l’ T t =0'

Since the m.g.f. of X depends upon , the distribution of X depends
upon n. It is true that various mathematical techniques can be used to
determine the p.d.f. of X for a fixed, but arbitrarily fixed, positive
integer n. But the p.d.f. is so complicated that few, if any, of us would
be interested in using it to compute probabilities about X. One of the
purposes of this chapter is to provide ways of approximating, for large
values of n, some of these complicated probability density functions.

Consider a distribution that depends upon the positive integer n.
Clearly, the distribution function F of that distribution will also
depend upon n. Throughout this chapter, we denote this fact by writing
the distribution function as F, and the corresponding p.d.f. as f,.
Moreover, to emphasize the fact that we are working with sequences
of distribution functions and random variables, we place a subscript
n on the random variables. For example, we shall write

v

for the distribution function of the mean X, of a random sample of size
n from a normal distribution with mean zero and variance 1.

We now define convergence in distribution of a sequence of
random variables.

F (%)= e™™" dw

Definition 1. Let the distribution function F,(y) of the random
variable Y, depend upon n, n=1,2,3,.... If F(y) is a distribution
function and if lim F,(y) = F(y) for every point y at which F(y) is
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continuous, then the sequence of random variables, Y,; Y,,...,
converges in distribution to a random variable with distribution
function F(y).

The following examples are illustrative of this convergence in
distribution.

Example 1. Let Y, denote the nth order statistic of a random sample
X, X, ..., X, from a distribution having p.d.f.

f(x)=%, 0<x<0, 0<60<oo,

=0 elsewhere.

The p.d.f. of Y, is
ny"~!
gn(y)ﬁ'_an_" 0<y<01
=0 elsewhere,
and the distribution function of Y, is
F(»n=0, y<Q,
» nzn-— 1 y n

=1, 0 <y< .

Then
lim F,() =0, —o0<y<§,
=1, f<y< .
Now
F»)=0, —ow.<y<§,
=1, ] sy < 00,

is a distribution function. Moreover, lim F,(y) = F(y) at each point of

H— a0

continuity of F(y). Recall that a distribution of the discrete type which has
a probability of 1 at a single point has been called a degenerate distribution.
Thus, in this example, the sequence of the nth order statistics, Y,,
n=1,23,..., converges in distribution to a random variable that has a
degenerate distribution at the point y = 6.
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236 Limiting Distributions [Ch. 5

Example 2. Let X, have the distribution function

Fy(3) =

X

1
o 1/n/2n
If the change of variable v = \/r;w is made, we have
N/ 1
F,(x) = j —— e " gy,

N

e~™ dw.

It is clear that

}Lrg F,(x) =0, x<0,
=L, x=0,
=1, x>0.
Now the function
FRx) =0, x <0,
=1, x>0,

is a distribution function and lim F,(x) = F(x) at every point of continuity of

A0

RXx). To be sure, lim F,(0) # F0), but AX) is not continuous at x = 0.

n-s0

Accordingly, the sequence X, X, X, ... converges in distribution to a
random variable that has a degenerate distribution at x = 0.

Example 3. Even if a sequence X, X;, Xj, . . .converges in distribution to
arandom variable X, we cannot in general determine the distribution of X by
taking the limit of the p.d.f. of X,. This is illustrated by letting X, have the
pd.f.

Salx) =1, x=2+,1,,

=0 elsewhere.

Clearly, lim f,(x) =0 for all values of x. This may suggest that X,,

n—a

n=1,2,3,...,does not converge in distribution. However, the distribution
function of ‘X, is -

F,(x) =0, x<2+%,

=1, x22+1,
n
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Sec. 5.1] Convergence in Distribution 237

and

lim F,(x) =0, x<2,

n—w

=1, x> 2.

Since
Rx) =0, x <2,
=1, x=2,

is a distribution function, and since lim F,(x) = F(x) at all points of

continuity of F(x), the sequence X, X,, X;, . .. converges in distribution to
a random variable with distribution function F(x). :

It is interesting to note that although we refer to a sequence of
random variables, X, X;, X;, ..., converging in distribution to a
random variable X having some distribution function F(x), itis actually
the distribution functions F,, F,, F,, . . . that converge. That is,

lim F,(x) = F(x)

at all points x for which F(x) is continuous. For that reason we often
find it convenient to refer to F(x) as the limiting distribution. Moreover,
it is then a little easier to say that X,, representing the sequence
X, X,, X;, ..., has a limiting distribution with distribution function
F(x). Henceforth, we use this terminology.

Example 4. Let Y, denote the nth order statistic of a random sample from
the uniform distribution of Example 1. Let Z, = n(0 — Y,). The p.d.f. of Z,
is

@ — z/ny"—!

. hn(z) = en s

0 <z<nb,

=0 elsewhere,
and the distribution function of Z, is

G.(2) =0, z2<0,

z - n—1 n

= wdw=l—(l—i), 0<z<nb,
A 0 nf

=1, no < z.
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Hence
lim G,(z) = 0, z<0,

-
=1—e 0<z< .
Now
G(z) =0, z <0,
=1—-e# 0<z
is a distribution function that is everywhere continuous and lim G,(z) = G(z)

n—Q

at all points. Thus Z, has a limiting distribution with distribution function
G(z). This affords us an example of a limiting distribution that is not

degenerate.
Example 5. Let T, have a (-distribution with n degrees of freedom,
n=1,23,.... Thus its distribution function is
" I+ 1)/2
Fo [ Aot

dy,
o Jan T2y A+ P2
where the integrand is the p.d.f. f,(y) of 7,. Accordingly,

im F,(r) = llm J 1,(») dy

RO

. j fim £,(y) dy.

The change of the order of the limit and integration is justified because |f,(y)|
is dominated by a function, like 10f,(y), with a finite integral. That is,

LA < 10£,()

and

J‘ 101,(p) dy = % arctan ¢ < o,

for all real r. Hence, here we can find the limiting distribution by finding the
limit of the p.d.f. of 7,. It is

lim £,(y) = lim | 10+ D21
e = | V/n/2r(2)

: 1 y? "
X hm s y’/ X .1.1'2{\/2—,; [(' + F)] }
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Sec. 5.2] Convergence in Probability 239

Using the fact from elementary calculus that

- lim (1+§)"=e",

A

the limit associated with the third factor is clearly the p.d.f. of the standard
normal distribution. The second limit obviously equals 1. If we knew more
about the gamma function, it is easy to show that the first limit also
equals 1. Thus we have

lim F,(r) = J L - dy,
A= —wo n
and hence T, has a limiting standard normal distribution.

EXERCISES

5.1. Let X, denote the mean of a random sén_iple of size n from a distribution
that is N(u, 0%). Find the limiting distribution of X,.

5.2. Let Y, denote the first order statistic of a random sample of size n from
a distribution that has the p.d.f. f(x) = e=*~ 9 6 < x < o0, zero elsewhere.
Let Z, = n(Y, — 0). Investigate the limiting distribution of Z,.

8.3. Let Y, denote the nth order statistic of a random sample from a
distribution of the continuous type that has distribution function F(x)
and p.d.f. f(x) = F'(x). Find the limiting distribution of Z, = n[]1 — K(Y,)].

5.4. Let Y, denote the second order statistic of a random sample of size n
from a distribution of the continuous type that has distribution function
H(x) and p.d.f. f(x) = F’(x). Find the limiting distribution of W, = nF(Y,).

5.5. Letthep.d.f. of Y, bef.(y) = 1, y = n, zero elsewhere. Show that Y, does
not have a limiting distribution. (In this case, the probability has “escaped”
to infinity.)

5.6. Let X,, X;, .. ., X, be a random sample of size n from a distribution that

is N(u, o), where cr2 > 0. Show that the sum Z, = Z X, does not have a
limiting distribution.

i

5.2 k‘Co'nvergence in Probability

In the discussion concerning convergence in distribution, it
was noted that it was really the sequence of distribution functions
that converges to what we call a limiting distribution function.
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240 | Limiting Distributions [Ch. 5

Convergence in probability is quite different, although we demonstrate
that in a special case there is a relationship between the two concepts.

Definition 2. A sequence of random variables X, X, X;,...
converges in probability to a random variable X if, for every ¢ > 0,

lim Pr (X, — X] <¢) =1,
n—a

or equivalently,
lim Pr (X, — X] > ¢)=0.

Statisticians are usually interested in this convergence when the
random variable X is a constant, that is, when the random variable X
has a degenerate distribution at that constant. Hence we concentrate
on that situation.

Example 1. Let X, denote the mean of a random sample of size n from
a distribution that has mean u and positive variance ¢2. Then the mean and
variance of X, are u and ¢*/n. Consider, for every fixed ¢ > 0, the probability

Pr(lj-’,——ul2£)=Pr(|/?,,——y|2ﬁ),

Jn

where k = eﬁ/a. In accordance with the inequality of Chebyshev, this
probability is less than or equal to 1/k?* = ¢%/ne’. So, for every fixed ¢ > 0, we

have
2

fim Pr (X, — p| 2 ¢) < lim 5 = 0.

n—0 n—o0 M€

Hence X,,n=1,2,3, ..., converges in probability to y if ¢? is finite. (In a
more advanced course, the student will learn that 4 finite is sufficient to ensure
this convergence in probability.) This result is called the weak law of large
numbers.

Remark. A stronger type of convergence is given by Pr(lim Y, =c¢)=1;

in this case we say that ¥,,n = 1,2, 3,. .., converges to ¢ with probability 1.
Although we do not consider this type of convergence, it is known that the
mean X,,n=1,2,3, ..., of a random sample converges with probability 1
to the mean y of the distribution, provided that the latter exists. This is one
form of the strong law of large numbers.

We prove a theorem that relates a certain limiting distribution to
convergence in probability to a constant.

STUDENTS-HUB.com Uploaded By: anonymous



Sec. 5.2] Convergence in Probability 241

Theorem 1. Let F,(y) denote the distribution function of a random
variable Y, whose distribution depends upon the positive integer n. Let
¢ denote a constant which does not depend upon n. The sequence Y,,
n=1,2,3,..., converges in probability to the constant c if and only if
the limiting distribution of Y, is degenerate at y = c.

Proof. First, assume that the lim Pr (|Y, — ¢| < ¢) = 1 for every

n—-w

¢ > 0. We are to prove that the random variable Y, is such that

lim F,(y) =0, y<c,

n—aoo

=1, y>c.

Note that we do not need to know anything about the lim F,(c). For

n—o0
if the limit of F,(y) is as indicated, then Y, has a limiting distribution
with distribution function '

Ry)=0, y<eg,

=1, 'yzc.

Now |
Pr((Y,—c<e)=F)(c+ ¢ —]1— Fyc—¥e,

where F,[(c + ¢) — ] is the left-hand limit of F,(y) at y = ¢ + ¢. Thus
we have

1 =1limPr(Y, —c| <e) = lim EJ[(c + €) — ] — lim F,(c — ¢).

Because 0 < F,(y) < 1 for all values of y and for every positive integer
n, it must be that

lim Fc—€)=0, limF[(c+e—]1=1.

n—o0

Since this is true for every ¢ > 0, we have

lim F,(»)) =0, y<g,

n—o

=1, y >,

as we were required to show.
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242 Limiting Distributions [Ch. 5

To complete the proof of Theorem 1, we assume that
lim F,(y) =0, y<g,
| =1, y > c.
We are to prove that lgg Pr (Y, — c| < ¢) = 1 forevery ¢ > (. Because
Pr(|Y,—cl<e)=Fllc+e—]1-F(—o,
and because it is given that
lim Flc+9—-1=1,

lim F,(c —¢) =0,

A=+
for every € > 0, we have the desired result. This completes the proof
of the theorem.

For convenience, in the notation of Theorem 1, we sometimes say
that Y,, rather than the sequence Y,,Y,, Y3, ..., converges in
probability to the constant c.

EXERCISES

5.7. Let the random variable Y, have a distribution that is b(n, p).
(a) Prove that Y,/n converges in probability to p. This result is one form
of the weak law of large numbers.
(b) Prove that 1 — Y,/n converges in probability to 1 — p.

5.8. Let S? denote the variance of a random sample of size n from a
distribution thatis N(u, a?). Prove that nS?/(n — 1) converges in probability
to o’

5.9. Let W, denote a random variable with mean u and variance b/n’, where
p > 0, u, and b are constants (not functions of n). Prove that W, converges
in probability to u.

Hint: Use Chebyshev’s inequality.

5.10. Let Y, denote the nth order statistic of a random sample of size » from
a uniform distribution on the interval (0, 8), as in Example 1 of Section 5.1.
Prove that Z, =,/ Y, converges in probability to \/5
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5.3 Limiting Moment-Generating Functions

To find the limiting distribution function of a random variable Y,
by use of the definition of limiting distribution function obviously
requires that we know F,(y) for each positive integer n. But, as
indicated in the introductory remarks of Section 5.1, this is precisely
the problem we should like to avoid. If it exists, the moment-generating
function that corresponds to the distribution function F,(y) often
provides a convenient method of determining the limiting distribution
function. To emphasize that the distribution of a random variable Y,
depends upon the positive integer n, in this chapter we shall write the
moment-generating function of Y, in the form M(z; n).

The following theorem, which is essentially Curtiss’ modification
of a theorem of Lévy and Cramér, explains how the moment-generat-
ing function may be used in problems of limiting distributions. A proof
of the theorem requires a knowledge of that same facet of analysis that
permitted us to assert that a’ moment-generating function, when it
exists, uniquely determines a distribution. Accordingly, no proof of the
theorem will be given.

Theorem 2. Let the random variable Y, have the distribution
JSunction F,(y) and the moment-generating function M(t; n) that exists
for —h <t < h for all n. If there exists a distribution function F(y),
with corresponding moment-generating function M(t), defined for
|l < hy < h, such that lim M(t; n) = M(?), then Y, has a limiting

n— o :

distribution with distribution function F(y).

, In this and the subsequent sections are several illustrations of the
use of Theorem 2. In some of these examples it is convenient to use a
certain limit that is established in some courses in advanced calculus.
We refer to a limit of the form

lim [1 +o4 M]m,
n n

n—+oo

where b and ¢ do not depend upon n and where lim y(n) = 0. Then

n—

lim [1 +Q+-¢—'QI—)] = lim (1+9) = .
n n n

n—o nh—00
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244 - Limiting Distributions [Ch. 8
For example,
3 —n/2 t2 t3 n —nf2
lim( —ﬁ‘f‘tT/;) =1im(1——+ /\/_)
n—-aod n—-o n n

Hereb = —7,c = —3,and y(n) = tJ/\/;. Accordingly, for every fixed
value of r, the 11m1t 1s e,

Example 1. Let Y, have a distribution that is b(n, p). Suppose that the
mean u = np is the same for every n; that is, p = u/n, where u is a constant.
We shall find the limiting distribution of the binomial distribution, when
p = u/n, by finding the limit of M(f; n). Now

M(5;m) = B(e"™) = [(1 - p) + pe'}' = [1 + f‘-@{—g]

for all real values of r. Hence we have

lim M(t; n) = e¥<' -V

n—ao
for all real values of r. Since there exists a distribution, namely the Poisson
distribution with mean y, that has this m.g.f. &% =, then, in accordance with
the theorem and under the conditions stated, it is seen that Y, has a limiting
Poisson distribution with mean u.

Whenever a random variable has a limiting distribution, we may, if we
wish, use the limiting distribution as an approximation to the exact
distribution function. The result of this example enables us to use the Poisson
distribution as an approximation to the binomial distribution when n is large
and p is small. This is clearly an advantage, for it is easy to provide tables for
the one-parameter Poisson distribution. On the other hand, the binomial
distribution has two parameters, and tables for this distribution are very
ungainly. To illustrate the use of the approximation, let Y have a bmomlal
distribution with n = 50 and p = 55. Then

Pr(¥ < 1) = (2)* + 50(%)(E)* = 0.400,

approximately. Since u = np = 2, the Poisson approximation to this prob-
ability is

e 2+ 2e~? = 0.406.

Example 2. Let Z, be yX(n). Then the m.g.f. of Z,is (1 — 21)~"%, 1 < 1. The
mean and the variance of Z, are, respectively, n and 2n. The limiting
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Sec. 5.3] Limiting Moment-Generating Functions 245

distribution of the random variable Y, = (Z, — n)/./2n will be investigated.
Now the m.g.f. of Y, is

M m) = E{e‘l’ ['(Z\/;-")]}

= e~V p(gZalv/20)

oo (N

This may be written in the form

—n2
M(t;n)=(e’m—t\/%e’~/m) , z<\/§.

In accordance with Taylor’s forfnula, there exists a number &(n), between 0
and t,/2/n, such that

‘ 2 1 2\’ et 2\’
2 — f -4 = = =

If this sum is substituted for ¢V?" in the last expression for M(t; n), it is seen

that
—nf2
M(t; n) = (1 —§+M) :

n

where

NN i

Since £(n)—0 as n— oo, then lim y(n) = 0 for every fixed value of . In
accordance with the limit proposition cited earlier in this section, we have
lim M(z; n) = e

for all real values of ¢. That is, the random variable Y, = (Z, — n)/./2n has
a limiting standard normal distribution.

Y(n) =

EXERCISES

§.11. Let X, have a gamma distribution with parameter a = n and f, where
B is not a function of n. Let Y, = X, /n. Find the limiting distribution of Y.

5.12. Let Z, be yX(n) and let W, = Z,/n*. Find the limiting distribution of W,.
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5.13. Let X be y*(50). Approximate Pr (40 < X < 60).

5.14. Let p = 0.95 be the probability that a man, in a certain age group, lives
at least § years.

(a) If we are to observe 60 such men and if we assume independence, find
the probability that at least 56 of them live 5 or more years.

(b) Find an approximation to the result of part (a) by using the Poisson
distribution.
Hint: Redefine p to be 0.05and 1 — p = 0.95.

5.15. Let the random variable Z, have a Poisson distribution with par-
ameter u = n. Show that the limiting distribution of the random variable
Y,=(Z,— n)/\/r-l is normal with mean zero and variance 1.

5.16. Let S? denote the variance of a random sample of size n from a
distribution that is N(u, 6?). It has been proved that n5?/(n — 1) converges
in probability to o2 Prove that S2 converges in probability to ¢

5.17. Let X, and Y, have a bivariate normal distribution with parameters y,,
U3, 61, 63 (free of n) but p =1 — 1/n. Consider the conditional distribution
of Y,, given X, = x. Investigate the limit of this conditional distribution as
n—co. What is the limiting distribution if p = —1 + 1/#? Reference to
these facts was made in the Remark in Section 2.3.

5.18. Let X, denote the mean of a random sample of size n from a Poisson
distribution with parameter u = 1.

(a) Show that the m.g.f. of ¥, = \/r_z(f’,, — wje = \/r_t(f,, — 1) is given by
exp[—t/n + n(eV" — 1)].

(b) Investigate the limiting distribution of Y, as n— co.
Hint: Replace, by its MacLaurin’s series, the expression e”\/’-', which is
in the exponent of the moment-generating function of Y,.

5.19. Let X, denote the mean of a random sample of size n from a distribution
that has p.d.f. f(x) = e, 0 < x < o0, zero elsewhere.

(a) Show that the m.gf. M(z;n) of Y, = \/;(A_’,, — 1) is equal to
[N — (1] /m)eNT, 1 < /.
(b) Find the limiting distribution of Y, as n— 0.
This exercise and the immediately preceding one are special instances
of an important theorem that will be proved in the next section.

5.4 The Central Limit Theorem

It was seen (Section 4.8) that, if X, X, . . ., X, is a random sample
from a normal distribution with mean u and variance 67, the random
variable

R

X, — _
) Y E - w)
ag

ay/n
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Sec. 5.4] The Central Limit Theorem 247

is, for every positive integer n, normally distributed with zero mean-and
unit variance. In probability theory there is a very elegant theorem
called the central limit theorem. A special case of this theorem asserts
the remarkable and important fact that if X, X,, ..., X, denote the
observations of a random sample of size n from any distribution having
positive variance ¢? (and hence finite mean p), then the random variable
n(X, — w)/c has a limiting standard normal distribution. If this
fact can be established, it will imply, whenever the conditions of the
theorem are satisfied, that (for large n) the random variable
\/;()7 — p)/o has an approximate normal distribution with mean zero
and variance 1. It will then be possible to use this approximate normal
distribution to compute approximate probabilities concerning X.
The more general form of the theorem is stated, but it is proved only
in the modified case. However, this is exactly the proof of the theorem
that would be given if we could use the characteristic function in place
of the m.g.f.

Theorem 3. Let X,, X,, . . ., X, denote the observations of a random
sample from a distribution that has mean u and positive variance a*. Then

the random variable Y, = (i X, — n;t) / \/;a = \/r_z(A_’,, — p)/o has a
1

limiting distribution that is normal with mean zero and variance 1.

Proof. In the modification of the proof, we assume the existence of
the m.g.f. M(¢) = E(e’*), —h <t < h, of the distribution. However,
this proof is essentially the same one that would be given for this
theorem in a more advanced course by replacing the m.g.f. by the
characteristic function ¢(f) = E(e"¥).

The function

m(t) = E[e"" = "] = e"M(1)

also exists for —h <t < h. Since m(t) is the m.g.f. for X — py, it
must follow that m(0) =1, m’(0) = E(X —p) =0, and m"(0) =
E[(X — p)?] = ¢*. By Taylor’s formula there exists a number ¢ between
0 and ¢ such that :

m(f) = m(0) + m'(0)t +- ”(é)'

. ” 2
?1+m(2§)t .
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If 6?£/2 is added and subtracted, then

_ o’  [m"(§) — o)
m(i) =1+ 3 + 2 .

(M)

Next consider M(¢; n), where

- (e2)ol27) ~(27)]
o (2 )]E["( T
H(2)
(R e

In Equation (1) replace ¢ by z/aﬁ to obtain

t [ () — o’
m(a\/'_’) =1 + n + 2"0‘2 >

where now ¢ is between 0 and t/a\/r—t with —ho /n<t < ha\/r_z.

Accordingly, " o
M(t;n) = {1 +ot [m (ffz)m2 o’lt }

Since m"(¥) is continuous at ¢t = 0 and since £ -0 as n— oo, we have
lim [m"(¢) — ¢’] = 0.
The limit proposition cited in Section 5.3 shows that
k.rg M(t; n) = e
for all real values of ¢. This proves that the random variable Y, =
Jn(X, — u)/o has a limiting standard normal distribution.

I
try

>
|
=
N——
L1

We interpret this theorem as saying that, when n is a large, fixed
positive integer, the random variable X has an approximate normal

Uploaded By: anonymous



Sec. 5.4] . The Central Limit Theorem 249

distribution with mean y and variance ¢?/n; and in applications we use
the approximate normal p.d.f. as though it were the exact p.d.f. of X.

Some illustrative examples, here and later, will help show the
importance of this version of the central limit theorem.

Examﬂe 1. Let X denote the mean of a random sample of size 75 from
the distribution that has the p.d.f.

fx)=1, 0<x<l,
=0 elsewhere.

It was stated in Section 5.1 that the exact p.d.f. of X, say g(¥), is rather
complicated. It can be shown that g(x) has a graph when 0 < x < 1 that is
composed of arcs of 75 different polynomials of degree 74. The computation
of such a probability as Pr(0.45 < X < 0.55) would be extremely laborious.
The conditions of the theorem are satisfied, since M(¢) exists for all real values
of . Moreover, y =} and ¢*> = 5, so that we have approximately

[f(o4s 1) f(X 1) f(oss u)]

Pr(O45<X<055)—

=Pr[—1.5 < 30(X — 0.5) < 1.5]
= 0.866,
from Table III in Appendix B.

Example 2. Let X, X,,...,X, denote a random sample from a
distribution that is b(1, p). Here u = p, o? = p(1 — p), and M(r) exists for
all real values of ¢. If ¥, =X, + .-+ X,, it is known that Y, is b(n, p).
Calculation of probabilities concerning Y,, when we do not use the Poisson
approximation, can be greatly simplified by making use of the fact that
(Y, — np)/\/np(l = p) = \/n(X, — p)//p(1 = p) = \/n(X, — w)/c has a lim-
iting distribution that is normal with mean zero and variance 1. Frequently,
statisticians say that Y,, or more simply Y, has an approximate normal
distribution with mean np and variance np(1 — p). Even with n as small as 10,
with p = ! so that the binomial distribution is symmetric about np = 5, we
note in Figure 5.1 how well the normal distribution, N(5, 3), fits the binomial
distribution, b(10,}), where the heights of the rectangles represent the
probabilities of the respective integers 0, 1, 2, .. ., 10. Note that the area of
the rectangle whose base is (k — 0.5, k + 0.5) and the area under the normal
p.d.f. between kK — 0.5 and k + 0.5 are approximately equal for each
k=0,1,2,...,10, even with n = 10. This example should help the reader
understand Example 3.

STUDENTS-HUB.com Uploaded By: anonymous



250 Limiting Distributions [Ch. 5
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FIGURE 5.1

Example 3. With the background of Example 2, let n =100 and p =,
and suppose that we wish to compute Pr (Y = 48, 49, 50, 51, 52). Since Y is
a random variable of the discrete type, the events Y = 48, 49, 50, 51, 52
and 47.5 < Y < 52.5 are equivalent. That is, Pr (Y = 48, 49, 50, 51, 52) =
Pr (47.5 < Y < 52.5). Since np = 50 and np(l — p) = 25, the latter prob-
ability may be written

Pr(47.5<Y<52.5)=Pr( <<

—Pr (—0.5 <Y=50_ 0.5).

475—-50 Y—50 525-— 50)

5

Since (Y — 50)/5 has an approximate normal distribution with mean zero and
variance 1, Table III shows this probability to be approximately 0.382.

The convention of selecting the event 47.5 < Y < 52.5, instead of, say,
47.8 < Y < 52.3, as the event equivalent to the event Y = 48, 49, 50, 51, 52
seems to have originated in the following manner: The probability,
Pr (Y = 48, 49, 50, 51, 52), can be interpreted as the sum of five rectangular
areas where the rectangles have bases 1 but the heights are, respectively,
Pr(Y =48),...,Pr(Y =2752). If these rectangles are so located that the
midpoints of their bases are, respectively, at the points 48,49, ...,52 on a
horizontal axis, then in approximating the sum of these areas by an area
bounded by the horizontal axis, the graph of a normal p.d.f., and two
ordinates, it seems reasonable to take the two ordinates at the points 47.5 and
52.5. '

We know that Xand Y’ X, have approximate normal distributions,

i=|

provided that n is large enough. Later, we find that other statistics
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also have approximate normal distributions, and this is the reason that
the normal distribution is so important to statisticians: That is, while
not many underlying distributions are normal, the distributions
of statistics calculated from random samples arising from these
distributions are often very close to being normal.

Frequently, we are interested in functions of statistics that have
approximate normal distributions. For illustration, Y, of Example 2
has an approximate N[np, np(1 — p)]. So np(1 — p) is an important
function of p as it is the variance of Y,. Thus, if p is unknown, we might
want to estimate the variance of Y,. Since £(Y,/n) = p, we might use
n(Y,/n)(1 — Y,/n) as such an estimator and would want to know
something about the latter’s distribution. In particular, does it also
have an approximate normal distribution? If so, what are its mean and
variance? To answer questions like these, we use a procedure that is
commonly called the delta method, which will be explained using the
sample mean X, as the statistic.

We know that X, converges in probability to u and X, is
approximately N(y, ¢’/n). Suppose that we are interested in a function
of X,, say u(X,). Since, for large n, X, is close to y, we can approximate
u(X,) by the first two terms of Taylor’s expansion about u, namely

u(X,) ~ o(X,) = u(p) + (X, — pu' (W),

where u’(y) exists and is not zero. Since v(X,) is a linear function of X,,
it has an approximate normal distribution with mean

ETo(X,)] = u(y) + EW(X, — i)l (u) = uy)

and variance

var [o(X,)] = WGP var (X, — ) = [w G 5

Now, for large n, u(X,) is approximately equal to u(X,); so it has the
same approximating distribution. That is, u(X,) is approximately
N{u(n), ['(w))’c?/n}. More formally, we could say that

ll(j;,,) — u(#)

VI @le’/n

has a limiting standard normal distribution.

Example 4. Let Y, (or Y for simplicity) be b(n, p). Thus Y/n is approxi-
mately N[p, p(1 — p)/n)]. Statisticians often look for functions of statistics
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whose variances do not depend upon the parameter. Here the variance of Y/n
depends upon p. Can we find a function, say u(Y/n), whose variance is
essentially free of p? Since Y/n converges in probability to p, we
can approximate u( Y/n) by the first two terms of its Taylor’s expansion about

p, namely by
v(%) =u(p) + (%’ - p)u’(p).

Of course, v(Y/n) is a linear function of Y/n and thus also has an approximate
normal distribution; clearly, it has mean u(p) and variance .

o P — p)
W(p)F——
But it is the latter that we want to be essentially free of p; thus we set it equal

to a constant, obtaining the differential equation

c

Vol Yy

u(p) = (2c)arcsin \/1_)

If we take ¢ = 3§, we have, since #( Y/n) is approximately equal to v(Y/n), that

(Y) . f'
u| — | = arcsin —_—.
n n

This has an approximate normal distribution with mean arcsin\/;) and
variance 1/4n, which is free of p.

w(p) =

A solution of this is

EXERCISES

5.20. Let X denote the mean of a random sample of size 100 from a dlStl‘l-
bution that is ¥%(50). Compute an approximate value of Pr (49 < X < 51).

5.21. Let X denote the mean of a random sample of size 128 from a gamma
distribution with @ = 2 and § = 4. Approximate Pr (7 < X < 9).

5.22. Let Y be b(72,3}). Approximate Pr (22 < Y < 28).

5.23. Compute an approximate probability that the mean of a random sample
of size 15 from a distribution having p.d.f. f(x) = 3x? 0 < x < 1, zero
elsewhere, is between 2 and 2.

5.24. Let Y denote the sum of the observations of a random sample of size
12 from a distribution having p.d.f. f(x)=3, x=1,2,3,4,5,6, zero
elsewhere. Compute an approximate value of Pr (36 < Y < 48).
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Hint: Since the event of interest is Y = 36, 37, ..., 48, rewrite the
probability as Pr (35.5 < Y < 48.5).

5.25. Let Y be b(400, }). Compute an approximate value of Pr (0.25 < Y/n).
5.26. If Y is (100, 3), approximate the value of Pr (Y = 50).

5.27. Let Y be b(n, 0.55). Find the smallest value of n so that (approximately)
Pr(Y/n>1) > 0.95.

5.28. Let f(x) = 1/x}, 1 < x < 00, zero elsewhere, be the p.d.f. of a random
variable X. Consider a random sample of size 72 from the distribution
having this p.d.f. Compute approximately the probability that more than
50 of the observations of the random sample are less than 3.

5.29. Forty-eight measurements are recorded to several decimal places. Each
of these 48 numbers is rounded off to the nearest integer. The sum of the
original 48 numbers is approximated by the sum of these integers. If we

assume that the errors made by rounding off are i.i.d. and have uniform

distributions over the interval (—3,3), compute approximately the

probability that the sum of the integers is within 2 units of the true sum.

5.30. We know that X is approximately N(u, ’/n) for large n. Find the
approximate distribution of u(X) = X°.

531. Let X, X,,...,X,bea randomlsample from a Poisson distribution

with mean g. Thus Y = Y X, has a Poisson distribution with mean np.

i

Moreover, X = Y/n is approximately N(u, u/n) for large n. Show that
u(Y/n) = ./ Y/nis a function of Y/n whose variance is essentially free of u.

5.5 Some Theorems on Limiting Distributions

In this section, we shall present some theorems that can often be
used to simplify the study of certain limiting distributions.

Theorem 4. Let F,(u) denote the distribution function of a random
variable U, whose distribution depends upon the positive integer n. Let
U, converge in probability to the constant ¢ # 0. The random variable
U,/c converges in probability to 1.

The proof of this theorem is very easy and is left as an exercise.

Theorem 5. Let F,(u) denote the distribution function of a random
variable U, whose distribution depends upon the positive integer n.
Further, let U, converge in probability to the positive constant c and let
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Pr (U, < 0) = 0 for every n. The random variable ./ U, converges in
probability to \/Z

Proof. We are given that the lim Pr (|U, — c| > ¢) = 0 for every
€>0. nee

We are to prove that the lim Pr(./U, — \/El > ¢’) =0 for every
¢ > 0. Now the probability "™~

Pr (U, — | 2 ©) = Pr [[(/U, — /O/Up + /) 2

‘P’('*/— ‘['Zf+f)

zPr(l\/U,,—\/leﬁ)zo.

If welet e = e/\/z, and if we take the limit, as n becomes infinite, we
have

= lim Pr (U, — ¢| 2 ) 2 lim Pr (\/U, — Je| =€) =0

for every ¢ > 0. This completes the proof.

The conclusions of Theorems 4 and § are very natural ones and
they certainly appeal to our intuition. There are many other theorems
of this flavor in probability theory. As exercises, it is to be shown that
if the random variables U, and V, converge in probability to the
respective constants ¢ and d, then U, V, converges in probability to the
constant cd, and U,/V, converges in probability to the constant c/d,
provided that d # 0. However, we shall accept, without proof, the
following theorem, which is a modification of Slutsky’s theorem.

Theorem 6. Let F,(u) denote the distribution function of a random
variable U, whose distribution depends upon the positive integer n. Let
U, have a limiting distribution with distribution function F(u). Let a
random variable V, converge in probability to |. The limiting distribution
of the random variable W, = U,/V,, is the same as that of U,; that is, W,
has a limiting distribution with distribution function F(w).

Example l Let Y, denote a random variable that is b(n, p),0 < p < 1. We
know that

Y,—np
np(l —

U, =
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has a limiting distribution that is N(0, 1). Moreover, it has been proved that
Y,/nand 1 — Y,/n converge in probability to p and 1 — p, respectively; thus
(Y,./n)(1 — Y,/n) converges in probability to p(1 — p). Then, by Theorem 4,
(Y,/m)(1 — Y,/n)/[p(1 — p)] converges in probability to 1, and Theorem 5
asserts that the following does also:

v [(Y,/n)(l - Y"/n)]”"

p(1 —p)

Thus, in accordance with Theorem 6, the ratio W, = U,/V,, namely
Yn —np
S, )1 = Y,/n)’

has a limiting distribution that is N(0, 1). This fact enables us to write (with
n a large, fixed positive integer)

Pr[—2 < Y—np <2]=0.954,
Vn(¥/n)(1 — Y/n)

appfoximately.

Example 2. Let X, and S2 denote, respectively, the mean and the variance
of a random sample of size n from a distribution that is N(u, %), a2 > 0. It
has been proved that X, converges in probability to u and that S? converges
in probability to 2. Theorem 5 asserts that S, converges in probability to ¢
and Theorem 4 tells us that S,/o converges in probability to 1. In accordance
with Theorem 6, the random variable W, = 0X,/S, has the same limiting
distribution as does X,. That is, ¢X,/S, converges in probability to p.

EXERCISES

5.32. Prove Theorem 4.
Hint: Note that Pr(|U,/c — || <€) =Pr (U, — c| <¢€]), for every
€ > 0. Then take €’ = €.

5.33. Let X, denote the mean of a random sample of size n from a gamma
distribution with parameters a = y > 0 and f = 1. Show that the limit-
ing distribution of ./n( X, — #)/\/X, is N0, 1).

534, Let T, = (X, — p)//S2/(n — 1), where X, and S? represent, respect-
ively, the mean and the variance of a random sample of size n from a
distribution that is N(u, ¢?). Prove that the limiting distribution of T,
is N(O, 1).

5.35. LetX,,..., X,and Y,, ..., Y, be the observations of two independent
random samples, each of size n, from the distributions that have the
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respective means y, and y, and the common variance ¢2. Find the limiting
distribution of

X, — 1) — (1 — )
' 0./2/n
where X, and Y, are the respective means of the samples.

Hint: Let Z, = Y. Z/n, where Z,= X, — Y,.
|

b

5.36. Let U,and V, converge in probability to c and d, respectively. Prove the

following.

(a) The sum U, + V, converges in probability to ¢ + d.
Hint: Show that Pr(lU,+ V,—c—d|>2¢)<Pr(U,—c|+ |V, —d|
> <Pr(U,—c=>¢2 or \V,—d|>¢2)<Pr(|U,—c|=2¢/2) +
Pr(\V, —d| > ¢2).

(b) The product U,V, converges in probability to cd.

(c) If d # 0, the ratio U,/V, converges in probability to c/d.

5.37. Let U, converge in probability to ¢. If A(u) is a continuous function at
u = c, prove that A(U,) converges in probability to A(c).
Hint: For each € > 0, there exists a é > 0 such that Pr[|A(U,)—
h(c)| < €] = Pr[|U, — ¢| < 6]. Why?

ADDITIONAL EXERCISES

5.38. A nail manufacturer guarantees that not more than one nail in a box
of 100 nails is defective. If, in fact, the probability of each individual nail
being defective is p = 0.005, compute the probability that:

(a) The next box of nails violates the guarantee. Use the Poisson
approximation, after assuming independence.
(b) The guarantee is violated at least once in the next 25 boxes.

5.39. Let X, and Y, be the means of two independent random samples of
size n from a distribution having variance ¢’. Determine n so that
Pr (X, — Y,| < 6/2) = 0.98, approximately.

5.40. Let X, X,, ..., X;; be arandom sample from a distribution with p.d.f.
f(x) = 6x(1 — x), 0 < x < 1, zero elsewhere. Find Pr[0.48 < X, < 0.52]

approximately.

5.41. A rolis an unbiased die 100 independent times and B rolls an unbiased
die 100 independent times. What is the'approximate probability that 4 will
total at least 25 points more than B?

542. Compute, approximately, the probability that the sum of the

STUDENTS-HUB.com Uploaded By: anonymous



Sec. 5.5] Some Theorems on Limiting Distributions 257

observations of a random sample of size 24 from a chi-square distribution
with 3 degrees of freedom is between 70 and 80.

5.43. Let X be the number of times that no heads appear on two coins when
these two coins are tossed together n times. Find the smallest value of n so
that Pr (0.24 < X/n < 0.26) > 0.954, approximately.

5.44. Two persons have 16 and 32 dollars, respectively. They bet one dollar
on each of 900 independent tosses of an unbiased coin. What is an
approximation to the probability that neither person is in debt at the end
of the 900 trials? ‘

5.45. A die is rolled 720 independent times. Compute, approximately, the
probability that the number of fives that appear will be between 110 and
125 inclusive.

5.46. A part is produced with a mean of 6.2 ounces and a standard deviation
of 0.2 ounce. What is the probability that the weight of 100 such items is
between 616 and 624 ounces?

5.47. Let X,,..., X5 be a random sample of size 25 from a distribution
having p.d.f. f(x) = x/6, x = 1, 2, 3, zero elsewhere. Approximate

25
Pr(z X.,=50,51,...,o0r 60).
i=1

5.48. Say that a lot of 1000 items contains 20 defective items. A sample of
size 50 is takeén at random and without replacement from the lot. If 3 or
fewer defective items are found in this sample, the lot is accepted.
Approximate the probability of accepting this lot.

5.49. LetX,, X,, ..., X,bearandom sample from a distribution having finite
E(X™), m > 0. Show that )  X7'/nconverges in probability to E(X™). Was

i=|

an additional assumption needed?

5.50. It can be proved that the mean X, of a random sample of size n from
a Cauchy distribution has that same Cauchy distribution for every n. Thus
X, does not converge in probability to zero. How can this be, as earlier,
under certain conditions, we proved that X, converges in probability to the
mean of the distribution?

5.51. Let Y be x’(n). What is the limiting distribution of Z = /¥ — /n?

5.52. Let X be the mean of a random sample of size n from a Poisson
distribution with parameter u. Find the function Y = u(X) so that Y has an
approximate normal distribution with mean u(u) and variance that is free
of u.
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553. Let Y, < Y,<---< Y, be the order statistics of a random sample °
X, X,, .. ., X, of size n from a distribution with distribution function F(x)
and p.d.f. f(x) = F(x). Say F({,) = p and f({,) > 0. Consider the order
statistic Y},,, where [np] is the greatest integer in np.

(a) Note that the event \/r—t( Y — €,) < uis equivalent to Z > [np], where
Z is the number of X-values less than or equal to £, + u/\/r—t.
(b) Write Z > np, an approximation to Z > [np], as

Z — nF(&, + u/\/n) (A
Jnp(1 = p) Jra—p’

using F(&, + u/\/n) = p + fi&,)ul/n.

(c) Since the left-hand member of the inequality in part (b) is
approximately N(0, 1), argue that Y, has an approximate normal
distribution with mean £, and variance p(1 — p)/n[f({,)]~

approximately,
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CHAPTER 6

Introduction
to Statistical
Inference

6.1 Point Estimation

The first five chapters of this book deal with certain concepts
and problems of probability theory. Throughout we have carefully
distinguished between a sample space ¢ of outcomes and the space &/
of one or more random variables defined on €. With this chapter we
begin a study of some problems in statistics and here we are more
interested in the number (or numbers) by which an outcome is
represented than we are in the outcome itself. Accordingly, we shall

“adopt a frequently used convention. We shall refer to a random
variable X as the outcome of a random experiment and we shall refer
to the space of X as the sample space. Were it not so awkward, we
would call X the numerical outcome. Once the experiment has been
performed and it is found that X = x, we shall call x the experimental
value of X for that performance of the experiment.

259
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