ENCS5337: Chip Design Verification
Spring 2023/2024

UVM (Universal Verification
Methodology) TestBench Structure

Dr. Ayman Hroub

https://students-hub.com

What 1s UVM?

= A class library of verification building blocks /[o }\
— Written in standard IEEE1800 SystemVerilog Py
_ | ClassUibary |)
= A proven verification methodology 1
— Defines how to use the class library [Systemveriog |

— Scalable from block-level to system-level verification

STUDENTS-HUB.com 2

https://students-hub.com

Simplified UVM Class Hierarchy

STUDENTS-HUB.com

Classes common to
most methodologies:
components, reports, etc.

uvm_object |

name

copy()
clone()

print()
Aﬁ
uvm_report_object
uvm_report_*()
Lﬁ

uvm_component
parent

|
uvm_transaction

LIL

uvm_sequence_item
%

uvm_sequence #(REQ,RSP)
body()

uvm_port_base #(IF) TLM

children uvm_*_export uvm_*_port uvm_*_imp

get/set_config()

|
uvm_env

uvm_driver #(REQ,RSP)

create()

4 get_component() (1 tm_fifo#T) —1 tim_req_rsp_channel
get_full_name() T - z=
build_phase() tim_analysis_fifo #(T) tim_transport_channel

uvm_test b connect_phase()

run_phase()

47

uvm_sequencer_base TLM standard

i 7

uvm_monitor uvm_agent

for class
t communication

uvm_sequencer #(REQ,RSP)

uvm_scoreboard

https://students-hub.com

UVM Testbench Structure

Program/Module

Sequence ' Sequence \
' transaction | | transaction |

. .

Environment
Agent Agent

Coverage (g
Sequencer Sequencer

3 Scoreboard §

Driver Driver

T transaction ' transaction |
A | | ' | N

Module

STUDENTS-HUB.com

https://students-hub.com

Communication between Sequence, Sequencer, and Driver

R LU TR B

1. send request to sequencer

2. data_request from driver

3. grant request to sequence

4. randomize seq_Item

5. send seq_Item to sequencer

6. send seq_Item to driver

7. DUT response vla driver to sequencer (Item_done)
8. Item_done signal to sequence

STUDENTS-HUB.com

https://students-hub.com

Coverage Driven Environment

https://students-hub.com

UVM Simulation Phase Names and Descriptions

build_phase Build top-level testbench topology
connect_phase Connect environment topology
end_of_elaboration_phase | Post-elaboration activity (e.g., print topology)
 start_of_simulation_phase | Prepare for simulation
: run_phase Task — run-time execution of the test
, extract_phase Gathers details on the final DUT state
check _phase Processes and checks the simulation results
report_phase Simulation results analysis and reporting
final_phase Tie up loose ends, close files

STUDENTS-HUB.com 7

https://students-hub.com

Why UVM?

= Reusabillity

= Scalabllity

= Maintainability

https://students-hub.com

UVM Component Template

/ Component subclass

Component template
(required constructs)

STUDENTS-HUB.com

rd
class my component extends <uvm component subclass>;

‘uvm component utils (my component) ——

function new(string name, uvm component parent);

super.new (name, parent) ;

Component utilities macro

tet . \ Component constructor must use
endfunction these arguments (name, parent)

endclass

|

parent pointers are a

link up the hierarchy

https://students-hub.com

Sequence Item (Transaction)

= The sequence item Is a class-based abstract transaction
representing the lowest level of stimulus passed from a
sequence to a driver

= The sequence item Is also known as a transaction.

10

https://students-hub.com

Sequence

* The sequence Is a class-based representation of one or
more stimulus items which are executed on a driver.

= Sequences can represent temporal succession of
stimulus, or parallel tracks of competing or independent
stimulus on more than one interface.

STUDENTS-HUB.com

11

https://students-hub.com

Sequencer

* The sequencer Is a component responsible for
coordinating the execution of stimulus in the form
of sequences and seqguence items from a parent
sequence

= |t ultimately feeds a driver component with transactions.

= At its simplest, a sequencer can be thought of as an
arbiter. It arbitrates who gets access to the driver, which
represents who gets access to the interface.

12

https://students-hub.com

Driver

= The Driver Is a verification component responsible for
taking transactions written at a particular level of
abstraction and converting them to a lower-level of
abstraction, according to the protocol being verified.

= A typical driver would accept a transaction and convert it
to signal changes.

13

https://students-hub.com

Monitors (1)

STUDENTS-HUB.com

= Monitors are TB components that observe the inputs,
outputs, or internals of the DUV.

— Monitors watch activity of the DUV.
» Black box: DUV inputs and outputs
= Grey box: potentially selected internals

— Monitors can convert low-level signals to transactions.

— Monitors can flag simple timing and protocol errors.
— Monitors collect functional coverage.

— Monitors update the scoreboard.

— Monitors don’t drive DUV pins; they are “passive”.

14

https://students-hub.com

Monitors (2)

= |n other words, the monitor Is a component
responsible for watching pins wiggle on a
bus and converting those pin wiggles back
Into transactions.

= The transactions are then sent out through
an analysis_port, that may be connected
to a scoreboard, a predictor, a coverage
class, etc.

= The monitor doesn't do checking directly.

15

https://students-hub.com

Types of Monitors

STUDENTS-HUB.com

= |[nput monitors:
— Collect inputs to the DUV and pass them to
scoreboard.
— Can have checker components.

= Qutput monitors:
— Observe the outputs from the DUV and pass them to
the scoreboard.
— Can have checker components.

= Coverage monitors:
— Collects inputs, outputs and selected internal signals.

16

https://students-hub.com

Agent (1)

= An Agent is a verification component for a specific logical
Interface (it can be a SystemVerilog interface)

= Agents can be configured as either active or passive

= Active agent

— generate stimulus and drive to DUT

— It consists of all the three components driver, sequencer, and monitor
= Passive agent

— It monitor activity on the interface, but do not drive the DUV
— It consists of only the monitor

STUDENTS-HUB.com

17

https://students-hub.com

Agent (2)

STUDENTS-HUB.com

sequence

PP/ P[P

agent

Config:

is_active seq_item_export

il

seq_item_port

interface
DUT

18

https://students-hub.com

Scoreboards (1)

Scoreboards are smart data structures that keep track of events in
the DUV during simulation

Usually, scoreboards are global
— One scoreboard per verification environment

Scoreboards are not checking mechanisms, but

— The main purpose of using scoreboards is for checking

— In practice, many checkers are implemented inside scoreboards
— There are many typical checks that are done with scoreboards

The scoreboard checks the operation of the DUT by collecting
Input and output data, and checking that the outputs received are
compatible with the inputs sent.

The scoreboard may also record statistical information and report
that information back at the end of a simulation.

STUDENTS-HUB.com

19

https://students-hub.com

Scoreboards (2)

= Scoreboards source information from
— the inputs and outputs of the DUV, and
— occasionally also from internal events in the DUV.

= Types of checks enabled using a scoreboard:

— Matching outputs with inputs

* No loss of data

— Detect inputs with no matching output.
* No creation of data

— Detect output with no matching input.

= No unintended modification of data

— Timing specification
» Delay from input to output remains within specified limits.

— Data order

STUDENTS-HUB.com

20

https://students-hub.com

Scoreboard Operation

oK?

—O—> DUV

or

21

https://students-hub.com

Test (1)

= A Test Is a class-based representation of a verification scenario.
= |t is the top level verification component in UVM

= There are usually many test classes for each DUT, applying different
stimulus or configurations to achieve different verification goals.

= Many test classes are declared in the same file (Test library)

= \We can select which test class to execute by passing the test type
name as a string argument to the run_test () method.

STUDENTS-HUB.com

22

https://students-hub.com

Test (2)

= There is no test class handle declared, or test class instance created explicitly

= When the run_test () task is executed from an initial block in the

topmost SystemVerilog module, implicitly creates a declaration and an
Instance of the test class type which is passed to it.

= |f the test class cannot be found or is undefined, a fatal runtime error is iIssued

= Also, you can use command line to select a test. This command takes
precedence over an argument to run_test ()

$Xrun ... +UVM TESTNAME=mytest

STUDENTS-HUB.com 23

https://students-hub.com

Report Macros

STUDENTS-HUB.com

‘uvm_info(string id, string message, int verbosity)
‘uvm warning (string id, string message)
‘uvm_error (string id, string message)

‘uvm fatal (string id, string message)

24

https://students-hub.com

Reference Models (1)

= A reference model is an executable specification - a golden
model that predicts how the DUV should behave

— Usually in the form of an alternative implementation

= |t runs in parallel to the DUV, using the same inputs and provides

the checking mechanisms with information about the expected
behavior

— Checking is done by comparing the expected behavior to the actual one

= Pure reference models can run independently of the DUV
— But not all reference models are pure.

STUDENTS-HUB.com

25

https://students-hub.com

Reference Models (2)

STUDENTS-HUB.com

= Reference models have many uses

— Checking

— Aids for stimuli generation (When?)

— “Smart” protocol models — imitate the function of the
DUV

— Vehicles for SW development

= What can we check with a reference model
— In principle, anything
— In practice it depends on the level of detail and

accuracy of the reference model
= And how much of its behavior we are willing to expose

26

https://students-hub.com

Reference Model Operation

Reference
Model

—O—> DUV —>

27

https://students-hub.com

Levels of Abstraction

= The level of abstraction in a reference model dictates the type of
iInformation we can get out of it for checking

— Functionally accurate models can be used only to check correctness of
data, usually at the end of the test or at well defined points in time
= Timing, order, and other checks need other means

— Cycle accurate models can be used for checking all aspects of I/O
behavior

— Cycle accurate and latch accurate models can be used also for checking
the internal state of the DUV

» This type of model is sometimes called deep function reference model

STUDENTS-HUB.com

28

https://students-hub.com

SystemVerilog Virtual Interface

= UVM components cannot be directly connected to interface
Instances
— Breaks reusability
— Interface instances are static

= SystemVerilog virtual interface:
— An interface variable that can be connected to an interface instance
— Can be declared as a class property
— Access interface signals using virtual interface as a prefix
— Needs to be connected to an actual interface

interface keyword optional

virtual interface <if_name> <local name>;

STUDENTS-HUB.com

https://students-hub.com

Complete Tutorial

= UVM TestBench architecture - Verification Guide

» https://www.edaplayground.com/x/5r89

SSSSSSSSSSSSSSSS

30

https://verificationguide.com/uvm/uvm-testbench-architecture/
https://www.edaplayground.com/x/5r89
https://students-hub.com

