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What is UVM?

 A class library of verification building blocks

– Written in standard IEEE1800 SystemVerilog

 A proven verification methodology

– Defines how to use the class library

– Scalable from block-level to system-level verification
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Simplified UVM Class Hierarchy
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UVM Testbench Structure
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Communication between Sequence, Sequencer, and Driver
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UVM Simulation Phase Names and Descriptions
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Why UVM?

 Reusability

 Scalability

 Maintainability
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UVM Component Template
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Sequence Item (Transaction)

 The sequence item is a class-based abstract transaction 

representing the lowest level of stimulus passed from a 

sequence to a driver

 The sequence item is also known as a transaction.
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Sequence

 The sequence is a class-based representation of one or 

more stimulus items which are executed on a driver.

 Sequences can represent temporal succession of 

stimulus, or parallel tracks of competing or independent 

stimulus on more than one interface. 
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Sequencer

 The sequencer is a component responsible for 

coordinating the execution of stimulus in the form 

of sequences and sequence items from a parent 

sequence

 It ultimately feeds a driver component with transactions.

 At its simplest, a sequencer can be thought of as an 

arbiter. It arbitrates who gets access to the driver, which 

represents who gets access to the interface.
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Driver

 The Driver is a verification component responsible for 

taking transactions written at a particular level of 

abstraction and converting them to a lower-level of 

abstraction, according to the protocol being verified. 

 A typical driver would accept a transaction and convert it 

to signal changes.
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Monitors (1)

 Monitors are TB components that observe the inputs, 

outputs, or internals of the DUV.

– Monitors watch activity of the DUV.

 Black box: DUV inputs and outputs 

 Grey box: potentially selected internals

– Monitors can convert low-level signals to transactions.

– Monitors can flag simple timing and protocol errors.

– Monitors collect functional coverage.

– Monitors update the scoreboard.

– Monitors don’t drive DUV pins; they are “passive”. 
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Monitors (2)

 In other words, the monitor is a component 

responsible for watching pins wiggle on a 

bus and converting those pin wiggles back 

into transactions. 

 The transactions are then sent out through 

an analysis_port, that may be connected 

to a scoreboard, a predictor, a coverage 

class, etc. 

 The monitor doesn't do checking directly.
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Types of Monitors

 Input monitors:
– Collect inputs to the DUV and pass them to 

scoreboard.

– Can have checker components.

 Output monitors:
– Observe the outputs from the DUV and pass them to 

the scoreboard.

– Can have checker components.

 Coverage monitors:
– Collects inputs, outputs and selected internal signals.
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Agent (1)

 An Agent is a verification component for a specific logical 

interface (it can be a SystemVerilog interface)

 Agents can be configured as either active or passive

 Active agent

– generate stimulus and drive to DUT

– It consists of all the three components driver, sequencer, and monitor

 Passive agent

– It monitor activity on the interface, but do not drive the DUV

– It consists of only the monitor
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Agent (2)
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Scoreboards (1)
 Scoreboards are smart data structures that keep track of events in 

the DUV during simulation

 Usually, scoreboards are global
– One scoreboard per verification environment

 Scoreboards are not checking mechanisms, but
– The main purpose of using scoreboards is for checking

– In practice, many checkers are implemented inside scoreboards

– There are many typical checks that are done with scoreboards

 The scoreboard checks the operation of the DUT by collecting 
input and output data, and checking that the outputs received are 
compatible with the inputs sent.

 The scoreboard may also record statistical information and report 
that information back at the end of a simulation.
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Scoreboards (2)

 Scoreboards source information from
– the inputs and outputs of the DUV, and

– occasionally also from internal events in the DUV.

 Types of checks enabled using a scoreboard:
– Matching outputs with inputs

 No loss of data
– Detect inputs with no matching output.

 No creation of data
– Detect output with no matching input.

 No unintended modification of data

– Timing specification
 Delay from input to output remains within specified limits. 

– Data order 
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Scoreboard Operation

DUV

Scoreboard

OK?
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Test (1)

 A Test is a class-based representation of a verification scenario.

 It is the top level verification component in UVM

 There are usually many test classes for each DUT, applying different 

stimulus or configurations to achieve different verification goals. 

 Many test classes are declared in the same file (Test library)

 We can select which test class to execute by passing the test type 
name as a string argument to the run_test() method.
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Test (2)

 There is no test class handle declared, or test class instance created explicitly

 When the run_test () task is executed from an initial block in the 

topmost SystemVerilog module, implicitly creates a declaration and an 

instance of the test class type which is passed to it.

 If the test class cannot be found or is undefined, a fatal runtime error is issued

 Also, you can use command line to select a test. This command takes  
precedence over an argument to run_test()

%xrun ... +UVM_TESTNAME=mytest
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Report Macros
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Reference Models (1)

 A reference model is an  executable specification - a golden 
model that predicts how the DUV should behave
– Usually in the form of an alternative implementation 

 It runs in parallel to the DUV, using the same inputs and provides 
the checking mechanisms with information about the expected 
behavior
– Checking is done by comparing the expected behavior to the actual one

 Pure reference models can run independently of the DUV 
– But not all reference models are pure.
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Reference Models (2)

 Reference models have many uses

– Checking

– Aids for stimuli generation (When?)

– “Smart” protocol models – imitate the function of the 

DUV

– Vehicles for SW development

 What can we check with a reference model

– In principle, anything

– In practice it depends on the level of detail and 

accuracy of the reference model

 And how much of its behavior we are willing to expose
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Reference 
Model

Reference Model Operation

DUV

=?
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Levels of Abstraction

 The level of abstraction in a reference model dictates the type of 
information we can get out of it for checking
– Functionally accurate models can be used only to check correctness of 

data, usually at the end of the test or at well defined points in time
 Timing, order, and other checks need other means

– Cycle accurate models can be used for checking all aspects of I/O 
behavior 

– Cycle accurate and latch accurate models can be used also for checking 
the internal state of the DUV
 This type of model is sometimes called deep function reference model
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SystemVerilog Virtual Interface

 UVM components cannot be directly connected to interface 

instances

– Breaks reusability

– Interface instances are static

 SystemVerilog virtual interface:

– An interface variable that can be connected to an interface instance

– Can be declared as a class property

– Access interface signals using virtual interface as a prefix

– Needs to be connected to an actual interface
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Complete Tutorial

 UVM TestBench architecture - Verification Guide

 https://www.edaplayground.com/x/5r89
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