
ENCS5337: Chip Design Verification

Spring 2023/2024

UVM (Universal Verification

Methodology) TestBench Structure

Dr. Ayman Hroub

STUDENTS-HUB.com

https://students-hub.com

2

What is UVM?

 A class library of verification building blocks

– Written in standard IEEE1800 SystemVerilog

 A proven verification methodology

– Defines how to use the class library

– Scalable from block-level to system-level verification

STUDENTS-HUB.com

https://students-hub.com

3

Simplified UVM Class Hierarchy

STUDENTS-HUB.com

https://students-hub.com

4

UVM Testbench Structure

STUDENTS-HUB.com

https://students-hub.com

5

Communication between Sequence, Sequencer, and Driver

STUDENTS-HUB.com

https://students-hub.com

6

sequencer

scoreboard

transactiontransaction
monitor monitor

stimulus

Coverage Driven Environment

driver
DUT

slave

0x223F stimulus

0XA30E

0X94D7

0XFF78

0X3767

0XCC18

0XDA83

0XBA1F

0X95FB

0X382E

stimulus

stimulus

stimulus

stimulus

stimulus

stimulus

stimulus

stimulus

stimulus

seed new test

coverage collection

check checkcov cov

stimulus sequences

stimulus sequences

stimulus sequences

stimulus sequences

sequence

library

STUDENTS-HUB.com

https://students-hub.com

7

UVM Simulation Phase Names and Descriptions

STUDENTS-HUB.com

https://students-hub.com

8

Why UVM?

 Reusability

 Scalability

 Maintainability

STUDENTS-HUB.com

https://students-hub.com

9

UVM Component Template

STUDENTS-HUB.com

https://students-hub.com

10

Sequence Item (Transaction)

 The sequence item is a class-based abstract transaction

representing the lowest level of stimulus passed from a

sequence to a driver

 The sequence item is also known as a transaction.

STUDENTS-HUB.com

https://students-hub.com

11

Sequence

 The sequence is a class-based representation of one or

more stimulus items which are executed on a driver.

 Sequences can represent temporal succession of

stimulus, or parallel tracks of competing or independent

stimulus on more than one interface.

STUDENTS-HUB.com

https://students-hub.com

12

Sequencer

 The sequencer is a component responsible for

coordinating the execution of stimulus in the form

of sequences and sequence items from a parent

sequence

 It ultimately feeds a driver component with transactions.

 At its simplest, a sequencer can be thought of as an

arbiter. It arbitrates who gets access to the driver, which

represents who gets access to the interface.

STUDENTS-HUB.com

https://students-hub.com

13

Driver

 The Driver is a verification component responsible for

taking transactions written at a particular level of

abstraction and converting them to a lower-level of

abstraction, according to the protocol being verified.

 A typical driver would accept a transaction and convert it

to signal changes.

STUDENTS-HUB.com

https://students-hub.com

14

Monitors (1)

 Monitors are TB components that observe the inputs,

outputs, or internals of the DUV.

– Monitors watch activity of the DUV.

 Black box: DUV inputs and outputs

 Grey box: potentially selected internals

– Monitors can convert low-level signals to transactions.

– Monitors can flag simple timing and protocol errors.

– Monitors collect functional coverage.

– Monitors update the scoreboard.

– Monitors don’t drive DUV pins; they are “passive”.

STUDENTS-HUB.com

https://students-hub.com

15

Monitors (2)

 In other words, the monitor is a component

responsible for watching pins wiggle on a

bus and converting those pin wiggles back

into transactions.

 The transactions are then sent out through

an analysis_port, that may be connected

to a scoreboard, a predictor, a coverage

class, etc.

 The monitor doesn't do checking directly.

STUDENTS-HUB.com

https://students-hub.com

16

Types of Monitors

 Input monitors:
– Collect inputs to the DUV and pass them to

scoreboard.

– Can have checker components.

 Output monitors:
– Observe the outputs from the DUV and pass them to

the scoreboard.

– Can have checker components.

 Coverage monitors:
– Collects inputs, outputs and selected internal signals.

STUDENTS-HUB.com

https://students-hub.com

17

Agent (1)

 An Agent is a verification component for a specific logical

interface (it can be a SystemVerilog interface)

 Agents can be configured as either active or passive

 Active agent

– generate stimulus and drive to DUT

– It consists of all the three components driver, sequencer, and monitor

 Passive agent

– It monitor activity on the interface, but do not drive the DUV

– It consists of only the monitor

STUDENTS-HUB.com

https://students-hub.com

18

Agent (2)

STUDENTS-HUB.com

https://students-hub.com

19

Scoreboards (1)
 Scoreboards are smart data structures that keep track of events in

the DUV during simulation

 Usually, scoreboards are global
– One scoreboard per verification environment

 Scoreboards are not checking mechanisms, but
– The main purpose of using scoreboards is for checking

– In practice, many checkers are implemented inside scoreboards

– There are many typical checks that are done with scoreboards

 The scoreboard checks the operation of the DUT by collecting
input and output data, and checking that the outputs received are
compatible with the inputs sent.

 The scoreboard may also record statistical information and report
that information back at the end of a simulation.

STUDENTS-HUB.com

https://students-hub.com

20

Scoreboards (2)

 Scoreboards source information from
– the inputs and outputs of the DUV, and

– occasionally also from internal events in the DUV.

 Types of checks enabled using a scoreboard:
– Matching outputs with inputs

 No loss of data
– Detect inputs with no matching output.

 No creation of data
– Detect output with no matching input.

 No unintended modification of data

– Timing specification
 Delay from input to output remains within specified limits.

– Data order

STUDENTS-HUB.com

https://students-hub.com

21

Scoreboard Operation

DUV

Scoreboard

OK?

STUDENTS-HUB.com

https://students-hub.com

22

Test (1)

 A Test is a class-based representation of a verification scenario.

 It is the top level verification component in UVM

 There are usually many test classes for each DUT, applying different

stimulus or configurations to achieve different verification goals.

 Many test classes are declared in the same file (Test library)

 We can select which test class to execute by passing the test type
name as a string argument to the run_test() method.

STUDENTS-HUB.com

https://students-hub.com

23

Test (2)

 There is no test class handle declared, or test class instance created explicitly

 When the run_test () task is executed from an initial block in the

topmost SystemVerilog module, implicitly creates a declaration and an

instance of the test class type which is passed to it.

 If the test class cannot be found or is undefined, a fatal runtime error is issued

 Also, you can use command line to select a test. This command takes
precedence over an argument to run_test()

%xrun ... +UVM_TESTNAME=mytest

STUDENTS-HUB.com

https://students-hub.com

24

Report Macros

STUDENTS-HUB.com

https://students-hub.com

25

Reference Models (1)

 A reference model is an executable specification - a golden
model that predicts how the DUV should behave
– Usually in the form of an alternative implementation

 It runs in parallel to the DUV, using the same inputs and provides
the checking mechanisms with information about the expected
behavior
– Checking is done by comparing the expected behavior to the actual one

 Pure reference models can run independently of the DUV
– But not all reference models are pure.

STUDENTS-HUB.com

https://students-hub.com

26

Reference Models (2)

 Reference models have many uses

– Checking

– Aids for stimuli generation (When?)

– “Smart” protocol models – imitate the function of the

DUV

– Vehicles for SW development

 What can we check with a reference model

– In principle, anything

– In practice it depends on the level of detail and

accuracy of the reference model

 And how much of its behavior we are willing to expose

STUDENTS-HUB.com

https://students-hub.com

27

Reference
Model

Reference Model Operation

DUV

=?

STUDENTS-HUB.com

https://students-hub.com

28

Levels of Abstraction

 The level of abstraction in a reference model dictates the type of
information we can get out of it for checking
– Functionally accurate models can be used only to check correctness of

data, usually at the end of the test or at well defined points in time
 Timing, order, and other checks need other means

– Cycle accurate models can be used for checking all aspects of I/O
behavior

– Cycle accurate and latch accurate models can be used also for checking
the internal state of the DUV
 This type of model is sometimes called deep function reference model

STUDENTS-HUB.com

https://students-hub.com

29

SystemVerilog Virtual Interface

 UVM components cannot be directly connected to interface

instances

– Breaks reusability

– Interface instances are static

 SystemVerilog virtual interface:

– An interface variable that can be connected to an interface instance

– Can be declared as a class property

– Access interface signals using virtual interface as a prefix

– Needs to be connected to an actual interface

STUDENTS-HUB.com

https://students-hub.com

30

Complete Tutorial

 UVM TestBench architecture - Verification Guide

 https://www.edaplayground.com/x/5r89

STUDENTS-HUB.com

https://verificationguide.com/uvm/uvm-testbench-architecture/
https://www.edaplayground.com/x/5r89
https://students-hub.com

