
Objects and Classes

Objectives
■■ To describe objects and classes, and use classes to model objects (§9.2).

■■ To use UML graphical notation to describe classes and objects (§9.2).

■■ To demonstrate how to define classes and create objects (§9.3).

■■ To create objects using constructors (§9.4).

■■ To define a reference variable using a reference type and access objects
via object reference variables (§9.5).

■■ To access an object’s data and methods using the object member access
operator (.) (§9.5.1).

■■ To define data fields of reference types and assign default values for
an object’s data fields (§9.5.2).

■■ To distinguish between object reference variables and primitive-
data-type variables (§9.5.3).

■■ To use the Java library classes Date, Random, and Point2D (§9.6).

■■ To distinguish between instance and static variables and methods
(§9.7).

■■ To define private data fields with appropriate getter and setter methods
(§9.8).

■■ To encapsulate data fields to make classes easy to maintain (§9.9).

■■ To develop methods with object arguments and differentiate between
primitive-type arguments and object-type arguments (§9.10).

■■ To store and process objects in arrays (§9.11).

■■ To create immutable objects from immutable classes to protect the
contents of objects (§9.12).

■■ To determine the scope of variables in the context of a class (§9.13).

■■ To use the keyword this to refer to the calling object itself (§9.14).

CHAPTER

9

M09_LIAN9966_12_SE_C09.indd 323 16/09/19 4:58 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

324 Chapter 9   Objects and Classes

9.1  Introduction
Object-oriented programming enables you to develop large-scale software and GUIs
effectively.

Object-oriented programming is essentially a technology for developing reusable soft-
ware. Having learned the material in the preceding chapters, you are able to solve many pro-
gramming problems using selections, loops, methods, and arrays. However, these Java features
are not sufficient for developing graphical user interfaces and large-scale software systems.
Suppose you want to develop a graphical user interface (GUI, pronounced goo-ee) as shown
in Figure 9.1. How would you program it?

Point
Key

Figure 9.1  The GUI objects are created from classes.

This chapter introduces object-oriented programming, which you can use to develop GUI
and large-scale software systems.

9.2  Defining Classes for Objects
A class defines the properties and behaviors for objects.

Object-oriented programming (OOP) involves programming using objects. An object represents
an entity in the real world that can be distinctly identified. For example, a student, a desk, a
circle, a button, and even a loan can all be viewed as objects. An object has a unique identity,
state, and behavior.

■■ The state of an object (also known as its properties or attributes) is represented by data
fields with their current values. A circle object, for example, has a data field radius,
which is the property that characterizes a circle. A rectangle object, for example, has the
data fields width and height, which are the properties that characterize a rectangle.

■■ The behavior of an object (also known as its actions) is defined by methods. To invoke
a method on an object is to ask the object to perform an action. For example, you may
define methods named getArea() and getPerimeter() for circle objects. A circle
object may invoke getArea() to return its area and getPerimeter() to return its
perimeter. You may also define the setRadius(radius) method. A circle object
can invoke this method to change its radius.

Objects of the same type are defined using a common class. A class is a template, blueprint,
or contract that defines what an object’s data fields and methods will be. An object is an
instance of a class. You can create many instances of a class. Creating an instance is referred
to as instantiation. The terms object and instance are often interchangeable. The relationship
between classes and objects is analogous to that between an apple-pie recipe and apple pies:
You can make as many apple pies as you want from a single recipe. Figure 9.2 shows a class
named Circle and its three objects.

A Java class uses variables to define data fields and methods to define actions. In addition,
a class provides methods of a special type, known as constructors, which are invoked to create
a new object. A constructor can perform any action, but constructors are designed to perform
initializing actions, such as initializing the data fields of objects. Figure 9.3 shows an example
of defining the class for circle objects.

Point
Key

VideoNote
Define classes and create
objects

object
state of an object

properties
attributes

data fields
behavior
actions

class

contract

instantiation

instance

data field
method

constructors

Button Text Field Radio Button Combo BoxLabel Check Box

why OOP?

M09_LIAN9966_12_SE_C09.indd 324 16/09/19 4:58 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

9.2  Defining Classes for Objects 325

The Circle class is different from all of the other classes you have seen thus far. It does not
have a main method, and therefore cannot be run; it is merely a definition for circle objects.
The class that contains the main method will be referred to in this book, for convenience, as
the main class.

The illustration of class templates and objects in Figure 9.2 can be standardized using Unified
Modeling Language (UML) notation. This notation, as shown in Figure 9.4, is called a UML
class diagram, or simply a class diagram. In the class diagram, the data field is denoted as

dataFieldName: dataFieldType

The constructor is denoted as

ClassName(parameterName: parameterType)

main class
Unified Modeling Language

(UML)

class diagram

Figure 9.2  A class is a template for creating objects.

A class template

Three objects of
the Circle class

Class Name: Circle

Data Fields:
 radius is ___

Methods:
 getArea
 getPerimeter
 setRadius

Circle Object 1

Data Fields:
 radius is 1

Circle Object 2

Data Fields:
 radius is 25

Circle Object 3

Data Fields:
 radius is 125

Figure 9.3  A class is a construct that defines objects of the same type.

Data fields

Constructors

Methods

 class Circle {
 /** The radius of this circle */
 double radius = 1;

 /** Construct a circle object */
 Circle() {
 }

 /** Construct a circle object */
 Circle(double newRadius) {
 radius = newRadius;
 }

 /** Return the area of this circle */
 double getArea() {
 return radius * radius * Math.PI;
 }

 /** Return the perimeter of this circle */
 double getPerimeter() {
 return 2 * radius * Math.PI;
 }

 /** Set a new radius for this circle */
 void setRadius(double newRadius) {
 radius = newRadius;
 }
 }

M09_LIAN9966_12_SE_C09.indd 325 16/09/19 4:58 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

326 Chapter 9   Objects and Classes

The method is denoted as

methodName(parameterName: parameterType): returnType

9.3  Example: Defining Classes and Creating Objects
Classes are definitions for objects and objects are created from classes.

This section gives two examples of defining classes and uses the classes to create objects.
Listing 9.1 is a program that defines the Circle class and uses it to create objects. The pro-
gram constructs three circle objects with radius 1, 25, and 125 and displays the radius and
area of each of the three circles. It then changes the radius of the second object to 100 and
displays its new radius and area.

Listing 9.1  TestCircle.java
 1 public class TestCircle {
 2 /** Main method */
 3 public static void main(String[] args) {
 4 // Create a circle with radius 1
 5 Circle circle1 = new Circle();
 6 System.out.println("The area of the circle of radius "
 7 + circle1.radius + " is " + circle1.getArea());
 8
 9 // Create a circle with radius 25
10 Circle circle2 = new Circle(25);
11 System.out.println("The area of the circle of radius "
12 + circle2.radius + "is" + circle2.getArea());
13
14 // Create a circle with radius 125
15 Circle circle3 = new Circle(125);
16 System.out.println("The area of the circle of radius "
17 + circle3.radius + " is " + circle3.getArea());
18
19 // Modify circle radius
20 circle2.radius = 100; // or circle2.setRadius(100)
21 System.out.println("The area of the circle of radius "
22 + circle2.radius + " is " + circle2.getArea());
23 }
24 }
25

Point
Key

main class

main method

create object

create object

create object

Figure 9.4  Classes and objects can be represented using UML notation.

Class nameCircle

radius: double

Circle()

Circle(newRadius: double)

getArea(): double

getPerimeter(): double

setRadius(newRadius: double): void

Data fields

Constructors
and methods

UML Class
Diagram

UML notation
for objects

circle2: Circle

radius = 25

circle3: Circle

radius = 125

circle1: Circle

radius = 1

M09_LIAN9966_12_SE_C09.indd 326 16/09/19 4:58 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

9.3  Example: Defining Classes and Creating Objects 327

Figure 9.5  Each class in the source code file is compiled into a .class file.

compiled
by

generates

public class TestCircle {
 …
}

class Circle {
 …
}

Java
Compiler

TestCircle.class

Circle.class

// File TestCircle.java

26 // Define the circle class with two constructors
27 class Circle {
28 double radius;
29
30 /** Construct a circle with radius 1 */
31 Circle() {
32 radius = 1;
33 }
34
35 /** Construct a circle with a specified radius */
36 Circle(double newRadius) {
37 radius = newRadius;
38 }
39
40 /** Return the area of this circle */
41 double getArea() {
42 return radius * radius * Math.PI;
43 }
44
45 /** Return the perimeter of this circle */
46 double getPerimeter() {
47 return 2 * radius * Math.PI;
48 }
49
50 /** Set a new radius for this circle */
51 void setRadius(double newRadius) {
52 radius = newRadius;
53 }
54 }

The area of the circle of radius 1.0 is 3.141592653589793

The area of the circle of radius 25.0 is 1963.4954084936207

The area of the circle of radius 125.0 is 49087.385212340516

The area of the circle of radius 100.0 is 31415.926535897932

class Circle
data field

no-arg constructor

second constructor

getArea

getPerimeter

setRadius

The program contains two classes. The first of these, TestCircle, is the main class. Its sole
purpose is to test the second class, Circle. Such a program that uses the class is often referred
to as a client of the class. When you run the program, the Java runtime system invokes the
main method in the main class.

You can put the two classes into one file, but only one class in the file can be a public class.
Furthermore, the public class must have the same name as the file name. Therefore, the file
name is TestCircle.java, since TestCircle is public. Each class in the source code is com-
piled into a .class file. When you compile TestCircle.java, two class files TestCircle.class
and Circle.class are generated, as shown in Figure 9.5.

client

public class

M09_LIAN9966_12_SE_C09.indd 327 16/09/19 4:58 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

328 Chapter 9   Objects and Classes

The main class contains the main method (line 3) that creates three objects. As in creating
an array, the new operator is used to create an object from the constructor: new Circle()
creates an object with radius 1 (line 5), new Circle(25) creates an object with radius 25
(line 10), and new Circle(125) creates an object with radius 125 (line 15).

These three objects (referenced by circle1, circle2, and circle3) have different
data but the same methods. Therefore, you can compute their respective areas by using the
getArea() method. The data fields can be accessed via the reference of the object using
circle1.radius, circle2.radius, and circle3.radius, respectively. The object can
invoke its method via the reference of the object using circle1.getArea(), circle2.
getArea(), and circle3.getArea(), respectively.

These three objects are independent. The radius of circle2 is changed to 100 in line 20.
The object’s new radius and area are displayed in lines 21 and 22.

There are many ways to write Java programs. For instance, you can combine the two classes
in the preceding example into one, as given in Listing 9.2.

Listing 9.2  Circle.java (AlternativeCircle.java)
 1 public class Circle {
 2 /** Main method */
 3 public static void main(String[] args) {
 4 // Create a circle with radius 1
 5 Circle circle1 = new Circle();
 6 System.out.println("The area of the circle of radius "
 7 + circle1.radius + " is " + circle1.getArea());
 8
 9 // Create a circle with radius 25
10 Circle circle2 = new Circle(25);
11 System.out.println("The area of the circle of radius "
12 + circle2.radius + " is " + circle2.getArea());
13
14 // Create a circle with radius 125
15 Circle circle3 = new Circle(125);
16 System.out.println("The area of the circle of radius "
17 + circle3.radius + " is " + circle3.getArea());
18
19 // Modify circle radius
20 circle2.radius = 100;
21 System.out.println("The area of the circle of radius "
22 + circle2.radius + " is " + circle2.getArea());
23 }
24
25 double radius;
26
27 /** Construct a circle with radius 1 */
28 Circle() {
29 radius = 1;
30 }
31
32 /** Construct a circle with a specified radius */
33 Circle(double newRadius) {
34 radius = newRadius;
35 }
36
37 /** Return the area of this circle */
38 double getArea() {
39 return radius * radius * Math.PI;
40 }
41

main method

data field

no-arg constructor

second constructor

method

M09_LIAN9966_12_SE_C09.indd 328 16/09/19 4:58 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

9.3  Example: Defining Classes and Creating Objects 329

42 /** Return the perimeter of this circle */
43 double getPerimeter() {
44 return 2 * radius * Math.PI;
45 }
46
47 /** Set a new radius for this circle */
48 void setRadius(double newRadius) {
49 radius = newRadius;
50 }
51 }

Since the combined class has a main method, it can be executed by the Java interpreter. The
main method is the same as that in Listing 9.1. This demonstrates that you can test a class by
simply adding a main method in the same class.

As another example, consider television sets. Each TV is an object with states (current
channel, current volume level, and power on or off) and behaviors (change channels, adjust
volume, and turn on/off). You can use a class to model TV sets. The UML diagram for the
class is shown in Figure 9.6.

Figure 9.6  The TV class models TV sets.

TV

The current channel (1–120) of this TV.

The current volume level (1–7) of this TV.

Indicates whether this TV is on/off.

channel: int

volumeLevel: int

on: boolean

+TV()

+turnOn(): void

+turnOf f(): void

+setChannel(newChannel: int): void

+setVolume(newVolumeLevel: int): void

+channelUp(): void

+channelDown(): void

+volumeUp(): void

+volumeDown(): void

Constructs a default TV object.

Turns on this TV.

Turns off this TV.

Sets a new channel for this TV.

Sets a new volume level for this TV.

Increases the channel number by 1.

Decreases the channel number by 1.

Increases the volume level by 1.

Decreases the volume level by 1.

The + sign indicates a
public modifier

Listing 9.3 gives a program that defines the TV class.

Listing 9.3  TV.java
 1 public class TV {
 2 int channel = 1; // Default channel is 1
 3 int volumeLevel = 1; // Default volume level is 1
 4 boolean on = false; // TV is off
 5
 6 public TV() {
 7 }
 8
 9 public void turnOn() {
10 on = true;
11 }
12
13 public void turnOff() {

data fields

constructor

turn on TV

turn off TV

M09_LIAN9966_12_SE_C09.indd 329 16/09/19 4:58 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

330 Chapter 9   Objects and Classes

14 on = false;
15 }
16
17 public void setChannel(int newChannel) {
18 if (on && newChannel >= 1 && newChannel <= 120)
19 channel = newChannel;
20 }
21
22 public void setVolume(int newVolumeLevel) {
23 if (on && newVolumeLevel >= 1 && newVolumeLevel <= 7)
24 volumeLevel = newVolumeLevel;
25 }
26
27 public void channelUp() {
28 if (on && channel < 120)
29 channel++;
30 }
31
32 public void channelDown() {
33 if (on && channel > 1)
34 channel—–;
35 }
36
37 public void volumeUp() {
38 if (on && volumeLevel < 7)
39 volumeLevel++;
40 }
41
42 public void volumeDown() {
43 if (on && volumeLevel > 1)
44 volumeLevel—–;
45 }
46 }

The constructor and methods in the TV class are defined public so they can be accessed from
other classes. Note the channel and volume level are not changed if the TV is not on. Before
either of these is changed, its current value is checked to ensure it is within the correct range.

Listing 9.4 gives a program that uses the TV class to create two objects.

Listing 9.4  TestTV.java
 1 public class TestTV {
 2 public static void main(String[] args) {
 3 TV tv1 = new TV();
 4 tv1.turnOn();
 5 tv1.setChannel(30);
 6 tv1.setVolume(3);
 7
 8 TV tv2 = new TV();
 9 tv2.turnOn();
10 tv2.channelUp();
11 tv2.channelUp();
12 tv2.volumeUp();
13
14 System.out.println("tv1's channel is " + tv1.channel
15 + " and volume level is " + tv1.volumeLevel);
16 System.out.println("tv2's channel is " + tv2.channel
17 + " and volume level is " + tv2.volumeLevel);
18 }
19 }

set a new channel

set a new volume

increase channel

decrease channel

increase volume

decrease volume

main method
create a TV
turn on
set a new channel
set a new volume

create a TV
turn on
increase channel

increase volume

display state

M09_LIAN9966_12_SE_C09.indd 330 16/09/19 4:58 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

9.4  Constructing Objects Using Constructors 331

The program creates two objects in lines 3 and 8 and invokes the methods on the objects to
perform actions for setting channels and volume levels and for increasing channels and vol-
umes. The program displays the state of the objects in lines 14–17. The methods are invoked
using syntax such as tv1.turnOn() (line 4). The data fields are accessed using syntax such
as tv1.channel (line 14).

These examples have given you a glimpse of classes and objects. You may have many ques-
tions regarding constructors, objects, reference variables, accessing data fields, and invoking
object’s methods. The sections that will follow discuss these issues in detail.

	9.3.1	 Describe the relationship between an object and its defining class.

	9.3.2	 How do you define a class?

	9.3.3	 How do you declare an object’s reference variable?

	9.3.4	 How do you create an object?

9.4  Constructing Objects Using Constructors
A constructor is invoked to create an object using the new operator.

Constructors are a special kind of method. They have three peculiarities:

■■ A constructor must have the same name as the class itself.

■■ Constructors do not have a return type—not even void.

■■ Constructors are invoked using the new operator when an object is created.
Constructors play the role of initializing objects.

The constructor has exactly the same name as its defining class. Like regular methods, con-
structors can be overloaded (i.e., multiple constructors can have the same name but different
signatures), making it easy to construct objects with different initial data values.

It is a common mistake to put the void keyword in front of a constructor. For example,

public void Circle() {
}

In this case, Circle() is a method, not a constructor.
Constructors are used to construct objects. To construct an object from a class, invoke a

constructor of the class using the new operator, as follows:

new ClassName(arguments);

For example, new Circle() creates an object of the Circle class using the first constructor
defined in the Circle class, and new Circle(25) creates an object using the second con-
structor defined in the Circle class.

A class normally provides a constructor without arguments (e.g., Circle()). Such a con-
structor is referred to as a no-arg or no-argument constructor.

A class may be defined without constructors. In this case, a public no-arg constructor with
an empty body is implicitly defined in the class. This constructor, called a default constructor,
is provided automatically only if no constructors are explicitly defined in the class.

	9.4.1	 What are the differences between constructors and methods?

	9.4.2	 When will a class have a default constructor?

Point
Check

Point
Key

constructor’s name

no return type

new operator

overloaded constructors

no void

constructing objects

no-arg constructor

default constructor

Point
Check

tv1's channel is 30 and volume level is 3

tv2's channel is 3 and volume level is 2

M09_LIAN9966_12_SE_C09.indd 331 16/09/19 4:58 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

332 Chapter 9   Objects and Classes

	9.4.4	 What is wrong in the following code?

 1 class Test {
 2 public static void main(String[] args) {
 3 A a = new A();
 4 a.print();
 5 }
 6 }
 7
 8 class A {
 9 String s;
10
11 A(String newS) {
12 s = newS;
13 }
14
15 public void print() {
16 System.out.print(s);
17 }
18 }

9.5  Accessing Objects via Reference Variables
An object’s data and methods can be accessed through the dot (.) operator via the
object’s reference variable.

Newly created objects are allocated in the memory. They can be accessed via reference
variables.

Objects are accessed via the object’s reference variables, which contain references to the
objects. Such variables are declared using the following syntax:

ClassName objectRefVar;

A class is essentially a programmer-defined type. A class is a reference type, which means that
a variable of the class type can reference an instance of the class. The following statement
declares the variable myCircle to be of the Circle type:

Circle myCircle;

The variable myCircle can reference a Circle object. The next statement creates an object
and assigns its reference to myCircle:

myCircle = new Circle();

Point
Key

reference variable

reference type

	9.4.3	 What is wrong with each of the following programs?

 1 public class ShowErrors {
 2 public static void main(String[] args) {
 3 ShowErrors t = new ShowErrors(5);
 4
 5

(a)

}
}

 1 public class ShowErrors {
 2 public static void main(String[] args) {
 3 C c = new C(5.0);
 4 System.out.println(c.value);
 5
 6
 7
 8 class C {
 9 int value = 2;
10

(b)

}

}
}

M09_LIAN9966_12_SE_C09.indd 332 16/09/19 4:58 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

9.5  Accessing Objects via Reference Variables 333

You can write a single statement that combines the declaration of an object reference variable,
the creation of an object, and the assigning of an object reference to the variable with the
following syntax:

ClassName objectRefVar = new ClassName();

Here is an example:

Circle myCircle = new Circle();

The variable myCircle holds a reference to a Circle object.

Note
An object reference variable that appears to hold an object actually contains a reference
to that object. Strictly speaking, an object reference variable and an object are different,
but most of the time the distinction can be ignored. Therefore, it is fine, for simplicity,
to say that myCircle is a Circle object rather than use the long-winded description
that myCircle is a variable that contains a reference to a Circle object.

Note
Arrays are treated as objects in Java. Arrays are created using the new operator. An array
variable is actually a variable that contains a reference to an array.

9.5.1  Accessing an Object’s Data and Methods
In OOP terminology, an object’s member refers to its data fields and methods. After an object
is created, its data can be accessed and its methods can be invoked using the dot operator (.),
also known as the object member access operator:

■■ objectRefVar.dataField references a data field in the object.

■■ objectRefVar.method(arguments) invokes a method on the object.

For example, myCircle.radius references the radius in myCircle and myCircle.getArea()
invokes the getArea method on myCircle. Methods are invoked as operations on objects.

The data field radius is referred to as an instance variable because it is dependent on a
specific instance. For the same reason, the method getArea is referred to as an instance
method because you can invoke it only on a specific instance. The object on which an instance
method is invoked is called a calling object.

Caution
Recall that you use Math.methodName(arguments) (e.g., Math.pow(3, 2.5))
to invoke a method in the Math class. Can you invoke getArea() using Circle.
getArea()? The answer is no. All the methods in the Math class are static methods,
which are defined using the static keyword. However, getArea() is an instance
method, and thus nonstatic. It must be invoked from an object using objectRefVar.
methodName(arguments) (e.g., myCircle.getArea()). Further explanation will
be given in Section 9.7, Static Variables, Constants, and Methods.

Note
Usually you create an object and assign it to a variable, then later you can use the variable
to reference the object. Occasionally, an object does not need to be referenced later. In this
case, you can create an object without explicitly assigning it to a variable using the syntax:

new Circle();

or

System.out.println("Area is " + new Circle(5).getArea());

The former statement creates a Circle object. The latter creates a Circle object and
invokes its getArea method to return its area. An object created in this way is known
as an anonymous object.

dot operator (.)

instance variable

instance method

calling object

invoking methods

anonymous object

object vs. object reference
variable

array object

M09_LIAN9966_12_SE_C09.indd 333 16/09/19 4:58 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

334 Chapter 9   Objects and Classes

9.5.2  Reference Data Fields and the null Value
The data fields can be of reference types. For example, the following Student class contains
a data field name of the String type. String is a predefined Java class.

class Student {
 String name; // name has the default value null
 int age; // age has the default value 0
 boolean isScienceMajor; // isScienceMajor has default value false
 char gender; // gender has default value '\u0000'
}

If a data field of a reference type does not reference any object, the data field holds a special
Java value, null. null is a literal just like true and false. While true and false are
Boolean literals, null is a literal for a reference type. null is not a Java keyword, but it is a
reserved word in Java.

The default value of a data field is null for a reference type, 0 for a numeric type, false
for a boolean type, and \u0000 for a char type. However, Java assigns no default value to
a local variable inside a method. The following code displays the default values of the data
fields name, age, isScienceMajor, and gender for a Student object:

class TestStudent {
 public static void main(String[] args) {
 Student student = new Student();
 System.out.println("name? " + student.name);
 System.out.println("age? " + student.age);
 System.out.println("isScienceMajor? " + student.isScienceMajor);
 System.out.println("gender? " + student.gender);
 }
}

The following code has a compile error, because the local variables x and y are not initialized:

class TestLocalVariables {
 public static void main(String[] args) {
 int x; // x has no default value
 String y; // y has no default value
 System.out.println("x is " + x);
 System.out.println("y is " + y);
 }
}

Caution
NullPointerException is a common runtime error. It occurs when you invoke a
method on a reference variable with a null value. Make sure you assign an object ref-
erence to the variable before invoking the method through the reference variable (see
CheckPoint Question 9.5.5c).

9.5.3  Differences between Variables of Primitive Types
and Reference Types

Every variable represents a memory location that holds a value. When you declare a variable,
you are telling the compiler what type of value the variable can hold. For a variable of a prim-
itive type, the value is of the primitive type. For a variable of a reference type, the value is a
reference to where an object is located. For example, as shown in Figure 9.7, the value of int
variable i is int value 1, and the value of Circle object c holds a reference to where the
contents of the Circle object are stored in memory.

reference data fields

null value

default field values

NullPointerException

M09_LIAN9966_12_SE_C09.indd 334 16/09/19 4:58 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

9.5  Accessing Objects via Reference Variables 335

Figure 9.7  A variable of a primitive type holds a value of the primitive type, and a variable
of a reference type holds a reference to where an object is stored in memory.

Primitive type

Object type

int i = 1

Circle c

i

c reference

1

Created using new Circle()

radius = 1

c: Circle

Figure 9.8  Primitive variable j is copied to variable i.

Before i = j;

Primitive type assignment i = j;

After i = j;

1

2

i

j

2

2

i

j

Figure 9.9  Reference variable c2 is copied to variable c1.

Object type assignment c1 = c2

After c1 = c2Before c1 = c2

c1

c2

radius = 9

c2: Circle

radius = 5

c1: Circle

c1

c2

radius = 5

c1: Circle

radius = 9

c2: Circle

garbage

garbage collection

When you assign one variable to another, the other variable is set to the same value. For a
variable of a primitive type, the real value of one variable is assigned to the other variable. For
a variable of a reference type, the reference of one variable is assigned to the other variable.
As shown in Figure 9.8, the assignment statement i = j copies the contents of j into i for

primitive variables. As shown in Figure 9.9, the assignment statement c1 = c2 copies the
reference of c2 into c1 for reference variables. After the assignment, variables c1 and c2 refer
to the same object.

Note
As illustrated in Figure 9.9, after the assignment statement c1 = c2, c1 points to the
same object referenced by c2. The object previously referenced by c1 is no longer useful
and therefore is now known as garbage. Garbage occupies memory space, so the Java
runtime system detects garbage and automatically reclaims the space it occupies. This
process is called garbage collection.

Tip
If you know that an object is no longer needed, you can explicitly assign null to a ref-
erence variable for the object. The JVM will automatically collect the space if the object
is not referenced by any reference variable.

M09_LIAN9966_12_SE_C09.indd 335 16/09/19 4:58 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

336 Chapter 9   Objects and Classes

	9.5.1	 Is an array an object or a primitive-type value? Can an array contain elements of an
object type? Describe the default value for the elements of an array.

	9.5.2	 Which operator is used to access a data field or invoke a method from an object?

	9.5.3	 What is an anonymous object?

	9.5.4	 What is NullPointerException?

	9.5.5	 What is wrong with each of the following programs?

Point
Check

Figure 9.10  A Date object represents a specific date and time.

java.util.Date

+Date()

+Date(elapseTime: long)

+toString(): String

+getTime(): long

+setTime(elapseTime: long): void

Returns a string representing the date and time.

Returns the number of milliseconds since January 1,

Sets a new elapse time in the object.

Constructs a Date object for the current time.

Constructs a Date object for a given time in
milliseconds elapsed since January 1, 1970, GMT.

1970, GMT.

 1 public class ShowErrors {
 2 public void method1() {
 3 Circle c;
 4 System.out.println("What is radius "
 5 + c.getRadius());
 6 c = new Circle();
 7
 8

(b)

}
}

 1 public class ShowErrors {
 2 public static void main(String[] args) {
 3 ShowErrors t = new ShowErrors();
 4 t.x();
 5
 6

(a)

}
}

	9.5.6	 What is the output of the following code?

public class A {
 boolean x;

 public static void main(String[] args) {
 A a = new A();
 System.out.println(a.x);
 }
}

9.6  Using Classes from the Java Library
The Java API contains a rich set of classes for developing Java programs.

Listing 9.1 defined the Circle class and created objects from the class. You will frequently
use the classes in the Java library to develop programs. This section gives some examples of
the classes in the Java library.

9.6.1  The Date Class
In Listing 2.7, ShowCurrentTime.java, you learned how to obtain the current time using
System.currentTimeMillis(). You used the division and remainder operators to extract
the current second, minute, and hour. Java provides a system-independent encapsulation of
date and time in the java.util.Date class, as shown in Figure 9.10.

Point
Key

java.util.Date class

M09_LIAN9966_12_SE_C09.indd 336 16/09/19 4:58 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

Haneen Abu al hawa

9.6  Using Classes from the Java Library 337

When you create a Random object, you have to specify a seed or use the default seed. A
seed is a number used to initialize a random number generator. The no-arg constructor creates
a Random object using the current elapsed time as its seed. If two Random objects have the
same seed, they will generate identical sequences of numbers. For example, the following code
creates two Random objects with the same seed, 3:

Random generator1 = new Random(3);
System.out.print("From generator1: ");
for (int i = 0; i < 10; i++)
 System.out.print(generator1.nextInt(1000) + " ");

Random generator2 = new Random(3);
System.out.print("\nFrom generator2: ");
for (int i = 0; i < 10; i++)
 System.out.print(generator2.nextInt(1000) + " ");

The code generates the same sequence of random int values:

From generator1: 734 660 210 581 128 202 549 564 459 961
From generator2: 734 660 210 581 128 202 549 564 459 961

You can use the no-arg constructor in the Date class to create an instance for the current date
and time, the getTime() method to return the elapsed time in milliseconds since January 1,
1970, GMT, and the toString() method to return the date and time as a string, For example,
the following code:

java.util.Date date = new java.util.Date();
System.out.println("The elapsed time since Jan 1, 1970 is " +
 date.getTime() + " milliseconds");
System.out.println(date.toString());

displays the output as follows:

The elapsed time since Jan 1, 1970 is 1324903419651 milliseconds
Mon Dec 26 07:43:39 EST 2011

The Date class has another constructor, Date(long elapseTime), which can be used to
construct a Date object for a given time in milliseconds elapsed since January 1, 1970, GMT.

9.6.2  The Random Class
You have used Math.random() to obtain a random double value between 0.0 and 1.0
(excluding 1.0). Another way to generate random numbers is to use the java.util.Random
class, as shown in Figure 9.11, which can generate a random int, long, double, float, and
boolean value.

create object

get elapsed time
invoke toString

Figure 9.11  A Random object can be used to generate random values.

+Random()

+Random(seed: long)

+nextInt(): int

+nextInt(n: int): int

+nextLong(): long

+nextDouble(): double

+nextFloat(): float

+nextBoolean(): boolean

Constructs a Random object with the current time as its seed.

 object with a specified seed.Constructs a Random

Returns a random int value.

Returns a random int value between 0 and n (excluding n).

Returns a random long value.

Returns a random double value between 0.0 and 1.0 (excluding 1.0).

Returns a random float value between 0.0F and 1.0F (excluding 1.0F).

Returns a random boolean value.

java.util.Random

M09_LIAN9966_12_SE_C09.indd 337 16/09/19 4:58 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

338 Chapter 9   Objects and Classes

Note
The ability to generate the same sequence of random values is useful in software testing
and many other applications. In software testing, often you need to reproduce the test
cases from a fixed sequence of random numbers.

Note
You can generate random numbers using the java.security.SecureRandom class
rather than the Random class. The random numbers generated from the Random are
deterministic and they can be predicted by hackers. The random numbers generated
from the SecureRandom class are nondeterministic and are secure.

9.6.3  The Point2D Class
Java API has a convenient Point2D class in the javafx.geometry package for representing
a point in a two-dimensional plane. The UML diagram for the class is shown in Figure 9.12.

Figure 9.12  A Point2D object represents a point with x- and y-coordinates.

Constructs a Point2D x- and y-coordinates.

Returns the

Returns the distance between this point and the specified point (x, y).

object with the specified

Returns the distance between this point and the specified point p.

x-coordinate from this point.

Returns the y-coordinate from this point.

Returns the midpoint between this point and point p.

Returns a string representation for the point.

+Point2D(x: double, y: double)

+distance(x: double, y: double): double

+distance(p: Point2D): double

+getX(): double

+getY(): double

+midpoint(p: Point2D): Point2D

+toString(): String

javafx.geometry.Point2D

You can create a Point2D object for a point with the specified x- and y-coordinates, use the dis-
tance method to compute the distance from this point to another point, and use the toString()
method to return a string representation of the point. Listing 9.5 gives an example of using this class.

Listing 9.5  TestPoint2D.java
 1 import java.util.Scanner;
 2 import javafx.geometry.Point2D;
 3
 4 public class TestPoint2D {
 5 public static void main(String[] args) {
 6 Scanner input = new Scanner(System.in);
 7
 8 System.out.print("Enter point1's x-, y–coordinates: ");
 9 double x1 = input.nextDouble();
10 double y1 = input.nextDouble();
11 System.out.print("Enter point2's x-, y–coordinates: ");
12 double x2 = input.nextDouble();
13 double y2 = input.nextDouble();
14
15 Point2D p1 = new Point2D(x1, y1);
16 Point2D p2 = new Point2D(x2, y2);
17 System.out.println("p1 is " + p1.toString());
18 System.out.println("p2 is " + p2.toString());
19 System.out.println("The distance between p1 and p2 is " +
20 p1.distance(p2));
21 System.out.println("The midpoint between p1 and p2 is " +
22 p1.midpoint(p2).toString());
23 }
24 }

create an object

invoke toString()

get distance

Enter point1's x-, y-coordinates: 1.5 5.5

Enter point2's x-, y-coordinates: −5.3 −4.4
p1 is Point2D [x = 1.5, y = 5.5]

p2 is Point2D [x = −5.3, y = −4.4]

The distance between p1 and p2 is 12.010412149464313

The midpoint between p1 and p2 is

Point2D [x = −1.9, y = 0.5499999999999998]

get midpoint

same sequence

SecureRandom

M09_LIAN9966_12_SE_C09.indd 338 16/09/19 4:58 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

9.7  Static Variables, Constants, and Methods 339

Enter point1's x-, y-coordinates: 1.5 5.5

Enter point2's x-, y-coordinates: −5.3 −4.4
p1 is Point2D [x = 1.5, y = 5.5]

p2 is Point2D [x = −5.3, y = −4.4]

The distance between p1 and p2 is 12.010412149464313

The midpoint between p1 and p2 is

Point2D [x = −1.9, y = 0.5499999999999998]

get midpoint

This program creates two objects of the Point2D class (lines 15 and 16). The toString()
method returns a string that describes the object (lines 17 and 18). Invoking p1.distance(p2)
returns the distance between the two points (line 20). Invoking p1.midpoint(p2) returns the
midpoint between the two points (line 22).

Note
The Point2D class is defined in the javafx.geometry package, which is in the
JavaFX module. To run this program, you need to install JavaFX. See Supplement II.F for
installing and using JavaFX.

	9.6.1	 How do you create a Date for the current time? How do you display the current time?

	9.6.2	 How do you create a Point2D? Suppose p1 and p2 are two instances of Point2D,
how do you obtain the distance between the two points? How do you obtain the
midpoint between the two points?

	9.6.3	 Which packages contain the classes Date, Random, Point2D, System, and Math?

9.7  Static Variables, Constants, and Methods
A static variable is shared by all objects of the class. A static method cannot access
instance members (i.e., instance data fields and methods) of the class.

The data field radius in the Circle class is known as an instance variable. An instance
variable is tied to a specific instance of the class; it is not shared among objects of the same
class. For example, suppose that you create the following objects:

Circle circle1 = new Circle();
Circle circle2 = new Circle(5);

The radius in circle1 is independent of the radius in circle2 and is stored in a different
memory location. Changes made to circle1’s radius do not affect circle2’s radius,
and vice versa.

If you want all the instances of a class to share data, use static variables, also known as
class variables. Static variables store values for the variables in a common memory location.
Because of this common location, if one object changes the value of a static variable, all objects
of the same class are affected. Java supports static methods as well as static variables. Static
methods can be called without creating an instance of the class.

Let’s modify the Circle class by adding a static variable numberOfObjects to
count the number of circle objects created. When the first object of this class is created,
numberOfObjects is 1. When the second object is created, numberOfObjects becomes
2. The UML of the new circle class is shown in Figure 9.13. The Circle class defines the
instance variable radius and the static variable numberOfObjects, the instance methods
getRadius, setRadius, and getArea, and the static method getNumberOfObjects. (Note
static variables and methods are underlined in the UML class diagram.)

Point
Check

Point
Key

static variable

static method

Static vs. instance

instance variable

VideoNote

Static vs. instance

M09_LIAN9966_12_SE_C09.indd 339 16/09/19 4:58 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

340 Chapter 9   Objects and Classes

To declare a static variable or define a static method, put the modifier static in the vari-
able or method declaration. The static variable numberOfObjects and the static method
getNumberOfObjects() can be declared as follows:

static int numberOfObjects;

static int getNumberObjects() {
 return numberOfObjects;
}

Constants in a class are shared by all objects of the class. Thus, constants should be declared
as final static. For example, the constant PI in the Math class is defined as follows:

final static double PI = 3.14159265358979323846;

The new circle class is defined in Listing 9.6.

Listing 9.6  Circle.java (for CircleWithStaticMembers)
 1 public class Circle {
 2 /** The radius of the circle */
 3 double radius;
 4
 5 /** The number of objects created */
 6 static int numberOfObjects = 0;
 7
 8 /** Construct a circle with radius 1 */
 9 Circle() {
10 radius = 1;
11 numberOfObjects++;
12 }
13
14 /** Construct a circle with a specified radius */
15 Circle(double newRadius) {
16 radius = newRadius;
17 numberOfObjects++;
18 }
19
20 /** Return numberOfObjects */
21 static int getNumberOfObjects() {
22 return numberOfObjects;
23 }
24
25 /** Return the area of this circle */

declare static variable

define static method

declare constant

static variable

increase by 1

increase by 1

static method

Figure 9.13  Instance variables belong to the instances and have memory storage independent of one another. Static
variables are shared by all the instances of the same class.

radius

numberOfObjects

radius

Memory
instantiate

instantiate

Circle

circle2: Circle

radius: double
numberOfObjects: int

getNumberOfObjects(): int
getArea(): double

radius = 1
numberOfObjects = 2

radius = 5
numberOfObjects = 2

circle1: Circle

UML Notation:
underline: static variables or methods

1

2

5

After two Circle
Objects were created,
numberOfObjects
is 2.

M09_LIAN9966_12_SE_C09.indd 340 16/09/19 4:58 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

9.7  Static Variables, Constants, and Methods 341

26 double getArea() {
27 return radius * radius * Math.PI;
28 }
29 }

Method getNumberOfObjects() in Circle is a static method. All the methods in the Math
class are static. The main method is static, too.

Instance methods (e.g., getArea()) and instance data (e.g., radius) belong to instances
and can be used only after the instances are created. They are accessed via a reference variable.
Static methods (e.g., getNumberOfObjects()) and static data (e.g., numberOfObjects) can
be accessed from a reference variable or from their class name.

The program in Listing 9.7 demonstrates how to use instance and static variables and meth-
ods and illustrates the effects of using them.

Listing 9.7  TestCircleWithStaticMembers.java
 1 public class TestCircleWithStaticMembers {
 2 /** Main method */
 3 public static void main(String[] args) {
 4 System.out.println("Before creating objects");
 5 System.out.println("The number of Circle objects is " +
 6 Circle.numberOfObjects);
 7
 8 // Create c1
 9 Circle c1 = new Circle(); // Use the Circle class in Listing 9.6
10
11 // Display c1 BEFORE c2 is created
12 System.out.println("\nAfter creating c1");
13 System.out.println("c1: radius (" + c1.radius +
14 ") and number of Circle objects (" +
15 c1.numberOfObjects + ")");
16
17 // Create c2
18 Circle c2 = new Circle(5);
19
20 // Modify c1
21 c1.radius = 9;
22
23 // Display c1 and c2 AFTER c2 was created
24 System.out.println("\nAfter creating c2 and modifying c1");
25 System.out.println("c1: radius (" + c1.radius +
26 ") and number of Circle objects (" +
27 c1.numberOfObjects + ")");
28 System.out.println("c2: radius (" + c2.radius +
29 ") and number of Circle objects (" +
30 c2.numberOfObjects + ")");
31 }
32 }

static variable

instance variable

static variable

instance variable

static variable

static variable

Before creating objects

The number of Circle objects is 0

After creating c1

c1: radius (1.0) and number of Circle objects (1)

After creating c2 and modifying c1

c1: radius (9.0) and number of Circle objects (2)

c2: radius (5.0) and number of Circle objects (2)

M09_LIAN9966_12_SE_C09.indd 341 16/09/19 4:58 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

342 Chapter 9   Objects and Classes

When you compile TestCircleWithStaticMembers.java, the Java compiler automati-
cally compiles Circle.java if it has not been compiled since the last change.

Static variables and methods can be accessed without creating objects. Line 6 displays the
number of objects, which is 0, since no objects have been created.

The main method creates two circles c1 and c2 (lines 9 and18). The instance variable
radius in c1 is modified to become 9 (line 21). This change does not affect the instance
variable radius in c2, since these two instance variables are independent. The static
variable numberOfObjects becomes 1 after c1 is created (line 9), and it becomes 2 after c2
is created (line 18).

Note PI is a constant defined in Math and Math.PI references the constant. c1.number-
OfObjects (line 27) and c2.numberOfObjects (line 30) are better replaced by Circle.
numberOfObjects. This improves readability because other programmers can easily rec-
ognize the static variable. You can also replace Circle.numberOfObjects with Circle.
getNumberOfObjects().

Tip
Use ClassName.methodName(arguments) to invoke a static method and
ClassName.staticVariable to access a static variable. This improves readability
because this makes static methods and data easy to spot.

An instance method can invoke an instance or static method, and access an instance or static
data field. A static method can invoke a static method and access a static data field. However,
a static method cannot invoke an instance method or access an instance data field, since static
methods and static data fields don’t belong to a particular object. The relationship between
static and instance members is summarized in the following diagram:

use class name

An instance method

can invoke

can access

can invoke

can access

an instance method

an instance data field

a static method

a static data field

A static method

cannot invoke

cannot access

can invoke

can access

an instance method

an instance data field

a static method

a static data field

For example, the following code is wrong.

 1 public class A {
 2 int i = 5;
 3 static int k = 2;
 4
 5 public static void main(String[] args) {
 6 int j = i; // Wrong because i is an instance variable
 7 m1(); // Wrong because m1() is an instance method
 8 }
 9
10 public void m1() {
11 // Correct since instance and static variables and methods
12 // can be used in an instance method
13 i = i + k + m2(i, k);
14 }
15
16 public static int m2(int i, int j) {
17 return (int)(Math.pow(i, j));
18 }
19 }

M09_LIAN9966_12_SE_C09.indd 342 16/09/19 4:58 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

9.7  Static Variables, Constants, and Methods 343

Note if you replace the preceding code with the following new code, the program would be
fine, because the instance data field i and method m1 are now accessed from an object a
(lines 7 and 8):

 1 public class A {
 2 int i = 5;
 3 static int k = 2;
 4
 5 public static void main(String[] args) {
 6 A a = new A();
 7 int j = a.i; // OK, a.i accesses the object's instance variable
 8 a.m1(); // OK, a.m1() invokes the object's instance method
 9 }
10
11 public void m1() {
12 i = i + k + m2(i, k);
13 }
14
15 public static int m2(int i, int j) {
16 return (int)(Math.pow(i, j));
17 }
18 }

Design Guide
How do you decide whether a variable or a method should be instance or static? A
variable or a method that is dependent on a specific instance of the class should be an
instance variable or method. A variable or a method that is not dependent on a specific
instance of the class should be a static variable or method. For example, every circle has
its own radius, so the radius is dependent on a specific circle. Therefore, radius is an
instance variable of the Circle class. Since the getArea method is dependent on a
specific circle, it is an instance method. None of the methods in the Math class, such
as random, pow, sin, and cos, is dependent on a specific instance. Therefore, these
methods are static methods. The main method is static and can be invoked directly
from a class.

Caution
It is a common design error to define an instance method that should have been defined
as static. For example, the method factorial(int n) should be defined as static,
as shown next, because it is independent of any specific instance.

instance or static?

common design error

public class Test {
public int factorial(int n) {
int result = 1;
for (int i = 1; i <= n; i++)

 result *= i;

return result;
 }
}

(a) Wrong design

public class Test {
public static int factorial(int n) {

int result = 1;
 for (int i = 1; i <= n; i++)

 result *= i;

return result;
 }
}

(b) Correct design

	9.7.1	 Suppose the class F is defined in (a). Let f be an instance of F. Which of the
statements in (b) are correct? Point

Check

M09_LIAN9966_12_SE_C09.indd 343 16/09/19 4:58 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

344 Chapter 9   Objects and Classes

	9.7.2	 Add the static keyword in the place of ? if appropriate.

public class Test {
 int count;

 public ? void main(String[] args) {
 ...
 }

 public ? int getCount() {
 return count;
 }

 public ? int factorial(int n) {
 int result = 1;
 for (int i = 1; i <= n; i++)
 result *= i;

 return result;
 }
}

	9.7.3	 Can you invoke an instance method or reference an instance variable from a static
method? Can you invoke a static method or reference a static variable from an instance
method? What is wrong in the following code?

 1 public class C {
 2 Circle c = new Circle();
 3
 4 public static void main(String[] args) {
 5 method1();
 6 }
 7
 8 public void method1() {
 9 method2();
10 }
11
12 public static void method2() {
13 System.out.println("What is radius " + c.getRadius());
14 }
15 }

9.8  Visibility Modifiers
Visibility modifiers can be used to specify the visibility of a class and its members.

You can use the public visibility modifier for classes, methods, and data fields to denote they
can be accessed from any other classes. If no visibility modifier is used, then by default the
classes, methods, and data fields are accessible by any class in the same package. This is known
as package-private or package-access.

Point
Key

package-private (or
package-access)

public class F {
int i;
static String s;

void imethod() {
 }

static void smethod() {
 }

}

(a)

System.out.println(f.i);

System.out.println(f.s);

f.imethod();

f.smethod();

System.out.println(F.i);

System.out.println(F.s);

F.imethod();

F.smethod();

(b)

M09_LIAN9966_12_SE_C09.indd 344 16/09/19 4:58 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

9.8  Visibility Modifiers 345

Note
Packages can be used to organize classes. To do so, you need to add the following line
as the first noncomment and nonblank statement in the program:

package packageName;

If a class is defined without the package statement, it is said to be placed in the default
package.

Java recommends that you place classes into packages rather than using a default
package. For simplicity, however, this book uses default packages. For more information
on packages, see Supplement III.E, Packages.

In addition to the public and default visibility modifiers, Java provides the private and
protected modifiers for class members. This section introduces the private modifier. The
protected modifier will be introduced in Section 11.14, The protected Data and Methods.

The private modifier makes methods and data fields accessible only from within its own
class. Figure 9.14 illustrates how a public, default, and private data field or method in class C1
can be accessed from a class C2 in the same package, and from a class C3 in a different package.

Figure 9.15  A nonpublic class has package access.

package p1;

class C1 {
 ...
}

package p1;

public class C2 {
 can access C1
}

package p2;

public class C3 {
 cannot access p1.C1;
 can access p1.C2;
}

Figure 9.14  The private modifier restricts access to its defining class, the default modifier restricts access to a package,
and the public modifier enables unrestricted access.

package p1;

public class C1 {
 public int x;
 int y;
 private int z;

 public void m1() {
 }
 void m2() {
 }
 private void m3() {
 }
}

package p1;

public class C2 {
 void aMethod() {
 C1 c1 = new C1();
 can access c1.x;
 can access c1.y;
 cannot access c1.z;

 can invoke c1.m1();
 can invoke c1.m2();
 cannot invoke c1.m3();
 }
}

package p2;

public class C3 {
 void aMethod() {
 C1 c1 = new C1();
 can access c1.x;
 cannot access c1.y;
 cannot access c1.z;

 can invoke c1.m1();
 cannot invoke c1.m2();
 cannot invoke c1.m3();
 }
}

If a class is not defined as public, it can be accessed only within the same package. As shown
in Figure 9.15, C1 can be accessed from C2, but not from C3.

The private modifier restricts private members from being accessed outside the class. How-
ever, there is no restriction on accessing members from inside the class. Therefore, objects
instantiated in its own class can access its private members. As shown in Figure 9.16a, an
object c of class C can access its private members, because c is defined inside its own class.
However, in Figure 9.16b, an object c of class C cannot access its private members, because
c is in the Test class.

using packages

inside access

M09_LIAN9966_12_SE_C09.indd 345 16/09/19 4:58 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

346 Chapter 9   Objects and Classes

Caution
The private modifier applies only to the members of a class. The public modifier
can apply to a class or members of a class. Using the modifiers public and private
on local variables would cause a compile error.

Note
In most cases, the constructor should be public. However, if you want to prohibit the
user from creating an instance of a class, use a private constructor. For example, there
is no reason to create an instance from the Math class, because all of its data fields and
methods are static. To prevent the user from creating objects from the Math class, the
constructor in java.lang.Math is defined as follows:

private Math() {
}

9.9  Data Field Encapsulation
Making data fields private protects data and makes the class easy to maintain.

The data fields radius and numberOfObjects in the Circle class in Listing 9.6 can be
modified directly (e.g., c1.radius = 5 or Circle.numberOfObjects = 10). This is not
a good practice—for two reasons:

1.	 Data may be tampered with. For example, numberOfObjects is to count the number
of objects created, but it may be mistakenly set to an arbitrary value (e.g., Circle.
numberOfObjects = 10).

2.	 The class becomes difficult to maintain and vulnerable to bugs. Suppose that you
want to modify the Circle class to ensure that the radius is nonnegative after other
programs have already used the class. You have to change not only the Circle class
but also the programs that use it because the clients may have modified the radius
directly (e.g., c1.radius = –5).

To prevent direct modifications of data fields, you should declare the data fields private,
using the private modifier. This is known as data field encapsulation.

private constructor

Point
Key

Data field encapsulation

VideoNote

Data field encapsulation

data field encapsulation

Figure 9.16  An object can access its private members if it is defined in its own class.

public class C {
 private boolean x;

 public static void main(string[] args) {
 C c = new C();
 system.out.println(c.x);
 system.out.println(c.convert());
 }

 private int convert() {
 return x ? 1 : 21;
 }
}

(a) This is okay because object c is used inside the class C.

public class Test {
 public static void main(string[] args) {
 C c = new C();
 system.out.println(c.x);
 system.out.println(c.convert());
 }
}

(b) This is wrong because x and convert are private in class C.

M09_LIAN9966_12_SE_C09.indd 346 16/09/19 4:58 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

A private data field cannot be accessed by an object from outside the class that defines the
private field. However, a client often needs to retrieve and modify a data field. To make a
private data field accessible, provide a getter method to return its value. To enable a private
data field to be updated, provide a setter method to set a new value. A getter method is also
referred to as an accessor and a setter to a mutator. A getter method has the following
signature:

public returnType getPropertyName()

If the returnType is boolean, the getter method should be defined as follows by convention:

public boolean isPropertyName()

A setter method has the following signature:

public void setPropertyName(dataType propertyValue)

Let’s create a new circle class with a private data-field radius and its associated accessor and
mutator methods. The class diagram is shown in Figure 9.17. The new circle class is defined
in Listing 9.8:

getter (or accessor)
setter (or mutator)

boolean accessor

Figure 9.17  The Circle class encapsulates circle properties and provides getter/setter and other methods.

The 2 sign indicates
a private modifier

Circle

-radius: double

-numberOfObjects: int

+Circle()

+getArea(): double

+getNumberOfObjects(): int

+setRadius(radius: double): void

+getRadius(): double

+Circle(radius: double)

The radius of this circle (default: 1.0).

Constructs a default circle object.

The number of circle objects created.

Returns the area of this circle.

Returns the number of circle objects created.

Sets a new radius for this circle.
Returns the radius of this circle.

Constructs a circle object with the specified radius.

Listing 9.8  Circle.java(for CircleWithPrivateDataFields)

encapsulate radius

encapsulate
numberOfObjects

 1 public class Circle {
 2 /** The radius of the circle */
 3 private double radius = 1;
 4
 5 /** The number of objects created */
 6 private static int numberOfObjects = 0;
 7
 8 /** Construct a circle with radius 1 */
 9 public Circle() {
10 numberOfObjects++;
11 }
12
13 /** Construct a circle with a specified radius */
14 public Circle(double newRadius) {
15 radius = newRadius;
16 numberOfObjects++;

9.9  Data Field Encapsulation 347

M09_LIAN9966_12_SE_C09.indd 347 16/09/19 4:58 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

348 Chapter 9   Objects and Classes

17 }
18
19 /** Return radius */
20 public double getRadius() {
21 return radius;
22 }
23
24 /** Set a new radius */
25 public void setRadius(double newRadius) {
26 radius = (newRadius >= 0) ? newRadius : 0;
27 }
28
29 /** Return numberOfObjects */
30 public static int getNumberOfObjects() {
31 return numberOfObjects;
32 }
33
34 /** Return the area of this circle */
35 public double getArea() {
36 return radius * radius * Math.PI;
37 }
38 }

The getRadius() method (lines 20–22) returns the radius and the setRadius(newRadius)
method (lines 25–27) sets a new radius for the object. If the new radius is negative, 0 is set as
the radius for the object. Since these methods are the only ways to read and modify the radius,
you have total control over how the radius property is accessed. If you have to change the
implementation of these methods, you don’t need to change the client programs. This makes
the class easy to maintain.

Listing 9.9 gives a client program that uses the Circle class to create a Circle object,
and modifies the radius using the setRadius method.

Listing 9.9  TestCircleWithPrivateDataFields.java
 1 public class TestCircleWithPrivateDataFields {
 2 /** Main method */
 3 public static void main(String[] args) {
 4 // Create a circle with radius 5.0
 5 Circle myCircle = new Circle(5.0);
 6 System.out.println("The area of the circle of radius "
 7 + myCircle.getRadius() + " is " + myCircle.getArea());
 8
 9 // Increase myCircle's radius by 10%
10 myCircle.setRadius(myCircle.getRadius() * 1.1);
11 System.out.println("The area of the circle of radius "
12 + myCircle.getRadius() + " is " + myCircle.getArea());
13
14 System.out.println("The number of objects created is "
15 + Circle.getNumberOfObjects());
16 }
17 }

The data field radius is declared private. Private data can be accessed only within their
defining class, so you cannot use myCircle.radius in the client program. A compile error
would occur if you attempted to access private data from a client.

Since numberOfObjects is private, it cannot be modified. This prevents tampering. For
example, the user cannot set numberOfObjects to 100. The only way to make it 100 is to
create 100 objects of the Circle class.

accessor method

mutator method

accessor method

invoke public method

invoke public method

invoke public method

M09_LIAN9966_12_SE_C09.indd 348 16/09/19 4:58 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

9.10  Passing Objects to Methods 349

Suppose you combined TestCircleWithPrivateDataFields and Circle into one class
by moving the main method in TestCircleWithPrivateDataFields into Circle. Could
you use myCircle.radius in the main method? See CheckPoint Question 9.9.3 for the answer.

Design Guide
To prevent data from being tampered with and to make the class easy to maintain,
declare data fields private.

Note
From now on, all data fields should be declared private, and all constructors and methods
should be defined public, unless specified otherwise.

	9.9.1	 What is an accessor method? What is a mutator method? What are the naming con-
ventions for accessor methods and mutator methods?

	9.9.2	 What are the benefits of data field encapsulation?

	9.9.3	 In the following code, radius is private in the Circle class, and myCircle is an object
of the Circle class. Does the highlighted code cause any problems? If so, explain why.

public class Circle {
 private double radius = 1;

 /** Find the area of this circle */
 public double getArea() {
 return radius * radius * Math.PI;
 }

 public static void main(String[] args) {
 Circle myCircle = new Circle();
 System.out.println("Radius is " + myCircle.radius);
 }
}

9.10  Passing Objects to Methods
Passing an object to a method is to pass the reference of the object.

You can pass objects to methods. Like passing an array, passing an object is actually passing
the reference of the object. The following code passes the myCircle object as an argument to
the printCircle method:

 1 public class Test {
 2 public static void main(String[] args) {
 3 // Circle is defined in Listing 9.8
 4 Circle myCircle = new Circle(5.0);
 5 printCircle(myCircle);
 6 }
 7
 8 public static void printCircle(Circle c) {
 9 System.out.println("The area of the circle of radius "
10 + c.getRadius() + " is " + c.getArea());
11 }
12 }

Java uses exactly one mode of passing arguments: pass-by-value. In the preceding code,
the value of myCircle is passed to the printCircle method. This value is a reference to a
Circle object.

The program in Listing 9.10 demonstrates the difference between passing a primitive-
type value and passing a reference value.

Point
Check

Point
Key

pass an object

pass-by-value

M09_LIAN9966_12_SE_C09.indd 349 16/09/19 4:58 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

350 Chapter 9   Objects and Classes

Listing 9.10  TestPassObject.java
 1 public class TestPassObject {
 2 /** Main method */
 3 public static void main(String[] args) {
 4 // Create a Circle object with radius 1
 5 Circle myCircle =
 6 new Circle(1); // Use the Circle class in Listing 9.8
 7
 8 // Print areas for radius 1, 2, 3, 4, and 5.
 9 int n = 5;
10 printAreas(myCircle, n);
11
12 // See myCircle.radius and times
13 System.out.println("\n" + "Radius is " + myCircle.getRadius());
14 System.out.println("n is " + n);
15 }
16
17 /** Print a table of areas for radius */
18 public static void printAreas(Circle c, int times) {
19 System.out.println("Radius \t\tArea");
20 while (times >= 1) {
21 System.out.println(c.getRadius() + "\t\t" + c.getArea());
22 c.setRadius(c.getRadius() + 1);
23 times——;
24 }
25 }
26 }

pass object

object parameter

Radius Area

1.0 3.141592653589793

2.0 12.566370614359172

3.0 28.274333882308138

4.0 50.26548245743669

5.0 78.53981633974483

Radius is 6.0

n is 5

The Circle class is defined in Listing 9.8. The program passes a Circle object myCircle
and an integer value from n to invoke printAreas(myCircle, n) (line 10), which prints a
table of areas for radii 1, 2, 3, 4, and 5, as presented in the sample output.

Figure 9.18 shows the call stack for executing the methods in the program. Note the objects
are stored in a heap (see Section 7.6).

When passing an argument of a primitive data type, the value of the argument is passed. In
this case, the value of n (5) is passed to times. Inside the printAreas method, the content
of times is changed; this does not affect the content of n.

When passing an argument of a reference type, the reference of the object is passed. In this
case, c contains a reference for the object that is also referenced via myCircle. Therefore,
changing the properties of the object through c inside the printAreas method has the same
effect as doing so outside the method through the variable myCircle. Pass-by-value on ref-
erences can be best described semantically as pass-by-sharing; that is, the object referenced in
the method is the same as the object being passed.

pass-by-sharing

M09_LIAN9966_12_SE_C09.indd 350 16/09/19 4:58 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

9.10  Passing Objects to Methods 351

Figure 9.18  The value of n is passed to times, and the reference to myCircle is passed to
c in the printAreas method.

Activation record for
the main method
int n: 5
myCircle:

Stack

Activation record for
the printAreas method
int times: 5
Circle c:

Heap

Pass-by-value
(here the value is the
reference for the object)

Pass-by-value
(here the value is 5)

reference

reference

A Circle
object

public class Test {
public static void main(String[] args) {

 Count myCount = new Count();
int times = 0;

for (int i = 0; i < 100; i++)
 increment(myCount, times);

 System.out.println("count is " + myCount.count);
 System.out.println("times is " + times);
 }

public static void increment(Count c, int times) {
 c.count++;
 times++;
 }
}

public class Count {

public int count;

public Count (int c) {
 count = c;
 }

public Count () {
 count = 1;
 }
}

	9.10.1	 Describe the difference between passing a parameter of a primitive type and passing
a parameter of a reference type. Show the output of the following programs: Point

Check

	9.10.2	Show the output of the following program:

public class Test {
 public static void main(String[] args) {
 Circle circle1 = new Circle(1);
 Circle circle2 = new Circle(2);

 swap1(circle1, circle2);
 System.out.println("After swap1: circle1 = " +
 circle1.radius + " circle2 = " + circle2.radius);

 swap2(circle1, circle2);
 System.out.println("After swap2: circle1 = " +
 circle1.radius + " circle2 = " + circle2.radius);
 }

 public static void swap1(Circle x, Circle y) {
 Circle temp = x;
 x = y;
 y = temp;
 }

M09_LIAN9966_12_SE_C09.indd 351 16/09/19 4:58 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

352 Chapter 9   Objects and Classes

 public static void swap2(Circle x, Circle y) {
 double temp = x.radius;
 x.radius = y.radius;
 y.radius = temp;
 }
}

class Circle {
 double radius;

 Circle(double newRadius) {
 radius = newRadius;
 }
}

	9.10.3	Show the output of the following code:

public class Test {
public static void main(String[] args) {
int[] a = {1, 2};

 swap(a[0], a[1]);
 System.out.println("a[0] = " + a[0]
 + " a[1] = " + a[1]);
 }

public static void swap(int n1, int n2) {
int temp = n1;

 n1 = n2;
 n2 = temp;
 }
}

(a)

public class Test {
public static void main(String[] args) {

int[] a = {1, 2};
 swap(a);
 System.out.println("a[0] = " + a[0]
 + " a[1] = " + a[1]);
 }

public static void swap(int[] a) {
int temp = a[0];

 a[0] = a[1];
 a[1] = temp;
 }
}

(b)

public class Test {
public static void main(String[] args) {

 T t = new T();
 swap(t);
 System.out.println("e1 = " + t.e1
 + " e2 = " + t.e2);
 }

public static void swap(T t) {
 int temp = t.e1;
 t.e1 = t.e2;
 t.e2 = temp;
 }
}

class T {
int e1 = 1;
int e2 = 2;

}

(c)

public class Test {
public static void main(String[] args) {

 T t1 = new T();
 T t2 = new T();
 System.out.println("t1's i = " +
 t1.i + " and j = " + t1.j);
 System.out.println("t2's i = " +
 t2.i + " and j = " + t2.j);
 }
}

class T {
static int i = 0;
int j = 0;

 T() {
 i++;
 j = 1;
 }
}

(d)

M09_LIAN9966_12_SE_C09.indd 352 16/09/19 4:58 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

9.11  Array of Objects 353

	9.10.4	What is the output of the following programs?

import java.util.Date;

public class Test {
public static void main(String[] args) {

 Date date = null;
 m1(date);
 System.out.println(date);
 }

public static void m1(Date date) {
 date = new Date();
 }
}

(a)

import java.util.Date;

public class Test {
public static void main(String[] args) {

 Date date = new Date(1234567);
 m1(date);
 System.out.println(date.getTime());
 }

public static void m1(Date date) {
 date = new Date(7654321);
 }
}

(b)

import java.util.Date;

public class Test {
public static void main(String[] args) {

 Date date = new Date(1234567);
 m1(date);
 System.out.println(date.getTime());
 }

public static void m1(Date date) {
 date.setTime(7654321);
 }
}

(c)

import java.util.Date;

public class Test {
public static void main(String[] args) {

 Date date = new Date(1234567);
 m1(date);
 System.out.println(date.getTime());
 }

public static void m1(Date date) {
 date = null;
 }
}

(d)

9.11  Array of Objects
An array can hold objects as well as primitive-type values.

Chapter 7, Single-Dimensional Arrays, described how to create arrays of primitive-type ele-
ments. You can also create arrays of objects. For example, the following statement declares
and creates an array of 10 Circle objects:

Circle[] circleArray = new Circle[10];

To initialize circleArray, you can use a for loop as follows:

for (int i = 0; i < circleArray.length; i++) {
 circleArray[i] = new Circle();
}

An array of objects is actually an array of reference variables. Thus, invoking circleArray[1]
.getArea() involves two levels of referencing, as shown in Figure 9.19. circleArray
references the entire array, and circleArray[1] references a Circle object.

Note
When an array of objects is created using the new operator, each element in the array is
a reference variable with a default value of null.

Point
Key

M09_LIAN9966_12_SE_C09.indd 353 16/09/19 4:58 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

354 Chapter 9   Objects and Classes

Figure 9.19  In an array of objects, an element of the array contains a reference to an
object.

…
…

circleArray[9]

circleArray[1]

circleArray[0]reference Circle object 0

Circle object 1

Circle object 9

circleArray

Listing 9.11 gives an example that demonstrates how to use an array of objects. The pro-
gram summarizes the areas of an array of circles. The program creates circleArray, an
array composed of five Circle objects; it then initializes circle radii with random values and
displays the total area of the circles in the array.

Listing 9.11  TotalArea.java
 1 public class TotalArea {
 2 /** Main method */
 3 public static void main(String[] args) {
 4 // Declare circleArray
 5 Circle[] circleArray;
 6
 7 // Create circleArray
 8 circleArray = createCircleArray();
 9
10 // Print circleArray and total areas of the circles
11 printCircleArray(circleArray);
12 }
13
14 /** Create an array of Circle objects */
15 public static Circle[] createCircleArray() {
16 Circle[] circleArray = new Circle[5];
17
18 for (int i = 0; i < circleArray.length; i++) {
19 circleArray[i] = new Circle(Math.random() * 100);
20 }
21
22 // Return Circle array
23 return circleArray;
24 }
25
26 /** Print an array of circles and their total area */
27 public static void printCircleArray(Circle[] circleArray) {
28 System.out.printf("%–30s%–15s\n", "Radius", "Area");
29 for (int i = 0; i < circleArray.length; i++) {
30 System.out.printf("%–30f%–15f\n", circleArray[i].getRadius(),
31 circleArray[i].getArea());
32 }
33
34 System.out.println("— —");
35
36 // Compute and display the result
37 System.out.printf("%–30s%–15f\n", "The total area of circles is",
38 sum(circleArray));
39 }
40

array of objects

return array of objects

pass array of objects

M09_LIAN9966_12_SE_C09.indd 354 16/09/19 4:58 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

9.12  Immutable Objects and Classes 355

41 /** Add circle areas */
42 public static double sum(Circle[] circleArray) {
43 // Initialize sum
44 double sum = 0;
45
46 // Add areas to sum
47 for (int i = 0; i < circleArray.length; i++)
48 sum += circleArray[i].getArea();
49
50 return sum;
51 }
52 }

pass array of objects

Radius Area

70.577708 15649.941866

44.152266 6124.291736

24.867853 1942.792644

 5.680718 101.380949

36.734246 4239.280350

———

The total area of circles is 28056.687544

The program invokes createCircleArray() (line 8) to create an array of five circle objects.
Several circle classes were introduced in this chapter. This example uses the Circle class
introduced in Section 9.9, Data Field Encapsulation.

The circle radii are randomly generated using the Math.random() method (line 19). The
createCircleArray method returns an array of Circle objects (line 23). The array is
passed to the printCircleArray method, which displays the radius and area of each circle
and the total area of the circles.

The sum of the circle areas is computed by invoking the sum method (line 38), which takes
the array of Circle objects as the argument and returns a double value for the total area.

	9.11.1	 What is wrong in the following code?

1 public class Test {
2 public static void main(String[] args) {
3 java.util.Date[] dates = new java.util.Date[10];
4 System.out.println(dates[0]);
5 System.out.println(dates[0].toString());
6 }
7 }

9.12  Immutable Objects and Classes
You can define immutable classes to create immutable objects. The contents of
immutable objects cannot be changed.

Normally, you create an object and allow its contents to be changed later. However, occasion-
ally it is desirable to create an object whose contents cannot be changed once the object has
been created. We call such an object as immutable object and its class as immutable class. The
String class, for example, is immutable. If you deleted the setter method in the Circle class
in Listing 9.8, the class would be immutable because radius is private and cannot be changed
without a setter method.

If a class is immutable, then all its data fields must be private and it cannot contain public
setter methods for any data fields. A class with all private data fields and no mutators is not

Point
Key

immutable class

VideoNote
Immutable objects and
this keyword

immutable object

M09_LIAN9966_12_SE_C09.indd 355 16/09/19 4:58 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

356 Chapter 9   Objects and Classes

necessarily immutable. For example, the following Student class has all private data fields
and no setter methods, but it is not an immutable class:

 1 public class Student {
 2 private int id;
 3 private String name;
 4 private java.util.Date dateCreated;
 5
 6 public Student(int ssn, String newName) {
 7 id = ssn;
 8 name = newName;
 9 dateCreated = new java.util.Date();
10 }
11
12 public int getId() {
13 return id;
14 }
15
16 public String getName() {
17 return name;
18 }
19
20 public java.util.Date getDateCreated() {
21 return dateCreated;
22 }
23 }

As shown in the following code, the data field dateCreated is returned using the getDate-
Created() method. This is a reference to a Date object. Through this reference, the content
for dateCreated can be changed.

public class Test {
 public static void main(String[] args) {
 Student student = new Student(111223333, "John");
 java.util.Date dateCreated = student.getDateCreated();
 dateCreated.setTime(200000); // Now dateCreated field is changed!
 }
}

For a class to be immutable, it must meet the following requirements:

■■ All data fields must be private.

■■ There can’t be any mutator methods for data fields.

■■ No accessor methods can return a reference to a data field that is mutable.

Interested readers may refer to Supplement III.U for an extended discussion on immutable
objects.

	9.12.1	 If a class contains only private data fields and no setter methods, is the class
immutable?

	9.12.2	 If all the data fields in a class are private and of primitive types, and the class
doesn’t contain any setter methods, is the class immutable?

	9.12.3	 Is the following class immutable?

public class A {
 private int[] values;

 public int[] getValues() {

Student class

Point
Check

M09_LIAN9966_12_SE_C09.indd 356 16/09/19 4:58 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

9.13  The Scope of Variables 357

 return values;
 }
}

9.13  The Scope of Variables
The scope of instance and static variables is the entire class, regardless of where the
variables are declared.

Section 6.9 discussed local variables and their scope rules. Local variables are declared and
used inside a method locally. This section discusses the scope rules of all the variables in the
context of a class.

Instance and static variables in a class are referred to as the class’s variables or data fields.
A variable defined inside a method is referred to as a local variable. The scope of a class’s
variables is the entire class, regardless of where the variables are declared. A class’s variables
and methods can appear in any order in the class, as shown in Figure 9.20a. The exception is
when a data field is initialized based on a reference to another data field. In such cases, the
other data field must be declared first, as shown in Figure 9.20b. For consistency, this book
declares data fields at the beginning of the class.

Point
Key

class’s variables

Figure 9.20  Members of a class can be declared in any order, with one exception.

public class Circle {
public double getArea() {

return radius * radius * Math.PI;
 }

private double radius = 1;
}

public class F {
private int i;
private int j = i + 1;

}

(a) (b)

(a) �The variable radius and method getArea() can be
declared in any order.

(b) �i has to be declared before j because j’s initial
value is dependent on i.

You can declare a class’s variable only once, but you can declare the same variable name
in a method many times in different nonnesting blocks.

If a local variable has the same name as a class’s variable, the local variable takes prece-
dence and the class’s variable with the same name is hidden. For example, in the following
program, x is defined both as an instance variable and as a local variable in the method:

public class F {
 private int x = 0; // Instance variable
 private int y = 0;

 public F() {
 }

 public void p() {
 int x = 1; // Local variable
 System.out.println("x = " + x);
 System.out.println("y = " + y);
 }
}

What is the output for f.p(), where f is an instance of F? The output for f.p() is 1 for x
and 0 for y. Here is why:

■■ x is declared as a data field with the initial value of 0 in the class, but it is also
declared in the method p() with an initial value of 1. The latter x is referenced in the
System.out.println statement.

■■ y is declared outside the method p(), but y is accessible inside the method.

hidden variables

M09_LIAN9966_12_SE_C09.indd 357 16/09/19 4:58 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

358 Chapter 9   Objects and Classes

Tip
To avoid confusion and mistakes, do not use the names of instance or static variables as
local variable names, except for method parameters. We will discuss hidden data fields
by method parameters in the next section.

	9.13.1	 What is the output of the following program?

public class Test {
 private static int i = 0;
 private static int j = 0;

 public static void main(String[] args) {
 int i = 2;
 int k = 3;

 {
 int j = 3;
 System.out.println("i + j is " + i + j);
 }

 k = i + j;
 System.out.println("k is " + k);
 System.out.println("j is " + j);
 }
}

9.14  The this Reference
The keyword this refers to the calling object. It can also be used inside a constructor
to invoke another constructor of the same class.

When an instance method is called on an object, the this keyword is set to this object. You
can use the this keyword to reference the object’s instance members in the class. For example,
the following code in (a) uses this to reference the object’s radius and invokes its
getArea() method explicitly. Some instructors prefer using the this keyword explicitly in
the code, because it clearly distinguishes the instance variables from local variables. However,
the this reference is normally omitted for brevity as shown in (b). Nevertheless, the this
keyword is needed to reference a data field hidden by a method or constructor parameter, or
to invoke an overloaded constructor.

Point
Check

Point
Key

this keyword

VideoNote

The this keyword

public class Circle {
private double radius;

 ...

public double getArea() {
return this.radius * this.radius

 }

public String toString() {
return "radius: " + this.radius

 + "area: " + this.getArea();
 }
}

(a)

public class Circle {
private double radius;

 ...

public double getArea() {
return radius * radius * Math.PI;

 }

public String toString() {
return "radius: " + radius

 + "area: " + getArea();
 }
}

(b)

Equivalent* Math.PI; * Math.PI;

M09_LIAN9966_12_SE_C09.indd 358 16/09/19 4:58 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

9.14.1  Using this to Reference Data Fields
It is a good practice to use the data field as the parameter name in a setter method or a con-
structor to make the code easy to read and to avoid creating unnecessary names. In this case,
you need to use the this keyword to reference the data field in the setter method. For exam-
ple, the setRadius method can be implemented as shown in (a). It would be wrong if it is
implemented as shown in (b).

The data field radius is hidden by the parameter radius in the setter method. You need to
reference the data field name in the method using the syntax this.radius. A hidden static
variable can be accessed simply by using the ClassName.staticVariable reference. A
hidden instance variable can be accessed by using the keyword this, as shown in Figure 9.21a.

reference the data field

Figure 9.21  The keyword this refers to the calling object that invokes the method.

public class F {
 private int i = 5;
 private static double k = 0;

 public void setI(int i) {
 this.i = i;
 }

 public static
 void setK(double k) {

F.k = k;

 }

 // other methods omitted
}

Suppose that f1 and f2 are two objects
of F created as follows:.

Invoking f1.setI(10)is to execute

F f1 = new F();
F f2 = new F();

 this.i = 10, where this is an alias

for f1

Invoking f2.setI(45)is to execute

 this.i = 45, where this is an alias

for f2

Invoking f2.setK(33)is to execute

F.k = 33. setK is a static method

(a) (b)

The this keyword gives us a way to reference the object that invokes an instance method.
To invoke f1.setI(10), this.i = i is executed, which assigns the value of parameter i to
the data field i of this calling object f1. The keyword this is an alias for f1, as shown in Figure
9.21b. The line F.k = k means the value in parameter k is assigned to the static data field k of
the class, which is shared by all the objects of the class.

9.14 The this Reference 359

private double radius;

public void setRadius(double radius) {
this.radius = radius;

}

private double radius = 1;

public void setRadius(double radius) {
radius = radius;

}

(a) Refers to data field radius in this object

Refers to data
field radius in
this object.

Here, radius
is the parameter
in the method.

(b) Refers to parameter radius in the method.

M09_LIAN9966_12_SE_C09.indd 359 16/09/19 4:58 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

360 Chapter 9   Objects and Classes

9.14.2  Using this to Invoke a Constructor
The this keyword can be used to invoke another constructor of the same class. For example,
you can rewrite the Circle class as follows:

public class Circle {
private double radius;
public Circle(double radius) {

this.radius = radius;
 } The this keyword is used to reference the

data field radius of the object being constructed.
public Circle() {

this(1.0);
 } The this keyword is used to invoke another

constructor.
 ...

}

The line this(1.0) in the second constructor invokes the first constructor with a double
value argument.

Note
Java requires that the this(arg-list) statement appear first in the constructor before
any other executable statements.

Tip
If a class has multiple constructors, it is better to implement them using this(arg-list)
as much as possible. In general, a constructor with no or fewer arguments can invoke a
constructor with more arguments using this(arg-list). This syntax often simplifies
coding and makes the class easier to read and to maintain.

	9.14.1	 Describe the role of the this keyword.

	9.14.2	 What is wrong in the following code?

 1 public class C {
 2 private int p;
 3
 4 public C() {
 5 System.out.println("C's no-arg constructor invoked");
 6 this(0);
 7 }
 8
 9 public C(int p) {
10 p = p;
11 }
12
13 public void setP(int p) {
14 p = p;
15 }
16 }

	9.14.3	 What is wrong in the following code?

public class Test {
 private int id;

 public void m1() {
 this.id = 45;
 }

Point
Check

M09_LIAN9966_12_SE_C09.indd 360 16/09/19 4:58 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

Chapter Summary 361

Key Terms

accessor  347
action  324
anonymous object  333
attribute  324
behavior  324
class  324
class’s variable  357
client  327
constructor  324
data field  324
data field encapsulation  346
default constructor  331
dot operator (.)  333
getter  347
immutable class  355
immutable object  355
instance  324
instance method  333
instance variable  333

instantiation  324
mutator  347
no-arg constructor  327
null value  334
object  324
object-oriented programming (OOP)  324
package-private (or package-access)  344
private constructor  346
property  324
public class  327
reference type  332
reference variable  332
setter  347
state  324
static method  339
static variable  339
this keyword  358
Unified Modeling Language (UML)  325

 public void m2() {
 Test.id = 45;
 }
}

Chapter Summary

1.	 A class is a template for objects. It defines the properties of objects and provides con-
structors for creating objects and methods for manipulating them.

2.	 A class is also a data type. You can use it to declare object reference variables. An
object reference variable that appears to hold an object actually contains a reference to
that object. Strictly speaking, an object reference variable and an object are different,
but most of the time the distinction can be ignored.

3.	 An object is an instance of a class. You use the new operator to create an object and the
dot operator (.) to access members of that object through its reference variable.

4.	 An instance variable or method belongs to an instance of a class. Its use is associated
with individual instances. A static variable is a variable shared by all instances of the
same class. A static method is a method that can be invoked without using instances.

5.	 Every instance of a class can access the class’s static variables and methods. For clar-
ity, however, it is better to invoke static variables and methods using ClassName
.variable and ClassName.method.

6.	 Visibility modifiers specify how the class, method, and data are accessed. A public
class, method, or data is accessible to all clients. A private method or data is accessible
only inside the class.

7.	 You can provide a getter (accessor) method or a setter (mutator) method to enable clients
to see or modify the data.

M09_LIAN9966_12_SE_C09.indd 361 16/09/19 4:58 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

362 Chapter 9   Objects and Classes

8.	 A getter method has the signature public returnType getPropertyName(). If the
returnType is boolean, the getter method should be defined as public boolean
isPropertyName(). A setter method has the signature public void setProper-
tyName(dataType propertyValue).

9.	 All parameters are passed to methods using pass-by-value. For a parameter of a primitive
type, the actual value is passed; for a parameter of a reference type, the reference for
the object is passed.

10.	 A Java array is an object that can contain primitive-type values or object-type values.
When an array of objects is created, its elements are assigned the default value of null.

11.	 Once it is created, an immutable object cannot be modified. To prevent users from mod-
ifying an object, you can define immutable classes.

12.	 The scope of instance and static variables is the entire class, regardless of where the vari-
ables are declared. Instance and static variables can be declared anywhere in the class.
For consistency, they are declared at the beginning of the class in this book.

13.	 The keyword this can be used to refer to the calling object. It can also be used inside
a constructor to invoke another constructor of the same class.

Quiz

Answer the quiz for this chapter online at the book Companion Website.

Programming Exercises

Pedagogical Note
The exercises in Chapters 9–13 help you to achieve three objectives:

1.	 Design classes and draw UML class diagrams.
2.	 Implement classes from the UML.
3.	 Use classes to develop applications.

Students can download solutions for the UML diagrams for the even-numbered exercises
from the Companion Website and instructors can download all solutions from the Instruc-
tor Website.

Starting from Section 9.7, all data fields should be declared private and all constructors
and methods should be defined public unless specified otherwise.

Sections 9.2–9.5
	 9.1	 (The Rectangle class) Following the example of the Circle class in Section 9.2,

design a class named Rectangle to represent a rectangle. The class contains:

■■ Two double data fields named width and height that specify the width and
height of the rectangle. The default values are 1 for both width and height.

■■ A no-arg constructor that creates a default rectangle.
■■ A constructor that creates a rectangle with the specified width and height.
■■ A method named getArea() that returns the area of this rectangle.
■■ A method named getPerimeter() that returns the perimeter.

		 Draw the UML diagram for the class then implement the class. Write a test pro-
gram that creates two Rectangle objects—one with width 4 and height 40, and

three objectives

M09_LIAN9966_12_SE_C09.indd 362 16/09/19 4:58 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

Programming Exercises 363

the other with width 3.5 and height 35.9. Display the width, height, area, and
perimeter of each rectangle in this order.

	 9.2	 (The Stock class) Following the example of the Circle class in Section 9.2,
design a class named Stock that contains:

■■ A string data field named symbol for the stock’s symbol.
■■ A string data field named name for the stock’s name.
■■ A double data field named previousClosingPrice that stores the stock

price for the previous day.
■■ A double data field named currentPrice that stores the stock price for the

current time.
■■ A constructor that creates a stock with the specified symbol and name.
■■ A method named getChangePercent() that returns the percentage changed

from previousClosingPrice to currentPrice.

		 Draw the UML diagram for the class then implement the class. Write a test pro-
gram that creates a Stock object with the stock symbol ORCL, the name Oracle
Corporation, and the previous closing price of 34.5. Set a new current price to
34.35 and display the price-change percentage.

Section 9.6
	 *9.3	 (Use the Date class) Write a program that creates a Date object, sets its elapsed

time to 10000, 100000, 1000000, 10000000, 100000000, 1000000000,
10000000000, and 100000000000, and displays the date and time using the
toString() method, respectively.

	 *9.4	 (Use the Random class) Write a program that creates a Random object with seed
1000 and displays the first 50 random integers between 0 and 100 using the
nextInt(100) method.

	 *9.5	 (Use the GregorianCalendar class) Java API has the GregorianCalendar
class in the java.util package, which you can use to obtain the year, month, and
day of a date. The no-arg constructor constructs an instance for the current date,
and the methods get(GregorianCalendar.YEAR), get(GregorianCalen-
dar.MONTH), and get(GregorianCalendar.DAY_OF_MONTH) return the year,
month, and day. Write a program to perform two tasks:

1.	 Display the current year, month, and day.
2.	 The GregorianCalendar class has the setTimeInMillis(long), which

can be used to set a specified elapsed time since January 1, 1970. Set the value
to 1234567898765L and display the year, month, and day.

Sections 9.7–9.9
	 *9.6	 (Stopwatch) Design a class named StopWatch. The class contains:

■■ Private data fields startTime and endTime with getter methods.
■■ A no-arg constructor that initializes startTime with the current time.
■■ A method named start() that resets the startTime to the current time.
■■ A method named stop() that sets the endTime to the current time.
■■ A method named getElapsedTime() that returns the elapsed time for the

stopwatch in milliseconds.

		 Draw the UML diagram for the class then implement the class. Write a test program
that measures the execution time of sorting 100,000 numbers using selection sort.

	 9.7	 (The Account class) Design a class named Account that contains:

■■ A private int data field named id for the account (default 0).
■■ A private double data field named balance for the account (default 0).

M09_LIAN9966_12_SE_C09.indd 363 16/09/19 4:58 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

Haneen Abu al hawa
from lab7

364 Chapter 9   Objects and Classes

■■ A private double data field named annualInterestRate that stores the current
interest rate (default 0). Assume that all accounts have the same interest rate.

■■ A private Date data field named dateCreated that stores the date when the
account was created.

■■ A no-arg constructor that creates a default account.
■■ A constructor that creates an account with the specified id and initial balance.
■■ The accessor and mutator methods for id, balance, and annualInterestRate.
■■ The accessor method for dateCreated.
■■ A method named getMonthlyInterestRate() that returns the monthly

interest rate.
■■ A method named getMonthlyInterest() that returns the monthly interest.
■■ A method named withdraw that withdraws a specified amount from the

account.
■■ A method named deposit that deposits a specified amount to the account.

		 Draw the UML diagram for the class then implement the class. (Hint: The method
getMonthlyInterest() is to return monthly interest, not the interest rate.
Monthly interest is balance * monthlyInterestRate. monthlyIntere-
stRate is annualInterestRate / 12. Note annualInterestRate is a per-
centage, for example 4.5%. You need to divide it by 100.)

		 Write a test program that creates an Account object with an account ID of 1122,
a balance of $20,000, and an annual interest rate of 4.5%. Use the withdraw
method to withdraw $2,500, use the deposit method to deposit $3,000, and print
the balance, the monthly interest, and the date when this account was created.

	 9.8	 (The Fan class) Design a class named Fan to represent a fan. The class contains:

■■ Three constants named SLOW, MEDIUM, and FAST with the values 1, 2, and 3
to denote the fan speed.

■■ A private int data field named speed that specifies the speed of the fan (the
default is SLOW).

■■ A private boolean data field named on that specifies whether the fan is on (the
default is false).

■■ A private double data field named radius that specifies the radius of the fan
(the default is 5).

■■ A string data field named color that specifies the color of the fan (the default
is blue).

■■ The accessor and mutator methods for all four data fields.
■■ A no-arg constructor that creates a default fan.
■■ A method named toString() that returns a string description for the fan. If

the fan is on, the method returns the fan speed, color, and radius in one com-
bined string. If the fan is not on, the method returns the fan color and radius
along with the string “fan is off” in one combined string.

		 Draw the UML diagram for the class then implement the class. Write a test program
that creates two Fan objects. Assign maximum speed, radius 10, color yellow,
and turn it on to the first object. Assign medium speed, radius 5, color blue, and
turn it off to the second object. Display the objects by invoking their toString
method.

	 **9.9	 (Geometry: n-sided regular polygon) In an n-sided regular polygon, all sides have
the same length and all angles have the same degree (i.e., the polygon is both equi-
lateral and equiangular). Design a class named RegularPolygon that contains:

■■ A private int data field named n that defines the number of sides in the polygon
with default value 3.

VideoNote

The Fan class

M09_LIAN9966_12_SE_C09.indd 364 16/09/19 4:58 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

Programming Exercises 365

■■ A private double data field named side that stores the length of the side with
default value 1.

■■ A private double data field named x that defines the x-coordinate of the poly-
gon’s center with default value 0.

■■ A private double data field named y that defines the y-coordinate of the poly-
gon’s center with default value 0.

■■ A no-arg constructor that creates a regular polygon with default values.
■■ A constructor that creates a regular polygon with the specified number of sides

and length of side, centered at (0, 0).
■■ A constructor that creates a regular polygon with the specified number of sides,

length of side, and x- and y-coordinates.
■■ The accessor and mutator methods for all data fields.
■■ The method getPerimeter() that returns the perimeter of the polygon.
■■ The method getArea() that returns the area of the polygon. The formula for

computing the area of a regular polygon is

 Area =
n * s2

4 * tanap
n
b

.

		 Draw the UML diagram for the class then implement the class. Write a test pro-
gram that creates three RegularPolygon objects, created using the no-arg con-
structor, using RegularPolygon(6, 4), and using RegularPolygon(10, 4,
5.6, 7.8). For each object, display its perimeter and area.

	 *9.10	 (Algebra: quadratic equations) Design a class named QuadraticEquation for
a quadratic equation ax2 + bx + c = 0. The class contains:

■■ Private data fields a, b, and c that represent three coefficients.
■■ A constructor with the arguments for a, b, and c.
■■ Three getter methods for a, b, and c.
■■ A method named getDiscriminant() that returns the discriminant, which

is b2 - 4ac.
■■ The methods named getRoot1() and getRoot2() for returning two roots

of the equation

r1 =
-b + 2b2 - 4ac

2a
 and r2 =

-b - 2b2 - 4ac
2a

These methods are useful only if the discriminant is nonnegative. Let these methods
return 0 if the discriminant is negative.

		 Draw the UML diagram for the class then implement the class. Write a test pro-
gram that prompts the user to enter values for a, b, and c and displays the result
based on the discriminant. If the discriminant is positive, display the two roots. If
the discriminant is 0, display the one root. Otherwise, display “The equation has
no roots.” See Programming Exercise 3.1 for sample runs.

	 *9.11	 (Algebra: 2 * 2 linear equations) Design a class named LinearEquation for a
2 * 2 system of linear equations:

ax + by = e
cx + dy = f

 x =
ed - bf

ad - bc
 y =

af - ec

ad - bc

		 The class contains:

M09_LIAN9966_12_SE_C09.indd 365 16/09/19 4:58 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

366 Chapter 9   Objects and Classes

■■ Private data fields a, b, c, d, e, and f.
■■ A constructor with the arguments for a, b, c, d, e, and f.
■■ Six getter methods for a, b, c, d, e, and f.
■■ A method named isSolvable() that returns true if ad - bc is not 0.
■■ Methods getX() and getY() that return the solution for the equation.

		 Draw the UML diagram for the class then implement the class. Write a test pro-
gram that prompts the user to enter a, b, c, d, e, and f and displays the result.
If ad - bc is 0, report that “The equation has no solution.” See Programming
Exercise 3.3 for sample runs.

	**9.12	 (Geometry: intersecting point) Suppose two line segments intersect. The two end-
points for the first line segment are (x1, y1) and (x2, y2) and for the second line
segment are (x3, y3) and (x4, y4). Write a program that prompts the user to enter
these four endpoints and displays the intersecting point. As discussed in Program-
ming Exercise 3.25, the intersecting point can be found by solving a linear equa-
tion. Use the LinearEquation class in Programming Exercise 9.11 to solve this
equation. See Programming Exercise 3.25 for sample runs.

	**9.13	 (The Location class) Design a class named Location for locating a maximal
value and its location in a two-dimensional array. The class contains public data
fields row, column, and maxValue that store the maximal value and its indices in
a two-dimensional array with row and column as int types and maxValue as a
double type.

		 Write the following method that returns the location of the largest element in a
two-dimensional array:

public static Location locateLargest(double[][] a)

		 The return value is an instance of Location. Write a test program that prompts
the user to enter a two-dimensional array and displays the location of the largest
element in the array. Here is a sample run:

Enter the number of rows and columns in the array: 3 4
Enter the array:

23.5 35 2 10

4.5 3 45 3.5

35 44 5.5 9.6
The location of the largest element is 45 at (1, 2)

M09_LIAN9966_12_SE_C09.indd 366 16/09/19 4:58 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

