10. Hermite's differential equation
y"=2xy'+2ny=0,n=0,1,2, ...,

has polynomial solutions /,(x). Put the equation in self-adjoint form and give an orthogonality
relation.
11. Consider the regular Sturm-Liouville problem:

—d[l+ '] + 2 0 0) =0 1) =10
( Xy =y =40, pOy=040, wWl)=10U
dx - ; B i :

(a) Find the eigenvalues and eigenfunctions of the boundary-value problem. [ Hint: Letx =tan z
and then use the Chain Rule.]

(b) Give an orthogonality relation.

12. (a) Find the eigenfunctions and the equation that defines the eigenvalues for the boundary-value
problem

2 +ay A - Ly =0,

¥ is bounded at x = 0, w3) = 0.

(b) Use Table 5.3.1 of Section 5.3 to find the approximate values of the first four eigenvalues a,
Oy, O3, and 0y.

= Discussion Problem
13. Consider the special case of the regular Sturm—Liouville problem on the interval [a, b]:

!
i . - . zs =
— [rixp'] + Apixly =0, ¥ia) =0, yib) =0

dx

Is @ = 0 an eigenvalue of the problem? Defend your answer.

= Computer Lab Assignments

14. (a) Give an orthogonality relation for the Sturm-Liouville problem in Problem 1.
(b) Use a CAS as an aid in verifying the orthogonality relation for the eigenfunctionsy; and y,
that correspond to the first two eigenvalues a and a,, respectively.

15. (a) Give an orthogonality relation for the Sturm-Liouville problem in Problem 2.

(b) Use a CAS as an aid in verifying the orthogonality relation for the eigenfunctionsy; and y,
that correspond to the first two eigenvalues a and a.,, respectively.

12.6 Bessel and Legendre Series

= Introduction Fourier series, Fourier cosine series, and Fourier sine series are three ways of
expanding a function in terms of an orthogonal set of functions. But such expansions are by no means
limited to orthogonal sets of trigonometric functions. We saw in Section 12.1 that a function " defined
on an interval (a, b) could be expanded, at least in a formal manner, in terms of any set of functions

(B O ik Drihbddiabith respect to a weight function on [a, b]. Mph9H e \6rhoGONAIEHHRS
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expansions or generalized Fourier series derive from Sturm-Liouville problems that, in turn, arise
from attempts to solve linear partial differential equations serving as models for physical systems.
Fourier series and orthogonal series expansions (the latter includes the two series considered in this
section) will appear in the subsequent consideration of these applications in Chapters 13 and 14.

12.6.1 Fourier—Bessel Series

We saw 1n Example 3 of Section 12.5 that for a fixed value of n the set of Bessel functions {J,(a; x)},

i=1,2,3, ..., 1s orthogonal with respect to the weight function p(x) = x on an interval [0, ] when the
a; are defined by means of a boundary condition of the form

A (ab) + B (ab) = 0. i)

The eigenvalues of the corresponding Sturm-Liouville problem arel;, = a?. From (7) and (8) of

Section 12.1 the orthogonal series expansion or generalized Fourier series of a functionf defined on
the interval (0, b) in terms of this orthogonal set is

fixy = e d fo;x), i2)
=
where

_ _J'.‘:f'.r T2 fix) dx

(3

RACES]E

The square norm of the function J,(ax) is defined by (11) of Section 12.1:

rb
| T ex)|* = | x I3 ax) d. (4
J

The series (2) with coefficients (3) is called a Fourier—Bessel series.

[] Differential Recurrence Relations The differential recurrence relations that were given in (20)
and (21) of Section 5.3 are often useful in the evaluation of the coefficients (3). For convenience we
reproduce those relations here:

J A
—- D] = X" (5)

g
i [x"Lx)] = —x~"J, , ((x). (6]

[1 Square Norm The value of the square norm (4) depends on how the eigenvalues 1, = a?; are

defined. If y = J,(ax), then we know from Example 3 of Section 12.5 that

1] F, 2.'\.
=[]+ [farzx = r:_) y = 0.
dx 1 xt

After we multiply by 2xy’, this equation can be written as

d d
LTI RN W N P
i [xy'] (et n Id.r [v]

Integrating the last result by parts on [0, 5] then gives
STUDENTS-HUB.com Uploaded By: anonymous
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rb

. o
2 2 . 2, 2

vt dx = ([.r}.' I" +iex™ — m)y J l :
] \ a

2o

Since y =J,(ax), the lower limit is zero for n > 0 because J,(0) = 0. For n = 0, the quantity [x)']* +

a’x?)? is zero at x = 0. Thus

e

202 | xJ3(cex) dx = 2B [T (ab)]* + (&'B? — W[ jab)]?, (7
Jo
where we have used the Chain Rule to write ¥ = af fax).
We now consider three cases of the boundary condition (1).
Case I: If we choose 4, =1 and B, =0, then (1) is

Jiak) =10, (2]

There are an infinite number of positive roots x, = a;b of (8) (see Figure 5.3.1) that define
the a; as a; =x;/b. The eigenvalues are positive and are thenl; = a% =x?i/b>. No new
eigenvalues result from the negative roots of (8) since J,(—x) = (-1)"J,(x). (See page 277.)
The number 0 1s not an eigenvalue for any n since J,(0) =0 forn =1, 2, 3, ... and J,(0) =

1. In other words, 1f4 = 0, we get the trivial function (which is never an eigenfunction) for
n=1,2,3,...,and for n =0, A = 0 (or equivalently, & = 0) does not satisfy the equation in
(8). When (6) 1s written in the formx J',(x) =n J,(x) —x J,,(x), it follows from (7) and

(8) that the square norm of J, (a; x) 1s

2
B ;
[ e = — 72 (b} (9]

&

Case II: If we choose 4,=h <0, B,=b, then (1) 1s

hl(aby +abliab) =0 (10)

Equation (10) has an infinite number of positive roots x; = a b for each positive integer n =
1,2, 3, .... As before, the eigenvalues are obtained from A; = a?; =x?/b%. A = 0 is not an
eigenvalue for n =1, 2, 3, .... Substituting 4,bJ", (a;0) = —hJ, (a;b) into (7), we find that the
square norm of J, (a;x) is now

il 3 il )
b —n”+h"

| iegx)|? = T a,b). (1)

Case III: If h =0 and n = 0 in (10), the a, are defined from the roots of
Ji(ab) = 0. (12)

Even though (12) is just a special case of (10), it is the only situation for which4 =0 is an
eigenvalue. To see this, observe that for n = 0, the result in (6) implies that J'o(ad) = 0 is

equivalent to J(ab) = 0. Since x; =aib = 0 is a root of the last equation, o; = 0, and

because Jy(0) = 1 is nontrivial, we conclude fromA; =a?, =x?/b* thati, = 0 is an
STUDERIgémHIE . Bafrobviously we cannot use (11) when a; = 0phcadeandy: armijonewer,



from the square norm (4) we have

. e h? o
11 = |]_1.-4.1.-=’T. (13)

For ;>0 we canuse (11) withA=0and n=10

W -
ol )|* = — Fileb). (14)

The following definition summarizes three forms of the series (2) corresponding to the square
norms in the three cases.

Definition 12.6.1 Fourier—Bessel Series

The Fourier—Bessel series of a function /' defined on the interval (0, b) is given by
()
o = Seda) (15)

‘|

o= —hz.ff- v | xJ (e x) fix) dx, {16}

where the a; are defined by J, (ad) = 0.
(if)
fo9 = Beul e )

-
2o

: J (o dr, 18
(o e e B _L xl (e fix) (18)

where the a; are defined by 4J,(ab) + abJ’,(ab) = 0.
(iii)

C'I:=

flz) =+ Ecl-.f,:,(u.-_x} 19}

L
€ = E| xfix)dx, c; = | xyle;x) flx) dx, (20
B i}

' ."':EJ'ZIr AN

where the a; are defined by J'(ab) = 0.

[] Convergence of a Fourier—Bessel Series Sufficient conditions for the convergence of a Fourier-
Bessel series are not particularly restrictive.

Theorem 12.6.1 Conditions for Convergence

Letf and /" be piecewise continuous on the interval [0, b]. Then for all x in the interval (0, ), the
Fourier—Bessel series of f/ converges to £ (x) at a point where f'1s continuous and to the average

flxt) + fix—)
2

T poit Wiieretf isRlisoentinous. Uploaded By: anonymous
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EXAMPLE 1| Expansion in a Fourier—Bessel Series

Expand f(x) =x, 0 <x .2 ina Fourier—Bessel series, using Bessel functions of order on that satisfy the
boundary condition J;(3a) = 0.

SOLUTION We use (15) where the coefficients c; are given by (16) with b = 3:

r3

o x o JTex) dx.

i T R2pZraan |
35503 &

d

To evaluate this integral we let = ax, dx = dt/a;, x* = t*/a?;, and use (5) in the form g 21 =/

2 R 2
= T —[I'z.-irjl:l']] dt =
Qo J5(30x;) o dt

ik a
; ot a0 G

Therefore the desired expansion is

o0
fl) = 2%, -

Jileex). =
ey ﬂszl. jft'j.l b

You are asked to find the first four values of the «; for the foregoing Bessel series in Problem 1 ir
Exercises 12.6.

EXAMPLE 2| Expansion in a Fourier—Bessel Series

If the @; in Example 1 are defined byJ;(3a) + aJ';(3a) = 0, then the only thing that changes in the
expansion is the value of the square norm. Multiplying the boundary condition by 3 gives 3J;(3a) +
30J'1(3a) = 0, which now matches (10) when/ = 3,5 =3, and n = 1. Thus (18) and (17) yield, in
turn,

1 Bex; J7( 3ex;)
" 9 + )73 Ga)

L

and

ol o Ja 3es)
fix) =18, 2, Jy{ex).

S 9al + 8Vi(3a)

[]  Use of Computers Since Bessel functions are “built-in functions” in a CAS, it is a straight
forward task to find the approximate values of the a; and the coefficients ¢; in a Fourier—Bessel

series. For example, in (9) we can think of x; = a,b as a positive root of the equation 4J,(x) +x J' (x)
= 0. Thus in Example 2 we have used a CAS to find the first five positive rootsx; of 3.J;(x) +xJ(x)
= 0 and from these roots we obtain the first five values of a;: a; =x;/3 = 0.98320, a0, =x,/3 =
1.94704, o3 = x3/3 = 2.95758, a4 = x4/3 = 3.98538, and a5 =x5/3 = 5.02078. Knowing the roots x; =
3q; and the a;, we again use a CAS to calculate the numerical values of.J,(3a,), J?/(3a;,), and finally

the coefficients c¢;. In this manner we find that the fifth partial sum S5(x) for the Fourier—Bessel series
répidséntationof Al B=00101< x < 3 in Example 2 is Uploaded By: anonymous
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S<(x) = 4.01844 J,(0.98320x) —1.86937 J;(1.94704x)
+1.07106 J;(2.95758x) —0.70306 .J;(3.98538x) + 0.50343 .J,(5.02078x).

The graph of S5(x) on the interval (0, 3) 1s shown in FIGURE 12.6.1(a). In Figure 12.6.1(b) we have
graphed S;y(x) on the interval (0, 50). Notice that outside the interval of definition (0, 3) the series

does not converge to a periodic extension of / because Bessel functions are not periodic functions.
See Problems 11 and 12 in Exercises 12.6.

=
T
-~
=
T
{h'h_
| —
— ]
-\-\.k_
—_
-IIII%IIIIIIIIIII-
P

0 10 20 30 40 30
(b0 Syglxd, 0 < x < 30

FIGURE 12.6.1 Partial sums of a Fourier—Bessel series

12.6.2 Fourier—Legendre Series

From Example 4 of Section 12.5 we know that the set of Legendre polynomials {P,(x)},n =0, 1, 2,

..., 1s orthogonal with respect to the weight function p(x) = 1 on the interval [—1, 1]. Furthermore, it
can be proved that the square norm of a polynomial P, (x) depends on » in the following manner:

I 3

PR = | Py de = —
Ly

e

The orthogonal series expansion of a function in terms of the Legendre polynomials is summarized ir
the next definition.

Definition 12.6.2 Fourier—Legendre Series

The Fourier—Legendre series of a function f/ defined on the interval (-1, 1) is given by

=0

fix) = D e P, 121)

no=

where

|
| fByx) dx. (22)
1

ot
=

STUDENTS-HUB.com Uploaded By: anonymous
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[] Convergence of a Fourier-Legendre Series Sufficient conditions for convergence of a Fourier-
Legendre series are given in the next theorem.

Theorem 12.6.2 Conditions for Convergence

Let f'and /" be piecewise continuous on the interval [— 1, 1]. Then for all x in the interval (-1, 1), the
Fourier—Legendre series of f converges to f(x) at a point where f'1s continuous and to the average

Jixt) + flx—)

-

at a point where f'is discontinuous.

EXAMPLE 3| Expansion in a Fourier—Legendre Series

Write out the first four nonzero terms in the Fourier—Legendre expansion of

0, —-1=x<0

: =

SOLUTION The first several Legendre polynomials are listed on page 282. From these and (22)

we find

i |

g = ZJ.r=:| l-ldx=—
4o 4

a -I ) -I a
= (x)dx == loxdx =2
o) hdx = 2 i vy =
'l

5 l

£y = ) dx = 3 |:| | -Eiix}' - de =0

7 ! rl i =
c3 = Vdx = | Ve e e —
P |' Py | 2 ]

€, = ) dx = 7| 1=(35¢* — 30x? + 3) dx = O

2) 8
¥ |
11 | L1 | |
5 = T__Iﬂx]Pgl'.Tl dx = TL l 'gl'{\."i.l's — 70:° + 15x) dx = ETS
Hence
1 3 7 11
Jix) = —Pyx) + IP.(x;u WFEI.TJ + 5 P+ =

Like the Bessel functions, Legendre polynomials are built-in functions in computer algebre
systems such as Maple and Mathematica, and so each of the coefficients just listed can be found
using the integration application of such a program. Indeed, using a CAS, we further find thatcg = 0

and ¢-= —% The fifth partial sum of the Fourier-Legendre series representation of the functionf
defined in Example 3 is then

L )

1. . 3 ] 11 65 _
Ss(x) = —Fylx) + 4—P|I,.1'J = EP_\\L_H + FP;I.‘LII = q—%PﬂxJ.

The aph of S5(x) on the interval (-1, 1) is given in FIGURE 12.6.2.
DENT§ HUB.com Uploaded By: anonymous
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i
04F 5
0.2 / 3

] :k_,ﬁw I_ x

B J— Y 0 03 i

FIGURE 12.6.2 Partial sum S5(x) of Fourier—Legendre series in Example 3

[] Alternative Form of Series In applications, the Fourier—Legendre series appears in an alternative
form. If we letx = cos 6, thenx = 1 implies § = 0, whereas x = —1 implies 6 = x. Since dx = —sin 6
df, (21) and (22) become, respectively,

L

Fif) = > c.Picos 8) (23)

a=0

o
7 -

R =

| F(#)P,(cos #) sin § 44, (24}
N

where f{cos 7) has been replaced by F(6)

12.6 | Exercises Answers to selected odd-numbered problems begin on page ANS-30.

12.6.1 Fourier—Bessel Series

In Problems 1 and 2, use Table 5.3.1 in Section 5.3.
1. Find the first four a; > 0 defined by J;(3a) = 0.

2. Find the first four a; < 0 defined by J'o(2a) =0

In Problems 3-6, expandf(x) = 1, 0 <x < 2, in a Fourier—Bessel series using Bessel functions oi
order zero that satisfy the given boundary condition.

3. Jy(2a)=0

4. Jo(2a)=0

5. Jy(20) + 2aJ (20) = 0
6. Jy(20) + aJy(2a) =0

In Problems 7-10, expand the given function in a Fourier—Bessel series using Bessel functions of the
same order as in the indicated boundary condition.

fix)=5x0<x<4
7. it + dadida) =0

flxy=x%0<x< |

8. "'Fll-ﬂ:ll = I‘"
fixy=x20<x<3
9, fida) =0
[Hint: £ = t*1.]

x2, 0 < x =

1@1{&55_ 'TS-HUlB.com Uploaded By: anonymous
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= Computer Lab Assignments
11. (a) Use a CAS to graphy = 3J,(x) +xJ';(x) on an interval so that the first five positive x-
intercepts of the graph are shown.
(b) Use the root-finding capability of your CAS to approximate the first five rootsx; of the
equation

3+ adix) = 0.

(¢) Use the data obtained in part (b) to find the first five positive values of ai that satisfy

ANda) + dadiida) = 0.

See Problem 7.
(d) Ifinstructed, find the first 10 positive values of a.

12. (a) Use the values of a; in part (c) of Problem 11 and a CAS to approximate the values of the
first five coefficients c; of the Fourier—Bessel series obtained in Problem 7.

(b) Use a CAS to graph the partial sumsSy(x), N=1, 2, 3, 4, 5, of the Fourier—Bessel series ir
Problem 7.
(¢) Ifinstructed, graph the partial sum S;q(x) for 0 <x <4 and for 0 <x < 50.

= Discussion Problems

13. If the partial sums in Problem 12 are plotted on a symmetric interval such as (—30, 30), would
the graphs possess any symmetry? Explain.

14. (a) Sketch, by hand, a graph of what you think the Fourier—Bessel series in Problem 3 converges
to on the interval (-2, 2).

(b) Sketch, by hand, a graph of what you think the Fourier—Bessel series would converge to or
the interval (—4, 4) if the values a i in Problem 7 were defined by 3J,(4a) + 4aJ'5(4a) = 0.

12.6.2 Fourier—Legendre Series

In Problems 15 and 16, write out the first five nonzero terms in the Fourier—Legendre expansion of the
given function. If instructed, use a CAS as an aid in evaluating the coefficients. Use a CAS to grap
the partial sum S5(x).

IS. i = {D’ E i
L x. D<x=<1

16. fix)=¢e",-1<x<1

17. The first three Legendre polynomials are Py(x) = 1, Py(x) = x, and pyy = 43,2 — 1.1 Ifx = cos 0,
then Py(cos 0) = 1 and P (cos ) = cos 6. Show that p o5 6) = 43 cas 26 + 1)

18. Use the results of Problem 17 to find a Fourier—Legendre expansion (23) of Fg) = 1 - cos 26..

19. A Legendre polynomial P, (x) is an even or odd function, depending on whether # is even or
odd. Show that iff is an even function on the interval (-1, 1), then (21) and (22) become,
respectively,

STUDENTS-HUB.com Uploaded By: anonymous
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fix) = ¥ egPix) (25)

A=

0o = (dn + 13| flx)Poix) dr (26)
Jo

20. Show that if f'is an odd function on the interval (—1, 1), then (21) and (22) become, respectively,

S Efﬂu+ 1FPaq 4+ 1lX) 27

=1
B
Canep = (dn + 3}Lﬂx,‘5-+ﬂ-ﬂ dx. (28)

The series (25) and (27) can also be used whenf is defined on only the interval (0, 1). Both series
represent f on (0, 1); but on the interval (-1, 0), (25) represents an even extension, whereas (27)
represents an odd extension. In Problems 21 and 22, write out the first four nonzero terms in the
indicated expansion of the given function. What function does the series represent on the interval (-1,
1)? Use a CAS to graph the partial sum S,(x).

21. f(ix)=x,0<x<1;(25)

22. f(x)=1,0<x<1;(127)

= Discussion Problems

23. Why is a Fourier—Legendre expansion of a polynomial function that is defined on the interval (-
1, 1) necessarily a finite series?

24. Use your conclusion from Problem 23 to find the finite Fourier—Legendre series off{x) = x. The
series of f{x) = x3. Do not use (21) and (22).

@Chapter in Review Answers to selected odd-numbered problems begin on page ANS-30.

In Problems 1-10, fill in the blank or answer true/false without referring back to the text.
1. The functions f{x) = x*>— 1 and g(x) = x° are orthogonal on the interval [-7, 7].

2. The product of an odd function f with an odd function g 1s an function.
3. To expand f(x) = x| + 1, — ® <x < m, in an appropriate trigonometric series we would use a
series.

4. y =0 1s never an eigenfunction of a Sturm—Liouville problem.
5. 42 =01s never an eigenvalue of a Sturm-Liouville problem.
6. If the function

. {x +1, —-1=x<0
flx) = g
= 0<x<1

is expanded in a Fourier series, the series will converge to atx=-1, to atx =0,
and to atx=1.

7. Suppose the functionf{x) =x?> + 1, 0 <x < 3, is expanded in a Fourier series, a cosine series,

STERIENIE _series- Ay = 0, the Fourier series will converge tOUpleaded-be%ﬁBﬁ{}Fn%?ﬂ?S
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