
Computer Architecture

Prefetching

Prof. Onur Mutlu

ETH Zürich

Fall 2024

14 November 2024

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Agenda

 Introduction to prefetching

 What, Why, When, Where, How

 Basic prefetching techniques

 Software, Hardware, Execution-based

 How to evaluate and control a prefetcher?

 Metrics & throttling 

2Uploaded By: Jibreel BornatSTUDENTS-HUB.com



1

10

100

1999 2003 2006 2008 2011 2013 2014 2015 2016 2017

D
R

A
M

 I
m

p
ro

ve
m

e
n
t 

(l
o
g)

Capacity Bandwidth Latency

The (Memory) Latency Problem Latency Lags Behind

128x

20x

1.3x

Memory latency remains almost constant
Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Latency Reduction, Hiding, and Tolerance

 Fundamentally reduce latency as much as possible

 Data-centric approach

 Hide latency seen by the processor

 Processor-centric approach

 Caching, Prefetching

 Tolerate (or, amortize) latency seen by the processor

 Processor-centric approach

 Multithreading, Out-of-order Execution, Runahead Execution

4Uploaded By: Jibreel BornatSTUDENTS-HUB.com



5

Conventional Latency Tolerance Techniques

 Caching
 Widely used, simple, effective, but inefficient, passive
 Not all applications/phases exhibit temporal or spatial locality

 Prefetching 
 Works well for regular memory access patterns
 Prefetching irregular access patterns is difficult, inaccurate, and hardware-

intensive

 Multithreading 
 Works well if there are multiple threads
 Improving single thread performance using multithreading hardware is an 

ongoing research effort

 Out-of-order execution
 Tolerates cache misses that cannot be prefetched
 Requires extensive hardware resources for tolerating long latencies

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Prefetching

 Idea: Fetch the data before it is needed by the program 
(i.e., pre-fetch or pre-load)

 Why? 

 Memory latency is high. If we can prefetch accurately and 
early enough, we can reduce/eliminate that latency.

 Can eliminate compulsory cache misses

 Can it eliminate all cache misses? Capacity, conflict? 
Coherence?

 Involves predicting which address will be needed in the 
future

 Works if programs have predictable miss address patterns

6Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Prefetching and Correctness

 Does a misprediction in prefetching affect correctness?

 No, prefetched data at a “mispredicted” address is simply 
not used

 There is no need for state recovery

 In contrast to branch misprediction or value misprediction

7Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Basics

 In modern systems, prefetching is usually done at cache 
block granularity

 Prefetching is a technique that can reduce both

 Miss rate

 Miss latency

 Prefetching can be done by 

 Hardware

 Compiler

 Programmer

 System

8Uploaded By: Jibreel BornatSTUDENTS-HUB.com



How a HW Prefetcher Fits in the Memory System

9Mutlu+, “Using the First-Level Caches as Filters to Reduce the Pollution Caused by Speculative Memory References”, IJPP 2005.Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Prefetching: The Four Questions

 What

 What addresses to prefetch (i.e., address prediction algorithm)

 When

 When to initiate a prefetch request (early, late, on time)

 Where

 Where to place the prefetched data (caches, separate buffer)

 Where to place the prefetcher (which level in memory hierarchy)

 How

 How does the prefetcher operate and who operates it (software, 
hardware, execution/thread-based, cooperative, hybrid)

10Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Challenge in Prefetching: What

 What addresses to prefetch

 Prefetching useless data wastes resources

 Memory bandwidth

 Cache or prefetch buffer space

 Energy consumption

 These could all be utilized by demand requests or more accurate 
prefetch requests

 Accurate prediction of addresses to prefetch is important

 Prefetch accuracy = used prefetches / sent prefetches

 How do we know what to prefetch?

 Predict based on past access patterns

 Use the compiler’s/programmer’s knowledge of data structures

 Prefetching algorithm determines what to prefetch
11Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Some Predictable Address Access Patterns?

 Cache Block Addresses

A, A+1, A+2, A+3, A+4, …

B, B+42, B+84, B+126, …

C, C+2, C+5, C+9, C+11, C+14, C+18, C+20, C+23, C+27, …

X, Y, T, Q, R, S, X, Y, T, A, B, C, D, E, X, Y, T, F, G, H, X, Y, T, …

A+1, A+67, A+18, A+7, A+99, Z+1, Z+67, Z+18, Z+7, Z+99, 
P+1, P+67, P+18, P+7, P+99, …

12Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Challenges in Prefetching: When

 When to initiate a prefetch request

 Prefetching too early

 Prefetched data might not be used before it is evicted from 
storage

 Prefetching too late

 Might not hide the whole memory latency

 When a data item is prefetched affects the timeliness of the 
prefetcher

 Prefetcher can be made more timely by

 Making it more aggressive: try to stay far ahead of the 
processor’s demand access stream (hardware)

 Moving the prefetch instructions earlier in the code (software)

13Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Challenges in Prefetching: Where (I)
 Where to place the prefetched data

 In cache

+ Simple design, no need for separate buffers

-- Can evict useful demand data  cache pollution

 In a separate prefetch buffer

+ Demand data protected from prefetches  no cache pollution

-- More complex memory system design

- Where to place the prefetch buffer

- When to access the prefetch buffer (parallel vs. serial with cache)

- When to move the data from the prefetch buffer to cache

- How to size the prefetch buffer

- Keeping the prefetch buffer coherent

 Many modern systems place prefetched data into the cache

 Many Intel, AMD, IBM systems and more …
14Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Challenges in Prefetching: Where (II)

 Which level of cache to prefetch into?

 Memory to L4/L3/L2, memory to L1. Advantages/disadvantages?

 L3 to L2? L2 to L1? (a separate prefetcher between levels)

 Where to place the prefetched data in the cache?

 Do we treat prefetched blocks the same as demand-fetched 
blocks?

 Prefetched blocks are not known to be needed

 With LRU, a demand block is placed into the MRU position

 Do we skew the replacement policy such that it favors the 
demand-fetched blocks?

 E.g., place all prefetches into the LRU position in a way?

15Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Challenges in Prefetching: Where (III)

 Where to place the hardware prefetcher in the memory 
hierarchy?

 In other words, what access patterns does the prefetcher see?

 L1 hits and misses

 L1 misses only 

 L2 misses only 

 Seeing a more complete access pattern:

+ Potentially better accuracy and coverage in prefetching

-- Prefetcher needs to examine more requests (bandwidth 
intensive, more ports into the prefetcher?)

16Uploaded By: Jibreel BornatSTUDENTS-HUB.com



A Modern Memory Hierarchy

17

Register File
32 words, sub-nsec

L1 cache
~10s of KB, ~nsec

L2 cache
100s of KB ~  few MB, many nsec

L3 cache, 
many MBs, even more nsec

Main memory (DRAM), 
Many GBs, ~100 nsec

Swap Disk
~100 GB or few TB, ~10s of usec-msec

manual/compiler
register spilling

automatic
demand 
paging

automatic
HW cache
management

Memory
Abstraction

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Challenges in Prefetching: How

 Software prefetching

 ISA provides prefetch instructions

 Programmer or compiler inserts prefetch instructions (effort)

 Usually works well only for “regular access patterns”

 Hardware prefetching

 Specialized hardware monitors memory accesses

 Memorizes, finds, learns address strides/patterns/correlations

 Generates prefetch addresses automatically

 Execution-based prefetchers

 A “thread” is executed to prefetch data for the main program

 Can be generated by either software/programmer or hardware

18Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Challenges in Prefetching: How

 Software prefetching

 ISA provides prefetch instructions

 Programmer or compiler inserts prefetch instructions into code

 Usually works well only for “regular access patterns”

 Hardware prefetching

 Specialized hardware monitors memory accesses

 Memorizes, finds, learns address strides/patterns/correlations

 Generates prefetch addresses automatically

 Execution-based prefetching

 A “thread” is executed to prefetch data for the main program

 Can be generated by either software/programmer or hardware

19Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Software Prefetching (I)

 Idea: Compiler/programmer places prefetch instructions into 
appropriate places in code

 Prefetch instructions prefetch data into caches

 Compiler or programmer can insert such instructions into the 
program

20Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Software Prefetching (II)

 Can work for very regular array-based access patterns. Issues:

-- Prefetch instructions take up processing/execution bandwidth

 How early to prefetch? Determining this is difficult

-- Prefetch distance depends on hardware implementation (memory latency, 
cache size, time between loop iterations)  portability?

-- Going too far back in code reduces accuracy (branches in between)

 Need “special” prefetch instructions in ISA?

 Alpha load into register 31 treated as prefetch (r31==0)

 PowerPC dcbt (data cache block touch) instruction

-- Not easy to do for pointer-based data structures

21

for (i=0; i<N; i++) {

__prefetch(a[i+8]);

__prefetch(b[i+8]);

sum += a[i]*b[i];

}

while (p) {

__prefetch(pnext);

work(pdata);

p = pnext;

}

while (p) {

__prefetch(pnextnextnext);

work(pdata);

p = pnext;

}
Which one is better?

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Software Prefetching (III)

 Where should a compiler insert prefetches?

 Prefetch for every load access? 

 Too bandwidth intensive (both memory and execution bandwidth)

 Profile the code and determine loads that are likely to miss

 What if profile input set is not representative?

 How far ahead before the miss should the prefetch be inserted?

 Profile and determine probability of use for various prefetch 
distances from the miss

 What if profile input set is not representative?

 Usually need to insert a prefetch far in advance to cover 100s of cycles 
of main memory latency  reduced accuracy

22Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Challenges in Prefetching: How

 Software prefetching

 ISA provides prefetch instructions

 Programmer or compiler inserts prefetch instructions into code

 Usually works well only for “regular access patterns”

 Hardware prefetching

 Specialized hardware monitors memory accesses

 Memorizes, finds, learns address strides/patterns/correlations

 Generates prefetch addresses automatically

 Execution-based prefetching

 A “thread” is executed to prefetch data for the main program

 Can be generated by either software/programmer or hardware

23Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Hardware Prefetching

 Idea: Specialized hardware observes load/store access 
patterns and prefetches data based on past access behavior

 Tradeoffs:

+ Can be tuned to system implementation

+ Does not waste instruction execution bandwidth

-- More hardware complexity to detect patterns

- Software can be more efficient in some cases

24Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Next-Line Prefetchers

 Simplest form of hardware prefetching: always prefetch next 
N cache lines after a demand access (or a demand miss)

 Next-line prefetcher (or next sequential prefetcher)

 Tradeoffs:

+ Simple to implement. No need for sophisticated pattern detection

+ Works well for sequential/streaming access patterns (instructions?)

-- Can waste bandwidth with irregular patterns

-- And, even with regular patterns:

- What is the prefetch accuracy if access stride = 2 and N = 1?

- What if the program is traversing memory from higher to lower 
addresses?

- Also prefetch “previous” N cache lines?

25Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Stride Prefetchers

 Consider the following strided memory access pattern:

 A, A+N, A+2N, A+3N, A+4N…

 Stride = N

 Idea: Record the stride between consecutive memory 
accesses; if stable, use it to predict next M memory 
accesses

 Two types

 Stride determined on a per-instruction basis

 Stride determined on a per-memory-region basis

26Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Instruction Based Stride Prefetching

 Each load/store instruction can lead to a memory access 
pattern with a different stride

 Can only detect strides caused by each instruction

 Timeliness of prefetches can be an issue

 Initiating the prefetch when the load is fetched the next time 
can be too late

 Potential solution: Look ahead in the instruction stream

27

Load Inst. Last Address Last Confidence

PC (tag) Referenced Stride

……. ……. ……

Load

Inst

PC

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Memory-Region Based Stride Prefetching

 Can detect strided memory access patterns that appear due 
to multiple instructions

 A, A+N, A+2N, A+3N, A+4N … where each access could be 
due to a different instruction

 Stream prefetching (stream buffers) is a special case of 
memory-region based stride prefetching where N = 1

28

Address tag Stride Control/Confidence

……. ……

Cache 

Block 

Address

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Tradeoffs in Stream/Stride Prefetching

 Instruction based stride prefetching vs.

memory region based stride prefetching

 The latter can exploit strides that occur due to the 
interaction of multiple instructions

 The latter can more easily get further ahead of the 
processor access stream

 No need for lookahead PC

 The latter is more hardware intensive

 Usually there are more data addresses to monitor than 
instructions

29Uploaded By: Jibreel BornatSTUDENTS-HUB.com


