
Computer Architecture

Prefetching

Prof. Onur Mutlu

ETH Zürich

Fall 2024

14 November 2024

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Agenda

 Introduction to prefetching

 What, Why, When, Where, How

 Basic prefetching techniques

 Software, Hardware, Execution-based

 How to evaluate and control a prefetcher?

 Metrics & throttling

2Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1

10

100

1999 2003 2006 2008 2011 2013 2014 2015 2016 2017

D
R

A
M

 I
m

p
ro

ve
m

e
n
t

(l
o
g)

Capacity Bandwidth Latency

The (Memory) Latency Problem Latency Lags Behind

128x

20x

1.3x

Memory latency remains almost constant
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Latency Reduction, Hiding, and Tolerance

 Fundamentally reduce latency as much as possible

 Data-centric approach

 Hide latency seen by the processor

 Processor-centric approach

 Caching, Prefetching

 Tolerate (or, amortize) latency seen by the processor

 Processor-centric approach

 Multithreading, Out-of-order Execution, Runahead Execution

4Uploaded By: Jibreel BornatSTUDENTS-HUB.com

5

Conventional Latency Tolerance Techniques

 Caching
 Widely used, simple, effective, but inefficient, passive
 Not all applications/phases exhibit temporal or spatial locality

 Prefetching
 Works well for regular memory access patterns
 Prefetching irregular access patterns is difficult, inaccurate, and hardware-

intensive

 Multithreading
 Works well if there are multiple threads
 Improving single thread performance using multithreading hardware is an

ongoing research effort

 Out-of-order execution
 Tolerates cache misses that cannot be prefetched
 Requires extensive hardware resources for tolerating long latencies

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Prefetching

 Idea: Fetch the data before it is needed by the program
(i.e., pre-fetch or pre-load)

 Why?

 Memory latency is high. If we can prefetch accurately and
early enough, we can reduce/eliminate that latency.

 Can eliminate compulsory cache misses

 Can it eliminate all cache misses? Capacity, conflict?
Coherence?

 Involves predicting which address will be needed in the
future

 Works if programs have predictable miss address patterns

6Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Prefetching and Correctness

 Does a misprediction in prefetching affect correctness?

 No, prefetched data at a “mispredicted” address is simply
not used

 There is no need for state recovery

 In contrast to branch misprediction or value misprediction

7Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Basics

 In modern systems, prefetching is usually done at cache
block granularity

 Prefetching is a technique that can reduce both

 Miss rate

 Miss latency

 Prefetching can be done by

 Hardware

 Compiler

 Programmer

 System

8Uploaded By: Jibreel BornatSTUDENTS-HUB.com

How a HW Prefetcher Fits in the Memory System

9Mutlu+, “Using the First-Level Caches as Filters to Reduce the Pollution Caused by Speculative Memory References”, IJPP 2005.Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Prefetching: The Four Questions

 What

 What addresses to prefetch (i.e., address prediction algorithm)

 When

 When to initiate a prefetch request (early, late, on time)

 Where

 Where to place the prefetched data (caches, separate buffer)

 Where to place the prefetcher (which level in memory hierarchy)

 How

 How does the prefetcher operate and who operates it (software,
hardware, execution/thread-based, cooperative, hybrid)

10Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Challenge in Prefetching: What

 What addresses to prefetch

 Prefetching useless data wastes resources

 Memory bandwidth

 Cache or prefetch buffer space

 Energy consumption

 These could all be utilized by demand requests or more accurate
prefetch requests

 Accurate prediction of addresses to prefetch is important

 Prefetch accuracy = used prefetches / sent prefetches

 How do we know what to prefetch?

 Predict based on past access patterns

 Use the compiler’s/programmer’s knowledge of data structures

 Prefetching algorithm determines what to prefetch
11Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Some Predictable Address Access Patterns?

 Cache Block Addresses

A, A+1, A+2, A+3, A+4, …

B, B+42, B+84, B+126, …

C, C+2, C+5, C+9, C+11, C+14, C+18, C+20, C+23, C+27, …

X, Y, T, Q, R, S, X, Y, T, A, B, C, D, E, X, Y, T, F, G, H, X, Y, T, …

A+1, A+67, A+18, A+7, A+99, Z+1, Z+67, Z+18, Z+7, Z+99,
P+1, P+67, P+18, P+7, P+99, …

12Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Challenges in Prefetching: When

 When to initiate a prefetch request

 Prefetching too early

 Prefetched data might not be used before it is evicted from
storage

 Prefetching too late

 Might not hide the whole memory latency

 When a data item is prefetched affects the timeliness of the
prefetcher

 Prefetcher can be made more timely by

 Making it more aggressive: try to stay far ahead of the
processor’s demand access stream (hardware)

 Moving the prefetch instructions earlier in the code (software)

13Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Challenges in Prefetching: Where (I)
 Where to place the prefetched data

 In cache

+ Simple design, no need for separate buffers

-- Can evict useful demand data  cache pollution

 In a separate prefetch buffer

+ Demand data protected from prefetches  no cache pollution

-- More complex memory system design

- Where to place the prefetch buffer

- When to access the prefetch buffer (parallel vs. serial with cache)

- When to move the data from the prefetch buffer to cache

- How to size the prefetch buffer

- Keeping the prefetch buffer coherent

 Many modern systems place prefetched data into the cache

 Many Intel, AMD, IBM systems and more …
14Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Challenges in Prefetching: Where (II)

 Which level of cache to prefetch into?

 Memory to L4/L3/L2, memory to L1. Advantages/disadvantages?

 L3 to L2? L2 to L1? (a separate prefetcher between levels)

 Where to place the prefetched data in the cache?

 Do we treat prefetched blocks the same as demand-fetched
blocks?

 Prefetched blocks are not known to be needed

 With LRU, a demand block is placed into the MRU position

 Do we skew the replacement policy such that it favors the
demand-fetched blocks?

 E.g., place all prefetches into the LRU position in a way?

15Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Challenges in Prefetching: Where (III)

 Where to place the hardware prefetcher in the memory
hierarchy?

 In other words, what access patterns does the prefetcher see?

 L1 hits and misses

 L1 misses only

 L2 misses only

 Seeing a more complete access pattern:

+ Potentially better accuracy and coverage in prefetching

-- Prefetcher needs to examine more requests (bandwidth
intensive, more ports into the prefetcher?)

16Uploaded By: Jibreel BornatSTUDENTS-HUB.com

A Modern Memory Hierarchy

17

Register File
32 words, sub-nsec

L1 cache
~10s of KB, ~nsec

L2 cache
100s of KB ~ few MB, many nsec

L3 cache,
many MBs, even more nsec

Main memory (DRAM),
Many GBs, ~100 nsec

Swap Disk
~100 GB or few TB, ~10s of usec-msec

manual/compiler
register spilling

automatic
demand
paging

automatic
HW cache
management

Memory
Abstraction

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Challenges in Prefetching: How

 Software prefetching

 ISA provides prefetch instructions

 Programmer or compiler inserts prefetch instructions (effort)

 Usually works well only for “regular access patterns”

 Hardware prefetching

 Specialized hardware monitors memory accesses

 Memorizes, finds, learns address strides/patterns/correlations

 Generates prefetch addresses automatically

 Execution-based prefetchers

 A “thread” is executed to prefetch data for the main program

 Can be generated by either software/programmer or hardware

18Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Challenges in Prefetching: How

 Software prefetching

 ISA provides prefetch instructions

 Programmer or compiler inserts prefetch instructions into code

 Usually works well only for “regular access patterns”

 Hardware prefetching

 Specialized hardware monitors memory accesses

 Memorizes, finds, learns address strides/patterns/correlations

 Generates prefetch addresses automatically

 Execution-based prefetching

 A “thread” is executed to prefetch data for the main program

 Can be generated by either software/programmer or hardware

19Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Software Prefetching (I)

 Idea: Compiler/programmer places prefetch instructions into
appropriate places in code

 Prefetch instructions prefetch data into caches

 Compiler or programmer can insert such instructions into the
program

20Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Software Prefetching (II)

 Can work for very regular array-based access patterns. Issues:

-- Prefetch instructions take up processing/execution bandwidth

 How early to prefetch? Determining this is difficult

-- Prefetch distance depends on hardware implementation (memory latency,
cache size, time between loop iterations)  portability?

-- Going too far back in code reduces accuracy (branches in between)

 Need “special” prefetch instructions in ISA?

 Alpha load into register 31 treated as prefetch (r31==0)

 PowerPC dcbt (data cache block touch) instruction

-- Not easy to do for pointer-based data structures

21

for (i=0; i<N; i++) {

__prefetch(a[i+8]);

__prefetch(b[i+8]);

sum += a[i]*b[i];

}

while (p) {

__prefetch(pnext);

work(pdata);

p = pnext;

}

while (p) {

__prefetch(pnextnextnext);

work(pdata);

p = pnext;

}
Which one is better?

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Software Prefetching (III)

 Where should a compiler insert prefetches?

 Prefetch for every load access?

 Too bandwidth intensive (both memory and execution bandwidth)

 Profile the code and determine loads that are likely to miss

 What if profile input set is not representative?

 How far ahead before the miss should the prefetch be inserted?

 Profile and determine probability of use for various prefetch
distances from the miss

 What if profile input set is not representative?

 Usually need to insert a prefetch far in advance to cover 100s of cycles
of main memory latency  reduced accuracy

22Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Challenges in Prefetching: How

 Software prefetching

 ISA provides prefetch instructions

 Programmer or compiler inserts prefetch instructions into code

 Usually works well only for “regular access patterns”

 Hardware prefetching

 Specialized hardware monitors memory accesses

 Memorizes, finds, learns address strides/patterns/correlations

 Generates prefetch addresses automatically

 Execution-based prefetching

 A “thread” is executed to prefetch data for the main program

 Can be generated by either software/programmer or hardware

23Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Hardware Prefetching

 Idea: Specialized hardware observes load/store access
patterns and prefetches data based on past access behavior

 Tradeoffs:

+ Can be tuned to system implementation

+ Does not waste instruction execution bandwidth

-- More hardware complexity to detect patterns

- Software can be more efficient in some cases

24Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Next-Line Prefetchers

 Simplest form of hardware prefetching: always prefetch next
N cache lines after a demand access (or a demand miss)

 Next-line prefetcher (or next sequential prefetcher)

 Tradeoffs:

+ Simple to implement. No need for sophisticated pattern detection

+ Works well for sequential/streaming access patterns (instructions?)

-- Can waste bandwidth with irregular patterns

-- And, even with regular patterns:

- What is the prefetch accuracy if access stride = 2 and N = 1?

- What if the program is traversing memory from higher to lower
addresses?

- Also prefetch “previous” N cache lines?

25Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Stride Prefetchers

 Consider the following strided memory access pattern:

 A, A+N, A+2N, A+3N, A+4N…

 Stride = N

 Idea: Record the stride between consecutive memory
accesses; if stable, use it to predict next M memory
accesses

 Two types

 Stride determined on a per-instruction basis

 Stride determined on a per-memory-region basis

26Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Instruction Based Stride Prefetching

 Each load/store instruction can lead to a memory access
pattern with a different stride

 Can only detect strides caused by each instruction

 Timeliness of prefetches can be an issue

 Initiating the prefetch when the load is fetched the next time
can be too late

 Potential solution: Look ahead in the instruction stream

27

Load Inst. Last Address Last Confidence

PC (tag) Referenced Stride

……. ……. ……

Load

Inst

PC

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Memory-Region Based Stride Prefetching

 Can detect strided memory access patterns that appear due
to multiple instructions

 A, A+N, A+2N, A+3N, A+4N … where each access could be
due to a different instruction

 Stream prefetching (stream buffers) is a special case of
memory-region based stride prefetching where N = 1

28

Address tag Stride Control/Confidence

……. ……

Cache

Block

Address

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Tradeoffs in Stream/Stride Prefetching

 Instruction based stride prefetching vs.

memory region based stride prefetching

 The latter can exploit strides that occur due to the
interaction of multiple instructions

 The latter can more easily get further ahead of the
processor access stream

 No need for lookahead PC

 The latter is more hardware intensive

 Usually there are more data addresses to monitor than
instructions

29Uploaded By: Jibreel BornatSTUDENTS-HUB.com

