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Outline

* Learning agents

* Inductive learning

* Decision tree learning

* Learning Performance measurements
* Naive Bays Learning

* Artificial Neural Networks ANNs

« K-Means Clustering

 KNN (K-Nearest Neighbors)
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Learning

« Learning is essential for unknown environments,
— I.e., when designer lacks omniscience

« Learning is useful as a system construction
method,

— I.e., expose the agent to reality rather than trying to
write it down

* Learning modifies the agent's decision
mechanisms to improve performance
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Learning agents

Performance standard

Froblem
generator

Learning FPerformance
element element
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Learning element

« Design of a learning element is affected by

— Which components of the performance element are to
be learned

— What feedback is available to learn these
components

— What representation is used for the components

« Type of feedback:

— Supervised learning: correct answers for each
example

— Unsupervised learning: correct answers not given
— Reinforcement learning: occasional rewards
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ML: Where Used?

« Health:

— Disease diagnosis:

— Suicide trends

— Extracting knowledge form report

— Recommending stuff to patients
* Finance/Economy:

— Predicting share prices

— Credit approval decisions
 Law:

— Extracting knowledge form report

— Predicting case outcomes
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ML: Where Used?

* Publishing:
— Predict successful publications/Novels.
— Detect Plagiarism: determining author of Docs.
— Document Classification
« Politics:
— Voter trends and voter influence
— Selecting potentiall winning candidates
« Security:
— Detecting security threats
— ldentifying potential intruders based on style
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Inductive learning

« Simplest form: learn a function from examples
fis the target function
An example is a pair (X, f(x))

Problem: find a hypothesis h

such that h =f

given a training set of examples (table of pair (X, f(x)))
(This is a highly simplified model of real learning:

— Ignores prior knowledge
— Assumes examples are given and are consistent (not conflicting)
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Inductive learning method

Construct/adjust h to agree with f on training set
(h is consistent If it agrees with f on all examples)
Too strict: all=> most/many (error tolerance)

E.g., curve fitting:

) fix)
A
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Inductive learning method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

fix)
A

L |
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Inductive learning method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

fix)
A
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Inductive learning method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:
° ﬁr.l}
A
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Inductive learning method

« Construct/adjust h to agree with f on training set
* (his consistent if it agrees with f on all examples)

« E.g., curve fitting:
J’H}

fix)
'
<l
e N

=X
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Inductive learning method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:
J’H}

fix)
A
<l
L‘;*F*"“ﬁ Vi

 Occam’s razor: prefer the simplest hypothesis consistent
with data (KIS: Keep It Simple)
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Supervised learning process:
two steps

Learning (training): Learn a model using the training data
Testing: Test the model using unseen test data to assess the model accuracy

Number of correct classifications
Accuracy = ,

Total number of test cases

[.carming
algorithm

Step I Trammg Step 2: Testing

15
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What do we mean by learning?

* Glven
—a data set D,
—atask T, and
— a performance measure M,

a computer system is said to learn from D
to perform the task T If after learning the
system’s performance on T Improves as
measured by M.

* In other words, the learned model helps
the system to perform T better as
compared to no learping.
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Learning decision trees

Problem: To Wait or not to Wait: decide whether to walit for
a table at a restaurant, based on the following attributes:

1.

© 0N bR WD

Alternate: is there an alternative restaurant nearby?

Bar: is there a comfortable bar area to wait in?

Fri/Sat: is today Friday or Saturday?

Hungry: are we hungry?

Patrons: number of people in the restaurant (None, Some, Full)
Price: price range ($, $$, $3%)

Raining: is it raining outside?

Reservation: have we made a reservation?

. Type: kind of restaurant (French, Italian, Thai, Burger)

10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)
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Attribute-based Representations

Examples described by attribute values (Boolean, discrete, continuous)
E.g., situations where | will/won't wait for a table: T wait, F don’t wait

Example Attributes Target

Alt | Bar | F'ri | Hun | Pat | Price | Rain | Res | Type | Est | Wait
X T F F T |[Some| $$% F T | French| 0-10 T
Xo T F F T Full $ F F Thai |30-60 F
X3 F T F F Some $ F F | Burger| 0-10 T
Xy T F T T Full $ F F Thai |10-30 T
X5 T F T F Full $3% F T |French| =60 F
X; F T F T |[Some| $% T T | ltalian | 0-10 T
X7 F T F F None $ T F | Burger| 0-10 F
Xg F F F T | Some $% T T Thai | 0-10 T
X, F| T | T | F | Ful | $ T | F |Burger| =60 | F
X1 T T T T Full $$% F T | Italian | 10-30 F
X1 F F F F None $ F F Thai | 0-10 F
X9 T T T T Full $ F F | Burger | 30-60 T

We are learning Attribute Wait

Classification of examples on Wait is positive (T) or negative (F)
STUDENTS-HUB.com
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Supervised Learning: Decision Trees

« DT: One possible representation

for hypotheses Example Attributes Target
Alt| Bar | F'ri| Hun | Pat | Price| Rain | Res| Type | Est | Wait
. ( ” X, T| F F T |Some| $%% F T |French | 0-10 T
* Eg, here is the “true” tree X, | T|F|F|{ T |Fm| s | F|F|Thai 3060 F
L. . X3 F | T F F |Some| $ F F | Burger| 0-10 T
- Xy T | F T T Full $ F F | Thai |10-30 T
for deciding whether to wait:| X |T]F T/ T fi) s | F o F ] T 0] T
Xs F| T | F | T |[Some|[ $% T | T [lalian| 0-10 T
Patrons? X; [ F| T /| F| F [None|] $ | T | F |Burger|0-10| F
Xg F| F | F| T |[Some|l $% T | T | Thai | 0-10 T
None m Full X | Fl T | T|F |FRu| $ | T |F [Buger|>60] F
X0 T| T T T Full | $$% F T | Italian | 10-30 F
WaitEstimate? X F| F | F F |None| $ F F | Thai | 0-10 F
X9 T| T T T Full $ F F | Burger | 30-60 T

ARlemate?
Reservation? Fri'sat? ARernate?
MNo Yas MNo Yeas No Yas
Bar? Raining?
Mo Yeas Mo Yeas
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Expressiveness

« Decision trees can express any function of the input attributes.
 E.g., for Boolean functions, truth table row — path to leaf:

A B AxorB /\
F F F
= B B
. F F
F

« Trivially, there is a consistent decision tree for any training set with one path

to leaf for each example (unless f nondeterministic in x) but it probably won't
generalize to new examples

 Generally, DT is not unique for a set of data
» Prefer to find more compact decision trees
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Hypothesis spaces

How many distinct decision trees with n Boolean attributes?
= number of Boolean functions (Value: True or False, 1 or 0)
= number of distinct truth tables with 2" rows = 22"

« E.g., with 6 Boolean attributes, there are
18,446,744,073,709,551,616 trees
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Hypothesis spaces

How many distinct decision trees with n Boolean attributes?
= number of Boolean functions
= number of distinct truth tables with 2" rows = 22"

« E.g., with 6 Boolean attributes, there are
18,446,744,073,709,551,616 trees

How many purely conjunctive hypotheses (e.g., Hungry A —Rain)?
« Each attribute can be in (positive), in (negative), or out
= 3" distinct conjunctive hypotheses for n attributes
* More expressive hypothesis space
— Increases chance that target function can be expressed
— Increases number of hypotheses consistent with training set
= may get worse predictions
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Decision tree learning

« Aim: find a small tree consistent with the training examples

» ldea: (recursively) choose "most significant" attribute as root of
(sub)tree

function DTL(ezamples, attributes, default) returns a decision tree

if examples is empty then return default
else if all ezamples have the same classification then return the classification
else if attributes is empty then return MoDE(ezamples)
else
best < CHOOSE- ATTRIBUTE( attributes, examples)
tree < a new decision tree with root test best
for each value v; of best do
examples; «+— {elements of examples with best = v;}
subtree +— DTL(examples;, attributes — best, MODE( examples))
add a branch to tree with label v; and subtree subtree
return free

» Which attribute to choose? Most discriminating?
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Choosing an attribute

« ldea: a good attribute splits the examples into subsets that
are (ideally) "all positive" or "all negative” for its values

000000 000000
000000 000000
Patrons? Type?
Numull Fre HEWN rger
000 00 o e 00 o0
o0 000 @ ® 00 o0

« Patrons? is a better choice, Why?

« [f we take Patrons: =none: Red, Some: Green, Full: Red
(Why Red?). Errors: 2 out of 12=1/6 (on value=full).

« If we take Type: =French: Red, Italian: Green, Thai: Red ,
Burk%er: Red Errors: 6 out of 12=1/2 (on all values).
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Using information theory

 Toimplement Choose-Attribute inthe DTL
algorithm

 Information Content (Entropy):
I(P(va), ..., P(vp)) = 2.1 -P(v)) log; P(v)

« For a training set containing p positive examples and
N negative examples:

n n n
(P, ) =——P _jog, P _T_jog,
p+n p+n Pp+nN P+n Pp+nN Pp+nN

Here: p=6, n=6; p/(n+p)=1/2; n/(n+p)=1/2; 1(1/2,1/2)=1/2+1/2=1bit
If p=3, n=9; p/(n+p)=1/4; n/(n+p)=3/4; 1(1/4,3/4)=1/4*2+3/4*.4=0.8bit
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Using information theory

« Entropy measures the amount of uncertainty

In a probability distribution:

Consider tossing a biased coin.

If you toss the coin VERY often,
the frequency of heads is, say, p,
and hence the frequency of tails is
1-p. (fair coin p=0.5).

The uncertainty in any actual outcome

1.0

HiA)

IS given by the entropy:

Note, the uncertainty is zero if p=0 or 1
and maximal if we have p=0.5.

SToUDENRTS- OB TToOm

v

0 I -
] 0.5 1.0
PriX =1)
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Information gain

A chosen attribute A divides the training set E into subsets
E,, ..., E, according to A values, where A has v distinct values.
n

remainder(A) =)’ Pith | ( N
i P+N P +N P+ 0

Defines how discriminating this Attribute is

Information Gain (IG)/reduction in entropy from the attribute test

IG(A) = 1 (——,—" Y _remainder(A)
D+Nn p+n

|G: entropy of the parent — weighted sum of entropy of children

Defines difference (improvement) in discrimination between the
Learned attribute and the tested attribute.

Choose the attribute with the largest IG
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Concept

4 4 11 T 4 T
4 4 1 4 4 4 T -

Concept= True: error: 2/8
Entropy=0.8
E: F>True: T->Flase: Error: 1/8
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Information gain: example

n n n
(P )= P oy, P T jog,

p+n p+n p+n p+n p+n p+n
For the training set, p = n= 6, 1(6/12, 6/12) = 1 bit

Consider the attributes Patrons and Type (and others too):

remainder(A) = Zp+n,|( b , k ) 1G(A)=I( P , n ) —remainder(A)
= p+n p,+n p,+n p+n p+n
|G (Patrons) :1—[3 1(0,1) + i 1(1,0) +% | (% | ﬂ)] = .0541bits
4

IG(Type) =1- [EI(E E) E (E E) EI(Z Z) EI(Z —)] 0 bits

Do that for all 10 : Assume Patrons has the highest IG of all attributes and so
Is chosen by the DTL algorithm as the root

000000 000000
200000 00000
FPatrons? Type?

Nﬂmu” French |1.‘EI.|IEI.H/ \Thal Burg-a-r

000 o O
000
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DT Example: contd.

« Decision tree learned from the 12 examples: tested 10
attributes, Started with Patrons, Then tested 9: Hungry,...

 Alwavs Stop when leaves are pure (all T/all F here)

Patrons 7
MNone B0 I
None m Full
[  WaitEstimate? |
=60 30-60

Mo

« Substantially simpler than “true” tree. Less leaves also.

« a more complex hypothesis isn’t justified by small amount of
data
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DT Example2: To Play or Not to Play
14 examples, 4 attributes, Yes/No Concept

Day | Outlook | Temp | Humidity | Wind | Tennis?
D1 sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 | Overcast | Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal | Weak Yes
D6 Rain Cool Normal | Strong No
D7 | Overcast | Cool Normal | Strong Yes
D8 sunny Mild High Weak No
D9 | Sunny Cool Normal | Weak Yes

D10 Rain Mild Normal | Weak Yes

D11 | Sunny Mild Normal | Strong Yes

D12 | Overcast | Mild High Strong Yes

D13 | Overcast | Hot Normal | Weak Yes

D14 Rain Mild High Strong No
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Determine the Root Attribute

9+, 5— E=0.940 9+, 5— E=0.940
Humidity wind
HW Wmng
3+, 4- 6+, 1- 6+, 2— 3+, 3-
E=0.985 E=0.592 E=0.811 E=1.000
Gain (S, Humidity) = 0.151 Gain (S, Wind) = 0.048
Gain (S, Outlook) = 0.246 Gain (S, Temp) = 0.029

32
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Sort the Training Examples

9+,5- {D1,...D14)

Outlook

Su Ovelcast

{D1,D2,D08,D09,D11}  {D3,D7,D12,D13}
2+, 3— 4+, 0—

|

Seunny= {D1,02,D08,09,D11}
Gain (S Humidity) = .97
Gain (Sgypny, TE€Mp) =.570

stuba@ddss nny: WINd) =.019

sunny?

{D4,D5,D6,D10,D15}

3+, 2—

?
Day Outlook Temp Humidity Wind Tennis?
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes

4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak [ 33\o
D3 | sumy | QIplgadedBy: ‘donyritous




Final Decision Tree for Example

High

NoO

STUDENTS-HUB.com

Outlook
Sunny Rain
vercast
Humidity :
Yes Wind
Normal
Day Outlook Temp Humidity Wind Tennis? W k
D1 Sunny Hot High Weak No Strong €a
D2 Sunny Hot High Strong No
Ye D3 Overcast Hot High Weak Yes N 0
D4 Rain Mild High Weak Yes Yef
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes 34
D13 Overcast Hot Normal Weak Yes )
Uploaded By: anonymous
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Performance measurement

. How do we know that h =f ?

1. Use theorems of computational/statistical learning theory
2. Try h on anew test set of examples
(use same distribution over example space as training set)

Learning curve = % correct on test set as a function of training set size
1

| & o 2y -.-"f“ .?bﬁé? ® |'FI' I'r
ﬁﬁﬁ "";,"*‘_:"'f;u'=r+-.'u"" <.Nv élv wff'g}&
0.9 r ?%@é%é%ﬁ ;5 Y |
D 474
2] !
% 08 F ¥
2 tl
= I@
S 07} |
D 7
= 4
5§ ||
0.5 pe
04 L L 1 |
° 20 40 60 80 100

Training set size
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Evaluation

Evaluation methods

* Holdout set: The available data set D is divided into two
disjoint subsets,
* the training ser D, . (for learning a model)
* the test set D, (for testing the model)

* Important: training set should not be used in testing and the
test set should not be used in learm'_tlg.

* TInseen test set Ptm‘ides a mmbiased estimate of accuracy.

« The test set is also called the holdout set. (the examples in the
original data set D are all labeled with classes.)

» This method is 111.1]'1]1}' used when the data set D 1s lal'ge_

Given 120 examples: Holdout: 25%:75% (30:90) or 50%:50%
(60:60) or 34%:66% (40:80) usual [one test, random]
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Evaluation

Evaluation methods (cont___)

w gu—Fold cross——walidation: The available data is par dtioned into
:3::111:11—512:& diEj-D-:iI‘.l.t suubsets._

w T Ise each subset as thhe test set arnd combine the rest m- 1 subsets as
the raining set to learmn a classifier

= The procedure is run n ames, which give n accuracies.

= T he final esdmated acouaracs of 1-.=_-.3.1'1‘_|J'_ﬂg is thhe average oaf thie
SCCUITRCLEeS

= 10-fold and 5-fold cross-validations are commomnly used .

w This rmethod is used when the available data is ot l.a.rg&.

Consider our 12 example:6 fold: 6x2:

S1: Test {1,2}, Training{3,4,...12}, S2: Test {3,4}, Training{1,2,5,6,...12},
S3: Test {5,6}, Training{1-4,7,8-12}, S4: Test {7,8}, Training{1-6,9-12},

S5: Test {9,10}, Training{1-8,11,12}, S6: Test {11,12}, Training{1-10}.
« [Each can have: 100% success, 0% success, 50% success: average="?
* Order can vary! =6 runs, 12 tests, 8 correct: success=8/12
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Evaluation

Evaluation methods (cont...)

¢ Leave-one-out cross-validation:- This method is used when
the data set 15 verv small.

e [tisa spe-::ial case of cross-validation

» Fach fold of the cross validation has n-nlj_: a single test E}E.ll‘.l‘lp].E
and all the rest of the data is used in training.

« If the original data has m examples, this is m-fold cross-validation

Given total of 12 examples: [12 tests, 12 runs]: each
success or fail: 8 fails: accuracy: 4/12
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Evaluation
Evaluation methods (cont...)

* Validation set: the available data is divided into three subsets,

¥ a training set,
* 3 validation set and

* a test set.

* A validation set is used ﬁ'equentl}' for estimating parameters in
1&31'1‘1j11g algnritlmm_

* In such cases, the values that give the best accuracy on the
validation set are used as the final parameter values.

» (Cross-validation can be used for parameter estimating as well
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Evaluation

Classification measures

= Accuracy is only one measure (error = 1-accuracv).
= Accuracy 1s not suitable 1n some a PP lications.

= In text mining, we may only be interested in the documents of a
particular topic, which are [:-1]11; a small portion of a big
document collection.

= In classification involving skewed or highly imbalanced data, e.g.,
network intrusion and financial fraud detections, we are
interested only in the minority class.

- H.'I.El:l. accuracy does not mean any intrusion is detected.
* E.g. 1% intrusion. Achieve 9% accuracy by doing nothing.
= The class of interest is commonly called the positive class, and

the rest 11E~gat'1ve classes.

Accuracy Is about correct answers.

Go with the majority class to get it high: very high if
negative class dominates: Web Search

1 Q00K: tems, only 1K positive: All negative! 99, 9%, mous



Evaluation: Beyond Accuracy

* S0 need better measure: we classify to
Positive (our class) and Negative (the rest):

« Some of the declared positive are really
positive (TP ) and some are not (FP)

 Some of the declared negative are really
negative (TNV ) and some are not (FN)

» Really (actual) positive= TP + FN
» Really (actual) negative= TN + FP
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Evaluation

« Database with 10 localities: 6 cities and 4 villages:

Jaffa, Ramallah, Ram, Jerusalem, Hebron,

Abu Qash, Birzeit,  Surda, Jifna, Gaza

* Query: List villages in Palestine: RED: Actual Positive, Green?
Answer (Positive): Abu Qash, Birzeit, Surda, Jifna, Gaza

. TP FP TP TP FP

* Not Village (negative) by default: implicit not listed!:

. Jaffa, Ramallah, Ram, Jerusalem, Hebron,
. TN TN FN TN TN

How many errors made? 3/10
If we always return all as cities: error =4/10

 If we always return all as Villages: error =6/10 (majority rule)
STHATNISEREBLWNA [~ ~alitiae all villanac hit anlv 10 ~peddgd By: anonymous



Evaluation
Precision and recall measures

# Used in information retrieval and text classification.
+« We use a confusion matrix to introduce them.

Classitied Posmive Classitied Negative
Actul Posilive TF [
Actul Megative IrH | I

W liere

P the number of correct classifications of the positive examples (troe
positivel.

FN the namber ol mcorrect classilications of positive cxamples [ Talse
nesabive ),

FFothe number of meorrect classificotions of negative examples [ false
positive), and

N the number of correct classilications of negative examples (troe

11l_; I" L] i
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Evaluation

Precision and recall measures (cont._.)

Classihied Po=sitive Classihed Negative
Actual Positive TF FN
Actual Negative kP I'™
IrP P
p= : = :
TP+ FP TP+ FN

Precision pis the number of correctly classified positive
examples divided by the total number of examples that are
classified as positive.

Recall ris the number of comrectly classified positive
examples divided by the total number of actual positive
examples in the test set.

* p (r) has to do with declared (real) positive
STUBEI\AGMnacy: (TP+TN)/(TP+ FP+TN 'hﬁ(hléd By: anonymous



Evaluation

An example

Classihed Positive Classited .:\":'h_-_'-i-\'l'l.l'-. C
Actiual Posiuve | iy
Actual Mezative { | {300

» This confusion matrix gives
* precision p = 100%% and
® recall r = 1240
because we only classified one positive example correctly and no negative

-EI:I]II.P].E-E "."i.TﬂIIF:]".-'.

= MNote: precision and recall onlv measure classification on the

PﬂEltl."r"E! class. Recall %
actual | actual Precision B Tp

positive | negative ~ TP4FP
predicted positive | TP FpP 2 G - 7P

predicted negative | FN TN True Positive Rate = 7ppy
X P T s rp

(a) Confusion Matrix False Positive Rate = FP+TN

* Accuracy= () Deiions of et
< (I PETN)/(TP+FP+TN+FN)=(1+1000)/1100=0,90+
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« Can have high accuracy and recall
separately easily:.
— Declare all positive: 100% r, low p
— Declare all negative: 0 recall, High p
Need a composite measure:

F measure: 1/F=1/2(1/p+1/r) =1/2((p+r)/p*r)
=(p+nr)/2p*r=> F=2*p*r/(p+r)
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Evaluation
F,-value (also called F,-score)

* It is hard to compare two classifiers using two measures. F, score combines

precision and recall into one measure

Fy-score 15 the harmomie mean ol precision and recall.

“¥

F=—

L

_|.|'.:' r

¢ The harmonic mean of two nombers tends to be closer to the smaller of the
o,

®* For F,- alue to be laI_EE,]::::rthp and r murJJbelarge_

STUDENTS-HUB.com Uploaded By: anonymous



Examples

* p=1, r=0, F1=0/1=0

 p=0, r=1, F1=0/1=0

e p=1, r=1, F1=2/2=1

e p=1/2, r=1/2, F1=(1/2)/1=1/2
* p=0.8, r=0.8, F1=1.28/1.6=0.8
 p=0.2, r=0.8, F1=0.32/1=0.32
 p=0.2, r=0.1, F1=.04/0.3=0.13
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Avoid overfitting In classification

 |deal goal of classification: Find the simplest decision
tree that fits the data and generalizes to unseen data

Overfitting: A tree may overfit the training data
— Good accuracy on training data, poor on test data

— Symptoms: tree too deep and too many branches,
some may reflect anomalies due to noise or outliers

— Overfitting results in decision trees that are more
complex than necessary

— Trade-off: full consistency for compactness
 Larger decision trees can be more consistent
« Smaller decision trees generalize better

49
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An example

ely to overfit the data
X

Id -

Pl T

50
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Simple Boolean Example

N o O~ W N i
P B P O O O O >
P P P O O O O W
P O B, O L, O F 0O
O P P O FLr L O U

* The function=F=A’
« Change4toF: F=A"and B’
susechange 7 to T: F= ?7

- 4 4 T

T=>F

F=>T
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Decision boundary is distorted by noise point
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Overfitting due to Insufficient
Examples

351

25¢

7

15+

1k

0.5k

0

3k

0

» X
x
cC e *
Misclassified |
o=<—— points
{}'fﬁ x ¥ -
o) fo) -
c

05 1 15 2 25 3 35 4

Lack of data points in the lower half of the diagram makes it difficult
to predict correctly the class labels of that region

- Insufficient number of training records in the region causes the
decision tree to predict the test examples using other training

STUDENTSé&ldlBrebsthat are irrelevant to the classification task
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Overfitting and accuracy

m Typical relation between tree size and accuracy:

4

Accuracy
8

0 10 20 30 40 30 60 70 80
Size of tree (number of nodes)

54
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Pruning to avoid overfitting

* Prepruning: Stop growing the tree when there is not
enough data to make reliable decisions or when the
examples are acceptably homogenous (ID3)

— Do not split a node if this would result in the goodness measure
falling below a threshold (e.g. InfoGain)

— Difficult to choose an appropriate threshold

— Since we use a hill-climbing search, looking only one step
ahead, pre-pruning might stop too early.

* Postpruning: Grow the full tree, then remove nodes for
which there Is not sufficient evidence (C4.5)

— Replace a split (subtree) with a leaf if the predicted validation
error is no worse than the more complex tree (use dataset)

* Prepruning easier, but postpruning works better
* Prepruning - hard to know when to stop

000000 000000

000000 000000

MNong Some Full French Italia Tha

- o0 o . ..
STUDENT‘S HUBRSH® o000 @ ® 00 0



Decision Trees: the good and the bad

* Advantages:
— Easy to understand (Doctors love them!)
— Easy to generate rules

* Disadvantages:
— May suffer from overfitting.

— Classifies by rectangular partitioning (so does
not handle correlated features very well).

— Can be quite large — pruning Is necessary.
— Does not handle streaming data easily
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Supervised Learning
2- Naive Bayes Classifier
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Thomas Bayes
1702 - 1761
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Why Probabilities

Kolmogorov showed that three simple axioms
lead to the rules of probability theory
1.All probabilities are between 0 and 1.

0<P(d)<1
2.Valid propositions (tautologies) have probability 1,
and unsatisfiable propositions have probability O:

P(true) = 1 ; P(false) =0
3.The probability of a disjunction Is given
by: P(a v b) = P(a) + P(b) — P(a A b)
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Probability theory 101

B Random variables « Alarm, Burglary, Earthquake
B Domain — Boolean, discrete, continuous
B Atomic event: complete  * Alarm=TaBurglary=TAEarthquake=F
specification of state alarm A burglary A —earthquake

B Prior probability: degree « P(Burglary) =0.1
of belief without evidence P(Alarm) = 0.19
P(earthquake) = 0.000003
B Joint probability: matrix ofe  p(Alarm, Burglary) =

combined probabilities of a
set of variables

alarm | -alarm
burglary .09 01

60 =burglary 1 8
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PrObabl I |ty101 COﬂtd burglary .09 .01

Conditional probability: prob.
of effect given causes

Computing conditional probs:
a given b (evidence)

— P(@|b)=P(ana b)/P(b)

— P(b): normalizing constant-known
Product rule:

— P(@aAb)=P(alb)*P(b)

— P(@aanb)=P(b|a)*P(a)

— P(a|b)*P(b)=P(b|a)* P(a)
— P(a|b)=P(b|a)* P(a)* P(b)

STUDENTS-HUB.com

alarm | -alarm

=-burglary | 8

B P(burglary | alarm) = .47
P(alarm | burglary) = .9

B P(burglary | alarm) =
P(burglary A alarm) / P(alarm)
=.09/.19 = .47

P(burglary A alarm) =
P(burglary | alarm) * P(alarm)
= .47 *.19=.09

P(alarm) = P(alarm A burglary) +
P(alarm A =burglary) = .09+.1 = .19

P(burglary) = P(alarm A burglary) +
P(— alarm Aburglamp)yed.094ndinsus1



Probabillity Basics

e Prior, conditional and joint probability for random variables

Prior probability: P(X)

Conditional probability:  P(X,1X,), P(X, X))

Joint probability:  x =(X,,X,), P(X)=P(X, ,X,)

RelationShip: P(XI /X2) = P(X2 |X1)P(X1) = P(X1 |X2)P(X2)

Independence: p(x, |X,)=P(X,), P(X,|X,)=P(X,), P(X,,X,) = P(X,)P(X,)

Bayesian Rule: Recal. P(a A b) =P(a|b)*P(b), P(arb)=P(b|a)*P(a)
P(@|b) *P(b) =P(b|a) *P(a); P(a| b) =P(b|a) * P(a)/ * P(b); a=C, b=X,

P(XIC)P(C) Posterior — Likelihood x Prior

P(X) Evidence

P(CIX)=

« P(Swede|Blonde)=P(Blonde|Swede)*P(Swede)/P(Blonde)

Hi (relatively) 70% swedes blonde .008 swedes 10% Blonde

=0.7*0.008/0.1=0.7*0.08=0.056
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The Blonde's Passport! | .~ rxicr

P(ab)=P(a|b)* P(b)=P(b|a) * P(a) > P(X)
P(a|b)=P(bla)P(a)/p(b)=>» Let C-Class (country), X-Observation-
You saw a : what is the nationality? Choices: SW, SA, US
« 10% of world population are
70% Swedes: .008 world population are Swedes: P(Swede)=.008
P(Swede| )=P( |ISwede)*P(Swede)/P( )
=0.7 *0.008 / 0.056
10% SA , 0.016 world population are
P(SA|Blonde)=P(Blonde|SA)*P(SA)/P(Blonde)
= 0.1 *0.016/0.1=0.1*0.16=Q.016
50% USA: , 0.03 world population are U
P(USA|Blonde)=P(Blonde|USA)*P(USA)/P(Blon
=0.5*0.03/0 /=0.5*0.3=0.15
What if Blonde, Height, Language,...? Do we need to divide by

Real Hi
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Probabilistic Classification

e Establishing a probabilistic model for classification
— Discriminative model

P(CIX) C=c,,c;, X=(X; X))

P(c, Ix) P(c, |x) P(c; 1x)

Probabilistic
Classifier

I 1 eee 1

xl x2 xn

X=X, %, ,)
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Probabilistic Classification

e Establishing a probabilistic model for classification
(cont.)

— Generative model

P(XIC) C=c¢;, -, X=(X,,++, X))

P(xlc,) P(xlc,) P(xlc,)
for Class 1 for Class 2 " forClass L
X1 X, Xy X1 X, Xy X1 Xy X

X=X, 2, %,)
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Probabilistic Classification

e MAP classification rule

— MAP: Maximum A Posteriori
— Assign example x to class (category, concept) c* if

P(C=c IX=x)>P(C=clX=X) c#c,c=c;, ¢
e (Generative classification with the MAP rule
— Apply Bayesian rule to convert them into posterior probabilities

P(C=c X =x)= TX=XIC=6)P(C=c)

— Then apply the MAP rule P(X =x)

o« P(X=xIC=¢,)P(C=c,)
fori=12,--L
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Nalve Bayes

e Bayes classification
P(C1X) o P(XIC)P(C)=P(X,, X, 1C)P(C)
Difficulty: learning the joint probability P(X,, - X, 1C)
17 74

e Naive Bayes classification
— Assumption that all input features are conditionally independent!
— Recall: P(X,,X,)=P(X, 1 X;)P(X,)=P(X; | X,)P(X,)

P(Xl,le"',an(:)

P(X,1X,,X,,C)P(X,, X, |C)
(X, |C)P(X, -, X, |C)
(X, 1C)P(X,1C)---P(X, 1C)

I
o T

[P(x,1c’)---P(x,|c)P(c')>[P(x, 1 c)--- P(x, 1c)]P(c), c#c ,c=cy;C;
74
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Nalve Bayes

o Algorithm: Discrete-Valued Features
— Learning Phase: Given a training set S of F features and L classes,

For each target value of c. (c. =c,,--,C, )
P(C =c,) « estimate P(C = c,) with examples in S;
For every feature value x;, of each feature X, (j =1,--,F;k=1--,N;)

|5(Xj = X; |C =¢;) «—estimate P(X; = x;, |C =¢;) with examples in S;
Output: F = L conditional probabilistic (generative) models
— Test Phase: Given an unknown instance X' =(a},--,4,)

“Look up tables” to assign the label ¢* to X" if

[ls(ai I¢')- lg(a; [¢)]P(c) > [lg(ai lc)--- lg(a; | c)]ls(c), G2@ 0=

75
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We want to find the class (Class) given the features (feautre)

PlayTennis: training examples

Day Outloock ~ Temperature  Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
P (C I aSS | featu re) D3 O\-er.cast H.ot H:lgh Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
US i n g B ayes ru | e D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

P( feature| Class) x P(Class)
P( feature)

From the table, we will count the number of events for the class
and each attribute/class combination

Feature is a vector!!! Not only as eatrlier, instead:
outlook, humidity, temperature, wind

Note: When selecting examples: we have control over class, not

@%@I@BQU@JMIVIduaI a-ttribUte ValueS!!! Uploaded By: anonymous
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Example

e Example: Play Tennis:

e QOur class: PlayTennis: training examples

Day Outlook  Temperature  Humidity =~ Wind | PlayTennis

o C]- . Play= J/ES D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

¢ Cz : Play= NO D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

_ . D6 Rain Cool Normal Strong No

° P( P/&}/—J/GS) — 9/ 14 D7 Owvercast Cool Normal Strong Yes

° P( P/ayzNO) — 5/ 14 D8 Ejunny I\i'[ild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

77
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Outlook Humidity PIayTennls

Sunny*
Sunny*

Overcast**
Rain***
Rain***
Rain**
Overcast**
Sunny*
Sunny*
Rain***
Sunny*
Overcast**
Overcast**
Rain**

STUDENTS-HUB.com

Outlook Play=Yes Play=No
Sunny 2 /9 3 /5
Owvercast 4 /9 0 / 5
Rain 3 /9 2 / 5

No

Yes
Yes
Yes
No

Yes
No

Yes
Yes
Yes
Yes
Yes
No
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Outlook | Temperature | Humidity  |Wwind [PlayTennis
Hot No

Hot No
Hot Yes
Mild Temperature | Play=Yes | Play=No Yes
Cool Hot 2/9 2/5 Yes
Cool Mild 4/9 2/5 No
C?ol Cool 3/9 1/5 Yes
Mild No
Cool Yes
Mild Yes
Mild Yes
Mild Yes
Hot Yes
Mild No
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Outlook Humidity PIayTennls

Humidity | Play=Yes | Play=No
High 3/9 4/5
Normal 6 /9 1 / 5

STUDENTS-HUB.com

High
High
High
High
Normal
Normal
Normal
High
Normal
Normal
Normal
High
Normal
High

No

Yes
Yes
Yes
No

Yes
No

Yes
Yes
Yes
Yes
Yes
No
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Outlook Humldlty PIayTennls

Weak
Strong No
Weak Yes
Weak Yes
Weak Yes
Wind Play=Yes | Play=No Strong No
Strong 3/9 3/5 Strong Yes
Weak 6/9 2/5 Weak No
Weak Yes
Weak Yes
Strong Yes
Strong Yes
Weak Yes
Strong No
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Example

e Learning Phase
Temperature || Play=Yes|| Play=No
Outlook | Play=Yes | Play=No
Sunny 2/9 3/5 Hot 2/9 2/5
Overcast 4/9 0/5 Mild 4/9 2/5
Rain 3/9 2/5 Cool 3/9 1/5
Humidity || Play=Yes [ Play=No Wind || Play=Yes | Play=No
— Strong 3/9 3/5
18 3/9 4/5 Weak 6/9 2/5
Normal 6 /9 1 /5
P(Play=Yes) = 9/14 P(Play=No) = 5/14
P(Wind:Strong/Play:No) = P (Outlook=Sunny/ Play=YeS ) =
3/5 2/9

What if we have 4 classes: ~ C0-C3? [play = yes/no/maybe/NoRec
IVbatif-ewe haed 10 attributes: A0-A9? [Add: sick, courtpserdyy feenyrous



Example

e Test Phase

— Given a new instance, predict its label:
x'=(Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=Strong)
We compute: (Remember: Naiveté: independence):

P(Play=Yes | Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=Strong)=
P(Play=Yes | Outlook=Sunny)*P(Play=Yes | Temperature=Cool)*

P(Play=Yes | Humidity=High)*P(Play=Yes | Wind=Strong)

P(Play=No | Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=Strong)=
P(Play=No | Outlook=Sunny)*P(Play=No | Temperature=Cool)*

P(Play=No | Humidity=High)*P(Play=No | Wind=Strong)
P(C1X) o P(XIC)P(C) =P(X,, X, C)P(C)

P(Yes|x’) = [P(Outlook=Sunny | Play=Yes)*P(Temperature=Cool | Play=Yes)*

P(Humidity=High | Play=Yes)* P(Wind=Strong|Play=Yes)]*P(Play=Yes)
P(Nolx") = [P(Sunny | Play=No) *P(Cool | Play=No)*P(High | Play=No)*

P(Strong|Play=No) |*P(Play=No)
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THumidity Play=Yes | Play=No
| High 3/9 | 4/5
Normal 6 /9 1 /5
o Test Phase

P(Play=Yes) = 9/14

ook=Sunny | Play=No) = 3/5
P(Temperature=Cool | Play=Yes) = 3/9 P(Temperature=Cool | Play==No) = 1/5

P(Huminity=High | Play=No) = 4/5

P(Wind=5Strong|Play=No) = 3/5

Outlook | Play=Yes | Play=No
Sunny 2 /9 3 / 5
Overcast 4/9 0/5
Rain 3 /9 2 / 5
| Jemperat | Play= | Play=
ure Yes No
Hot 2/9 2/5
Mild 4/9 2/5
Cool 3/9 1/5
Wind Play=Yes Play=No
=S
Strong 3/9 3/5
Weak 6/9 2/5

P(Yes|x") = [P(Sunny|Yes)P(Cool | Yes)P(High|Yes)P(Strong | Yes)|P(Play=Yes) = 0.0053
P(Nolx") = [P(Sunny | No) P(Cool | No)P(High | No)P(Strong | No)]P(Play=No) = 0.0206

Given the fact P(Yes|x") < P(Nolx"), we label x” to be “No”.

STUDENTS-HUB.com
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Advantages/Disadvantages of Naive Bayes

* Advantages:
— Fast to train (single scan). Fast to classify
— Not sensitive to irrelevant features
— Handles real and discrete data
— Handles streaming data well
« Disadvantages:
— Assumes independence of features
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SUPERVISED LEARNING

3- Artificial Neural Networks
ANN
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Introduction: how the brain works

- Machine learning involves adaptive
mechanisms that enable computers to learn
from experience, learn by example and learn

oy analogy.

_earning capabilities can improve the
performance of an intelligent system over time.

- The most popular approaches to machine
learning Is artificial neural networks
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Neural Networks

n Aneural network can be defined as a model
of reasoning based on the human brain. The
brain consists of a densely interconnected set
of nerve cells, or basic information-processing
units, called neurons.

n The human brain incorporates nearly 10 billion
neurons and 60 trillion connections, synapses,
between them. By using multiple neurons
simultaneously, the brain can perform its
functions much faster than the fastest
computers in existence today.

. Soma Soma
STUDENTS-HUB.com *"Uploaded By: anon



Neural Networks

n Each neuron has a very simple structure, but
an army of such elements constitutes a
tremendous processing power.

n A neuron consists of a cell body, soma, a
number of fibers called dendrites, and a single
long fiber called the axon.
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Biological neural network

Dendrites

Synapse

AXon

Soma

Synapse

Dendrites
AXon

Soma , |
Synapse 7
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Artificial Neural Network (ANN)

n An artificial neural network consists of a number of
very simple processors, called neurons,
analogous to the biological neurons in the brain.

n The neurons are connected by weighted links
passing signals from one neuron to another.

n The output signal Is transmitted through the
neuron’s outgoing connection.

n The outgoing connection splits into a number of
branches that transmit the same signal.

n The outgoing branches terminate as the incoming
connections of next layer neurons in the network.
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Architecture of a typical artificial neural network

nHere is a video: 19 minuted [handwritten numbers recognition
using ANN] https://www.youtube.com/watch?v=aircAruvnKk

P ©
s —(UO~% 0 C
> =
Py %)
e.g :
= -
o o
= =

(O )

Middle Layer
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https://www.youtube.com/watch?v=aircAruvnKk

The neuron as a simple computing

element
Diagram of a neuron

Input Signals Weights Output Signals
’ ® Y
k ©-
: Y > Y
Jol Y
Xn
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The neuron as a simple computing element

* input signals ‘x’ and coefficients ‘w’ are multiplied

» weights correspond to connection strengths (how important the input signal there)

* signals are added up. If sum is enough (>t-threshold) , FIRE! (output a 1) else O (or -1)
Default threshold: O: If sum is >0, FIRE! (output a 1) else O (or -1)

X
\Wl,
if (a>t)
X, > output =1 output
W W )
2 : else signal
output=0
/
incoming connection

: strenath activation
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Calculation...

Sum notation, (just like a loop from 1 to M). Linear
sum: a line in 2- dimensional space, a plane in 3-
dimentional space and so on

Question: When an input has no INFLUENCE?

Answer: x=0 or w=0 for that input!!

Multiple corresponding
double[] x = elements and add them up

XI I I * &  (activation)

double[] w

If (activation > threshold) FIRE !
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v

Is this a good decision boundary? Weights: W, W, and t

M
if (Z Xiwij > t  thenoutput=1, elseoutput=0
i=1
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X
2 ° w, =21
@) W2=02
t=0.05

v

M
if (Z Xiwij > t  thenoutput=1, elseoutput=0
i=1
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A O
2
X O
P
) 4 4 x O © W, = 1.9
5 W, = 0.02
O
t=0.05
O O

v

M
if (Z Xiwij > t  thenoutput=1, elseoutput=0
i=1
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A ’
@)
x
% O
X
o w, = 0.03
O
t=0.05

O O

Changing the weights/threshold makes the decision boundary move.
Pointless / impossible to do it by hand — only ok for simple 2-D case.

We need an algorithm....
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The neuron a simple computing element

n The neuron computes the weighted sum of the
iInput signals and compares the result with a
threshold value, 6. If the net output Is less than
the threshold, the neuron output is —1. But Iif the net
output Is greater than or equal to the threshold, the
neuron becomes activated and its output attains a

value +1.

n The neuron uses the following transfer or

activation function:

n
X = Z X Wi
=1

Y =+

(+1, if X >0

=1 1f X <0

n This activation function is called a sign function.

STUDENTS-HUB.com
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Activation functions of a neuron

Step function

step _ 1if X >0
~0,if X <0

Sign function

Ysign_{u,ifxzo

-1if X <0

Sigmoid function

Yo

y sigmoid _ 1

1+e_X

Linear function

STUDENTS-HUB.com
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Can a single neuron learn a task?

n In 1958, Frank Rosenblatt introduced a
training algorithm that provided the first
procedure to train a simple ANN: perceptron.

n The perceptron is the simplest form of a neural
network. It consists of a single neuron with
adjustable synaptic weights and a hard limiter.
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Single-layer two-input perceptron

X2

X1

Inputs

Linear
\A@ Combiner

/'

T

Hard
Limi_ter Output
— > Y
x
0
Threshold
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The Perceptron

n The operation of Rosenblatt’s perceptron is
based on the McCulloch and Pitts neuron
model. The model consists of a linear
combiner followed by a hard limiter.

n The weighted sum of the inputs is applied to
the hard limiter, which produces an output
equal to +1 if its input Is positive and -1 if it Is
negative.
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The Perceptron

n The perceptron classifies inputs, X, X,, . . ., X
Into one of two classes, say A; and A,.

n In the case of an elementary perceptron, the n-
dimensional space is divided by a hyperplane
Into two decision regions. The hyperplane is
defined by the linearly separable function:

n
> xiw; —6=0
i=1

n How many inputs: 1(line/point)? 2(surface/line)?
3 (volume/surface)? 47?7 Not, And, Majority,...

n X; W; -0 =2 X;*1 -0.5=» function?
STHDEM?—W,Icome 9 X1 *_1 +05 9 function? Uploaded By: anonymous
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Linear separability in the perceptrons

M X2 A X2

XqW1q + XoWp — 0 =0 Xq1Wq + XoWp + X3W3 — 0 =0

X3

(a) Two-input perceptron. (b) Three-input perceptron.
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How does the perceptron learn its
classification tasks?

- We know the desired result: supervised learning!.
We know the Perceptron actual output, we
compute the difference (ERROR)!

- Make small adjustments in weights to reduce the
difference between the actual and desired
outputs of the perceptron (reduce error) until OK

- The Initial weights are randomly assigned, usually
In the range [-0.5, 0.5], and then updated to
obtain the output consistent with the training
examples.

STUDENTS-HUB.com Uploaded By: anonymous



How does the perceptron learns?

n If at iteration p, the actual output is Y(p) and the
desired output is Y, (p), then the error Is given
by (positive or negative error):

e(p):Yd(p)_Y(p) wherep=1,2,3,...

lteration p here refers to the p-th training
example presented to the perceptron.

n If the error, e(p), Is positive (actual too low), we
need to increase perceptron output Y(p), but If
It Is negative, we need to decrease Y(p).

STUBENITerﬁarSe/Decrease by HOW M UCH?pIoaded By: anonymous



The perceptron learning rule

Wi (p+1) =w;(p)+a-X%(p)-e(p)

wherep=1,2,3,...

o IS the learning rate, a positive constant <1
Note that adjustment also depends on x;: if x; =0, no contribution/no adjustment

The perceptron learning rule was first proposed by
Rosenblatt in 1960.

Using this rule we can derive the perceptron training
algorithm for classification tasks. *x  x2Yd

o) 0 o)
Example: AND Gate training:

0 1 0
1 0 o)
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Perceptron Training Algorithm

Step 1: Initialization

Set initial weights w,, w,,..., w, and threshold 6 to
random numbers Iin the range [-0.5, 0.5].

(any numbers will do but conversion time may be
quite high).
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Perceptron Training Algorithm (continued)

Step 2: Activation
* Given the desired output Y, (p), activate the

perceptron by applying inputs X,(p), X>(P),---,X,(P)
Calculate the actual output at iterationp =1

Y(p)—step[zxi(p) Wi(p)_9:|

=1
where n is the number of the perceptron inputs,

and step Is a step activation function.
« Compute the error: If the error _
' e(p)=Y —-Y
e(p), Is positive, we need to (P) =Yg (P)=Y(P)

Increase perceptron output Y(p) [by changing
weights], but If it IS negative, we need to

sraecrease Y(p) [also by changing weights.. s,: anonymous



Perceptron’s Training Algorithm (continued)

Step 3: Weight training
Update the weights of the perceptron

W, (p+1) =w (p) +Aw; (p)

whereaw:(p) |s the weight correction at iteration p.

The weight correction is computed by the delta
rule:

Aw; (p) = o~ X (P) -e(p)

Step 4: Iteration
Increase Iteration p by one, go back to Step
2 and repeat the process until convergence
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Boolean Gates: unit weights, all
w=1, with a step function (0/1)

W=1
> =
A G X

X - W=1
AND OR NOT
W=--1 277 XNOR??7?

x1
: W=--1

X2

STUDENTS-HUB.com using sxste R fURCtiomous



Perceptron Learning Example : Logical AND

Inputs Desired Initial Actual Error Final
Epoch output weights output weights
X1 | X2 Y4 W1 Wo Y e W1 Wo
1 0 0 0 0.3 | -0.1 0 0 0.3 | -0.1
0 1 0 0.3 | -0.1 0 0 0.3 | -0.1
1 0 0 0.3 | -0.1 1 —1 0.2 | -0.1
1 1 1 0.2 | -0.1 O 1 0.3 0.0
2 0 o) 0 0.3 0.0 0 0 0.3 0.0
0 1 0 0.3 0.0 0 0 0.3 0.0
1 ) 0 0.3 0.0 1 -1 0.2 0.0
1 1 1 0.2 0.0 1 0 0.2 0.0
3 0 0o 0 0.2 0.0 0 0 0.2 0.0
0 1 0 0.2 0.0 0 0 0.2 0.0
1 0 0 0.2 0.0 1 —1 0.1 0.0
1 1 1 0.1 0.0 0 1 0.2 0.1
4 0 0 0 0.2 0.1 0 0 0.2 0.1
0 1 0 0.2 0.1 0 0o 0.2 0.1
1 0 0 0.2 0.1 1 —1 0.1 0.1
1 1 1 0.1 0.1 1 0 0.1 0.1
5 0 0 0o 0.1 0.1 0) 0 0.1 0.1
0 1 o 0.1 0.1 0 0 0.1 0.1
1 0 0 0.1 0.1 0 0 0.1 0.1
1 1 1 0.1 0.1 1 0 0.1 0.1

STUPHNESHOIBLY™= 0.2; learning rate: ez = 0.1
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Perceptron Learn

Ing: AND Gate

Epoch |x1 |x2 Yd |wl w2 Y w1l | W2

1 o|lo |o |03 o (o |03 [-01
0|1 |o o [0 |03 |-01 | e(p)=Yq(p)=Y(p)
110 0 (03 |01 |1 -1
101 |1 0 |1 |03 0.0

We have only 2 weights: w1l and w2 initially = 0.3 and -0.1, respectively
Threshold: 6 = 0.2; learning rate: = 0.1

W1=0.3

n
Y(p) = step[zxi(p) Wi(p)_9:|
i=1
Aw;i (p) = o X (p)-e(p) W, (p+1) =w,(p)+Aw,(p)
Y(p)=0+0-.2=-0.2=>0 = e()=yd-y=0 p = 2> wl'=w1, w2'=w2 <0.3,-0.1>
Y(p)=0+-1*0.1-.2=+0.3=>0 = e()=yd-y=0 = =2 wl'=w1, w2'=w2 <0.3,-0.1>

Y(p)=1*0.3+0-.2=0.1=>1

= e()=yd-y=-1 = w1’=w1-0.1=0.2, w2’=-0.1

Y(p)=1*0.3+1*-0.1-.2=0=>0
STUDENTS-HUB.com

> e()=yd-y=1 w1’=0.2+*0.1=0.3, w2'=0.1+0.1*1=0.0: <0.3,0.0>
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Two-dimensional plots of basic logical

operations
{A X2 a Xo A
1S \lj 1 >—I
O X>1 O\ )SL O X>1
0 1 '\ 0 & 0o 1
(a) AND (X1 M X5) (b) OR (X1 U X») (c) Exclusive-OR
(X1 ®Xx3)

A perceptron can learn the operations AND

and OR, but not Exclusive-OR.

STUDENTS-HUB.com
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Multilayer neural networks

n A multilayer perceptron is a feedforward neural
network with one or more hidden layers.

n The network consists of an input layer of
source neurons, at least one middle or hidden
layer of computational neurons, and an output
layer of computational neurons.

n The input sighals are propagated in a forward
direction on a layer-by-layer basis.
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Multilayer perceptron with two hidden
layers

‘

(

N
e
\‘g?
0
<

b
]

g

\N

Output Signals

u First Second
Input hidden hidden Output

layer layer layer layer
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What does the middle layer hide?

n Ahidden layer “hides” its desired output. Neurons in the hidden layer cannot
be observed through the input/output behaviour of the network. There is no
obvious way to know what the desired output of the hidden layer should be.

n Neurons in the hidden layer detect the features; the weights of the neurons
represent the features hidden in the input patterns. These features are then
used by the output layer in determining the output pattern.

n Commercial ANNs incorporate three and sometimes four layers, including
one or two hidden layers. Each layer can contain from 10 to 1000 neurons.
Experimental neural networks may have five or even six layers, including
three or four hidden layers, and utilise millions of neurons.

n  XOR; 3 layers: one hidden XOR Gate
n AXORB=(A+B)(AB)=
n (A+B)A+B)=

n AA+AB+BA'+BB’=AB'+AB !l!
n Using step!

n Next Using sugmoid!

OR gate

AND gate

» output

NOT AND ggte
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Solving XOR with a Ne

Linear classifiers

cannot solve this b=-10 o ( 20x, + 20%1 =1
) 1 % -

0(20*0 + 20*0-10) =0 o (-20*0-20*0+30)=1
0(20%*1+20*1-10)=1 o (-20%*1—20%*1+30) =0
o(20*0 + 20*1-10) =1 o (-20*0-20*1+30)=1
0(20*1 +20*0-10) =1 o (-20*1-20*0+30)=1

Vs

STUDENTS-HUB.com

ural Net

0.8

0.7+

0.6
0.5¢

0.4f
0.3f

b=30 o (-20x, — 20x, + 30)

o (200 + 20*1-30)=0
o (20*1 + 20*0-30)=0
o (20*1 + 20*1-30) =1
o (20*1 +20*1-30)=1

Copyright © 2014 Victor Lavrenko
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Why use hierarchical multi-layered
models?

Argument 1: visual scenes are hierachically organised

object trees
! f
object parts bark, leaves, etc.
! !
primitive features oriented edges
f !
input image forest image
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Why use hierarchical multi-layered
models?

Argument 2: biological vision is hierachically organised

object trees Inferotemporal
T T cortex
object parts bark, leaves, etc. V4: different
T T textures
primitive features oriented edges V1: simple and
T T complex cells
input image forest image photo-receptors
retina

@i . %1- i% \Ii E
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Neocognitron For Handwritten
Text

Stagel " Stage2 . Stage3 . Stage 4

Layer : Layer Layer . Layer Layer «» Layer Layer= Layeriayer
uo = el Ucl =« Us2 Uc2 = Us3 Uc3 :Usd Ucd

“ /
[
-~ .
: i
|

Input . e
Stage

\
I’ 3
Cell Plane \\
Receptive Field
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Back-propagation neural network

0 Learning in a multilayer network proceeds the
same way as for a perceptron.

0 Atraining set of input patterns Is presented to
the network, as usual.

0 The network computes its output pattern, and
If there Is an error — a difference between
actual and desired output pattern:

- e(p)=Yq(p)-Y(p)

the weights are adjusted to reduce this error.

STUDENTS-HUB.com Uploaded By: anonymous



Back-propagation neural network

0 In a back-propagation neural network, the
learning algorithm has two phases.

0 First,
0 a training input pattern is presented to the input layer.

0 The network propagates forward the input pattern from
layer to layer until the output pattern is generated by the
output layer.

0 Then:

o If this pattern is different from the desired output, an error is
calculated [we see the error only on output!]

o Then the error is propagated backwards through the
network from the output layer to the input layer.

0 The weights are modified as the error is propagated.
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Three-layer back-propagation neural
network

Input signals >

< Error signals
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Original

INPUT HIDDEN OUTPUT
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With Welights

INPUT HIDDEN OUTPUT
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Compute Sums:1*0.8+1*0.2=1
1*04+1*09=1.3
1*0.3+1*05=0.8

INPUT HIDDEN OUTPUT

0.3

0.5

0.9

0.8
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Compute Sigmoids: S(1.0) =0.73105857863=0.73
S(1.3) =0.78583498304 ~0.79

S(0.8) =0.68997448112 ~0.69
Sigmoid Calculator online: https://www.vcalc.com/wiki/vCalc/Sigmoid+Function

INPUT HIDDEN OUTPUT

0.9
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Compute Sigmoid: S(1.0) = 0.73105857863 ~0.73
For output layer S(1.3) =0.78583498304 ~0.79

S(0.8) = 0.68997448112 ~0.69
Computing output sum: 0.73*0.3+0.79*0.5+0.69*0.9=1.235~1.2; S(1.2)=0.77

https://stevenmiller888.github.io/mind-how-to-build-a-neural-network/

INPUT HIDDEN OUTPUT

0.5
>(0)
. 0.8 .
\ @ target: O
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The back-propagation training algorithm

Step 1: Initialisation
« Set all the weights and threshold levels of the

network to random numbers uniformly distributec
Inside a small range: 24 +ﬁ
FI | I:i

« where F, Is the number of inputs of neuron i In the
network: for a 6 input neuron: weights in [-0.4,0.4].

« The weight Iinitialisation is done on a neuron-by-
neuron basis.
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Step 2: Activation

 Activate the neural network by applying inputs

xl(p), xz(p)_,..., X.(p) [may have bias].
+ Using desired outputs Yy 1(p), Ya2(P).---, Yau(P)

— (a) Calculate the actual outputs of the neurons in
the hidden layer:

yj(p)=sigmoid

D> % (p)-w;j (p)—6;
=1

where n Is the number of

Inputs of neuron j in the
hidden layer, and sigmei
the activation function.

STUDENTS-HUB.com
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Step 2: Activation (continued)
(b) Calculate the actual outputs of the neurons
In the output layer [1 or many]:

il of | | 1
Yk (P) = sigmoid Xjk(p)-ij(p)—Qk fea
j:]' EU? | |

where m Is the number of inputs of neuron K In

the output layer. 5@
Derivative relative to SUM :

Derivative of Sigmoid function yx
1
¥ [+
oy

= __.[—l.' 1=

(l4+e) IET

output layer

1 input layer
~|=ril—1)

- | —
| |+«

|+

hidden layer
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Step 3: Weight training (recall:jAwi(p) =a-xi(p)-e(p) |)
« Update the weights in the back-propagation network
propagating backward the errors associated with

output neurons.
— (a) Calculate the error gradient for the neurons in the

layer:
output layer 5k(p):y|i(p)-[1—yk(p)]° \
where | e, (p) = yqx(P) - Yk (P) 7

. . O
Calculate the weight corrections:” C, N2
ijk ( p) = yJ ( p) ) 5k ( p) input layer % el et
y;is the value —output- in the hidden layer into k

Update weights to the output neurons:

Derivative of Sigmoid function
|
g .I + -

Wi (P D =i (p) + Awye (p) S

| 1 . .
UB.com Uploadéd,By: lafidnymous




Step 3: Weight training (continued)

(b) Calculate the error gradient for the neurons
In the hidden layer (weights still unchanged):

I
5i(P)=yj(P)-[1-y;j(P] > 6k (pP) Wik (p)
k=1

The sum is for all output neurons connected to the hidden i, L of thegn.
Instead of e(p) we used the gradient of all outputs. " ‘

Calculate the weight corrections: -

input layer

AWij (p) = - Xi ( p) | 5] ( p) hidden layer
Update the weights to the hidden neurons:

wij (P +1) = w;; (p) + Aw;; (p)
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Step 4: Iteration
Let p=p+1, go back to Step 2 and repeat the
process until selected error criterion Is satisfied.

Example:

* As an example, we may consider the three-layer
back-propagation network.

« Suppose that the network Is required to perform
logical operation Exclusive-OR.

« Recall: a single-layer perceptron could not do this
operation.

* We will apply the three-layer net.
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Three-layer network for solving the
Exclusive-OR operation

Input f 04 Output
layer layer
-1
Hidden layer
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o0 The effect of the threshold applied to a neuron in the hidden
or output layer Is represented by its weight, 6, connected to
a fixed input (-1 in our case).

0 X, and X, are 1, desired output y,¢ is O

o The initial weights and threshold levels are se
randomly:w,; = 0.5, w,, = 0.9, w,;=0.4, w,, = 1.0,
Wge =-1.2, w,,=1.1,0,=0.8,0,=-0.1and 6; = 0.3.

Y3 = Singid (X1W13 + XoWo3 — 93) =1/ _1+ e_(1'0'5+1'0'4_1'0'8) | = 0.5250

Y4 = Sigmoid (XWyg + XoWog —04) =1/| 1+~ 1091100 g ggog

Ve = SigMoid (YaWas + YaWas — 0s) =1 /[1 N e—(—0.5250-1.2+0.8808-1.1—1-0.3)] 05097

0 y,=0.5250, y,=0.8808, y-=0.5097 .
o Thus, the following error is obtained:

e=Yq5—Ys =0-0.5097 = —0.5097

X2

Input 04 Output
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0 Given that x, and x, are equal to 1 and desired
output y, 5 Is 0. The actual outputs of neurons 3
and 4 in the hidden layer are calculated as

y3 = sigmoid (X;Wy3 + XoWp3 —03) = 1/{1+ e_(1'0'5+1'0'4_1'0'8)J =0.5250

Y4 = SigMoid (XWig + XoWog —64) = 1/[1+ e—(1'0-9+1'1-°+1'°-1)] =0.8808

0 Now the actual output of neuron 5 in the output
layer Is determined as:

y = SigMOid (YaWas + YWz —0c) =1 /[1 s e—(—0.5250-1.2+0.8808-1.1—1-0.3)] 05097

0 Thus, the following error is obtained:.

— Ve =0— _ y5=0.5250
e=Yq5— Y5 =0-0.5097=-0.5097 ) =0 8808

Input 04 Output
STUDENTS-HUB.com ys=0.5097 Upl6&aded ?dyilanonyaﬁious
idden layer



0 The next step is weight training. To update the
weights and threshold levels in our network, we

propagate the error, e, from the output layer

packward to the input layer (Backward).

0 First, we calculate the error gradient for neuron

5 In the output layer: y.=0.5250, y,=0.8808, y.=0.5097

0| 5 = yg (1— ys) e=0.5097 - (1—0.5097) - (-0.5097) = —0.1274

0 Then we determine the weight corrections
assuming that the learning rate, o= 0.1: ;.
L e O

AWae = - Y3 - 85 =0.1-0.5250- (—0.1274) =—0.0067 | . ..
AWye =Y, - 85 = 0.1-0.8808- (—0.1274) = —0.0112 e
AO: =+ (-1)- 55 =0.1- (1) - (-0.1274) = —0.0127

STUDENTS-HUB.com
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0 Next we calculate the error gradients for
neurons 3 and 4 in the hidden layer:

83 = Ya(1—Y3)- Os - Wag = 0.5250- (1—0.5250) - (—0.1274) - (-1.2) = 0.0381
54 =Ya(l—Yy,)- S5 - Wy =0.8808- (1—0.8808) - (—0.127 4)-1.1=—0.0147

y,=0.5250, y,=0.8808, y.=0.5097, X;=1 and X,=
0 We then determine the weight corrections:

AWz = - X - 63 = 0.1-1-0.0381=0.0038
AW,3 = - X5 - 53 = 0.1-1-0.0381= 0.0038
AB3 = -(-1)- 53 =0.1-(-1)-0.0381= —0.0038 g
AWy =a % -84 =0.1-1-(-0.0147) = —0.0015
AWy, =Xy -84 =0.1-1-(-0.0147) = —-0.0015 )
A, =a-(-1)-6, =0.1-(-1)-(-0.0147) = 0.0015

Recallw13 0.5, wy;,=09,w,;,=04,w,,=1.0, wys =-1.2, w,s = 1.1, 0, = 0.8,

=-0.1 and 6. = 0.3.
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0 At last, we update all weights and threshold:

Wy3 = Wys + Awgg = 0.5+ 0.0038 = 0.5038
W14 = W14 + AW:|_4 =0.9-0.0015=0.8985

Wog = Wog + AWog = 0.4+ 0.0038 = 0.4038
Wou = Woy + Aw,, =1.0—0.0015 = 0.9985
Wag = Wag + AWge = —1.2—0.0067 = —1.2067
Wy5 = Wy5 + Awys =1.1-0.0112 =1.0888

05 =0,+ A0, =0.8—0.0038=0.7962
0,=06,+A0, =-0.1+0.0015=—0.0985

05 =05+ A0 =0.3+0.0127 = 0.3127

AW =a- ¥y -85 =0.1-1-0.0381=0.0038

AWyz =+ Xy -63=0.1-1-0.0381=0.0038

Az =+ (~1)- 85 =0.1-(~1)-0.0381=—-0.0038
AW14 =a- Xl . 54 =0.1-1- (—00147) =-0.0015
AWy =X -84 =0.1-1-(~0.0147) = -0.0015
A0, =a-(~1)-8, =0.1-(-1)-(-0.0147) = 0.0015

AWas =@+ Y3 - 35 =0.1-0.5250- (—0.1274) = —0.0067

AWys =y, - 55 =0.1-0.8808- (—0.1274) = —0.0112

AOs =+ (1) 55 = 0.1+ (=1) - (-0.1274) = —0.0127

0 The training process Is repeated until the sum of
squared errors is less than 0.001.
w3 =0.5,w,,, =09, wy,=04,w,,=1.0, wge=-1.2, w,,=1.1,0,=0.8,0,=-0.1,6; = 0.3

STUDENTS-HUB.com
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Learning curve for operation
Exclusive-OR

. Sum-Squared Network Error for 224 Epochs
10 I T T T

Sum-Squared Error

10

0 50 100 150 200
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Final results of three-layer network

learning
Inputs | Desired | Actual Error Sum of
output output squared
X1 | X9 Y Y5 e errors
111 0 0.0155 —0.0155 0.0010
0 |1 1 0.9849 0.0151
110 1 0.9849 0.0151
0 [0 0 0.0175 —-0.0175

STUDENTS-HUB.com

Uploaded By: anonymous




Network represented by McCulloch-Pitts
model for solving the XOR operation
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Decisixgn boundarieX:;:A

\ X{+Xo—1.5=0 X{ + X5 —0.5=0 \
Ka

(a) (b) (c)

(a) Decision boundary constructed by hidden neuron 3;
(b) Decision boundary constructed by hidden neuron 4,
(c) Decision boundaries constructed by the complete

three-layer network
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1-Nearest Neighbor

* One of the simplest of all machine learning
classifiers

« Simple idea: label a new point the same
as the closest known point

O
O Label it red.
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Distance Metrics

« Different metrics can change the decision surface: given points (examples) aand b

Dist(a,b) =(a; —b;)?+ (a, - b,)>  Dist(a,b) =(a; — b;)2+ (3a, — 3b,)?

e Standard Euclidean distance metric:
— Two-dimensional: Dist(a,b) = sqrt((a, — b,)?+ (a, — b,)?)

- Multivariate: Dist(a,b) = sqrt(s. (3 - b)?)

STUDENTS-HUB.com Uploaded By: anonymous



1-NN’s Aspects as an
Instance-Based Learner:

A distance metric

—  Euclidean (as usual)
- D(x1,x2) =number of features on which x1 and x2 differ
—  Others (e.g., normal, cosine)

How many nearby neighbors to look at?

—  One: 1-NN,

How to fit with the local points?

— Just predict the same output as the nearest neighbor.

What If this only point Is incorrect: Noise?

— Use more points (K), predict based on class of largest number of nearest
neighbors.

Adapted from “Instance-Based Learning”
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k — Nearest Neighbor

* Generalizes 1-NN to smooth away noise In
the labels

* A new point is now assigned the most
frequent label of its k nearest neighbors

O
O Label it red, when k =3

O
Label it blue, when k=7
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KNN Example

Food Chat Fast Price Bar BigTip

©) 2 (2 ©)

1 great yes  yes normal no  yes
2 Qreat no  yes normal no  yes
3 mediocre yes no high no no

4 great yes  yes normal yes yes

Similarity metric: Number of matching attributes (k=2)
*New examples:
— Example 1 (great, no, no, normal, no) 2? Yes/No

—> most similar: number 2 (1 mismatch, 4 match) - yes

—>Second most similar example: number 1 (2 mismatch, 3 match) - vyes

— Example 2 (mediocre, yes, no, normal, no) 2? Yes/No

- Most similar: number 3 (1 mismatch, 4 match) - no
—>Second most similar example: number 1 (2 mismatch, 3 match) - yes
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Selecting the Number of
Neighbors

* Increase k:
— Makes KNN less sensitive to noise

« Decrease k:

— Allows capturing finer structure of space,
sensitive to noise.

« =»Pick k not too large, but not too small
STUDENTS(]QJ@CQ‘ﬂendS On data)
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Curse-of-Dimensionality

* Prediction accuracy can quickly degrade when
number of attributes grows.

— Irrelevant attributes easily “swamp” information
from relevant attributes

— When many irrelevant attributes, similarity/distance
measure becomes less reliable

 Remedy

— Try to remove Irrelevant attributes in pre-
processing step

— Weight attributes differently
— Increase k (but not too much)
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Advantages and Disadvantages
of KNN

* Need distance/similarity measure and
attributes that “match” target function.

* For large training sets,

« - Must make a pass through the entire
dataset for each classification. This can
be prohibitive for large data sets.

* Prediction accuracy can quickly degrade
when number of attributes grows.
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Unsupervised Learning: Clustering

Introduction
« Cluster: A collection/group of data objects/ points
such that:
— similar (related) to one another in same group
— dissimilar (unrelated) to the objects in other
groups
* Cluster Analysis

— find similarities between data according to
characteristics underlying the data and grouping
similar data objects into clusters
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Unsupervised Learning: Clustering

» Clustering Analysis: Unsupervised learning
— No predefined classes for a training data set

— Two general tasks:
 identify the “natural” clusters number and
« properly grouping objects into “sensible” clusters

* Typical applications

— as a stand-alone tool to gain an insight into
data distribution

— as a preprocessing step of other algorithms in
Intelligent systems
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Introduction

* lllustrative Example 1: how many clusters?
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Introduction

* lllustrative Example 2: are they in the same
cluster? Which Features are important?

1. Two clusters
2. Clustering criterion:
Article Language

Arabic Economic
Arabic Tech

English Economic
English Tech

Arabic Tech 1.Two clusters
2. Clustering criterion:

Arabic Economic
English Economic

English Tech
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Introduction

« Real Applications: Google News

Google News - Mozilla

File Edit Wiew History Bookmarks Tools

Help

| & rews.google.com

| [*Y- google news

Uk

+You Search Images Maps Play

Google

UK. edition

News

Top Stories Top Stories

Harry Potter

ichael Owen

tobile Industry
LEFA Eurg 2012
Robin van Persie
Marthern Rock

Elton John

FC Bayem Munich
Kenny Dalglish
Frince Harry of Wales

BBC News

England
World

Uk
Business
Technology
Entertainment
Sports

Science awizsinta.ch

& Google Mews

YouTube

News Gmail Documents Calendar More -

Modern -

European shares post sharp losses on
worries over Spain

BBC Mews - 53 minutes ago

European stock markets have fallen in early trading as concern
cantinued over Greece and Spain's banking industry. In Spain the main
index was down almost 2%, while shares in London and Frankfurt were
trading 1% lower.

‘Eura Crisis’ Market Mayhemn After Downgrades By Mews  Relgted

European factars ta watch - shares seen lower on Bankia »

Friday Reuters Uk toody's »
tladrid »

In-depth: Moody's downgrades 16 Spanish banks Reuters

Live Updating: Eurozone crisis live: Greek and Spanish fears hit
rmarkets again The Guardian (blog)

See all 952 sources »

R Bty |

Deutsche ...

Newsday — Telegraph... SunHerald...  Wall Street...

G8 leaders look to head off euro zone crisis
Reuters - 35 minutes ago

By Laura Maclnnis and Jeff Mason | WASHINGTON May 18 (Reuters) -
Leaders of maiar industrial economies meet this weekend ta try to head

A

Sign in

ORGANIC
FOOD

Personalize Google Hews

England » - Change location

Alan Johnson: 'l considered running for
London mayaor'
BB Mews - 5 hours sgo

Andre Villas-Boas awaiting call from
Liverpool which could bring chance to ..
Telegraph.couk - 1 hour ago

Mowe Yoo See Thern, Mow You Don't
BBC Mewes - & hours sgo

Editors' Picks

<
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Introduction
« Real world tasks:

— Bank/Internet Security: fraud/spam pattern discovery

— Biology: taxonomy of living things such as kingdom, phylum, class, order,
family, genus and species

— City-planning: Identifying groups of houses according to their house type,
value, and geographical location

— Climate change: understanding earth climate, find patterns of atmospheric
and ocean

— Finance: stock clustering analysis to uncover correlation underlying
shares

— Image Compression/segmentation: coherent pixels grouped
— Information retrieval/organisation: Google search, topic-based news

— Land use: Identification of areas of similar land use in an earth
observation database

— Marketing: Help marketers discover distinct groups in their customer
bases, and then use this knowledge to develop targeted marketing
programs 162

STUDENFS-tBatalnetwork mining: special interest group automaticldiseov@py: anonymous



Aspects of clustering

* A clustering algorithm
— Partitional clustering
— Hierarchical clustering

* A distance (similarity, or dissimilarity) function

» Clustering quality
— Inter-clusters distance = maximized
— Intra-clusters distance = minimized

* Clustering Quality depends on algorithm,
distance function, and application.
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Data Types and Representations
 Discrete vs. Continuous

— Discrete Feature

« Has only a finite set of value e.g., zip codes, rank, or
the set of words in a collection of documents

« Sometimes, represented as integer variable

— Continuous Feature

 Real numbers as feature values e.g. temperature,
height, or weight, location: practically measured and
represented using a finite number of digits

« Typically represented as floating-point variables
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Data Types and Representations

« Data representations
— Data matrix (object-by-feature structure)

X1

Xi1

Xn1

X1f

Xif

Xnf

le
le

an

= n data points (objects) with p
dimensions (features)

= Two modes: row and column
represent different entities

= E.g. Document/word matrix

Distance/dissimilarity matrix: object-by-object structure

0
d(2,1)

STUDENTS-HUB.co

0

d(3,1) d(3,2) 0

d(r.l,%) d(r.1,2)

. 0

= n data points, but registers
only the distance

= A symmetric/triangular matrix

= Single mode: row and column

165  for the same entity (distance)
Uploaded By: anonymous



Data Types and Representations

« Examples
37 point X y
pl 0 2
20pl n2 2 0
p3 p4 p3 3 1
1- . ° ° ol c 1
0 *— Data Matrix
0 2 3 5 6
pl p2 p3 p4

pl 0 2.828 3.162 5.099

p2 2.828 0 1.414 3.162

D3 3.162 1.414 0 2

p4 5.099 3.162 2 0

Distance Matrix (i.e., Dissimilarity Matrix) for Euclidean Distance

STUDENTS-HUB.com
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Distance Measures

* Minkowski Distance (http://en.wikipedia.org/wiki/Minkowski_distance)
For x = (x; %, -+-x,) and y=(y1 Y5+ ¥,,)

1
d(6Y) = (% = Vi I” +1% =Y, P -+ %, =V, [°Jp, p>0
— p=1: Manhattan (city block) distance
dx,y)=lx;—y [ +1x, =y, |- +1lx, -y, |
— p=2: Euclidean distance

% ...

2

d(er):\/lxl_%l +1x, -y, +lx, -y,

— Do not confuse p with #, i.e., all these distances are defined based
on all numbers of features (dimensions).

— A generic measure: use appropriate p in different applications

167
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Distance Measures

« Example: Manhatten and Euclidean

L1 pl p2 p3 p4
pl 0 4 4 6
p2 4 0 2 4
p3 4 2 0 2
p4 6 4 2 0

Distance Matrix for Manhattan Distance

L2 pl p2 p3 p4

pl 0 2.828 3.162 5.099
p2 2.828 0 1.414 3.162
p3 3.162 1.414 0 2
p4 5.099 3.162 2 0

3 -
2 ®pl
p3 p4
1 L [ J
p2
O T . T T T
o 1 2 3 4 5
point X y
pl 0 2
p2 2 0
p3 3 1
p4 5 1
Data Matrix

STUDENTS-HUB.com

Distance Matrix for Euclidean Distance
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Distance Measures
« Cosine Measure (Similarity vs. Distance)

For X=(x; X, x,) and y=(y; ¥, - y,)
XY+ + XY,

SRt XYy
d(x,y)=1-cos(X,y)

0 < d(x,y) <2
- x=(1,0,1), y=(0,1,1): cos(x,y)=1/2
— Property:

« Nonmetric vector objects: keywords in documents,
gene features in micro-arrays, ...

« Applications: information retrieval, biologic taxonomy, ...

169
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Distance Measures

 Example: Cosine measure
X, =(3,2,0,5,2,0,0),x,=(1,0,0,0,1,0, 2)

3x14+2x0+0x04+5x0+2x1+0x0+0x2=5
J32 422402452422 4+0%+0% =/42 ~ 6.48
JI2+02+02+0%+12 402+ 22 =+/6 ~ 2.45

5

6.48x2.45
d(X;,X,)=1-cos(x,,X,)=1-0.32=0.68

170
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K-means Clustering
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Introduction

« Partitioning Clustering Approach

— atypical clustering analysis approach via iteratively partitioning
training data set to learn a partition of the given data space

— learning a partition on a data set to produce several non-empty
clusters (usually, the number of clusters given in advance)

— In principle, optimal partition achieved via minimising the sum of
squared distance to its “representative object”, or centroid, in
each cluster

E = Z Xde (x,m,)

N
. . 2 2
e.g., Euclidean distanced’(x,m,) =>_(x, -m,,)
n=1
172
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Introduction

The K-means algorithm: a heuristic method

o K-means algorithm (MacQueen’'67): each cluster is
represented by the center of the cluster and the algorithm
converges to stable centroids of clusters.

o K-means algorithm is the simplest partitioning method for
clustering analysis: widely used in data mining applications.
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K-means Algorithm

 Given the cluster number K, the K-means
algorithm works as follows:

0)Initialisation: set initial K seed points —centroids- (randomly)

1)Assign each object to the cluster of the nearest seed point
using the specific distance metric

2)Compute the new seed points as the centroids of the
clusters of the current partition (the centroid is the center,
or mean point, of the cluster after additions)

3)Stop when no more new assignment (i.e.,, membership in
each cluster no longer changes) else Go back to Step 1.
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An example

fteration 1 (B Cluster assignment (L) Re-compute centronds

175
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An example (cont ...)

.r'-"*... P -
[+ Y
J v ;o b
o G o, £ 04
1 | r I
[ ] E‘ L ) + )
| & 9y 10 B,
-
"i_.‘_‘l-u'".i tlu ""
L I
1y ¥ . R
(B3 Re-compute centronds
,F 'ﬂ--‘
o~ POl -
‘f, ‘\. ’." 0 hl
# Y O 4
1 L] r
i g t +~ f
| O o} o O/
,
~. O_-" 1 ’
fteration 37 (F). Cluster assignment (L), Re-compute centronds
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Stopping/convergence criterion

1. no (or minimum) re-assignments of data
points to different clusters,

2. no (or minimum) change of centroids, or

3. minimum decrease in the sum of
sqguared error (SSE) over all clusters,

K
SSE=) > dist(x,m;)®
=1 ‘

— G is the jth cluster, m; is the centroid of
cluster C; (the mean vector of all the data
points in C;), and dist(x, m;) is the distance
between data point x and centroid m;.

STUDENTS-HUB.com Uploaded By: anonymous



* Problem

Example

Suppose we have 4 types of medicines and each has two attributes (pH and
weight index). Our goal is to group these objects into K=2 group of medicine.

Medicine | Weight | pH-Index
A 1 1
B 2 1
C 4 3
D 5 4

STUDENTS-HUB.com

[ 31 ‘ N
L IS5 f=========== S .
SRR oL LS LLOLEEEL  EECEE LR
R R e
o : :
@ 2}eeeecanean. jasmnnnnanaa Armmmnnn
A ] i
- i i
o 1577 A B---imme
R e
0.5 PRI -E ----------- -E ------------
0 i :
0 2 ) i]
attribute 1 (X): weight index
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Example

« Step 1: Use Initial seed points for partitioning

iteration 0

4.5 : : ; : D
8 B
T »5 [ N U O W
ST S
o : i .
— 25 foeennn- —— — — — —
o : ' : '
o 271 o R R R SR
“ ] ] ]
R S 3 ------------------------------
T gL * ..............................
ﬁ ] ]
O 05 et e SECE TR PR
0 !
0 1 2 3 ; B

attribute 1 (X): weight index

c;=A,c,=8B

d(D,c;)=/(5-172 +(4-1)* =5
d(D,c,) =+(5-2)% +(4—1)* =4.24

STUDENTS-HUB.com

Assign each object to the cluster
with the nearest seed point
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Example
« Step 2: Compute new centroids of the

current partition

iteration 1

attribute 1 (X): weight index

43 : : ; :

Jood e
T : : : !
g 35
R W DRRURRE IR N RN SR S S
>~ : C2 *-’
Y- IRRUNR SN NSRRI S
o : ! :
PRRE e e
ERPRSNC 1 1 R R
Sl
NIV SO S PR S S S

0 :

1] 1 2 3 4 a] B

STUDENTS-HUB.com

Knowing the members of each
cluster, now we compute the new
centroid of each group based on
these new memberships.

¢, =(1, 1)

(2+4+5 1+3+4j
C2:

3 7 3
11 8
—(3,3)

Uploaded By: anonymous



Example

« Step 2: Renew membership based on new
—oannteaidla

iteration 1

Compute the distance of all
objects to the new centroids

- L L =~
[ B NCRR L T T L T S
1 1 1 L

attribute 2 (Y): pH

=
h
1

=

oot 2228 B Assign the membership to objects
attribute 1 (X): weight index

181
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Example

« Step 3. Repeat the first two steps until its

iteration 2

r2 b o
th w3 th &= ©n
1 1 1 1

—
i'_f‘l N
1 [l

attribute 2 (Y): pH

=
h
1

=

attribute 1 (X): weight index

STUDENTS-HUB.com

Knowing the members of each
cluster, now we compute the new
centroid of each group based on
these new memberships.

C1=(1+2/ 1+1j:(1l, 0

2 2 2

02:(4+5, 3+4j:(4l, 31)
2 2 2 2
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Example

« Step 3. Repeat the first two steps until its

VN FAy _E7 W _ N _EV_wWwWw_wWw _\

iteration 2

Compute the distance of all objects to
the new centroids

- 2 ol =
h R M L h &= h
1 1 1 1 1 L

attribute 2 (Y): pH

=
h
Il

=

Stop due to no new assignment

attribute 1 (X): weight index

& Membership in each cluster no longer
change

STUDENTS-HUB.com
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Exercise: Different Distance Metric

Use K-means with the Manhattan distance metric for clustering analysis by
setting K=2 and initial seeds C1 = A and C2 = C.

Answer three questions as follows:

1. How many steps are required for convergence?

2. What are memberships of two clusters after convergence?
3. What are centroids of two clusters after convergence?

Medicine | Weight pH- '5 ; ; D

Index R W

E_a.:-—wﬂﬂwwa 77777777777 C 77777777777

A l 1 = IIIIIIIIIIIEIIZIIZIIZI&IIIIIIII

B 2 1 0 N S B
R T S

C 4 3 0.5 S| s

D 5 4 attribute:1 (X): weight index
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Another example: (using K=2)

Individual Variable 1 Variable 2
1 1.0 1.0
2 1.5 2.0
3 3.0 4.0
4 5.0 7.0
5 3.5 5.0
6 1.5 5.0
4 3.5 4.5
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Step 1:

Initialization: Randomly we choose following two centroids

m1[#1]=(1.0,1.0) and m2 [#4]=(5.0,7.0).

STUDENTS!

Individual WYariable 1 Variahle 2

1 1.0 1.0

2 1.5 = 0

3 3.0 4.0

: 5.0 [

5 3.5 L ()

G 4.5 5 ()

7 1.5 4.5

Individual Mean Vector

Group 1 1 (1.0, 1.0)
Group 2 4 (5.0, 7.0)

HUIPD ~~nn

TUD.VUITI

U
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nawiduy | Cepfrokd 1 | Ceninodd 2
1 d T2

Step 2: From the distances:
« we obtain two clusters: 201.5, L0111 e1C

{1,7.3Vand {4,5.6,7} : 361 18]
* Their new centroids are: - 7.1 0
5 2.7 ik
f;'r-_={%[1.(]—1.:'-—3.D].%{1.D+J.EI+-1.D]}=[1.Ei.2.3-3} : £, 206
| o - _ 7 2.40 Fi- v,
.i.i'i':=I:I'I::'.D—E.:‘-—-l'.:'—sﬁ.:‘-:'.j[?.':'+:'.|:|+:‘-.':'—-l'._"':l:l
=[411_:33} |In4:|i~.r]-i4:|u:aul "-.f‘arilc-ulglel ‘u’arilallt::llle El
2 1520 d(m 2=y 10-15F 410-20F =112
. oo d(m,2=|3.0-15F 47.0-20F =6.10
7 35 4
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Step 3.
 Now using these new

« The new clusters are:

Individual Wariakle 1 Variable 2

{ ] <-’%1 = 7677}

 Next centroids are:

(3.9,5.1) (WHY?)

| 1 1.0 1.0 |
: 30 4o
centroids we compute the — o Lo
Euclidean distance of each E 4.5 5.0
object, as in next table. ! e i
* M;=(1.83,2.35), my=(4.12,5.33) | |ndiyigual | Ceniroid 1 | Ceniroid 2
: .57 0.4
T 047 4.2k
) 204 178
m1=(1.25,1.5) and m2 = - 5.f4 1.24
i 315 0.73
i 3.78 0.4
T 274 1.08

STUDENTS-HUB.com
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« Step 4 : Recall m1=(1.25,1.5)
and m2 = (3.9,5.1)

Now using the new centroids
we compute the Euclidean
distance of each object, as In
next table.

The clusters obtained are:
{1,2} and {3,4,5,6,7}

* There is no change In the
cluster structure.

* Thus, the algorithm stops here
and final result consist of 2
clusters

{1,2} and {3,4,5,6,7}.

STUDENTS-HUB.com

Individual “ariakle 1 ‘Variahle 2

I 1 1.0 1.0 |
ndvidual | Ceniroid 1| Ceniroi 2
1 0.5 0.0z
. 0. 36 18
: 105 142
1 i 2.0
i Ali 041
i 4.7 081
i 3.75 0.72
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(with K=3)

ndividual {my=1{m,=2|m;=13| cluster
0 |1 181
i 21 0 | 25 2
3 £3i1 I A B | ]
4 720 | 630 | A8 | 3
d P I P
6 A4 | tRD | 2
7 40 |3 (0| 3

caustenng with inital centroids (1, 2, 3)

Step 1

STUDENTS-HUB.com

inividual | | ™ | cluster
(1.0, 1.00 (1.5, 200 i38.5.1)
1 0 1.1 B2 1
., 112 0 38 2
3 381 25 142 3
- 721 8.10 220 3
i 472 361 0.41 3
i b4 4.4 0.81 3
7 430 1.0 0.7 3
Step 2
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Strengths of k-means

« Strengths:
— Simple: easy to understand and to implement
— Efficient: Time complexity: O(tkn),
where n is the number of data points,
kK Is the number of clusters, and
t is the number of iterations (conversion can be slow!).

— Since both k and t are usually small. k-means is considered a
linear algorithm.

« K-means: most popular clustering algorithm.

* Note that: it terminates at a local optimum if SSE (Sum
of Squared Errors) is used. The global optimum is hard

to find due to complexity.
193
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Weaknesses of k-means

* The algorithm is only applicable if the mean
IS defined.
— For categorical data, k-mode - the centroid is
represented by most frequent values.
* The user needs to specify k.

* The algorithm Is sensitive to outliers
— Qutliers: data points very far away from other
data points.

— Qutliers could be errors in data recording or
special data points with very different values.
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Weaknesses of k-means: Problems
with outliers

4] - |
Outlrer
o
©a o Qo9 N
a o
o o 0
ﬂ - u - - ——

(A Undesirahle clusters

outher

(B Ideal clusters
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Weaknesses of k-means: Outliers

 Remove some data points in the clustering
process that are much further away from the

centroids than other data points.

— To be safe, we may want to monitor these possible outliers
over a few iterations and then decide to remove them.

» Or perform random sampling. Since In
sampling we only choose a small subset of
the data points, the chance of selecting an

outlier Is very small (larger data sets).

— Assign the rest of the data points to the clusters by distance or
similarity comparison, or classification
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Weaknesses of k-means (cont.)
* The algorithm Is sensitive to initial seeds.

ﬂu uﬂ
& o [+

Q o 9
Q 0

(A0, Random selection of seeds (centroids )

(B teration | (). [teration 2
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Weaknesses of k-means (cont.)

* |If we use different seeds: good

o 0 There are some
0
o 4 5 methods to help
@ o choose good
0 o o
Q o seeds

(A Random selection of & seeds (centroids)

(B). Iteration | (), Meration 2

STUDENTS-HUB.com Uploaded By: anonymous



Weaknesses of k-means (cont.)

* The k-means algorithm is not suitable for
discovering clusters that are not hyper-
ellipsoids (or hyper-spheres).

(A Two natural clusters (B &-means clusters
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Cluster Evaluation: hard problem

* The quality of clustering is very hard to
evaluate because

— We do not know the correct clusters

e Some methods, however, are used:

— User inspection
 Study centroids, and spreads
* Rules from a decision tree.

* For text documents, one can read some
documents in clusters.

200
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Cluster evaluation: ground truth

* We use some labeled data (for classification)
« Assumption: Each class is a cluster.

 After clustering, a confusion matrix Is
constructed. From the matrix, we compute
various measurements, entropy, purity,
precision, and

— Let the classes in the data D be C = (¢, C,, ..., Cy).
The clustering method produces k clusters, which

divides D into k disjoint subsets, D,, D,, ..., D,.

201
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What Is A Good Clustering?

Internal criterion: A good clustering will produce high
guality clusters in which:

— the Intra-class (intra-cluster) similarity is high
— the Inter-class similarity is low

How would you evaluate clustering?
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Common approach: use labeled data

Use data with known classes
— For example, document classification data

data Label

l If we clustered this data (ignoring
labels) what would we like to see?

Reproduces class partitions

How can we quantify this?
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Common approach: use labeled data

Purity, the proportion of the dominant class in the cluster

Cluster | Cluster 11 Cluster 111

Cluster I: Purity = 1/6 (max(5, 1, 0)) = 5/6=.83 Average Purity=1/3 (.83+.67+.6)=.70
Cluster I1: Purity = 1/6 (max(1, 4, 1)) = 4/6=.67 =1/total_Points(sum of Majority points)

=1/17(5+4+3)=12/17=.70
Cluster 11 Purity = 1/5 (max(2, 0, 3)) = 3/5=.6
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Other purity issues...

Purity, the proportion of the dominant class in the
cluster

Good for comparing two algorithms, but
not understanding how well a single
algorithm is doing, why?

— Increasing the number of clusters increases purity
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Purity isn’'t perfect

Which is better based on purity?
Which do you think is better?

Ideas?
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Common approach: use labeled data

Average entropy of classes in clusters

entropy(cluster) = - L é p(class.)log p(class.)

num __classes

i

where p(class;) is proportion of class i in cluster
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Common approach: use labeled data

Average entropy of classes in clusters

entropy(cluster) = —é p(class.)log p(class.,)

entropy?
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Common approach: use labeled data

Average entropy of classes in clusters
entropy(cluster) = —é p(class;)log p(class.)

1

-0.5l0g0.5-0.5l0g0.5=1 -0.510g0.5-0.25l090.25-0.25l0g0.25=1.5

Entropy Computation: https://stackoverflow.com/questions/35709562/how-to-

calculate-clustering-entropy-a-working-example-or-software-code
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K-means summary

* Despite weaknesses, k-means is still the
most popular algorithm due to its
simplicity, efficiency and
— other clustering algorithms have their own

lists of weaknesses.

* No clear evidence that any other clustering
algorithm performs better in general

— although they may be more suitable for some
specific types of data or applications.

« Comparing different clustering algorithms

IS a difficult task. No one knows the correct
clusters! -
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