
MIPS32 Assembly Language

Programming

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Outline

❖ Introduction to Assembly Language

❖ Arithmetic Instructions

❖ Control Flow Instructions

❖ Load/Store Instructions

❖ Floating Points Instructions

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

What is Assembly Language?

❖ Low-level programming language for a computer

❖ One-to-one correspondence with the machine instructions

❖ Assembly language is specific to a given processor

❖ Assembler: converts assembly program into machine code

❖ Assembly language uses:

 Mnemonics: to represent the names of low-level machine instructions

 Labels: to represent the names of variables or memory addresses

 Directives: to define data and constants

 Macros: to facilitate the inline expansion of text into other code

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Assembly Language Statements

❖ Three types of statements in assembly language

 Typically, one statement should appear on a line

1. Executable Instructions

 Generate machine code for the processor to execute at runtime

 Instructions tell the processor what to do

2. Pseudo-Instructions and Macros

 Translated by the assembler into real instructions

 Simplify the programmer task

3. Assembler Directives

 Provide information to the assembler while translating a program

 Used to define segments, allocate memory variables, etc.

 Non-executable: directives are not part of the instruction set

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Assembly Language Instructions

❖ Assembly language instructions have the format:

[label:] mnemonic [operands] [#comment]

❖ Label: (optional)

 Marks the address of a memory location, must have a colon

 Typically appear in data and text segments

❖Mnemonic

 Identifies the operation (e.g. add, sub, etc.)

❖ Operands

 Specify the data required by the operation

 Operands can be registers, memory variables, or constants

 Most instructions have three operands

L1: addiu $t0, $t0, 1 #increment $t0
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Comments

❖ Single-line comment

 Begins with a hash symbol # and terminates at end of line

❖ Comments are very important!

 Explain the program's purpose

 When it was written, revised, and by whom

 Explain data used in the program, input, and output

 Explain instruction sequences and algorithms used

 Comments are also required at the beginning of every procedure

▪ Indicate input parameters and results of a procedure

▪ Describe what the procedure does

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Program Template

Title: Filename:

Author: Date:

Description:

Input:

Output:

################# Data segment #####################

.data

. . .

################# Code segment #####################

.text

.globl main

main: # main program entry

. . .

li $v0, 10 # Exit program

syscall

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

.DATA, .TEXT, & .GLOBL Directives

❖ .DATA directive

 Defines the data segment of a program containing data

 The program's variables should be defined under this directive

 Assembler will allocate and initialize the storage of variables

❖ .TEXT directive

 Defines the code segment of a program containing instructions

❖ .GLOBL directive

 Declares a symbol as global

 Global symbols can be referenced from other files

 We use this directive to declare main function of a program

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Data Definition Statement

❖ The assembler uses directives to define data

❖ It allocates storage in the static data segment for a variable

❖May optionally assign a name (label) to the data

❖ Syntax:

[name:] directive initializer [, initializer] . . .

var1: .WORD 10

❖ All initializers become binary data in memory

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Data Directives

❖ .BYTE Directive

 Stores the list of values as 8-bit bytes

❖ .HALF Directive

 Stores the list as 16-bit values aligned on half-word boundary

❖ .WORD Directive

 Stores the list as 32-bit values aligned on a word boundary

❖ .FLOAT Directive

 Stores the listed values as single-precision floating point

❖ .DOUBLE Directive

 Stores the listed values as double-precision floating point

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

String Directives

❖ .ASCII Directive

 Allocates a sequence of bytes for an ASCII string

❖ .ASCIIZ Directive

 Same as .ASCII directive, but adds a NULL char at end of string

 Strings are null-terminated, as in the C programming language

❖ .SPACE Directive

 Allocates space of n uninitialized bytes in the data segment

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Examples of Data Definitions

.DATA

var1: .BYTE 'A', 'E', 127, -1, '\n'

var2: .HALF -10, 0xffff

var3: .WORD 0x12345678:100

var4: .FLOAT 12.3, -0.1

var5: .DOUBLE 1.5e-10

str1: .ASCII "A String\n"

str2: .ASCIIZ "NULL Terminated String"

array: .SPACE 100

Array of 100 words

Initialized with

the same value

100 bytes (not initialized)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

❖Memory is viewed as an addressable array of bytes

❖ Byte Addressing: address points to a byte in memory

❖ However, words occupy 4 consecutive bytes in memory

 MIPS instructions and integers occupy 4 bytes

❖Memory Alignment:

 Address must be multiple of size

 Word address should be a multiple of 4

 Double-word address should be a multiple of 8

❖ .ALIGN n directive

 Aligns the next data definition on a 2n byte boundary

 Forces the address of next data definition to be multiple of 2n

Memory Alignment

0

4

8

12

a
d

d
re

s
s

not aligned

. . .

aligned word

not aligned

Memory

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

❖ Processors can order bytes within a word in two ways

❖ Little Endian Byte Ordering

 Memory address = Address of least significant byte

 Example: Intel IA-32

❖ Big Endian Byte Ordering

 Memory address = Address of most significant byte

 Example: SPARC architecture

❖ MIPS can operate with both byte orderings

Byte Ordering (Endianness)

Byte 0Byte 1Byte 2Byte 3

32-bit Register

MSB LSB

.Byte 0Byte 1Byte 2Byte 3

a a+3a+2a+1

Memory

address

Byte 3Byte 0Byte 1Byte 2Byte 3

32-bit Register

MSB LSB

.Byte 0 Byte 1 Byte 2

a a+3a+2a+1

Memory

address

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

❖ Assembler builds a symbol table for labels

 Assembler computes the address of each label in data segment

❖ Example Symbol Table

.DATA

var1: .BYTE 1, 2,'Z'

str1: .ASCIIZ "My String\n"

var2: .WORD 0x12345678

.ALIGN 3

var3: .HALF 1000

Symbol Table

Label

var1

str1

var2

var3

Address

0x10010000

0x10010003

0x10010010

0x10010018

var1

1 2 'Z'0x10010000

str1

'M' 'y' ' ' 'S' 't' 'r' 'i' 'n' 'g' '\n' 0

0x123456780x10010010

var2 (aligned)

1000

var3 (address is multiple of 8)

0 0 Unused

0 00 0

Unused

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

System Calls

❖ Programs do input/output through system calls

❖ The MIPS architecture provides a syscall instruction

 To obtain services from the operating system

 The operating system handles all system calls requested by program

❖ Since MARS is a simulator, it simulates the syscall services

❖ To use the syscall services:

 Load the service number in register $v0

 Load argument values, if any, in registers $a0, $a1, etc.

 Issue the syscall instruction

 Retrieve return values, if any, from result registers

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Syscall Services

Service $v0 Arguments / Result

Print Integer 1 $a0 = integer value to print

Print Float 2 $f12 = float value to print

Print Double 3 $f12 = double value to print

Print String 4 $a0 = address of null-terminated string

Read Integer 5 Return integer value in $v0

Read Float 6 Return float value in $f0

Read Double 7 Return double value in $f0

Read String 8
$a0 = address of input buffer

$a1 = maximum number of characters to read

Allocate Heap

memory
9

$a0 = number of bytes to allocate

Return address of allocated memory in $v0

Exit Program 10

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Syscall Services – Cont’d

Print Char 11 $a0 = character to print

Read Char 12 Return character read in $v0

Open File 13

$a0 = address of null-terminated filename string $a1

= flags (0 = read-only, 1 = write-only)

$a2 = mode (ignored)

Return file descriptor in $v0 (negative if error)

Read

from File
14

$a0 = File descriptor

$a1 = address of input buffer

$a2 = maximum number of characters to read

Return number of characters read in $v0

Write to File 15

$a0 = File descriptor

$a1 = address of buffer

$a2 = number of characters to write

Return number of characters written in $v0

Close File 16 $a0 = File descriptor

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Reading and Printing an Integer

################# Code segment #####################

.text

.globl main

main: # main program entry

li $v0, 5 # Read integer

syscall # $v0 = value read

move $a0, $v0 # $a0 = value to print

li $v0, 1 # Print integer

syscall

li $v0, 10 # Exit program

syscall

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Reading and Printing a String

################# Data segment #####################

.data

str: .space 10 # array of 10 bytes

################# Code segment #####################

.text

.globl main

main: # main program entry

la $a0, str # $a0 = address of str

li $a1, 10 # $a1 = max string length

li $v0, 8 # read string

syscall

li $v0, 4 # Print string str

syscall

li $v0, 10 # Exit program

syscall
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Sum of Three Integers

Sum of three integers

Objective: Computes the sum of three integers.

Input: Requests three numbers, Output: sum

################### Data segment ###################

.data

prompt: .asciiz "Please enter three numbers: \n"

sum_msg: .asciiz "The sum is: "

################### Code segment ###################

.text

.globl main

main:

la $a0,prompt # display prompt string

li $v0,4

syscall

li $v0,5 # read 1st integer into $t0

syscall

move $t0,$v0

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Sum of Three Integers – (cont'd)

li $v0,5 # read 2nd integer into $t1

syscall

move $t1,$v0

li $v0,5 # read 3rd integer into $t2

syscall

move $t2,$v0

addu $t0,$t0,$t1 # accumulate the sum

addu $t0,$t0,$t2

la $a0,sum_msg # write sum message

li $v0,4

syscall

move $a0,$t0 # output sum

li $v0,1

syscall

li $v0,10 # exit

syscall
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Instruction Categories

❖ Integer Arithmetic

❖ Arithmetic, logic, and shift instructions

❖ Data Transfer

 Load and store instructions that access memory

 Data movement and conversions

❖ Jump and Branch

 Flow-control instructions that alter the sequential sequence

❖ Floating Point Arithmetic

 Instructions that operate on floating-point registers

❖Miscellaneous

 Instructions that transfer control to/from exception handlers

 Memory management instructions

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

R-Type Instruction Format

❖ Op: operation code (opcode)

 Specifies the operation of the instruction

 Also specifies the format of the instruction

❖ funct: function code – extends the opcode

 Up to 26 = 64 functions can be defined for the same opcode

 MIPS uses opcode 0 to define many R-type instructions

❖ Three Register Operands (common to many instructions)

 Rs, Rt: first and second source operands

 Rd: destination operand

 sa: the shift amount used by shift instructions

Op6 Rs5 Rt5 Rd5 funct6sa5

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

R-Type Integer Add and Subtract

Instruction Meaning Op Rs Rt Rd sa func

add $t1, $t2, $t3 $t1 = $t2 + $t3 0 $t2 $t3 $t1 0 0x20

addu $t1, $t2, $t3 $t1 = $t2 + $t3 0 $t2 $t3 $t1 0 0x21

sub $t1, $t2, $t3 $t1 = $t2 – $t3 0 $t2 $t3 $t1 0 0x22

subu $t1, $t2, $t3 $t1 = $t2 – $t3 0 $t2 $t3 $t1 0 0x23

❖ add, sub: arithmetic overflow causes an exception

 In case of overflow, result is not written to destination register

❖ addu, subu: arithmetic overflow is ignored

❖ addu, subu: compute the same result as add, sub

❖Many programming languages ignore overflow

 The + operator is translated into addu

 The – operator is translated into subu

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Using Add / Subtract Instructions

❖ Consider the translation of: f = (g+h)–(i+j)

❖ Programmer / Compiler allocates registers to variables

❖ Given that: $t0=f, $t1=g, $t2=h, $t3=i, and $t4=j

❖ Called temporary registers: $t0=$8, $t1=$9, …

❖ Translation of: f = (g+h)–(i+j)

addu $t5, $t1, $t2 # $t5 = g + h

addu $t6, $t3, $t4 # $t6 = i + j

subu $t0, $t5, $t6 # f = (g+h)–(i+j)

❖ Assembler translates addu $t5,$t1,$t2 into binary code

000000

Op

01001

$t1

01010

$t2

01101

$t5

00000

sa

100001

addu

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Logic Bitwise Operations

❖ Logic bitwise operations: and, or, xor, nor

❖ AND instruction is used to clear bits: x and 0 ➔ 0

❖ OR instruction is used to set bits: x or 1 ➔ 1

❖ XOR instruction is used to toggle bits: x xor 1 ➔ not x

❖ NOT instruction is not needed, why?

not $t1, $t2 is equivalent to: nor $t1, $t2, $t2

x

0

0

1

1

y

0

1

0

1

x and y

0

0

0

1

x

0

0

1

1

y

0

1

0

1

x or y

0

1

1

1

x

0

0

1

1

y

0

1

0

1

x xor y

0

1

1

0

x

0

0

1

1

y

0

1

0

1

x nor y

1

0

0

0

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Logic Bitwise Instructions

Instruction Meaning Op Rs Rt Rd sa func

and $t1, $t2, $t3 $t1 = $t2 & $t3 0 $t2 $t3 $t1 0 0x24

or $t1, $t2, $t3 $t1 = $t2 | $t3 0 $t2 $t3 $t1 0 0x25

xor $t1, $t2, $t3 $t1 = $t2 ^ $t3 0 $t2 $t3 $t1 0 0x26

nor $t1, $t2, $t3 $t1 = ~($t2|$t3) 0 $t2 $t3 $t1 0 0x27

❖ Examples:

Given: $t1 = 0xabcd1234 and $t2 = 0xffff0000

and $t0, $t1, $t2 # $t0 = 0xabcd0000

or $t0, $t1, $t2 # $t0 = 0xffff1234

xor $t0, $t1, $t2 # $t0 = 0x54321234

nor $t0, $t1, $t2 # $t0 = 0x0000edcb

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Shift Operations

❖ Shifting is to move the 32 bits of a number left or right

❖ sll means shift left logical (insert zero from the right)

❖ srl means shift right logical (insert zero from the left)

❖ sra means shift right arithmetic (insert sign-bit)

❖ The 5-bit shift amount field is used by these instructions

shift-in 0. . .shift-out

sll 32-bit value

. . .shift-in 0 shift-out

srl

. . .shift-in sign-bit shift-out

sra

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Shift Instructions

❖ sll, srl, sra: shift by a constant amount

 The shift amount (sa) field specifies a number between 0 and 31

❖ sllv, srlv, srav: shift by a variable amount

 A source register specifies the variable shift amount between 0 and 31

 Only the lower 5 bits of the source register is used as the shift amount

Instruction Meaning Op Rs Rt Rd sa func

sll $t1,$t2,10 $t1 = $t2 << 10 0 0 $t2 $t1 10 0

srl $t1,$t2,10 $t1 = $t2 >>> 10 0 0 $t2 $t1 10 2

sra $t1,$t2,10 $t1 = $t2 >> 10 0 0 $t2 $t1 10 3

sllv $t1,$t2,$t3 $t1 = $t2 << $t3 0 $t3 $t2 $t1 0 4

srlv $t1,$t2,$t3 $t1 = $t2 >>>$t3 0 $t3 $t2 $t1 0 6

srav $t1,$t2,$t3 $t1 = $t2 >> $t3 0 $t3 $t2 $t1 0 7

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

$t1 = 0x0000abcd

$t1 = 0xcd123400

Shift Instruction Examples

❖ Given that: $t2 = 0xabcd1234 and $t3 = 16

sll $t1, $t2, 8

sra $t1, $t2, 4 $t1 = 0xfabcd123

srlv $t1, $t2, $t3

Rt = $t2Op Rs = $t3 Rd = $t1 sa srlv

01010000000 01011 01001 00000 000110

srl $t1, $t2, 4 $t1 = 0x0abcd123

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Binary Multiplication

❖ Shift Left Instruction (sll) can perform multiplication

 When the multiplier is a power of 2

❖ You can factor any binary number into powers of 2

❖ Example: multiply $t0 by 36

$t0*36 = $t0*(4 + 32) = $t0*4 + $t0*32

sll $t1, $t0, 2 # $t1 = $t0 * 4

sll $t2, $t0, 5 # $t2 = $t0 * 32

addu $t3, $t1, $t2 # $t3 = $t0 * 36

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Your Turn . . .

sll $t1, $t0, 1 # $t1 = $t0 * 2

sll $t2, $t0, 3 # $t2 = $t0 * 8

sll $t3, $t0, 4 # $t3 = $t0 * 16

addu $t4, $t1, $t2 # $t4 = $t0 * 10

addu $t5, $t4, $t3 # $t5 = $t0 * 26

Multiply $t0 by 26, using shift and add instructions

Hint: 26 = 2 + 8 + 16

Multiply $t0 by 31, Hint: 31 = 32 – 1

sll $t1, $t0, 5 # $t1 = $t0 * 32

subu $t2, $t1, $t0 # $t2 = $t0 * 31

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

I-Type Instruction Format

❖ Constants are used quite frequently in programs

 The R-type shift instructions have a 5-bit shift amount constant

What about other instructions that need a constant?

❖ I-Type: Instructions with Immediate Operands

❖ 16-bit immediate constant is stored inside the instruction

Rs is the source register number

Rt is now the destination register number (for R-type it was Rd)

❖ Examples of I-Type ALU Instructions:

Add immediate: addi $t1, $t2, 5 # $t1 = $t2 + 5

OR immediate: ori $t1, $t2, 5 # $t1 = $t2 | 5

Op6 Rs5 Rt5 immediate16

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

I-Type ALU Instructions

Instruction Meaning Op Rs Rt Immediate

addi $t1, $t2, 25 $t1 = $t2 + 25 0x8 $t2 $t1 25

addiu $t1, $t2, 25 $t1 = $t2 + 25 0x9 $t2 $t1 25

andi $t1, $t2, 25 $t1 = $t2 & 25 0xc $t2 $t1 25

ori $t1, $t2, 25 $t1 = $t2 | 25 0xd $t2 $t1 25

xori $t1, $t2, 25 $t1 = $t2 ^ 25 0xe $t2 $t1 25

lui $t1, 25 $t1 = 25 << 16 0xf 0 $t1 25

❖ addi: overflow causes an arithmetic exception

 In case of overflow, result is not written to destination register

❖ addiu: same operation as addi but overflow is ignored

❖ Immediate constant for addi and addiu is signed

 No need for subi or subiu instructions

❖ Immediate constant for andi, ori, xori is unsigned
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

❖ Given that registers $t0, $t1, $t2 are used for A, B, C

Examples of I-Type ALU Instructions

Expression Equivalent MIPS Instruction

A = B + 5;

C = B – 1;

A = B & 0xf;

C = B | 0xf;

C = 5;

A = B;

addiu $t0, $t1, 5

addiu $t2, $t1, -1

andi $t0, $t1, 0xf

ori $t2, $t1, 0xf

addiu $t2, $zero, 5

addiu $t0, $t1, 0

No need for subiu, because addiu has signed immediate

Register $zero has always the value 0

Rt = $t2Op = addiu Rs = $t1 -1 = 0b1111111111111111

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

❖ I-Type instructions can have only 16-bit constants

❖What if we want to load a 32-bit constant into a register?

❖ Can’t have a 32-bit constant in I-Type instructions 

 The sizes of all instructions are fixed to 32 bits

❖ Solution: use two instructions instead of one ☺

❖ Suppose we want: $t1 = 0xAC5165D9 (32-bit constant)

lui: load upper immediate

32-bit Constants

Op6 Rs5 Rt5 immediate16

lui $t1, 0xAC51

ori $t1, $t1, 0x65D9

0xAC51$t1

Upper

16 bits

0x0000

Lower

16 bits

0xAC51$t1 0x65D9

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Pseudo-Instructions

❖ Introduced by the assembler as if they were real instructions

❖ Facilitate assembly language programming

Pseudo-Instruction Equivalent MIPS Instruction

move $t1, $t2

not $t1, $t2

neg $t1, $t2

li $t1, -5

li $t1, 0xabcd1234

The MARS tool has a long list of pseudo-instructions

addu $t1, $t2, $zero

nor $t1, $t2, $zero

sub $t1, $zero, $t2

lui $t1, 0xabcd

ori $t1, $t1, 0x1234

addiu $t1, $zero, -5

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Control Flow

❖ High-level programming languages provide constructs:

 To make decisions in a program: IF-ELSE

 To repeat the execution of a sequence of instructions: LOOP

❖ The ability to make decisions and repeat a sequence of

instructions distinguishes a computer from a calculator

❖ All computer architectures provide control flow instructions

❖ Essential for making decisions and repetitions

❖ These are the conditional branch and jump instructions

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

❖ MIPS compare and branch instructions:

beq Rs, Rt, label if (Rs == Rt) branch to label

bne Rs, Rt, label if (Rs != Rt) branch to label

❖ MIPS compare to zero & branch instructions:

Compare to zero is used frequently and implemented efficiently

bltz Rs, label if (Rs < 0) branch to label

bgtz Rs, label if (Rs > 0) branch to label

blez Rs, label if (Rs <= 0) branch to label

bgez Rs, label if (Rs >= 0) branch to label

❖ beqz and bnez are defined as pseudo-instructions.

MIPS Conditional Branch Instructions

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Branch Instruction Format

❖ The branch instructions modify the PC register only

❖ PC-Relative addressing:

If (branch is taken) PC = PC + 4 + 4×offset else PC = PC+4

❖ Branch Instructions are of the I-type Format:

Op6 Rs5 Rt5 16-bit offset

Instruction I-Type Format

beq Rs, Rt, label Op = 4 Rs Rt 16-bit Offset

bne Rs, Rt, label Op = 5 Rs Rt 16-bit Offset

blez Rs, label Op = 6 Rs 0 16-bit Offset

bgtz Rs, label Op = 7 Rs 0 16-bit Offset

bltz Rs, label Op = 1 Rs 0 16-bit Offset

bgez Rs, label Op = 1 Rs 1 16-bit Offset

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Unconditional Jump Instruction

❖ The unconditional Jump instruction has the following syntax:

j label # jump to label

. . .

label:

❖ The jump instruction is always taken

❖ The Jump instruction is of the J-type format:

❖ The jump instruction modifies the program counter PC:

❖ The upper 4 bits of the PC are unchanged

Op6 = 2 26-bit address

26-bit address 00PC4

multiple

of 4

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Translating an IF Statement

❖ Consider the following IF statement:

if (a == b) c = d + e; else c = d – e;

Given that a, b, c, d, e are in $t0 … $t4 respectively

❖ How to translate the above IF statement?

bne $t0, $t1, else

addu $t2, $t3, $t4

j next

else: subu $t2, $t3, $t4

next: . . .

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Logical AND Expression

❖ Programming languages use short-circuit evaluation

❖ If first condition is false, second condition is skipped

if (($t1 > 0) && ($t2 < 0)) {$t3++;}

One Possible Translation ...

bgtz $t1, L1 # first condition

j next # skip if false

L1: bltz $t2, L2 # second condition

j next # skip if false

L2: addiu $t3, $t3, 1 # both are true

next:

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Better Translation of Logical AND

Allow the program to fall through to second condition

!($t1 > 0) is equivalent to ($t1 <= 0)

!($t2 < 0) is equivalent to ($t2 >= 0)

Number of instructions is reduced from 5 to 3

if (($t1 > 0) && ($t2 < 0)) {$t3++;}

Better Translation ...

blez $t1, next # 1st condition false?

bgez $t2, next # 2nd condition false?

addiu $t3, $t3, 1 # both are true

next:
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Logical OR Expression

❖ Short-circuit evaluation for logical OR

❖ If first condition is true, second condition is skipped

❖ Use fall-through to keep the code as short as possible

bgtz $t1, L1 # 1st condition true?

bgez $t2, next # 2nd condition false?

L1: addiu $t3, $t3, 1 # increment $t3

next:

if (($t1 > 0) || ($t2 < 0)) {$t3++;}

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Compare Instructions

❖MIPS also provides set less than instructions

slt Rd, Rs, Rt if (Rs < Rt) Rd = 1 else Rd = 0

sltu Rd, Rs, Rt unsigned <

slti Rt, Rs, imm if (Rs < imm) Rt = 1 else Rt = 0

sltiu Rt, Rs, imm unsigned <

❖ Signed / Unsigned comparisons compute different results

Given that: $t0 = 1 and $t1 = -1 = 0xffffffff

slt $t2, $t0, $t1 computes $t2 = 0

sltu $t2, $t0, $t1 computes $t2 = 1

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Compare Instruction Formats

❖ The other comparisons are defined as pseudo-instructions:

seq, sne, sgt, sgtu, sle, sleu, sge, sgeu

Instruction Meaning Format

slt Rd, Rs, Rt Rd=(Rs <s Rt)?1:0 Op=0 Rs Rt Rd 0 0x2a

sltu Rd, Rs, Rt Rd=(Rs <u Rt)?1:0 Op=0 Rs Rt Rd 0 0x2b

slti Rt, Rs, im Rt=(Rs <s im)?1:0 0xa Rs Rt 16-bit immediate

sltiu Rt, Rs, im Rt=(Rs <u im)?1:0 0xb Rs Rt 16-bit immediate

Pseudo-Instruction Equivalent MIPS Instructions

sgt $t2, $t0, $t1

seq $t2, $t0, $t1
subu $t2, $t0, $t1

sltiu $t2, $t2, 1

slt $t2, $t1, $t0

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Pseudo-Branch Instructions

❖ MIPS hardware does NOT provide the following instructions:

blt, bltu branch if less than (signed / unsigned)

ble, bleu branch if less or equal (signed / unsigned)

bgt, bgtu branch if greater than (signed / unsigned)

bge, bgeu branch if greater or equal (signed / unsigned)

❖MIPS assembler defines them as pseudo-instructions:

Pseudo-Instruction Equivalent MIPS Instructions

blt $t0, $t1, label

ble $t0, $t1, label

$at ($1) is the assembler temporary register

slt $at, $t0, $t1
bne $at, $zero, label

slt $at, $t1, $t0
beq $at, $zero, label

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Using Pseudo-Branch Instructions

❖ Translate the IF statement to assembly language

❖ $t1 and $t2 values are unsigned

❖ $t3, $t4, and $t5 values are signed

bgtu $t1, $t2, L1

move $t3, $t4

L1:

if($t1 <= $t2) {

$t3 = $t4;

}

if (($t3 <= $t4) &&

($t4 >= $t5)) {

$t3 = $t4 + $t5;

}

bgt $t3, $t4, L1

blt $t4, $t5, L1

addu $t3, $t4, $t5

L1:

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Conditional Move Instructions

❖ Conditional move can eliminate branch & jump instructions

Instruction Meaning R-Type Format

movz Rd, Rs, Rt if (Rt==0) Rd=Rs Op=0 Rs Rt Rd 0 0xa

movn Rd, Rs, Rt if (Rt!=0) Rd=Rs Op=0 Rs Rt Rd 0 0xb

if ($t0 == 0) {$t1=$t2+$t3;} else {$t1=$t2-$t3;}

bne $t0, $0, L1

addu $t1, $t2, $t3

j L2

L1: subu $t1, $t2, $t3

L2: . . .

addu $t1, $t2, $t3

subu $t4, $t2, $t3

movn $t1, $t4, $t0

. . .

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Arrays

❖ In a high-level programming language, an array is a

homogeneous data structure with the following properties:

 All array elements are of the same type and size

 Once an array is allocated, its size cannot be modified

 The base address is the address of the first array element

 The array elements can be indexed

 The address of any array element can be computed

❖ In assembly language, an array is just a block of memory

❖ In fact, all objects are simply blocks of memory

❖ The memory block can be allocated statically or dynamically

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Static Array Allocation

❖ An array can be allocated statically in the data segment

❖ A data definition statement allocates static memory:

label: .type value0 [, value1 ...]

label: is the name of the array

.type directive specifies the size of each array element

value0, value1 ... specify a list of initial values

❖ Examples of static array definitions:

arr1: .half 20, -1 # array of 2 half words

arr2: .word 1:5 # array of 5 words (value=1)

arr3: .space 20 # array of 20 bytes

str1: .asciiz "Null-terminated string"
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Watching Values in the Data Segment

❖ The labels window is the symbol table

 Shows labels and corresponding addresses

❖ The la pseudo-instruction loads the address

of any label into a register

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dynamic Memory Allocation

❖ One of the functions of the OS is to manage memory

❖ A program can allocate memory on the heap at runtime

❖ The heap is part of the data segment that can grow at runtime

❖ The program makes a system call ($v0=9) to allocate memory

.text

. . .

li $a0, 100 # $a0 = number of bytes to allocate

li $v0, 9 # system call 9

syscall # allocate 100 bytes on the heap

move $t0, $v0 # $t0 = address of allocated block

. . .

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Allocating Dynamic Memory on the Heap

Stack Segment

Heap Area

Static Area

Data Segment

0x00000000
Reserved

0x10000000

Text Segment

0x7fffffff

0x00400000

0x10040000

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Computing the Addresses of Elements

❖ In a high-level programming language, an array is indexed

array[0] is the first element in the array

array[i] is the element at index i

&array[i] is the address of the element at index i

&array[i] = &array + i × element_size

❖ For a 2D array, the array is stored linearly in memory

matrix[Rows][Cols] has (Rows × Cols) elements

&matrix[i][j] = &matrix + (i×Cols + j) × element_size

❖ For example, to allocate a matrix[10][20] of integers:

matrix: .word 0:200 # 200 words (initialized to 0)

&matrix[1][5] = &matrix + (1×20 + 5)×4 = &matrix + 100
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Element Addresses in a 2D Array

&matrix[i][j] = &matrix + (i×COLS + j) × Element_size

0

1

…

i

…

ROWS-1

0 1 … j … COLS-1

COLS

R
O
W
S

Address calculation is essential when programming in assembly

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Load and Store Instructions

❖ Instructions that transfer data between memory & registers

❖ Programs include variables such as arrays and objects

❖ These variables are stored in memory

❖ Load Instruction:

 Transfers data from memory to a register

❖ Store Instruction:

 Transfers data from a register to memory

❖ Memory address must be specified by load and store

MemoryRegisters

load

store

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

❖ Load Word Instruction (Word = 4 bytes in MIPS)

lw Rt, imm(Rs) # Rt  MEMORY[Rs+imm]

❖ Store Word Instruction

sw Rt, imm(Rs) # Rt ➔ MEMORY[Rs+imm]

❖ Base / Displacement addressing is used

Memory Address = Rs (base) + Immediate (displacement)

 Immediate16 is sign-extended to have a signed displacement

Load and Store Word

Op6 Rs5 Rt5 immediate16

Base or Displacement Addressing

Memory Word

Base address

+

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Example on Load & Store
❖ Translate: A[1] = A[2] + 5 (A is an array of words)

❖ Given that the address of array A is stored in register $t0

lw $t1, 8($t0) # $t1 = A[2]

addiu $t2, $t1, 5 # $t2 = A[2] + 5

sw $t2, 4($t0) # A[1] = $t2

❖ Index of A[2] and A[1] should be multiplied by 4. Why?

Registers

sw

lw

Memory

A[2]

A[1]

A[3]

. . .

. . .

&A + 12

&A + 8

&A + 4

&A

$t0

$t1

$t2

&A

A[2]

A[2] + 5

. . .

. . . A[0]

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

0 0

s s s

s s

0 0

s

bu

b

h

hu

sign – extend

zero – extend

sign – extend

zero – extend

32-bit Register

❖ The MIPS processor supports the following data formats:

Byte = 8 bits, Half word = 16 bits, Word = 32 bits

❖ Load & store instructions for bytes and half words

 lb = load byte, lbu = load byte unsigned, sb = store byte

 lh = load half, lhu = load half unsigned, sh = store halfword

❖ Load expands a memory value to fit into a 32-bit register

❖ Store reduces a 32-bit register value to fit in memory

Load and Store Byte and Halfword

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Load and Store Instructions

Instruction Meaning I-Type Format

lb Rt, imm(Rs) Rt 1 MEM[Rs+imm] 0x20 Rs Rt 16-bit immediate

lh Rt, imm(Rs) Rt 2 MEM[Rs+imm] 0x21 Rs Rt 16-bit immediate

lw Rt, imm(Rs) Rt 4 MEM[Rs+imm] 0x23 Rs Rt 16-bit immediate

lbu Rt, imm(Rs) Rt 1 MEM[Rs+imm] 0x24 Rs Rt 16-bit immediate

lhu Rt, imm(Rs) Rt 2 MEM[Rs+imm] 0x25 Rs Rt 16-bit immediate

sb Rt, imm(Rs) Rt ➔1 MEM[Rs+imm] 0x28 Rs Rt 16-bit immediate

sh Rt, imm(Rs) Rt ➔2 MEM[Rs+imm] 0x29 Rs Rt 16-bit immediate

sw Rt, imm(Rs) Rt ➔4 MEM[Rs+imm] 0x2b Rs Rt 16-bit immediate

❖ Base / Displacement Addressing is used

 Memory Address = Rs (Base) + Immediate (displacement)

 If Rs is $zero then Address = Immediate (absolute)

 If Immediate is 0 then Address = Rs (register indirect)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Translating a WHILE Loop

❖ Consider the following WHILE loop:

i = 0; while (A[i] != value && i<n) i++;

Where A is an array of integers (4 bytes per element)

❖ Translate WHILE loop: $a0 = &A, $a1 = n, and $a2 = value

&A[i] = &A + i*4 = &A[i-1] + 4

li $t0, 0 # $t0 = i = 0

loop: lw $t1, 0($a0) # $t1 = A[i]

beq $t1, $a2, done # (A[i] == value)?

beq $t0, $a1, done # (i == n)?

addiu $t0, $t0, 1 # i++

addiu $a0, $a0, 4 # $a0 = &A[i]

j loop # jump backwards to loop

done: . . .
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Copying a String

loop:

lb $t0, 0($a1) # load byte: $t0 = source[i]

sb $t0, 0($a0) # store byte: target[i]= $t0

addiu $a0, $a0, 1 # $a0 = &target[i]

addiu $a1, $a1, 1 # $a1 = &source[i]

bnez $t0, loop # loop until NULL char

A string in C is an array of chars terminated with null char

i = 0;

do { ch = source[i]; target[i] = ch; i++; }

while (ch != '\0');

Given that: $a0 = &target and $a1 = &source

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Initializing a Column of a Matrix

M = new int[10][5]; // allocate M on the heap

int i;

for (i=0; i<10; i++) { M[i][3] = i; }

&M[i][3] = &M + (i*5 + 3) * 4 = &M + i*20 + 12

li $a0, 200 # $a0 = 10*5*4 = 200 bytes

li $v0, 9 # system call 9

syscall # allocate 200 bytes

move $t0, $v0 # $t0 = &M

li $t1, 0 # $t1 = i = 0

li $t2, 10 # $t2 = 10

L: sw $t1, 12($t0) # store M[i][3] = i

addiu $t1, $t1, 1 # i++

addiu $t0, $t0, 20 # $t0 = &M[i][3]

bne $t1, $t2, L # if (i != 10) loop back
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Jump and Branch Limits

❖ Jump Address Boundary = 226 instructions = 256 MB

 Jump cannot reach outside its 256 MB segment boundary

 Upper 4 bits of PC are unchanged

❖ Branch Address Boundary

 Branch instructions use I-Type format (16-bit Offset)

 PC-relative addressing:

Branch Target address = PC + 4 × (1 + Offset)

Count the number of instructions to skip starting at next instruction

Positive offset ➔ Forward branch, Negative offset➔ Backward branch

Most branches are near : At most ±215 instructions can be skipped

26-bit address PC4 00Jump Target Address

PC30 + Offset16 + 1 00

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Integer Multiplication in MIPS

❖ Multiply instructions

 mult Rs, Rt Signed multiplication

 multu Rs, Rt Unsigned multiplication

❖ 32-bit multiplication produces a 64-bit Product

❖ Separate pair of 32-bit registers

 HI = high-order 32-bit of product

 LO = low-order 32-bit of product

❖ MIPS also has a special mul instruction

 mul Rd, Rs, Rt Rd = Rs × Rt

 Copy LO into destination register Rd

 Useful when the product is small (32 bits) and HI is not needed

Multiply

Divide

$0

HI LO

$1

.

.

$31

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Integer Division in MIPS

❖ Divide instructions

 div Rs, Rt Signed division

 divu Rs, Rt Unsigned division

❖ Division produces quotient and remainder

❖ Separate pair of 32-bit registers

 HI = 32-bit remainder

 LO = 32-bit quotient

 If divisor is 0 then result is unpredictable

❖ Moving data from HI, LO to MIPS registers

 mfhi Rd (Rd = HI)

 mflo Rd (Rd = LO)

Multiply

Divide

$0

HI LO

$1

.

.

$31

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Integer Multiply and Divide Instructions

Instruction Meaning Format

mult Rs, Rt HI, LO = Rs ×s Rt Op = 0 Rs Rt 0 0 0x18

multu Rs, Rt HI, LO = Rs ×u Rt Op = 0 Rs Rt 0 0 0x19

mul Rd, Rs, Rt Rd = Rs ×s Rt 0x1c Rs Rt Rd 0 2

div Rs, Rt HI, LO = Rs /s Rt Op = 0 Rs Rt 0 0 0x1a

divu Rs, Rt HI, LO = Rs /u Rt Op = 0 Rs Rt 0 0 0x1b

mfhi Rd Rd = HI Op = 0 0 0 Rd 0 0x10

mflo Rd Rd = LO Op = 0 0 0 Rd 0 0x12

mthi Rs HI = Rs Op = 0 Rs 0 0 0 0x11

mtlo Rs LO = Rs Op = 0 Rs 0 0 0 0x13

×s = Signed multiplication, ×u = Unsigned multiplication

/s = Signed division, /u = Unsigned division

NO arithmetic exception can occur
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

String to Integer Conversion

❖ Consider the conversion of string "91052" into an integer

❖ How to convert the string into an integer?

❖ Initialize: sum = 0

❖ Load each character of the string into a register

 Check if the character is in the range: '0' to '9'

 Convert the character into a digit in the range: 0 to 9

 Compute: sum = sum * 10 + digit

 Repeat until end of string or a non-digit character is encountered

❖ To convert "91052", initialize sum to 0 then …

 sum = 9, then 91, then 910, then 9105, then 91052

'9' '1' '0' '5' '2'

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

String to Integer Conversion Function
#---

str2int: Convert a string of digits into unsigned integer

Input: $a0 = address of null terminated string

Output: $v0 = unsigned integer value

#---

str2int:

li $v0, 0 # Initialize: $v0 = sum = 0

li $t0, 10 # Initialize: $t0 = 10

L1: lb $t1, 0($a0) # load $t1 = str[i]

blt $t1, '0', done # exit loop if ($t1 < '0')

bgt $t1, '9', done # exit loop if ($t1 > '9')

addiu $t1, $t1, -48 # Convert character to digit

mul $v0, $v0, $t0 # $v0 = sum * 10

addu $v0, $v0, $t1 # $v0 = sum * 10 + digit

addiu $a0, $a0, 1 # $a0 = address of next char

j L1 # loop back

done: jr $ra # return to caller
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Integer to String Conversion

❖ Convert an unsigned 32-bit integer into a string

❖ How to obtain the decimal digits of the number?

 Divide the number by 10, Remainder = decimal digit (0 to 9)

 Convert decimal digit into its ASCII representation ('0' to '9')

 Repeat the division until the quotient becomes zero

 Digits are computed backwards from least to most significant

❖ Example: convert 2037 to a string

 Divide 2037/10 quotient = 203 remainder = 7 char = '7'

 Divide 203/10 quotient = 20 remainder = 3 char = '3'

 Divide 20/10 quotient = 2 remainder = 0 char = '0'

 Divide 2/10 quotient = 0 remainder = 2 char = '2'

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Integer to String Conversion Function
#--

int2str: Converts an unsigned integer into a string

Input: $a0 = value, $a1 = buffer address (12 bytes)

Output: $v0 = address of converted string in buffer

#--

int2str:

li $t0, 10 # $t0 = divisor = 10

addiu $v0, $a1, 11 # start at end of buffer

sb $zero, 0($v0) # store a NULL character

L2: divu $a0, $t0 # LO = value/10, HI = value%10

mflo $a0 # $a0 = value/10

mfhi $t1 # $t1 = value%10

addiu $t1, $t1, 48 # convert digit into ASCII

addiu $v0, $v0, -1 # point to previous byte

sb $t1, 0($v0) # store character in memory

bnez $a0, L2 # loop if value is not 0

jr $ra # return to caller
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Function Call and Return

❖ To execution a function, the caller does the following:

 Puts the parameters in a place that can be accessed by the callee

 Transfer control to the callee function

❖ To return from a function, the callee does the following:

 Puts the results in a place that can be accessed by the caller

 Return control to the caller, next to where the function call was made

❖ Registers are the fastest place to pass parameters and return

results. The MIPS architecture uses the following:

 $a0-$a3: four argument registers in which to pass parameters

 $v0-$v1: two value registers in which to pass function results

 $ra: return address register to return back to the caller

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Function Call and Return Instructions

❖ JAL (Jump-and-Link) is used to call a function

 Save return address in $31 = PC+4 and jump to function

 Register $31 ($ra) is used by JAL as the return address

❖ JR (Jump Register) is used to return from a function

 Jump to instruction whose address is in register Rs (PC = Rs)

❖ JALR (Jump-and-Link Register)

 Save return address in Rd = PC+4, and

 Call function whose address is in register Rs (PC = Rs)

 Used to call functions whose addresses are known at runtime

Instruction Meaning Format

jal label $31 = PC+4, j Label Op=3 26-bit address

jr Rs PC = Rs Op=0 Rs 0 0 0 8

jalr Rd, Rs Rd = PC+4, PC = Rs Op=0 Rs 0 Rd 0 9

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Parameters:

$a0 = Address of v[]

$a1 = k, and

Return address is in $ra

❖ Consider the following swap function (written in C)

❖ Translate this function to MIPS assembly language

void swap(int v[], int k)

{ int temp;

temp = v[k]

v[k] = v[k+1];

v[k+1] = temp;
}

swap:

sll $t0,$a1,2 # $t0=k*4

add $t0,$t0,$a0 # $t0=v+k*4

lw $t1,0($t0) # $t1=v[k]

lw $t2,4($t0) # $t2=v[k+1]

sw $t2,0($t0) # v[k]=$t2

sw $t1,4($t0) # v[k+1]=$t1

jr $ra # return

Example

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Call / Return Sequence

❖ Suppose we call function swap as: swap(a,10)

 Pass address of array a and 10 as arguments

 Call the function swap saving return address in $31 = $ra

 Execute function swap

 Return control to the point of origin (return address)

swap:

sll $t0,$a1,2

add $t0,$t0,$a0

lw $t1,0($t0)

lw $t2,4($t0)

sw $t2,0($t0)

sw $t1,4($t0)

jr $ra

la $a0, a

li $a1, 10

jal swap

return here

. . .

Caller

addr a$a0=$4

10$a1=$5

ret addr$ra=$31

. . .

. . .

Registers

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Register $31
is the return

address register

Details of JAL and JR

Address Instructions Assembly Language

00400020 lui $1, 0x1001 la $a0, a

00400024 ori $4, $1, 0

00400028 ori $5, $0, 10 ori $a1,$0,10

0040002C jal 0x10000f jal swap

00400030 . . . # return here

swap:

0040003C sll $8, $5, 2 sll $t0, $a1, 2

00400040 add $8, $8, $4 add $t0, $t0, $a0

00400044 lw $9, 0($8) lw $t1, 0($t0)

00400048 lw $10,4($8) lw $t2, 4($t0)

0040004C sw $10,0($8) sw $t2, 0($t0)

00400050 sw $9, 4($8) sw $t1, 4($t0)

00400054 jr $31 jr $ra

Pseudo-Direct

Addressing

PC = imm26<<2

0x10000f << 2

= 0x0040003C

0x00400030$31

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Second Example

❖ Function tolower converts a

capital letter to lowercase

❖ If parameter ch is not a capital

letter then return ch

char tolower(char ch) {

if (ch>='A' && ch<='Z')

return (ch + 'a' - 'A');

else

return ch;

}

tolower: # $a0 = parameter ch

blt $a0, 'A', else # branch if $a0 < 'A'

bgt $a0, 'Z', else # branch if $a0 > 'Z'

addi $v0, $a0, 32 # 'a' – 'A' == 32

jr $ra # return to caller

else:

move $v0, $a0 # $v0 = ch

jr $ra # return to caller

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

The Stack Segment

❖ Every program has 3 segments

when loaded into memory:

 Text segment: stores machine

instructions

 Data segment: area used for static

and dynamic variables

 Stack segment: area that can be

allocated and freed by functions

❖ The program uses only logical

(virtual) addresses

❖ The actual (physical) addresses

are managed by the OS

Stack Segment

Heap Area

Static Area

0x00000000
Reserved

0x10000000

Text Segment

0x7fffffff

0x00400000

0x10040000

Stack Grows
Downwards

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

The Stack Segment (cont'd)

❖ The stack segment is used by functions for:

 Passing parameters that cannot fit in registers

 Allocating space for local variables

 Saving registers across function calls

 Implement recursive functions

❖ The stack segment is implemented via software:

 The Stack Pointer $sp = $29 (points to the top of stack)

 The Frame Pointer $fp = $30 (points to a stack frame)

❖ The stack pointer $sp is initialized to the base address of the

stack segment, just before a program starts execution

❖ The MARS tool initializes register $sp to 0x7fffeffc
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Stack Frame

❖ Stack frame is an area of the stack containing …

 Saved arguments, registers, local arrays and variables (if any)

❖ Called also the activation frame

❖ Frames are pushed and popped by adjusting …

 Stack pointer $sp = $29 (and sometimes frame pointer $fp = $30)

 Decrement $sp to allocate stack frame, and increment to free

Frame f()

Stack

↓

stack grows

downwards

$fp

$sp
Frame f()

Stack

allocate stack

frame

Frame g()
$fp

$sp

f
c

a
ll

s
 g

g
re

tu
rn

s
Frame f()

Stack

↑

free stack

frame

$fp

$sp

Args for

nested calls

Saved

registers

Local

stack

variables

$sp

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Leaf Function

❖ A leaf function does its work without calling any function

❖ Example of leaf functions are: swap and tolower

❖ A leaf function can freely modify some registers:

 Argument registers: $a0 - $a3

 Result registers: $v0 - $v1

 Temporary registers: $t0 - $t9

 These registers can be modified without saving their old values

❖ A leaf function does not need a stack frame if …

 Its variables can fit in temporary registers

❖ A leaf function allocates a stack frame only if …

 It requires additional space for its local variables

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Non-Leaf Function

❖ A non-leaf function is a function that calls other functions

❖ A non-leaf function must allocate a stack frame

❖ Stack frame size is computed by the programmer (compiler)

❖ To allocate a stack frame of N bytes …

 Decrement $sp by N bytes: $sp = $sp – N

 N must be multiple of 4 bytes to have registers aligned in memory

 In our examples, only register $sp will be used ($fp is not needed)

❖Must save register $ra before making a function call

 Must save $s0-$s7 if their values are going to be modified

 Other registers can also be preserved (if needed)

 Additional space for local variables can be allocated (if needed)
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Steps for Function Call and Return

❖ To make a function call …

 Make sure that register $ra is saved before making a function call

 Pass arguments in registers $a0 thru $a3

 Pass additional arguments on the stack (if needed)

 Use the JAL instruction to make a function call (JAL modifies $ra)

❖ To return from a function …

 Place the function results in $v0 and $v1 (if any)

 Restore all registers that were saved upon function entry

▪ Load the register values that were saved on the stack (if any)

 Free the stack frame: $sp = $sp + N (stack frame = N bytes)

 Jump to the return address: jr $ra (return to caller)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Preserving Registers

❖ The MIPS software specifies which registers must be preserved

across a function call, and which ones are not

Must be Preserved Not preserved

Return address: $ra Argument registers: $a0 to $a3

Stack pointer: $sp Value registers: $v0 and $v1

Saved registers: $s0 to $s7 and $fp Temporary registers: $t0 to $t9

Stack above the stack pointer Stack below the stack pointer

❖ Caller saves register $ra before making a function call

❖ A callee function must preserve $sp, $s0 to $s7, and $fp.

❖ If needed, the caller can save argument registers $a0 to $a3.

However, the callee function is free to modify them.
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Example on Preserving Register

❖ A function f calls g twice as shown below. We don't know what g

does, or which registers are used in g.

❖We only know that function g receives two integer arguments

and returns one integer result. Translate f:

int f(int a, int b) {

int d = g(b, g(a, b));

return a + d;

}

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Translating Function f

int f(int a, int b) {

int d = g(b, g(a, b)); return a + d;

}

f: addiu $sp, $sp, -12 # allocate frame = 12 bytes

sw $ra, 0($sp) # save $ra

sw $a0, 4($sp) # save a (caller-saved)

sw $a1, 8($sp) # save b (caller-saved)

jal g # call g(a,b)

lw $a0, 8($sp) # $a0 = b

move $a1, $v0 # $a1 = result of g(a,b)

jal g # call g(b, g(a,b))

lw $a0, 4($sp) # $a0 = a

addu $v0, $a0, $v0 # $v0 = a + d

lw $ra, 0($sp) # restore $ra

addiu $sp, $sp, 12 # free stack frame

jr $ra # return to caller

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Allocating a Local Array on the Stack

❖ In some languages, an array can be

allocated on the stack

❖ The programmer (or compiler) must

allocate a stack frame with sufficient

space for the local array

void foo (int n) {

// allocate on the stack

int array[n];

// generate random array

random (array, n);

// print array

print (array, n);

}

Stack Frame

of Parent
$sp

Stack Frame

of Child
$sp

Saved $a0

Saved $ra

int array[n]

n × 4 bytes

Parent spsp

S
ta

c
k
 F

ra
m

e
 o

f
f
o
o

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Translating Function foo
foo: # $a0 = n

sll $t0, $a0, 2 # $t0 = n*4 bytes

addiu $t0, $t0, 12 # $t0 = n*4 + 12 bytes

move $t1, $sp # $t1 = parent $sp

subu $sp, $sp, $t0 # allocate stack frame

sw $t1, 0($sp) # save parent $sp

sw $ra, 4($sp) # save $ra

sw $a0, 8($sp) # save n

move $a1, $a0 # $a1 = n

addiu $a0, $sp, 12 # $a0 = $sp + 12 = &array

jal random # call function random

addiu $a0, $sp, 12 # $a0 = $sp + 12 = &array

lw $a1, 8($sp) # $a1 = n

jal print # call function print

lw $ra, 4($sp) # restore $ra

lw $sp, 0($sp) # restore parent $sp

jr $ra # return to caller
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Remarks on Function foo

❖ Function starts by computing its frame size: $t0 = n×4 + 12 bytes

 Local array is n×4 bytes and the saved registers are 12 bytes

❖ Allocates its own stack frame: $sp = $sp - $t0

 Address of local stack array becomes: $sp + 12

❖ Saves parent $sp and registers $ra and $a0 on the stack

❖ Function foo makes two calls to functions random and print

 Address of the stack array is passed in $a0 and n is passed in $a1

❖ Just before returning:

 Function foo restores the saved registers: parent $sp and $ra

 Stack frame is freed by restoring $sp: lw $sp, 0($sp)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Bubble Sort (Leaf Function)
void bubbleSort (int A[], int n) {

int swapped, i, temp;

do {

n = n-1;

swapped = 0; // false

for (i=0; i<n; i++) {

if (A[i] > A[i+1]) {

temp = A[i]; // swap A[i]

A[i] = A[i+1]; // with A[i+1]

A[i+1] = temp;

swapped = 1; // true

}

}

} while (swapped);

}

Worst case Performance O(n2)

Best case Performance O(n)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Translating Function Bubble Sort
bubbleSort: # $a0 = &A, $a1 = n

do: addiu $a1, $a1, -1 # n = n-1

blez $a1, L2 # branch if (n <= 0)

move $t0, $a0 # $t0 = &A

li $t1, 0 # $t1 = swapped = 0

li $t2, 0 # $t2 = i = 0

for: lw $t3, 0($t0) # $t3 = A[i]

lw $t4, 4($t0) # $t4 = A[i+1]

ble $t3, $t4, L1 # branch if (A[i] <= A[i+1])

sw $t4, 0($t0) # A[i] = $t4

sw $t3, 4($t0) # A[i+1] = $t3

li $t1, 1 # swapped = 1

L1: addiu $t2, $t2, 1 # i++

addiu $t0, $t0, 4 # $t0 = &A[i]

bne $t2, $a1, for # branch if (i != n)

bnez $t1, do # branch if (swapped)

L2: jr $ra # return to caller
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Example of a Recursive Function

❖ Two recursive calls

 First call computes the sum of the first half of the array elements

 Second call computes the sum of the 2nd half of the array elements

❖ How to translate a recursive function into assembly?

int recursive_sum (int A[], int n) {

if (n == 0) return 0;

if (n == 1) return A[0];

int sum1 = recursive_sum (&A[0], n/2);

int sum2 = recursive_sum (&A[n/2], n – n/2);

return sum1 + sum2;

}

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Translating a Recursive Function

recursive_sum: # $a0 = &A, $a1 = n

bnez $a1, L1 # branch if (n != 0)

li $v0, 0

jr $ra # return 0

L1: bne $a1, 1, L2 # branch if (n != 1)

lw $v0, 0($a0) # $v0 = A[0]

jr $ra # return A[0]

L2: addiu $sp, $sp, -12 # allocate frame = 12 bytes

sw $ra, 0($sp) # save $ra

sw $s0, 4($sp) # save $s0

sw $s1, 8($sp) # save $s1

move $s0, $a0 # $s0 = &A (preserved)

move $s1, $a1 # $s1 = n (preserved)

srl $a1, $a1, 1 # $a1 = n/2

jal recursive_sum # first recursive call

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Translating a Recursive Function (cont'd)

❖ $ra, $s0, and $s1 are preserved across recursive calls

srl $t0, $s1, 1 # $t0 = n/2

sll $t1, $t0, 2 # $t1 = (n/2) * 4

addu $a0, $s0, $t1 # $a0 = &A[n/2]

subu $a1, $s1, $t0 # $a1 = n – n/2

move $s0, $v0 # $s0 = sum1 (preserved)

jal recursive_sum # second recursive call

addu $v0, $s0, $v0 # $v0 = sum1 + sum2

lw $ra, 0($sp) # restore $ra

lw $s0, 4($sp) # restore $s0

lw $s1, 8($sp) # restore $s1

addiu $sp, $sp, 12 # free stack frame

jr $ra # return to caller

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Illustrating Recursive Calls

recursive_sum:
$a0 = &A[0], $a1 = 6

recursive_sum:
$a0 = &A[0]
$a1 = 1

recursive_sum:
$a0 = &A[1]
$a1 = 2

A[1]+A[2]A[0]

recursive_sum:
$a0 = &A[3]
$a1 = 1

recursive_sum:
$a0 = &A[4]
$a1 = 2

A[4]+A[5]A[3]

recursive_sum:
$a0 = &A[4]
$a1 = 1

recursive_sum:
$a0 = &A[5]
$a1 = 1

A[5]A[4]

recursive_sum:
$a0 = &A[1]
$a1 = 1

recursive_sum:
$a0 = &A[2]
$a1 = 1

A[2]A[1]

recursive_sum:
$a0 = &A[0], $a1 = 3

recursive_sum:
$a0 = &A[3], $a1 = 3

A[3]+A[4]+A[5]A[0]+A[1]+A[2]

$v0 = A[0]+A[1]+A[2]+A[3]+A[4]+A[5]

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

❖ Called Coprocessor 1 or the Floating Point Unit (FPU)

❖ 32 separate floating point registers: $f0, $f1, …, $f31

❖ FP registers are 32 bits for single precision numbers

❖ Even-odd register pair form a double precision register

❖ Use the even number for double precision registers

 $f0, $f2, $f4, …, $f30 are used for double precision

❖ Separate FP instructions for single/double precision

Single precision: add.s, sub.s, mul.s, div.s (.s extension)

Double precision: add.d, sub.d, mul.d, div.d (.d extension)

❖ FP instructions are more complex than the integer ones

 Take more cycles to execute

MIPS Floating Point Coprocessor

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Floating-Point Arithmetic Instructions

Instruction Meaning Op6 fmt5 ft5 fs5 fd5 func6

add.s $f5,$f3,$f4 $f5 = $f3 + $f4 0x11 0x10 $f4 $f3 $f5 0

sub.s $f5,$f3,$f4 $f5 = $f3 – $f4 0x11 0x10 $f4 $f3 $f5 1

mul.s $f5,$f3,$f4 $f5 = $f3 × $f4 0x11 0x10 $f4 $f3 $f5 2

div.s $f5,$f3,$f4 $f5 = $f3 / $f4 0x11 0x10 $f4 $f3 $f5 3

sqrt.s $f5,$f3 $f5 = sqrt($f3) 0x11 0x10 0 $f3 $f5 4

abs.s $f5,$f3 $f5 = abs($f3) 0x11 0x10 0 $f3 $f5 5

neg.s $f5,$f3 $f5 = –($f3) 0x11 0x10 0 $f3 $f5 7

add.d $f6,$f2,$f4 $f6,7 = $f2,3 + $f4,5 0x11 0x11 $f4 $f2 $f6 0

sub.d $f6,$f2,$f4 $f6,7 = $f2,3 – $f4,5 0x11 0x11 $f4 $f2 $f6 1

mul.d $f6,$f2,$f4 $f6,7 = $f2,3 × $f4,5 0x11 0x11 $f4 $f2 $f6 2

div.d $f6,$f2,$f4 $f6,7 = $f2,3 / $f4,5 0x11 0x11 $f4 $f2 $f6 3

sqrt.d $f6,$f2 $f6,7 = sqrt($f2,3) 0x11 0x11 0 $f2 $f6 4

abs.d $f6,$f2 $f6,7 = abs($f2,3) 0x11 0x11 0 $f2 $f6 5

neg.d $f6,$f2 $f6,7 = –($f2,3) 0x11 0x11 0 $f2 $f6 7

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Floating-Point Load and Store

❖ Separate floating-point load and store instructions

 lwc1: load word coprocessor 1

 ldc1: load double coprocessor 1

 swc1: store word coprocessor 1

 sdc1: store double coprocessor 1

General purpose

register is used as the

address register

Instruction Meaning Op6 rs5 ft5 Immediate16

lwc1 $f2, 8($t0) $f24 Mem[$t0+8] 0x31 $t0 $f2 8

swc1 $f2, 8($t0) $f2➔4 Mem[$t0+8] 0x39 $t0 $f2 8

ldc1 $f2, 8($t0) $f2,38 Mem[$t0+8] 0x35 $t0 $f2 8

sdc1 $f2, 8($t0) $f2,3➔8 Mem[$t0+8] 0x3d $t0 $f2 8

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Data Movement Instructions

❖ Moving data between general purpose and FP registers

 mfc1: move from coprocessor 1 (to a general purpose register)

 mtc1: move to coprocessor 1 (from a general purpose register)

❖ Moving data between FP registers

 mov.s:move single precision float

 mov.d:move double precision float = even/odd pair of registers

Instruction Meaning Op6 fmt5 rt5 fs5 fd5 func

mfc1 $t0, $f2 $t0 = $f2 0x11 0 $t0 $f2 0 0

mtc1 $t0, $f2 $f2 = $t0 0x11 4 $t0 $f2 0 0

mov.s $f4, $f2 $f4 = $f2 0x11 0x10 0 $f2 $f4 6

mov.d $f4, $f2 $f4,5 = $f2,3 0x11 0x11 0 $f2 $f4 6

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Convert Instructions

❖ Convert instruction: cvt.x.y

 Convert the source format y into destination format x

❖ Supported Formats:

 Single-precision float = .s

 Double-precision float = .d

 Signed integer word = .w (in a floating-point register)

Instruction Meaning Op6 fmt5 fs5 fd5 func

cvt.s.w $f2,$f4 $f2 = W2S($f4) 0x11 0x14 0 $f4 $f2 0x20

cvt.s.d $f2,$f4 $f2 = D2P($f4,5) 0x11 0x11 0 $f4 $f2 0x20

cvt.d.w $f2,$f4 $f2,3 = W2D($f4) 0x11 0x14 0 $f4 $f2 0x21

cvt.d.s $f2,$f4 $f2,3 = S2D($f4) 0x11 0x10 0 $f4 $f2 0x21

cvt.w.s $f2,$f4 $f2 = S2W($f4) 0x11 0x10 0 $f4 $f2 0x24

cvt.w.d $f2,$f4 $f2 = D2W($f4,5) 0x11 0x11 0 $f4 $f2 0x24

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Floating-Point Compare and Branch

❖ Floating-Point unit has eight condition code cc flags

 Set to 0 (false) or 1 (true) by any comparison instruction

❖ Three comparisons: eq (equal), lt (less than), le (less or equal)

❖ Two branch instructions based on the condition flag

Instruction Meaning Op6 fmt5 ft5 fs5 func

c.eq.s cc $f2,$f4 cc = ($f2 == $f4) 0x11 0x10 $f4 $f2 cc 0x32

c.eq.d cc $f2,$f4 cc = ($f2,3 == $f4,5) 0x11 0x11 $f4 $f2 cc 0x32

c.lt.s cc $f2,$f4 cc = ($f2 < $f4) 0x11 0x10 $f4 $f2 cc 0x3c

c.lt.d cc $f2,$f4 cc = ($f2,3 < $f4,5) 0x11 0x11 $f4 $f2 cc 0x3c

c.le.s cc $f2,$f4 cc = ($f2 <= $f4) 0x11 0x10 $f4 $f2 cc 0x3e

c.le.d cc $f2,$f4 cc = ($f2,3 <= $f4,5) 0x11 0x11 $f4 $f2 cc 0x3e

bc1f cc Label branch if (cc == 0) 0x11 8 cc,0 16-bit Offset

bc1t cc Label branch if (cc == 1) 0x11 8 cc,1 16-bit Offset

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Example 1: Area of a Circle

.data

pi: .double 3.1415926535897924

msg: .asciiz "Circle Area = "

.text

main:

ldc1 $f2, pi # $f2,3 = pi

li $v0, 7 # read double (radius)

syscall # $f0,1 = radius

mul.d $f12, $f0, $f0 # $f12,13 = radius*radius

mul.d $f12, $f2, $f12 # $f12,13 = area

la $a0, msg

li $v0, 4 # print string (msg)

syscall

li $v0, 3 # print double (area)

syscall # print $f12,13

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Example 2: Matrix Multiplication
void mm (int n, float X[n][n], Y[n][n], Z[n][n]) {

for (int i=0; i!=n; i=i+1) {

for (int j=0; j!=n; j=j+1) {

float sum = 0.0;

for (int k=0; k!=n; k=k+1) {

sum = sum + Y[i][k] * Z[k][j];

}

X[i][j] = sum;
}

}
}

❖Matrix size is passed in $a0 = n

❖Matrix addresses in $a1 = &X, $a2 = &Y, and $a3 = &Z

❖What is the MIPS assembly code for the procedure?

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Access Pattern for Matrix Multiply

×=

X[i][j] Y[i][k] Z[k][j]

Matrix X is accessed

by row.

Matrix Y is accessed

by row.

Matrix Z accessed by

column.

&X[i][j] = &X + (i*n + j)*4 = &X[i][j-1] + 4

&Y[i][k] = &Y + (i*n + k)*4 = &Y[i][k-1] + 4

&Z[k][j] = &Z + (k*n + j)*4 = &Z[k-1][j] + 4*n

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Matrix Multiplication Procedure (1 of 3)

arguments $a0=n, $a1=&X, $a2=&Y, $a3=&Z

mm: sll $t0, $a0, 2 # $t0 = n*4 (row size)

li $t1, 0 # $t1 = i = 0

Outer for (i = . . .) loop starts here

L1: li $t2, 0 # $t2 = j = 0

Middle for (j = . . .) loop starts here

L2: li $t3, 0 # $t3 = k = 0

move $t4, $a2 # $t4 = &Y[i][0]

sll $t5, $t2, 2 # $t5 = j*4

addu $t5, $a3, $t5 # $t5 = &Z[0][j]

mtc1 $zero, $f0 # $f0 = sum = 0.0

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Matrix Multiplication Procedure (2 of 3)

Inner for (k = . . .) loop starts here

$t3 = k, $t4 = &Y[i][k], $t5 = &Z[k][j]

L3: lwc1 $f1, 0($t4) # load $f1 = Y[i][k]

lwc1 $f2, 0($t5) # load $f2 = Z[k][j]

mul.s $f3, $f1, $f2 # $f3 = Y[i][k]*Z[k][j]

add.s $f0, $f0, $f3 # sum = sum + $f3

addiu $t3, $t3, 1 # k = k + 1

addiu $t4, $t4, 4 # $t4 = &Y[i][k]

addu $t5, $t5, $t0 # $t5 = &Z[k][j]

bne $t3, $a0, L3 # loop back if (k != n)

End of inner for loop
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Matrix Multiplication Procedure (3 of 3)

swc1 $f0, 0($a1) # store X[i][j] = sum

addiu $a1, $a1, 4 # $a1 = &X[i][j]

addiu $t2, $t2, 1 # j = j + 1

bne $t2, $a0, L2 # loop L2 if (j != n)

End of middle for loop

addu $a2, $a2, $t0 # $a2 = &Y[i][0]

addiu $t1, $t1, 1 # i = i + 1

bne $t1, $a0, L1 # loop L1 if (i != n)

End of outer for loop

jr $ra # return to caller

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

