MIPS32 Assembly Language

Programming

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Outline

¢ Introduction to Assembly Language
¢ Arithmetic Instructions

¢ Control Flow Instructions

* Load/Store Instructions

“* Floating Points Instructions

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

What is Assembly Language?

“* Low-level programming language for a computer

“+ One-to-one correspondence with the machine instructions
“» Assembly language is specific to a given processor
*» Assembler: converts assembly program into machine code

*» Assembly language uses:

< Mnemonics: to represent the names of low-level machine instructions
< Labels: to represent the names of variables or memory addresses
< Directives: to define data and constants

< Macros: to facilitate the inline expansion of text into other code

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Assembly Language Statements

s Three types of statements in assembly language

< Typically, one statement should appear on a line

1. Executable Instructions

< Generate machine code for the processor to execute at runtime

< Instructions tell the processor what to do

2. Pseudo-Instructions and Macros

< Translated by the assembler into real instructions
< Simplify the programmer task

3. Assembler Directives
< Provide information to the assembler while translating a program
< Used to define segments, allocate memory variables, etc.
< Non-executable: directives are not part of the instruction set

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Assembly Language Instructions

% Assembly language instructions have the format:
[label:] mhemonic [operands] [#comment]
» Label: (optional)
<> Marks the address of a memory location, must have a colon
< Typically appear in data and text segments
“* Mnemonic
< Identifies the operation (e.g. add, sub, etc.)
“ Operands
< Specify the data required by the operation

<> Operands can be registers, memory variables, or constants
<> Most instructions have three operands

L1: addiu $to, $to, 1 #increment $to
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Comments

* Single-line comment
< Begins with a hash symbol # and terminates at end of line

s Comments are very important!
< Explain the program's purpose
< When it was written, revised, and by whom
< Explain data used in the program, input, and output
< Explain instruction sequences and algorithms used

<> Comments are also required at the beginning of every procedure
» Indicate input parameters and results of a procedure
= Describe what the procedure does

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Program Template

Title: Filename:
Author: Date:

Description:

Input:

Output:

HH#HHEH Y Data segment #iH#HEHEHEHEHEHEHEHHE
.data

HE#EHHGHEEHEHHE#E Code segment #HH#HHEHHHHHGHHHHGHIGHE
.text
.globl main

main: # main program entry
li $vo, 10 # Exit program
syscall

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

DATA, TEXT, & .GLOBL Directives

» .DATA directive

4

L)

)

< Defines the data segment of a program containing data
< The program's variables should be defined under this directive

< Assembler will allocate and initialize the storage of variables

%+ . TEXT directive

< Defines the code segment of a program containing instructions
“ .GLOBL directive

< Declares a symbol as global
< Global symbols can be referenced from other files

< We use this directive to declare main function of a program

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Data Definition Statement

+» The assembler uses directives to define data

¢ It allocates storage in the static data segment for a variable
* May optionally assign a name (label) to the data

* Syntax:

[name:] directive Initializer [, initializer] . ..

d 8 8

varl: .WORD 10

¢ All initializers become binary data in memory

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Data Directives

» .BYTE Directive

< Stores the list of values as 8-bit bytes

» .HALF Directive

< Stores the list as 16-bit values aligned on half-word boundary

» .WORD Directive

< Stores the list as 32-bit values aligned on a word boundary

s+ FLOAT Directive

< Stores the listed values as single-precision floating point

» .DOUBLE Directive

< Stores the listed values as double-precision floating point
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

String Directives

«» . ASCII Directive

< Allocates a sequence of bytes for an ASCII string

¢+ . ASCIIZ Directive

< Same as .ASCII directive, but adds a NULL char at end of string

< Strings are null-terminated, as in the C programming language

<+ SPACE Directive

<> Allocates space of n uninitialized bytes in the data segment

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Examples of Data Definitions

.DATA
varl:
var2:
var3:
var4:
varb5:
strl:
str2:

array:

.BYTE

-HALF

.WORD

. FLOAT

.DOUBLE

.ASCII

.ASCIIZ

.SPACE

IA 1 s
-10, Oxffff
0x12345678:100 < Initialized with

12.3,

'E', 127, -1, '\n'

-0.1

1.5e-10

"A String\n"

"NULL Terminated String"

100

Array of 100 words

the same value

e

100 bytes (not initialized)

STUDENTS-HUB.com

Uploaded By: Jibreel Bornat

Memory Alignment

“* Memory is viewed as an addressable array of bytes
*» Byte Addressing: address points to a byte in memory

*» However, words occupy 4 consecutive bytes in memory

< MIPS instructions and integers occupy 4 bytes
Memory

* Memory Alignment:

< Address must be multiple of size

address

aligned word

<> Word address should be a multiple of 4 ibd not aligned
8 -
<> Double-word address should be a multiple of 8 4 -
0 - not aligned

» .ALIGN n directive

< Aligns the next data definition on a 2" byte boundary

<> Forces the address of next data definition to be multiple of 2"
Uploaded By: Jibreel Bornat

STUDENTS-HUB.com

Byte Ordering (Endianness)

¢ Processors can order bytes within a word in two ways

¢ Little Endian Byte Ordering

<> Memory address = Address of least significant byte
< Example: Intel IA-32

MSB LSB address a a+1 a+2 a+3
Byte3 | Byte2 [Byte1 [Byte0 | {""> ... [Byte0[Bytel [Byte2 | Byte3
32-bit Register Memory

¢ Big Endian Byte Ordering
< Memory address = Address of most significant byte
< Example: SPARC architecture

MSB LSB address a a+l at2 a+3
Byte3 | Byte2 [Byte1 [Byte0 | {""» ...[Byte3[Byte2 | Bytel | ByteO
32-bit Register Memory

** MIPS can operate with both byte orderings
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Symbol Table

“» Assembler builds a symbol table for labels

< Assembler computes the address of each label in data segment

** Example Symbol Table
-DATA Label Address
varl: .BYTE 1, 2,'Z’
er1s ASCITZ "My Strine\n" varl | 0x10010000
SErhL:s - y String\n strl | ©x10010003
var2: .WORD 0x12345678 var2 0x10010010
-ALIGN 3 var3 0x10010018
var3: .HALF 1000
1 strl

var ‘l .
Ox100l1e000 |1 |2 |'Z'|'M STt 1 ['n'['g' '\l O] O] O | Unused
0x10010010 | 0x12345678 O({O| 0| 1000
var2 (aligned)) Unused L var3 (address is multiple of 8)

STUDENTS-HUB.com

Uploaded By: Jibreel Bornat

System Calls

“* Programs do input/output through system calls

“ The MIPS architecture provides a syscall instruction

<> To obtain services from the operating system

<> The operating system handles all system calls requested by program

*» Since MARS Is a simulator, it simulates the syscall services

¢ To use the syscall services:

< Load the service number in register $vo
< Load argument values, if any, in registers $a0, $al, etc.
< Issue the syscall instruction

< Retrieve return values, if any, from result registers

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Syscall Services

Service $v0 | Arguments / Result

Print Integer 1 | $a0 = integer value to print

Print Float 2 | $f12 = float value to print

Print Double 3 | $f12 = double value to print

Print String 4 | $a0 = address of null-terminated string
Read Integer 5 | Return integer value in $vO

Read Float 6 | Return float value in $f0

Read Double 7 | Return double value in $f0

Read String 8 :2(1) = ?nd;;i:ﬁrgfr:Brpnut:ebru;ec:haracters to read
Allocate Heap 9 $a0 = number of bytes to allocate

memory Return address of allocated memory in $vO
Exit Program 10

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Syscall Services - Cont'd

Print Char 11 | $a0 = character to print

Read Char 12 | Return character read in $vO
$a0 = address of null-terminated filename string $al

: = flags (O = read-only, 1 = write-only)

Open File 13 $a2 = mode (ignored)
Return file descriptor in $v0 (negative if error)
$a0 = File descriptor

Read 14 $al = address of input buffer

from File $a2 = maximum number of characters to read
Return number of characters read in $v0
$a0 = File descriptor

. . $al = address of buffer

Write to File 15 $a2 = number of characters to write
Return number of characters written in $vO

Close File 16 | $a0 = File descriptor

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Reading and Printing an Integer

Hi##aH#taH#HG##EE Code segment ##H#HH##HEHHHGHRFHHIHHH

.text

.globl main

main: # main program entry
1i $vO, 5 # Read integer
syscall # $vO = value read
move $a@, $vO # $a0 = value to print
1i $vo, 1 # Print integer
syscall
1i $vo, 10 # Exit program
syscall

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Reading and Printing a String

Hi##utad#utsd#### Data segment H###H#HHHGHHHHGHHHHHHHH
.data

str: .space 10 # array of 10 bytes
Hi##aHHtaH#HE##EE Code segment ##H#H###HHEHHHGHRFHHIHHH
. text
.globl main

main: # main program entry
la $a0, str # $a0 = address of str
1i $al, 10 # $al = max string length
1i $vo, 8 # read string
syscall
1i $vo, 4 # Print string str
syscall
1i $vo, 10 # Exit program
syscall

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Sum of Three Integers

Sum of three integers

Objective: Computes the sum of three integers.

Input: Requests three numbers, Output: sum
HHHHH#HHH - HHHHAEHE Data segment HA#HHHHHHHHHHHHHHHHH
.data

prompt: .asciiz "Please enter three numbers: \n"
sum_msg: .asciiz "The sum is: "
HEHEHHGHHHEHHE#EE] Code segment ##H#HHHHHGHHHHGHIHHE
.text

.globl main

main:
la $a0, prompt # display prompt string
1i $vO,4
syscall
1i $vo,5 # read 1st integer into $to
syscall

move $t0,$vO

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Sum of Three Integers - (cont d)

1i $vo,5 # read 2nd integer into $t1
syscall

move $t1,%$v0

1i $vo,5 # read 3rd integer into $t2
syscall

move $t2,%$v0

addu $to,$to,$t1 # accumulate the sum

addu $t0,%t0,$t2

la $a0,sum_msg # write sum message

1i $vo,4

syscall

move $a0,%$to # output sum

1i $vo,1

syscall

1i $vO, 10 # exit

syscall

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Instruction Categories

¢ Integer Arithmetic
 Arithmetic, logic, and shift instructions

* Data Transfer
< Load and store instructions that access memory
< Data movement and conversions
“ Jump and Branch
< Flow-control instructions that alter the sequential sequence
“* Floating Point Arithmetic
< Instructions that operate on floating-point registers
“* Miscellaneous

< Instructions that transfer control to/from exception handlers

< Memory management instructions
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

R-Type Instruction Format

Op® Rs® Rt° Rd> sa® funct®

*» Op: operation code (opcode)
<> Specifies the operation of the instruction

< Also specifies the format of the instruction

*» funct: function code — extends the opcode

< Up to 25 = 64 functions can be defined for the same opcode

< MIPS uses opcode 0 to define many R-type instructions

*» Three Register Operands (common to many instructions)
< Rs, Rt: first and second source operands
< Rd: destination operand

< sa: the shift amount used by shift instructions

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

R-Type Integer Add and Subtract

Instruction Meaning Op | Rs | Rt | Rd | sa | func
add $t1, $t2, $t3 | $t1 = $t2 + $t3 | © | $t2 | $t3 | $t1 | © | Ox20
addu $t1, $t2, $t3 | $t1 = $t2 + $t3 | © | $t2 | $t3 |$t1 | @ |ox21
sub $t1, $t2, $t3 | $t1 = $t2 - $t3 | © | $t2 | $t3 | $t1| © | Ox22
subu $t1, $t2, $t3 | $t1 = $t2 - $t3 | © | $t2 | $t3 | $t1| © | Ox23

* add, sub: arithmetic overflow causes an exception

< In case of overflow, result is not written to destination register
*» addu, subu: arithmetic overflow is ignored
*» addu, subu: compute the same result as add, sub
* Many programming languages ignore overflow

< The + operator is translated into addu

< The — operator is translated into subu
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Using Add / Subtract Instructions

< Consider the translation of: f = (g+h)-(i+j)

*» Programmer / Compiler allocates registers to variables

< Given that: $to=Ff, $ti=g, $t2=h, $t3=1i, and $t4=j

*» Called temporary registers: $t0=$8, $t1=$9, ..

< Translation of: ¥ = (g+h)-(i+j)

addu $t5, $t1, $t2 # $t5 =
addu $t6, $t3, $t4 # $t6 =
subu $t0, $t5, $t6 # f = (g+h)-(i+j)

g+ h
i+ j

s Assembler translates addu $t5,%$t1,$t2 into binary code

Op

$t1

$t2

$t5

Sd

addu

000000

01001

01010

91101

00000

100001

STUDENTS-HUB.com

Uploaded By: Jibreel Bornat

Logic Bitwise Operations

¢ Logic bitwise operations: and, or, xor, nor

X|y|xandy X|y| xory X|y|xxory X|y|Xxnory
00 0 0(0 o) 0(0 0 00 1
0|1 0 0|1 1 0|1 1 01 0)
1(0 0 10 1 1(0 1 110 0)
11 1 11 1 1(1 0 11 0)

% AND instruction is used to clear bits: x and @ = ©

% OR instruction is used to set bits: x or 1 = 1

¢ XOR instruction is used to toggle bits: x xor 1 =» not x
** NOT instruction is not needed, why?

not $t1, $t2 is equivalentto: nor $t1, $t2, $t2

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Logic Bitwise Instructions

Instruction Meaning Op | Rs | Rt | Rd | sa | func
and $t1, $t2, $t3 |$t1 = $t2 & $t3 0 |$t2 | $t3 |$t1| o |ox24
or $ti1, $t2, $t3 |$t1 = $t2 | $t3 O |$t2 | $t3 |$t1| @ |ex25
xor $t1, $t2, $t3 |[$t1 = $t2 ~ $t3 @ |$t2 | $t3|$t1| o | ox26
nor $t1, $t2, $t3 |$t1 = ~($t2|$t3) | O | $t2 | $t3 | $t1| © | Ox27

“» Examples:

Given: $t1 = Oxabcdl1234 and $t2 = oxffff0000

and $to, $t1, $t2 # $t0 = Oxabcdoooo
or $to, $t1, $t2 # $t0 = oOxffff1234
xor $t0, $t1, $t2 # $t0 = Ox54321234
nor $to, $tl1, $t2 # $t0 = Ox0000edcb

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Shift Operations

“ Shifting is to move the 32 bits of a number left or right
“* s11 means shift left logical (insert zero from the right)
“* srl means shift right logical (insert zero from the left)
“* sra means shift right arithmetic (insert sign-bit)

* The 5-bit shift amount field is used by these instructions

sll < 32-bit value
shift-out « 1T« T+ s “— <+~ <+~ <« <+<— ghift-in 0
srl
shift-in0 —/—1T>71T—71T" 71" s T 1> 11 1 Shift-out
sra
shift-in sign-bit T 1T>7T 71" s T 1> 11 1 shift-out

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Shift Instructions

Instruction Meaning Op | Rs | Rt | Rd | sa | func
sll $t1,$t2,10 $t1 = $t2 << 10 O |$t2 |$t1| 10| o

srl $ti1,$t2,10 $t1 = $t2 >>> 10 0 | $t2 | $t1 | 10
sra $t1,%$t2,10 $t1 = $t2 >> 10 0 | $t2 | $t1 | 10
sllv $t1,%t2,%$t3 $t1 = $t2 << $t3 $t3 | $t2 | $t1 | o
srlv $t1,%$t2,%$t3 $t1 = $t2 >>>$t3 $t3 | $t2 | $t1 | o
srav $t1,%$t2,$t3 $t1 = $t2 >> $t3 $t3 | $t2 | $t1 | o

O OO OO O
N | h~|WIDN

 sll, srl, sra: shift by a constant amount
< The shift amount (sa) field specifies a number between 0 and 31
 sllv, srlv, srav: shift by avariable amount

<> A source register specifies the variable shift amount between 0 and 31

<> Only the lower 5 bits of the source register is used as the shift amount
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Shift Instruction Examples

» Given that: $t2 = O0xabcd1234 and $t3 = 16

sll $t1, $t2, 8 $t1 = Oxcd123400
srl $t1, $t2, 4 $t1 = Ox0abcdl23
sra $t1, $t2, 4 $t1 = Oxfabcdl23
srlv $t1, $t2, $t3 $t1 = Ox0000abcd

@ Op Rs = $t3 | Rt = $t2 | Rd = $t1 sa srlv
000000 901011 901010 01001 00000 | 000110

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Binary Multiplication

¢ Shift Left Instruction (s11) can perform multiplication

< When the multiplier is a power of 2
* You can factor any binary number into powers of 2
s Example: multiply $t0 by 36

$t0*36 = $t0*(4 + 32) = $to*4 + $t0*32

sll $t1, $to, 2 # $t1 = $to * 4
sll $t2, $to, 5 # $t2 = $to * 32
addu $t3, $t1, $t2 # $t3 = $to0 * 36

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Your Turn. ..

Multiply $t0 by 26, using shift and add instructions

Hint: 26 =2+ 8 + 16

sll $t1, $to, 1 # $t1 = $to * 2
sll $t2, $to, 3 # $t2 = $to * 8
sll $t3, $to, 4 # $t3 = $to * 16
addu $t4, $t1, $t2 # $t4 = $to * 1o
addu $t5, $t4, $t3 # $t5 = $to * 26
Multiply $te by 31, Hint: 31 =32 -1
sll $ti, $te, 5 # $t1 = $to * 32
subu $t2, $t1, $to # $t2 = $to * 31

STUDENTS-HUB.com

Uploaded By: Jibreel Bornat

I-Type Instruction Format

*» Constants are used quite frequently in programs
<> The R-type shift instructions have a 5-bit shift amount constant

<> What about other instructions that need a constant?

“ |-Type: Instructions with Immediate Operands

Op® Rs® Rt° immediate!®

% 16-bit immediate constant is stored inside the instruction
< Rs Is the source register number
< Rtis now the destination register number (for R-type it was Rd)
“ Examples of I-Type ALU Instructions:
< Add immediate: addi $t1, $t2, 5 # $t1 = $t2 + 5

< OR immediate: ori $t1, $t2, 5 # $t1 = $t2 | 5
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

I-Type ALU Instructions

Instruction Meaning Op | Rs | Rt Immediate
addi $t1, $t2, 25 | $t1 = $t2 + 25 | Ox8 | $t2 | $t1 25
addiu $t1, $t2, 25 | $t1 = $t2 + 25 | Ox9 | $t2 | $t1 25
andi $t1, $t2, 25 | $t1 = $t2 & 25 | Oxc | $t2 | $t1 25
ori $t1, $t2, 25 | $t1 = $t2 | 25 | oxd | $t2 | $t1 25
xori $t1, $t2, 25 | $t1 = $t2 ~ 25 | oxe | $t2 | $t1 25
lui $t1, 25 $t1 = 25 << 16 | oxf | © | $t1 25

*» addi: overflow causes an arithmetic exception

< In case of overflow, result is not written to destination register
* addiu: same operation as addi but overflow is ignored
*» Immediate constant for addi and addiu is signed

< No need for subi or subiu instructions

*» Immediate constant for andi, ori, xori is unsigned
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Examples of I-Type ALU Instructions

* Given that registers $t0, $t1, $t2 are used for A, B, C

Expression Equivalent MIPS Instruction
A =B+ 5; addiu $to, $t1, 5
C =B - 1; addiu $t2, $t1, -1 e——
A = B & Oxf; andi $to, $tl1, oxf
C = B | oxf; ori $t2, $t1, oxf
C = 5; addiu $t2, $zero, 5
A = B; addiu $to, $ti1, o

Op = addiu [Rs = $t1 | Rt = $t2 | -1 = 6b1111111111111111 €

No need for subiu, because addiu has signed immediate

Register $zero has always the value 0
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

32-bit Constants

¢ I-Type instructions can have only 16-bit constants

Op®

Rs®

Rt°

immediatel6

* What if we want to load a 32-bit constant into a register?

% Can’t have a 32-bit constant in I-Type instructions ®

< The sizes of all instructions are fixed to 32 bits

» Solution: use two instructions instead of one ©

¢ Suppose we want: $t1 = 6xAC5165D9 (32-bit constant)

lui: load upper immediate

lui $t1, OxAC51
ori $t1, $tl1, Ox65D9

STUDENTS-HUB.com

Upper Lower
16 bits 16 bits
OxAC51 Ox0000
OxAC51 Ox65D9

Uploaded By: Jibreel Bornat

Pseudo-Instructions

¢ Introduced by the assembler as if they were real instructions

*» Facilitate assembly language programming

Pseudo-Instruction Equivalent MIPS Instruction
move $tl1, $t2 addu $t1, $t2, $zero
not $t1, $t2 nor $tl1, $t2, $zero
neg $tl1, $t2 sub $tl1, $zero, $t2
1i $t1, -5 addiu $t1, $zero, -5

lui $tl1, oxabcd

1i $tl1, Oxabcdl234 i
ori $tl1, $t1, ox1234

The MARS tool has a long list of pseudo-instructions
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Control Flow

*» High-level programming languages provide constructs:

<> To make decisions in a program: IF-ELSE

<> To repeat the execution of a sequence of instructions: LOOP

*» The ability to make decisions and repeat a sequence of

Instructions distinguishes a computer from a calculator

¢ All computer architectures provide control flow instructions
*» Essential for making decisions and repetitions

¢ These are the conditional branch and jump instructions

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

MIPS Conditional Branch Instructions

** MIPS compare and branch instructions:
beq Rs, Rt, label If (Rs == Rt) branch to label
bne Rs, Rt, label if(Rs != Rt) branch to label
** MIPS compare to zero & branch instructions:

Compare to zero is used frequently and implemented efficiently

bltz Rs, label If (Rs < 0) branch to 1label
bgtz Rs, label If (Rs > 0) branch to 1label
blez Rs, label If (Rs <= @) branch to label
bgez Rs, label If (Rs >= @) branch to label

*» begz and bnez are defined as pseudo-instructions.

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Branch Instruction Format

¢ Branch Instructions are of the I-type Format:

Op® Rs® Rt° 16-bit offset
Instruction I-Type Format
beq Rs, Rt, label Op=4| Rs Rt 16-bit Offset
bne Rs, Rt, label Op=5| Rs Rt 16-bit Offset
blez Rs, label Op=6| Rs %) 16-bit Offset
bgtz Rs, label Op=7| Rs %) 16-bit Offset
bltz Rs, label Op=1 Rs %) 16-bit Offset
bgez Rs, label Op=1| Rs 1 16-bit Offset

¢ The branch instructions modify the PC register only
*» PC-Relative addressing:

If (branch is taken) PC = PC + 4 + 4xoffset else PC = PC+4

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Unconditional Jump Instruction

¢ The unconditional Jump instruction has the following syntax:

J label

label:

jump to label

** The jump instruction is always taken

* The Jump instruction is of the J-type format:

Opb=2

26-bit address

¢ The jump instruction modifies the program counter PC:

PC4

26-bit address

00

¢ The upper 4 bits of the PC are unchanged

STUDENTS-HUB.com

—

multiple
of 4

Uploaded By: Jibreel Bornat

Translating an IF Statement

*» Consider the following IF statement:

if (a == b) c

d + e; else c =d - e;

Giventhata, b, c,d, e are in $to .. $t4 respectively

«» How to translate the above IF statement?

bne $t9, $tl, else
addu $t2, $t3, $t4
J next

else: subu $t2, $t3, $t4

next:

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Logical AND Expression

“ Programming languages use short-circuit evaluation

¢ If first condition is false, second condition is skipped

if (($t1 > 0) && ($t2 < 0)) {$t3++;}
One Possible Translation ...
bgtz $ti1, L1 # first condition
J next # skip if false
L1: bltz $t2, L2 # second condition
J next # skip if false
L2: addiu $t3, $t3, 1 # both are true
next:

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Better Translation of Logical AND

if (($t1 > 0) && ($t2 < 0)) {$t3++;}

Allow the program to fall through to second condition
1($t1 > 0) is equivalent to ($t1 <= 0)
1($t2 < 9) is equivalentto ($t2 >= 0)

Number of instructions is reduced from 5to 3

Better Translation ...
blez $tl1, next # 15t condition false?
bgez $t2, next # 2" condition false?
addiu $t3, $t3, 1 # both are true

next:

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Logical OR Expression

* Short-circuit evaluation for logical OR

¢ If first condition is true, second condition is skipped

if (($t1 > 0) || ($t2 < 0)) {$t3++;}

*» Use fall-through to keep the code as short as possible

bgtz $t1, L1 # 15t condition true?
bgez $t2, next # 2" condition false?

L1: addiu $t3, $t3, 1 # increment $t3

nhext:

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Compare Instructions

“* MIPS also provides set less than instructions

slt Rd, Rs, Rt f(Rs<Rt)Rd=1lelseRd=0
sltu Rd, Rs, Rt unsigned <
slti Rt, Rs, imm f(Rs<imm)Rt=1else Rt=0
sltiu Rt, Rs, imm unsigned <

“ Sighed / Unsigned comparisons compute different results
Giventhat: $t0 = 1 and $t1 = -1 = oxffffffff
slt $t2, $to, $t1 computes $t2 = 0
sltu $t2, $to, $t1 computes $t2 = 1

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Compare Instruction Formats

Instruction

Meaning

Format

slt Rd, Rs, Rt

Rd=(Rs <, Rt)?1:0

Op=0 Rs Rt Rd (%) Ox2a

sltu Rd, Rs, Rt

Rd=(Rs <, Rt)?1:0

Op=0 | Rs | Rt | Rd | © ox2b

slti Rt, Rs, im

Rt=(Rs <, im)?1:0

oxa Rs Rt 16-bit immediate

sltiu Rt, Rs, im

Rt=(Rs <, im)?1:0

oxb Rs Rt 16-bit immediate

¢ The other comparisons are defined as pseudo-instructions:
seq, she, sgt, sgtu, sle, sleu, sge, sgeu

Pseudo-Instruction

sgt $t2, $to, $t1

seq $t2, $to, $t1

STUDENTS-HUB.com

Equivalent MIPS Instructions
slt $t2, $t1, $to

subu $t2, to, st1
sltiu $t2, $t2, 1

Uploaded By: Jibreel Bornat

Pseudo-Branch Instructions

“* MIPS hardware does NOT provide the following instructions:

blt, bltu branch if less than

ble, bleu branch if less or equal
bgt, bgtu branch if greater than

bge, bgeu branch if greater or equal

(signed / unsigned)
(signed / unsigned)
(signed / unsigned)
(signed / unsigned)

“* MIPS assembler defines them as pseudo-instructions:

Pseudo-Instruction

blt $to, $tl, label

ble $to, $tl1, label

Equivalent MIPS Instructions

slt
bne

slt
beq

$at, $to, $t1
$at, $zero, label

$at, $t1, $to
$at, $zero, label

$at ($1) is the assembler temporary register

STUDENTS-HUB.com

Uploaded By: Jibreel Bornat

Using Pseudo-Branch Instructions

*» Translate the IF statement to assembly language

s $t1 and $t2 values are unsigned

if($tl <= $t2) { bgtu $t1, $t2, L1
$t3 = $t4; move $t3, $t4

} L1:

» $t3, $t4, and $t5 values are signed
if (($t3 <= $t4) && bgt $t3, $t4, L1
($t4 >= $t5)) { blt $t4, $t5, L1

$t3 = $t4 + $t5; addu $t3, $t4, $t5

} L1:

STUDENTS-HUB.com

Uploaded By: Jibreel Bornat

Conditional Move Instructions

Instruction Meaning R-Type Format
movz Rd, Rs, Rt if (Rt==0) Rd=Rs Op=0 Rs Rt Rd (%] oxa
movn Rd, Rs, Rt if (Rt!=0) Rd=Rs Op=0 | Rs Rt Rd %) oxb

if ($t0 == 0) {$t1=$t2+$t3;} else {$t1=9$t2-%$t3;}

bne $to, %0, L1 addu $t1, $t2, $t3
addu $t1, $t2, $t3 subu $t4, $t2, $t3
J L2 movn $t1, $t4, $to
L1: subu $t1, $t2, $t3
L2:

¢ Conditional move can eliminate branch & jump instructions

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Arrays

** In a high-level programming language, an array is a
homogeneous data structure with the following properties:

< All array elements are of the same type and size

< Once an array is allocated, its size cannot be modified

<> The base address is the address of the first array element
<> The array elements can be indexed

<> The address of any array element can be computed

*» In assembly language, an array is just a block of memory
*» In fact, all objects are simply blocks of memory

*» The memory block can be allocated statically or dynamically

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Static Array Allocation

* An array can be allocated statically in the data segment

* A data definition statement allocates static memory:
label: .type value@ [, valuel ...]
label: is the name of the array
.type directive specifies the size of each array element
valued, valuel ... specify a list of initial values

» Examples of static array definitions:
arrl: .half 20, -1 # array of 2 half words
arr2: .word 1:5 # array of 5 words (value=1)
arr3: .space 20 # array of 20 bytes

strl: .asciiz "Null-terminated string"”
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Watching Values in the Data Segment

Data Segment

SRl

Data Segment

Address Value (+0) Yalue (+4) Yalue (+8) Yalue (+c) Yalue (+10) Yalue (+14) Yalue (+18) Yalue (+1c)
0x10010000 OxELL££0014 Qx00000001 0x00000001 0x00000001 Q0x00000001 Qx00000001 Q0x00000000 Q0x00000000
0x10010020 Qx00000000 Qx00000000 Qx00000000 OxGEcecTode 0xT265742d| 0Omxeleseded Ox20646574 0xEaT27473
Ox10010040 0x000067 6e Qx00000000 0x00000000 0x00000000 Qx00000000 Qx00000000 0x00000000 0x00000000

a4 | | »
<= > 0x10010000 (.data) |w Hexadecimal Addresses Hexadecimal Values [| ASCI

Nl)

Address

YValue (+0)

Value (+4)

Value (+8)

Yalue (+c)

Value (+10)

Value (+14)

Value (+18)

Yalue (+1c)

0x10010000

.

WO WO WD

WO WD WD .

WO WO WD .

WO AD AD .

WO AD AD .

WO A0 MO AD

"0 MO AND AD

0x10010020

WO WO W0 MO

"0 W0 WO ND

WO W0 %0 NO

1 1 u N

r £ t -

a n 1 m

d e ¢

i r t =3

0x10010040

“0Zv0 g mn

"0 MO AND AD

WO OAO AND AD

WO WO AO AD

WO A0 AO AD

WO A0 AO AD

WO A0 MO AD

"0 MO AND AD

Jl

| b

@ | »

0x10010000 (.data)

Hexadecimal Addresses Hexadecimal Values ASCI

¢ The labels window is the symbol table

< Shows labels and corresponding addresses

“* The 1la pseudo-instruction loads the address

of any label into a register

STUDENTS-HUB.com

Labels

‘o &

Label

Address A

COMparsons.asm

0x10010000

0x10010004

0x10010018

0x1001002c

[v| Data

Text

Uploaded By: Jibreel Bornat

Dynamic Memory Allocation

* One of the functions of the OS is to manage memory

¢ A program can allocate memory on the heap at runtime

** The heap is part of the data segment that can grow at runtime
** The program makes a system call ($v0=9) to allocate memory

. text

1li $a0, 100 # $a0 = number of bytes to allocate
1li $vo, 9 # system call 9

syscall # allocate 100 bytes on the heap

move $t0, $vo # $t0 = address of allocated block

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Allocating Dynamic Memory on the Heap

OX7fffffff
Stack Segment
Vv
~
Heap Area
>~ Data Segment
0x10040000
Static Area
0x10000000 .
Text Segment
0x00400000

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Computing the Addresses of Elements

* In a high-level programming language, an array is indexed
array[0] is the first element in the array
array[i] is the element at index i
&array[i] is the address of the element at index i
&array[i] = &array + i x element_size

*» For a 2D array, the array Is stored linearly in memory
matrix[Rows][Cols] has (Rows x Cols) elements
&matrix[i][j] = &matrix + (ixCols + j) x element_size

*» For example, to allocate a matrix[10][20] of integers:
matrix: .word 0:200 # 200 words (initialized to 0)

&matrix[1][5] = &matrix + (1x20 + 5)x4 = &matrix + 100
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Element Addresses in a 2D Array

Address calculation is essential when programming in assembly

COLS
4 A \
0 1 . J .. COLS-1
f
9
1
m (YY)
S < .
o 1
ROWS-1
.

&matrix[i][j] = &matrix + (ixCOLS + j) x Element_size

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Load and Store Instructions

¢ Instructions that transfer data between memory & registers

¢ Programs include variables such as arrays and objects

¢ These variables are stored in memory
*» Load Instruction:
< Transfers data from memory to a register

s+ Store Instruction:

< Transfers data from a register to memory

load

Registers

store

“* Memory address must be specified by load and store

STUDENTS-HUB.com

Uploaded By: Jibreel Bornat

Memory

lw Rt, imm(Rs)

Load and Store Word

¢ Load Word Instruction (Word = 4 bytes in MIPS)

¢+ Store Word Instruction

sw Rt, imm(Rs)

“+ Base / Displacement addressing is used

Rt € MEMORY[Rs+imm]

Rt =» MEMORY[Rs+imm]

< Memory Address = Rs (base) + Immediate (displacement)

< Immediatel® is sign-extended to have a signed displacement

Base or Displacement Addressing

Op®

Rs®

Rt° immediatel6

Base address

O

Memory Word

STUDENTS-HUB.com

Uploaded By: Jibreel Bornat

Example on Load & Store

** Translate: A[1] = A[2] + 5 (Ais an array of words)

¢ Given that the address of array A is stored in register $t0

1w $t1, 8($t0) # $t1 = A[2]
addiu $t2, $t1, 5 # $t2 = A[2] + 5
SW $t2, 4($t0) # A[1] = $t2

*» Index of A[2] and A[1] should be multiplied by 4. Why?

Memory
Registers
$to &A 1w A[3] &A + 12
$t1 A[2] « A[2] &A + 8
$t2 A[2] + 5 A[1] &A + 4
W A[@] &A

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Load and Store Byte and Halfword

*» The MIPS processor supports the following data formats:

<> Byte = 8 bits, Half word = 16 bits, Word = 32 bits

*» Load & store instructions for bytes and half words

< Ib = load byte, Ibu = load byte unsigned, sb = store byte

< Ih =load half, lhu =load half unsigned, sh = store halfword

*» Load expands a memory value to fit into a 32-bit register

*» Store reduces a 32-bit register value to fit in memory

<
<

32-bit Register

v

S sign — extend S|S b
O zero - extend 0 bu
S sign — extend h
0 zero - extend hu

STUDENTS-HUB.com

Uploaded By: Jibreel Bornat

Load and Store Instructions

Instruction Meaning I-Type Format
1b Rt, imm(Rs) Rt €, MEM[Rs+imm] | ©x20 | Rs | Rt | 16-bit immediate
lh Rt, imm(Rs) Rt €, MEM[Rs+imm] | ©x21 | Rs Rt | 16-bit immediate
lw Rt, imm(Rs) Rt €, MEM[Rs+imm] | @x23 | Rs Rt | 16-bit immediate
lbu Rt, imm(Rs) Rt €, MEM[Rs+imm] | @x24 | Rs Rt | 16-bit immediate
lhu Rt, imm(Rs) Rt €, MEM[Rs+imm] | ©x25 | Rs Rt | 16-bit immediate
sb Rt, imm(Rs) Rt =», MEM[Rs+imm] | ©x28 | Rs Rt | 16-bit immediate
sh Rt, imm(Rs) Rt =», MEM[Rs+imm] | @x29 | Rs Rt | 16-bit immediate
sw Rt, imm(Rs) Rt =, MEM[Rs+imm] | ©x2b | Rs | Rt | 16-bit immediate

*» Base / Displacement Addressing is used

< Memory Address = Rs (Base) + Immediate (displacement)
< If Rs is $zero then

< If Immediate is 0 then

STUDENTS-HUB.com

Address = Immediate (absolute)

Address = Rs (register indirect)

Uploaded By: Jibreel Bornat

Translating a WHILE Loop

¢ Consider the following WHILE loop:

i = 90; while (A[i] != value && i<n) i++;

Where A is an array of integers (4 bytes per element)
“ Translate WHILE loop: $a0 = &A, $al = n, and $a2 = value
BA[i] = &A + i*4 = &A[i-1] + 4

1i
loop: lw
beq
beq
addiu
addiu
J
done: . . .
STUDENTS-HUB.com

$to, ©

$t1, 0($a0)
$t1, $a2, done
$t0, $al, done
$to, $to, 1
$a0, $a0, 4
loop

$to =
$t1 =
(A[i]
(i ==
o1++

$a0 =

i=20

A[i]

== value)?
n)?

&A[1]

jump backwards to loop

Uploaded By: Jibreel Bornat

Copying a String

A string in C is an array of chars terminated with null char

i = 0;

do { ch = source[i]; target[i] = ch; i++; }
while (ch = "\0');
Given that: $a0 = &target and $al = &source

loop:

1b $t0, 0(%$al) # load byte: $tO = source[i]
sb $t0, 0(%$a0) # store byte: target[i]= $tO
addiu $a0, $a0, 1 # $a0 = &target[i]

addiu $al, $al, 1 # $al = &source[i]

bnez $t0, loop # loop until NULL char

STUDENTS-HUB.com

Uploaded By: Jibreel Bornat

Initializing a Column of a Matrix

M = new int[10][5]; // allocate M on the heap
int i;
for (i=0; i<10; i++) { M[i][3] = 1i; }

&M[i][3] = &M + (i*5 + 3) * 4 = &M + i*20 + 12
1i $a0, 200 # $a0 = 10*5*4 = 200 bytes

1i $vo, 9 # system call 9
syscall # allocate 200 bytes
move $t0, $vO # $t0 = &M
1i $t1, 0 #$t1=1i=0
1i $t2, 10 # $t2 = 10
L: sw $t1, 12(%$t0) # store M[i][3] =1
addiu $t1, $t1, 1 # i++
addiu $to, $to, 20 # $to = &M[i][3]
bne $t1, $t2, L # if (i != 10) loop back

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Jump and Branch Limits

s Jump Address Boundary = 22° instructions = 256 MB

<> Jump cannot reach outside its 256 MB segment boundary

< Upper 4 bits of PC are unchanged

Jump Target Address pC* 26-bit address 00

*» Branch Address Boundary

<> Branch instructions use I-Type format (16-bit Offset)

< PC-relative addressing: PC30 + Offsetl6 + 1 00

Branch Target address = PC + 4 x (1 + Offset)
Count the number of instructions to skip starting at next instruction
Positive offset =» Forward branch, Negative offset =» Backward branch

Most branches are near : At most £2%° instructions can be skipped
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Integer Multiplication in MIPS

¢ Multiply instructions
< mult Rs, Rt Signed multiplication
< multu Rs, Rt Unsigned multiplication

¢ 32-bit multiplication produces a 64-bit Product

$0
$1

¢ Separate pair of 32-bit registers

< HI = high-order 32-bit of product 331

|
< LO =low-order 32-bit of product Multiply
< MIPS also has a special mul instruction Divide
I_I_l
<~ mul Rd, Rs, Rt Rd = Rs x Rt HI LO

<> Copy LO into destination register Rd

< Useful when the product is small (32 bits) and HI is not needed
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Integer Division in MIPS

¢ Divide Iinstructions
< div Rs, Rt Signed division

< divu Rs, Rt Unsigned division

¢ Division produces guotient and remainder

$0
$1

s Separate pair of 32-bit registers

< HI = 32-bit remainder $31

|
< LO = 32-bit quotient Multiply
% If divisor is 0 then result is unpredictable Divide
. : : ——
“* Moving data from HI, LO to MIPS registers HI LO

< mfhi Rd (Rd = HI)

< mflo Rd (Rd =LO)
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Integer Multiply and Divide Instructions

Instruction Meaning Format

mult Rs, Rt HI, LO =Rs x_ Rt Op=0 Rs Rt (%) (%) ox18
multu Rs, Rt HI, LO =Rs x, Rt Op=0 Rs Rt (%) (%) ox19
mul Rd, Rs, Rt Rd = Rs x_, Rt Ox1c Rs Rt Rd (%] 2

div Rs, Rt HI, LO=Rs / Rt Op=0 | Rs Rt (%] (%] Ox1la
divu Rs, Rt HI, LO=Rs /, Rt Op=0 | Rs Rt (%] (%] ox1b
mfhi Rd Rd = HI Op=0 9 (% Rd 0 0x109
mflo Rd Rd = LO Op=0 %) %) Rd (%) ox12
mthi Rs HI = Rs Op=0 | Rs %) (%) ox11
mtlo Rs LO = Rs Op=0 | Rs (%) (%) (%) ox13

x, = Signed multiplication, x, = Unsigned multiplication
/< = Signed division, /, = Unsigned division

NO arithmetic exception can occur
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

String to Integer Conversion

» Consider the conversion of string "91052" into an integer
1 9 1 | 1 | 1 e 1 | 5 1 1 2 1

*» How to convert the string into an integer?
“ Initialize: sum =0
¢ Load each character of the string into a register
< Check if the character is in the range: '@' to '9"
< Convert the character into a digit in the range: @to 9
< Compute: sum =sum * 10 + digit
< Repeat until end of string or a non-digit character is encountered
“ To convert "91052", initialize sum to 0 then ...

< sum = 9, then 91, then 910, then 9105, then 91052
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

String to Integer Conversion Function

S T T R R IR EEp SRS S S
str2int: Convert a string of digits into unsigned integer
Input: $a0 = address of null terminated string
Output: $vO = unsigned integer value
1+ S T L S,
str2int:
1i $vo, O # Initialize: $vO = sum = ©
1i $to, 10 # Initialize: $t0 = 10
L1: 1b $t1l, 9(%a0) # load $tl1 = str[i]
blt $t1, '9', done # exit loop if ($t1 < 'Q')
bgt $t1l, '9', done # exit loop if ($t1 > '9')
addiu $t1, $t1, -48 # Convert character to digit
mul $vo, $vo, $to # $vO = sum * 10
addu $vo, vO, Sti # $vO = sum * 10 + digit
addiu $a0, %a0, 1 # $a0 = address of next char
J L1 # loop back
done: jr $ra # return to caller

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Integer to String Conversion

> Convert an unsigned 32-bit integer into a string

*+ How to obtain the decimal digits of the number?
< Divide the number by 10, Remainder = decimal digit (O to 9)
<> Convert decimal digit into its ASCII representation (‘0" to '9")
< Repeat the division until the quotient becomes zero

< Digits are computed backwards from least to most significant

“ Example: convert 2037 to a string
< Divide 2037/10 quotient =203 remainder=7 char="7"
< Divide 203/10 quotient=20 remainder=3 char="3'
< Divide 20/10 guotient = 2 remainder =0 char="0'

< Divide 2/10 quotient =0 remainder =2 char="2'

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Integer to String Conversion Function

int2str:
Input: $a@ = value, $%al
Output: $vO =
int2str:
1i $to, 10
addiu $vo, %$al, 11
sb $zero, 0($v0O)
L2: divu $a0, $to
mflo $a0
mfhi $t1
addiu $ti1, $t1, 48
addiu $vo, $vo, -1
sb $t1, o($voO)
bnez $a0, L2
jr $ra

STUDENTS-HUB.com

Converts an unsigned integer into a string

buffer address (12 bytes)

address of converted string in buffer

H H H H H HHEH T H

divisor = 10

at end of buffer

a NULL character
value/10, HI = valueX10
value/10

$t1 = value’%10

convert digit into ASCII
point to previous byte
store character in memory
loop if value is not ©
return to caller

A
Q
o
]

Uploaded By: Jibreel Bornat

Function Call and Return

¢ To execution a function, the caller does the following:
< Puts the parameters in a place that can be accessed by the callee

< Transfer control to the callee function

¢ To return from a function, the callee does the following:
< Puts the results in a place that can be accessed by the caller
< Return control to the caller, next to where the function call was made
** Registers are the fastest place to pass parameters and return
results. The MIPS architecture uses the following:
< $a0-%$a3: four argument registers in which to pass parameters
< $vO-%$v1: two value registers in which to pass function results

< $ra: return address register to return back to the caller

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Function Call and Return Instructions

“ JAL (Jump-and-Link) is used to call a function
< Save return address in $31 = PC+4 and jump to function
< Register $31 ($ra) is used by JAL as the return address

* JR (Jump Register) is used to return from a function
< Jump to instruction whose address is in register Rs (PC = Rs)
“* JALR (Jump-and-Link Register)
< Save return address in Rd = PC+4, and

< Call function whose address is in register Rs (PC = Rs)
< Used to call functions whose addresses are known at runtime

Instruction Meaning Format
jal label $31 = PC+4, j Label Op=3 26-bit address
jr Rs PC = Rs Op=0 Rs %) (%) %) 8
jalr Rd, Rs Rd = PC+4, PC = Rs Op=0 Rs %) Rd %) 9

STUDENTS-HUB.com

Uploaded By: Jibreel Bornat

Example

* Consider the following swap function (written in C)

¢ Translate this function to MIPS assembly language

void swap(int v[], int k)
{ int temp;
temp = v[k] .
v[k] = V[k+1]; SWap:
sll $to,%$al,2 # $to=k*4
v[k+1] = temp;
} add $t0,$t0,%a0 # $to=v+k*4
lw $t1,0($t0) # $ti1=v[k]
Parameters: lw $t2,4(%t0) # $t2=v[k+1]
$a0 = Address of v[] sw $t2,0(ste) # v[k]=$t2
$al =k, and sw $t1,4(%$t0) # vik+1]=%t1
Return address is in $ra jr $ra # return

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Call / Return Sequence

*» Suppose we call function swap as: swap(a,10)
<> Pass address of array a and 10 as arguments
< Call the function swap saving return address in $31 = $ra
< Execute function swap

<> Return control to the point of origin (return address)

_ ' swap:
Registers s11 $t0,%al,2
R Caller / add $te,$te,$a0
$a0=$4| addr a |[! la $a@, a 1w $t1,0(%$t0)
$a1=$5 10 1i $al, 10 1w $t2,4($t0)
' jal swap | sw $t2,0($te)
return here | sw $t1,4($te)
$ra=$31 | ret addr IR | Jr-$r-a _____________________

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Details of JAL and JR

Address Instructions Assembly Language

. Pseudo-Direct
00400020 lui $1, 0x1001 1la $a@, a

. Addressing

00400024 ori %4, %1, © .
00400028 ori $5, $0, 10 ori $al,$0,10 PC = 1mm26<<2
0040002C jal 0x10000f jal swap 0x10000f << 2
90400030 -..._. __ __-~# return here = 9Xx0040003C

N swap: T $31 | 0x00400030
9040003C ~Ss11 %8, $5, 2 sll $te, $al, 2
00400040 add $8,.$8, $4 add $te, $to, $ae Register $31

IS the return

00400044 1w $9, 0($8) 1w $t1, o($te) address register

00400048 1w $10,4($8) lw $t2, 4($t0)
0040004C sw $10,0($8)\\\ sw $t2, 0($t0)
00400050 sw $9, 4($8) ‘sw $t1, 4($t0)
00400054 jr $31 jr $ra
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Second Example

% Function tolower converts a | char tolower(char ch) {
: if (ch>="A"' && ch<='Z")
capital letter to lowercase o
return (ch + 'a' - 'A');
o - - else
* If parameter ch is not a capital
return ch;
letter then return ch)
tolower: # $a0 = parameter ch
blt $a0, 'A', else # branch if $a0@ < 'A’
bgt $a0, 'Z', else # branch if $a0 > 'Z’
addi $vo, $a0, 32 # 'a' - 'A' == 32
jr $ra # return to caller
else:
move $vO, $a0 # $vO = ch
jr $ra # return to caller

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

The Stack Segment

“ Every program has 3 segments OX7FFFFfff
when loaded into memory: S’;zc: g:g:s Stack Segment
WNw

< Text segment: stores machine
Instructions

<> Data segment: area used for static
and dynamic variables

Heap Area
<> Stack segment: area that can be

_ 0x10040000
allocated and freed by functions et e
. _ 0x10000000
¢ The program uses only logical
(virtual) addresses Text Segment
0Xx00400000

¢ The actual (physical) addresses

are managed by the OS ©Xx00000000 -

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

The Stack Segment (cont'd)

¢ The stack segment is used by functions for:
< Passing parameters that cannot fit in registers
< Allocating space for local variables
<> Saving registers across function calls
< Implement recursive functions
“* The stack segment is implemented via software:
<> The Stack Pointer $sp = $29 (points to the top of stack)

<> The Frame Pointer $fp = $30 (points to a stack frame)

% The stack pointer $sp is initialized to the base address of the
stack segment, just before a program starts execution

“* The MARS tool initializes register $sp to Ox7fffeffc
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Stack Frame

*» Stack frame is an area of the stack containing ...

< Saved arguments, registers, local arrays and variables (if any)
% Called also the activation frame

*» Frames are pushed and popped by adjusting ...
< Stack pointer $sp = $29 (and sometimes frame pointer $fp = $30)

<~ Decrement $sp to allocate stack frame, and increment to free

Stack 5 Stack Stack
$fp— v fp ~ Local
Frame f() | < Frame f() Frame f() stack
$sp— S 2 $sp -
p > = . variables
l Frame g() | 2 i Saved
$sp = N registers
stack grows allocate stack free stack Args for
downwards frame frame $sp _» nested calls

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Leaf Function

*» A leaf function does its work without calling any function
“» Example of |leaf functions are: swap and tolower

*» A leaf function can freely modify some registers:

< Argument registers: $a0 - $a3

< Result reqgisters: $v0 - $vi

<> Temporary registers: $t0 - $t9

< These registers can be modified without saving their old values
“* A leaf function does not need a stack frame if ...

< Its variables can fit in temporary registers

“ A leaf function allocates a stack frame only if ...

< It requires additional space for its local variables
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Non-Leaf Function

» A non-leaf function is a function that calls other functions
* A non-leaf function must allocate a stack frame
*» Stack frame size is computed by the programmer (compiler)

¢ To allocate a stack frame of N bytes ...
< Decrement $sp by N bytes: $sp = $sp - N
<> N must be multiple of 4 bytes to have registers aligned in memory

< In our examples, only register $sp will be used ($fp is not needed)

“* Must save register $ra before making a function call
<> Must save $s0-$s7 if their values are going to be modified
< Other registers can also be preserved (if needed)

<> Additional space for local variables can be allocated (if needed)
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Steps for Function Call and Return

“ To make a function call ...
<> Make sure that register $ra is saved before making a function call
<> Pass arguments in registers $a0 thru $a3
<> Pass additional arguments on the stack (if needed)

< Use the JAL instruction to make a function call (JAL modifies $ra)

“ To return from a function ...
< Place the function results in $v@ and $v1 (if any)
< Restore all registers that were saved upon function entry
» Load the register values that were saved on the stack (if any)
< Free the stack frame: $sp = $sp + N (stack frame = N bytes)

<> Jump to the return address: jr $ra (return to caller)

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Preserving Registers

*» The MIPS software specifies which registers must be preserved
across a function call, and which ones are not

Must be Preserved Not preserved
Return address: $ra Argument registers: $a0 to $a3
Stack pointer: $sp Value registers: $v0 and $v1
Saved registers: $s0 to $s7 and $fp Temporary registers: $t0 to $t9
Stack above the stack pointer Stack below the stack pointer

% Caller saves register $ra before making a function call
% A callee function must preserve $sp, $s0 to $s7, and $fp.

% If needed, the caller can save argument registers $a0 to $a3.

However, the callee function is free to modify them.
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Example on Preserving Register

¢ A function f calls g twice as shown below. We don't know what g
does, or which registers are used in g.

“* We only know that function g receives two integer arguments
and returns one integer result. Translate f:

int f(int a, int b) {

int d = g(b: g(a: b))3

return a + d;

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Translating Function f

int f(int a, int b) {
int d = g(b, g(a, b)); return a + d;

}

f: addiu $sp, $sp, -12 # allocate frame = 12 bytes
SW $ra, 0($sp) # save %$ra
SwW $a0, 4(%$sp) # save a (caller-saved)
Sw $al, 8(%$sp) # save b (caller-saved)
jal g # call g(a,b)
1w $a0, 8($sp) # $a0 = b
move $al, $vo # $al = result of g(a,b)
jal g # call g(b, g(a,b))
1w $a0, 4(%$sp) # $a0 = a
addu $vO, $a0, $vO # $v0 = a + d
1w $ra, 90(%$sp) # restore $ra
addiu $sp, $sp, 12 # free stack frame
jr $ra # return to caller

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Allocating a Local Array on the Stack

* In some languages, an array can be

Stack Frame
allocated on the stack

of Parent

¢ The programmer (or compiler) must sp—
allocate a stack frame with sufficient §
space for the local array « | int array[n]
Q n x 4 bytes
void foo (int n) { %
// allocate on the stack LL
int array[n]; _;fé Saved $a0
// generate random array N Saved $ra
random (array, n); $sp —|___Parent $sp
// print array Stack Frame
print (array, n); of Child
} $sp

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Translating Function foo

foo: # $a0 = n
sll $to, $a0, 2 # $t0 = n*4 bytes
addiu $to, $to, 12 # $t0 = n*4 + 12 bytes
move $tl1, $sp # $t1l = parent $sp
subu $sp, $sp, $t0O # allocate stack frame
SwW $t1, 0($sp) # save parent $sp
SW $ra, 4($sp) # save %$ra
SW $a0, 8($sp) # save n
move $al, $ao # $al = n
addiu $a0@, $sp, 12 # $a0 = $sp + 12 = &array
jal random # call function random
addiu $a0@, $sp, 12 # $a0 = $sp + 12 = &array
1w $al, 8($sp) # $al = n
jal print # call function print
1w $ra, 4(%$sp) # restore $ra
1w $sp, 90(%$sp) # restore parent $sp
jr $ra # return to caller

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Remarks on Function foo

“* Function starts by computing its frame size: $t0 = nx4 + 12 bytes
<> Local array Is nx4 bytes and the saved registers are 12 bytes
¢ Allocates its own stack frame: $sp = $sp - $t0
<> Address of local stack array becomes: $sp + 12
% Saves parent $sp and registers $ra and $a0 on the stack
¢ Function foo makes two calls to functions random and print
< Address of the stack array is passed in $a@ and n is passed in $al
¢ Just before returning:
<> Function foo restores the saved registers: parent $sp and $ra

< Stack frame is freed by restoring $sp: 1w $sp, 0($sp)
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Bubble Sort (Leaf Function)

void bubbleSort (int A[], int n) {
int swapped, i, temp;
do {
n = n-1;
swapped = 0; // false
for (i=0; i<n; i++) {
if (A[i] > A[i+1]) {

temp = A[1]; // swap A[i]
A[i] = A[i+1]; // with A[i+1]
A[i+1l] = temp;
swapped = 1; // true
}
} Worst case Performance O(n?)
} } while (swapped); Best case Performance O(n)

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Translating Function Bubble Sort

bubbleSort:

do:

for:

L1:

L2:

addiu
blez
move
1i

1i

1w

1w
ble
SW

SW

1i
addiu
addiu
bne
bnez

jr

$al,
$al,
$to,
$t1,
$t2,
$t3,
$t4,
$t3,
$t4,
$t3,
$t1,
$t2,
$to,
$t2,
$t1,
$ra

$al, -1
L2

$ao

(%

(%
o($to)
4($t0)
$t4, L1
o($to)
4($t0)
1

$t2, 1
$to, 4
$al, for
do

H
H

= 4

H H H H H HH HHHEHE HEHE R

$a0 = &A, $al = n
n = n-1

branch if (n <= 0)
$t0 = &A

$t1l = swapped = ©
$t2 =1 =0
$t3 = A[1i]

$t4 = A[i+1]
branch if (A[i]
A[i] = $t4
A[i+l1l] = $t3
swapped = 1
i++

$t0 = &A[1i]
branch if (i != n)
branch if (swapped)
return to caller

<= A[i+1])

STUDENTS-HUB.com

Uploaded By: Jibreel Bornat

Example of a Recursive Function

if (n ==
if (n ==
int suml

int sum2

}

int recursive_sum (int A[], int n) {
©) return 0;
1) return A[Q];

return suml + sum2;

recursive sum (&A[O], n/2);

recursive _sum (&A[n/2], n - n/2);

+» Two recursive calls

<> First call computes the sum of the first half of the array elements

<> Second call computes the sum of the 2"d half of the array elements

*» How to translate a recursive function into assembly?

STUDENTS-HUB.com

Uploaded By: Jibreel Bornat

Translating a Recursive Function

recursive_sum: # $a0 = &A, $%$al = n
bnez $al, L1 # branch if (n != 0)
1i $vo, 0O
jr $ra # return o

L1: bne $al, 1, L2 # branch if (n != 1)
1w $vo, 0(%$a0) # $vo = A[O]
jr $ra # return A[Q]

L2: addiu $sp, $sp, -12 # allocate frame = 12 bytes
SW $ra, 0($sp) # save %$ra
SW $s0, 4($sp) # save $s0
SW $s1, 8($sp) # save $s1
move $sO, $a0 # $s0 = &A (preserved)
move $sl1, %al # $s1 = n (preserved)
srl $al, %al, 1 # $al = n/2
jal recursive_sum # first recursive call

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Translating a Recursive Function (cont'd)

srl
sll
addu
subu
move
jal
addu
1w
1w
1w
addiu

jr

$to, $s1, 1
$t1, $to, 2
$a0, $s0, $t1
$al, $sl1, $to
$s0, $voO
recursive_sum
$vO, $s0, $vO
$ra, 0($sp)
$s0, 4($sp)
$s1, 8($sp)
$sp, $sp, 12
$ra

H
H
H
H
H
H

H H H H H H

$t0 = n/2

$t1 = (n/2) * 4
$a0 = &A[n/2]
$al = n - n/2

$s0 = suml (preserved)
second recursive call
$vO = suml + sum2
restore $%$ra

restore $s0

restore $sl

free stack frame

return to caller

% $ra, $s0, and $s1 are preserved across recursive calls

STUDENTS-HUB.com

Uploaded By: Jibreel Bornat

Illustrating Recursive Calls

l T$v0 = A[O]+A[1]+A[2]+A[3]+A[4]+A[5]

recursive_sum:

$a0 = &A[O], $al = 6

A[0]+A[1]+A[2] J J A[3]+A[4]+A[5]

recursive_sum: recursive_sum:
$a0 = &A[O], $al = 3 $a0 = &A[3], $al = 3
A[O] ¢\, a \/T A[1]+A[2] A[3] ¢\, a \,¢ A[4]1+A[5]

recursive_sum: recursive_sum: recursive_sum: recursive_sum:

$a0 = &A[0O] $a0 = &A[1] $a0 = &A[3] $a0 = &A[4]

$al = 1 $al = 2 $al = 1 $al = 2

ar] — — = A aa] — — — ars)

recursive_sum: recursive_sum: recursive_sum: recursive_sum:
$a0 = &A[1] $a0 = &A[2] $a0 = &A[4] $a0 = &A[5]
$al = 1 $al = 1 $al = 1 $al = 1

STUDENTS-HUB.com

Uploaded By:

Jibreel Bornat

MIPS Floating Point Coprocessor

¢ Called Coprocessor 1 or the Floating Point Unit (FPU)
% 32 separate floating point registers: $f0, $f1, ..., $f31
*» FP registers are 32 bits for single precision numbers
“+ Even-odd register pair form a double precision register

* Use the even number for double precision registers
<~ $f0, $f2, $f4, ..., $f30 are used for double precision

*» Separate FP instructions for single/double precision
< Single precision: add.s, sub.s, mul.s, div.s (.s extension)
<> Double precision: add.d, sub.d, mul.d, div.d (.d extension)

** FP instructions are more complex than the integer ones
<> Take more cycles to execute

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Floating-Point Arithmetic Instructions

Instruction Meaning Opé | fmt5 | ft5 | fs® | fd> | func®
add.s $f5,%$f3,%$f4 $f5 = $f3 + $f4 Ox11 |Ox10 | $f4 ($f3|$f5| ©
sub.s $f5,$f3,$f4 |$f5 = $f3 - $f4 ox11 |ox10 | $f4 |$F3 | $£5
mul.s $f5,%$f3,%$f4 $f5 = $f3 x $f4 Ox11 |Ox10 | $f4 ($f3 | $f5| 2
div.s $f5,%$f3,%$f4 $f5 = $f3 / $f4 ox11 |0x10 | $f4 | $f3 | $f5 3
sqrt.s $f5,%$f3 $f5 = sqrt($f3) Ox11l (6x10| O |$f3|$f5| 4
abs.s $f5,%$f3 $f5 = abs($f3) Ox11l (6x10| © |$f3| $f5 5
neg.s $f5,%$f3 $f5 = - ($Ff3) Ox11 |[0x10| © |$f3| $f5 7
add.d $f6,$f2,$f4 |$f6,7=9$f2,3+9$f4,5 | ox11l |ox11| $f4 |$f2|$f6| ©
sub.d $f6,$f2,$f4 |$f6,7=9$f2,3-9$f4,5 | ox11l |ox11l| $f4 |$f2|$f6| 1
mul.d $f6,$f2,$f4 |$f6,7=9$F2,3x$f4,5 | Ox1l |ox1l| $f4 |$f2|$f6| 2
div.d $f6,$f2,$f4 |$f6,7=9$f2,3/$f4,5 | ox1l |ox1l| $f4 |$f2|$f6| 3
sqrt.d $f6,$f2 $f6,7 = sqrt($f2,3) ox11 |ox11| o |[$f2|$fe6| 4
abs.d $f6,%$f2 $f6,7 = abs($f2,3) Ox11 ([Ox11| © |$f2| $f6 5
neg.d $f6,%f2 $f6,7 = -($f2,3) ox11 |ex11| © |$f2|$f6| 7

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Floating-Point Load and Store

* Separate floating-point load and store instructions
< 1lwcl: load word coprocessor 1

< 1ldcl: load double coprocessor 1 General purpose
register is used as the

< swcl: store word coprocessor 1 .
address register

<> sdcl: store double coprocessor 1

Instruction Meaning Op® | rs®> | ft> | Immediate?®
lwcl $f2, 8($t0) $f2 €, Mem[$10+8] |0Ox31|$t0 | $F2 8
swcl $f2, 8($t0) $f2 >, Mem[$t0+8] |0Ox39|$t0 | $F2 8
ldcl $f2, 8($t0) $f2,3 €, Mem[$t0O+8] |Ox35|$t0 | $f2 8
sdcl $f2, 8(%$t0) $f2,3 >, Mem[$t0+8] |[Ox3d|$to | $f2 8

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Data Movement Instructions

** Moving data between general purpose and FP registers
< mfcl: move from coprocessor 1 (to a general purpose register)
< mtcl: move to coprocessor 1 (from a general purpose register)
“* Moving data between FP registers
<> mov.s: move single precision float

< mov.d: move double precision float = even/odd pair of registers

Instruction Meaning Opé |fmt>| rt3 | fs5 | £fd° | func
mfcl $to, $f2 $to = $f2 ox11 | O |s$to | $f2| © %)
mtcl $tO, $f2 $f2 = $t0 ox11 4 $t0 | $f2 9 9
mov.s $f4, $f2 $f4 = $f2 ox11l |ox10| © | $f2 | $f4 | 6
mov.d $f4, $f2 $f4,5 = $f2,3 | 6x11 |Ox11| © $f2 | $f4 6

STUDENTS-HUB.com

Uploaded By: Jibreel Bornat

Convert Instructions

*» Convert instruction: cvt.x.y

<> Convert the source format y into destination format x
¢ Supported Formats:

< Single-precision float = .s

<> Double-precision float = .d

< Signed integer word .w (in a floating-point register)

Instruction Meaning Opé | fmt® fs® | fd* | func
cvt.s.w $f2,%f4 $f2 = W2S($f4) Ox11 |[Ox14| © | $f4 | $f2 | ox20
cvt.s.d $f2,$f4 |$f2 = D2P($f4,5) ox11 |ex11| o | $f4 | $f2 | ox20
cvt.d.w $f2,%f4 $f2,3 = W2D($f4) Ox11l |[Ox14| © | $f4 | $f2 | ox21
cvt.d.s $f2,$f4 |$f2,3 = S2D($f4) ox11 |ex10| © | $f4 | $f2 | ex21
cvt.w.s $f2,%f4 $f2 = S2W($f4) Ox1l1l |[Oox10| © | $f4 | $f2 | ox24
cvt.w.d $f2,%f4 $f2 = D2W($f4,5) Ox11 |ox11| © $f4 | $f2 | ox24

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Floating-Point Compare and Branch

¢ Floating-Point unit has eight condition code cc flags

< Set to O (false) or 1 (true) by any comparison instruction
“ Three comparisons: eq (equal), It (less than), le (less or equal)

¢ Two branch instructions based on the condition flag

Instruction Meaning Opé | fmt5 | ft5 | fsS func
c.eq.s cc $f2,%$f4 cc = ($f2 == $f4) Ox11 |ox10 | $f4 | $f2 | cc | Ox32
c.eq.d cc $f2,%$f4 cc = ($f2,3 == $f4,5) Oox11 |ox11l| $f4 | $f2 | cc | Ox32
c.lt.s cc $f2,%f4 cc = ($f2< $f4) Ox11 [Ox10 | $f4 | $f2 | cc | Ox3c
c.1lt.d cc $f2,%f4 cc = ($f2,3 < $f4,5) Ox11 |ox1l1l| $f4 | $f2 | cc | Ox3c
c.le.s cc $f2,%f4 cc = ($f2 <= $f4) Ox11 |ox10 | $f4 | $f2 | cc | Ox3e
c.le.d cc $f2,9f4 cc = ($f2,3 <= $f4,5) Ox11 |Ox11l| $f4 | $f2 | cc | Ox3e
bclf cc Label branch if (cc == 0) ox11 8 |cc,0| 16-bit Offset
bclt cc Label branch if (cc == 1) ox11 8 |cc,1| 16-bit Offset

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Example 1: Area of a Circle

.data
pi: .double
msg: .asciiz
. text
main:
ldc1 $f2, pi
1i $vo, 7
syscall

mul.d $f12, $fo, $fo
mul.d $f12, $f2, $f12

la $a0, msg

1i $vo, 4

syscall

1i $vo, 3

syscall
STUDENTS-HUB.com

3.1415926535897924
"Circle Area = "

$f2,3 = pi

read double (radius)

$f0,1 = radius

$f12,13 = radius*radius
$f12,13 = area

print string (msg)
print double (area)

print $f12,13
Uploaded By: Jibreel Bornat

Example 2: Matrix Multiplication

void mm (int n, float X[n][n], Y[n][n], Z[n][n]) {
for (int i=0; il!=n; i=i+l1) {
for (int j=0; jl!=n; j=j+1) {
float sum = 0.0;
for (int k=0; k!=n; k=k+1) {
sum = sum + Y[i][k] * Z[k][j]1;
}
X[1][J] = sum;

}
}

*» Matrix size is passed in $a0 = n
«» Matrix addresses in $al = &X, $a2 = &Y, and $a3 = &Z

“* What is the MIPS assembly code for the procedure?

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Access Pattern for Matrix Multiply

X[i]

3]

Y[1][k]

Z[k][]]

Matrix X is accessed
by row.

&Y[i-

&Z

1-

]
K]

k]L3.

STUDENTS-HUB.com

&X + (i*n + j)*4
&Y + (i*n + k)*4
& + (k*n + j)*4

Matrix Y IS accessed
by row.

&X
&Y
&z

Matrix Z accessed by

(1][J-1]
(1] [k-1]

k-1]1[7]

column.

+ 4
+ 4

+ 4%*n

Uploaded By: Jibreel Bornat

Matrix Multiplication Procedure (1 of 3)

arguments $a0=n, $al=8&X, $a2=8&Y, $a3=8&Z
mm: sll $to, $a0, 2 # $t0 = n*4 (row size)
1i $t1, © #9$t1=1i=0

Outer for (i = . . .) 1loop starts here
L1: 1i $t2, 0 #t $t2 = j =0

Middle for (j . .) loop starts here
L2: 1i $t3, © #$t3 =k =0
move $t4, %$a2 # $t4 = &Y[1i][9]
sll $t5, $t2, 2 # $t5 = j*4
addu $t5, %$a3, $t5 # $t5 = &Z[0O][7]
mtcl $zero, $fO # $f0 = sum = 0.0

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Matrix Multiplication Procedure (2 of 3)

Inner for (k
$t3 = k, $t4
L3: lwcl $f1,
lwcl $f2,
mul.s $f3,
add.s $f0,
addiu $t3,
addiu $t4,
addu $t5,
bne $t3,

= . . .) loop starts here
= &Y[1][k], $t5 = &z[k][]]

0(%t4)
0($t5)
$f1, $f2
$fo, $f3
$t3, 1
$t4, 4
$t5, $t0
$a0, L3

End of inner for loop

STUDENTS-HUB.com

load $f1 = Y[i][Kk]
load $f2 = Z[k][]]

$f3 =
sum
k =k
$t4
$t5

Y[i][k]*Z[k][]]
sum + $f3

+ 1

&Y[i][k]
&Z[k][7]

loop back if (k != n)

Uploaded By: Jibreel Bornat

Matrix Multiplication Procedure (3 of 3)

swcl
addiu
addiu
bne

End of middle for loop

addu
addiu
bne

$fo, 0(%al)
$al, $al, 4
$t2, $t2, 1
$t2, $a0, L2

$a2, $a2, $to
$t1, $t1, 1
$t1, $a0, L1

End of outer for loop

jr

STUDENTS-HUB.com

$ra

H
H
H
H

H

#

store X[i][j] = sum
$al = &X[i][]]
j=3+1

loop L2 if (j != n)

$a2 = &Y[i][0]
i=1+1
loop L1 if (i != n)

return to caller

Uploaded By: Jibreel Bornat

