
MIPS32 Assembly Language

Programming

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Outline

❖ Introduction to Assembly Language

❖ Arithmetic Instructions

❖ Control Flow Instructions

❖ Load/Store Instructions

❖ Floating Points Instructions

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

What is Assembly Language?

❖ Low-level programming language for a computer

❖ One-to-one correspondence with the machine instructions

❖ Assembly language is specific to a given processor

❖ Assembler: converts assembly program into machine code

❖ Assembly language uses:

 Mnemonics: to represent the names of low-level machine instructions

 Labels: to represent the names of variables or memory addresses

 Directives: to define data and constants

 Macros: to facilitate the inline expansion of text into other code

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Assembly Language Statements

❖ Three types of statements in assembly language

 Typically, one statement should appear on a line

1. Executable Instructions

 Generate machine code for the processor to execute at runtime

 Instructions tell the processor what to do

2. Pseudo-Instructions and Macros

 Translated by the assembler into real instructions

 Simplify the programmer task

3. Assembler Directives

 Provide information to the assembler while translating a program

 Used to define segments, allocate memory variables, etc.

 Non-executable: directives are not part of the instruction set

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Assembly Language Instructions

❖ Assembly language instructions have the format:

[label:] mnemonic [operands] [#comment]

❖ Label: (optional)

 Marks the address of a memory location, must have a colon

 Typically appear in data and text segments

❖Mnemonic

 Identifies the operation (e.g. add, sub, etc.)

❖ Operands

 Specify the data required by the operation

 Operands can be registers, memory variables, or constants

 Most instructions have three operands

L1: addiu $t0, $t0, 1 #increment $t0
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Comments

❖ Single-line comment

 Begins with a hash symbol # and terminates at end of line

❖ Comments are very important!

 Explain the program's purpose

 When it was written, revised, and by whom

 Explain data used in the program, input, and output

 Explain instruction sequences and algorithms used

 Comments are also required at the beginning of every procedure

▪ Indicate input parameters and results of a procedure

▪ Describe what the procedure does

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Program Template

Title: Filename:

Author: Date:

Description:

Input:

Output:

################# Data segment #####################

.data

. . .

################# Code segment #####################

.text

.globl main

main: # main program entry

. . .

li $v0, 10 # Exit program

syscall

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

.DATA, .TEXT, & .GLOBL Directives

❖ .DATA directive

 Defines the data segment of a program containing data

 The program's variables should be defined under this directive

 Assembler will allocate and initialize the storage of variables

❖ .TEXT directive

 Defines the code segment of a program containing instructions

❖ .GLOBL directive

 Declares a symbol as global

 Global symbols can be referenced from other files

 We use this directive to declare main function of a program

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Data Definition Statement

❖ The assembler uses directives to define data

❖ It allocates storage in the static data segment for a variable

❖May optionally assign a name (label) to the data

❖ Syntax:

[name:] directive initializer [, initializer] . . .

var1: .WORD 10

❖ All initializers become binary data in memory

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Data Directives

❖ .BYTE Directive

 Stores the list of values as 8-bit bytes

❖ .HALF Directive

 Stores the list as 16-bit values aligned on half-word boundary

❖ .WORD Directive

 Stores the list as 32-bit values aligned on a word boundary

❖ .FLOAT Directive

 Stores the listed values as single-precision floating point

❖ .DOUBLE Directive

 Stores the listed values as double-precision floating point

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

String Directives

❖ .ASCII Directive

 Allocates a sequence of bytes for an ASCII string

❖ .ASCIIZ Directive

 Same as .ASCII directive, but adds a NULL char at end of string

 Strings are null-terminated, as in the C programming language

❖ .SPACE Directive

 Allocates space of n uninitialized bytes in the data segment

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Examples of Data Definitions

.DATA

var1: .BYTE 'A', 'E', 127, -1, '\n'

var2: .HALF -10, 0xffff

var3: .WORD 0x12345678:100

var4: .FLOAT 12.3, -0.1

var5: .DOUBLE 1.5e-10

str1: .ASCII "A String\n"

str2: .ASCIIZ "NULL Terminated String"

array: .SPACE 100

Array of 100 words

Initialized with

the same value

100 bytes (not initialized)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

❖Memory is viewed as an addressable array of bytes

❖ Byte Addressing: address points to a byte in memory

❖ However, words occupy 4 consecutive bytes in memory

 MIPS instructions and integers occupy 4 bytes

❖Memory Alignment:

 Address must be multiple of size

 Word address should be a multiple of 4

 Double-word address should be a multiple of 8

❖ .ALIGN n directive

 Aligns the next data definition on a 2n byte boundary

 Forces the address of next data definition to be multiple of 2n

Memory Alignment

0

4

8

12

a
d

d
re

s
s

not aligned

. . .

aligned word

not aligned

Memory

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

❖ Processors can order bytes within a word in two ways

❖ Little Endian Byte Ordering

 Memory address = Address of least significant byte

 Example: Intel IA-32

❖ Big Endian Byte Ordering

 Memory address = Address of most significant byte

 Example: SPARC architecture

❖ MIPS can operate with both byte orderings

Byte Ordering (Endianness)

Byte 0Byte 1Byte 2Byte 3

32-bit Register

MSB LSB

.Byte 0Byte 1Byte 2Byte 3

a a+3a+2a+1

Memory

address

Byte 3Byte 0Byte 1Byte 2Byte 3

32-bit Register

MSB LSB

.Byte 0 Byte 1 Byte 2

a a+3a+2a+1

Memory

address

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

❖ Assembler builds a symbol table for labels

 Assembler computes the address of each label in data segment

❖ Example Symbol Table

.DATA

var1: .BYTE 1, 2,'Z'

str1: .ASCIIZ "My String\n"

var2: .WORD 0x12345678

.ALIGN 3

var3: .HALF 1000

Symbol Table

Label

var1

str1

var2

var3

Address

0x10010000

0x10010003

0x10010010

0x10010018

var1

1 2 'Z'0x10010000

str1

'M' 'y' ' ' 'S' 't' 'r' 'i' 'n' 'g' '\n' 0

0x123456780x10010010

var2 (aligned)

1000

var3 (address is multiple of 8)

0 0 Unused

0 00 0

Unused

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

System Calls

❖ Programs do input/output through system calls

❖ The MIPS architecture provides a syscall instruction

 To obtain services from the operating system

 The operating system handles all system calls requested by program

❖ Since MARS is a simulator, it simulates the syscall services

❖ To use the syscall services:

 Load the service number in register $v0

 Load argument values, if any, in registers $a0, $a1, etc.

 Issue the syscall instruction

 Retrieve return values, if any, from result registers

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Syscall Services

Service $v0 Arguments / Result

Print Integer 1 $a0 = integer value to print

Print Float 2 $f12 = float value to print

Print Double 3 $f12 = double value to print

Print String 4 $a0 = address of null-terminated string

Read Integer 5 Return integer value in $v0

Read Float 6 Return float value in $f0

Read Double 7 Return double value in $f0

Read String 8
$a0 = address of input buffer

$a1 = maximum number of characters to read

Allocate Heap

memory
9

$a0 = number of bytes to allocate

Return address of allocated memory in $v0

Exit Program 10

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Syscall Services – Cont’d

Print Char 11 $a0 = character to print

Read Char 12 Return character read in $v0

Open File 13

$a0 = address of null-terminated filename string $a1

= flags (0 = read-only, 1 = write-only)

$a2 = mode (ignored)

Return file descriptor in $v0 (negative if error)

Read

from File
14

$a0 = File descriptor

$a1 = address of input buffer

$a2 = maximum number of characters to read

Return number of characters read in $v0

Write to File 15

$a0 = File descriptor

$a1 = address of buffer

$a2 = number of characters to write

Return number of characters written in $v0

Close File 16 $a0 = File descriptor

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Reading and Printing an Integer

################# Code segment #####################

.text

.globl main

main: # main program entry

li $v0, 5 # Read integer

syscall # $v0 = value read

move $a0, $v0 # $a0 = value to print

li $v0, 1 # Print integer

syscall

li $v0, 10 # Exit program

syscall

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Reading and Printing a String

################# Data segment #####################

.data

str: .space 10 # array of 10 bytes

################# Code segment #####################

.text

.globl main

main: # main program entry

la $a0, str # $a0 = address of str

li $a1, 10 # $a1 = max string length

li $v0, 8 # read string

syscall

li $v0, 4 # Print string str

syscall

li $v0, 10 # Exit program

syscall
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Sum of Three Integers

Sum of three integers

Objective: Computes the sum of three integers.

Input: Requests three numbers, Output: sum

################### Data segment ###################

.data

prompt: .asciiz "Please enter three numbers: \n"

sum_msg: .asciiz "The sum is: "

################### Code segment ###################

.text

.globl main

main:

la $a0,prompt # display prompt string

li $v0,4

syscall

li $v0,5 # read 1st integer into $t0

syscall

move $t0,$v0

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Sum of Three Integers – (cont'd)

li $v0,5 # read 2nd integer into $t1

syscall

move $t1,$v0

li $v0,5 # read 3rd integer into $t2

syscall

move $t2,$v0

addu $t0,$t0,$t1 # accumulate the sum

addu $t0,$t0,$t2

la $a0,sum_msg # write sum message

li $v0,4

syscall

move $a0,$t0 # output sum

li $v0,1

syscall

li $v0,10 # exit

syscall
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Instruction Categories

❖ Integer Arithmetic

❖ Arithmetic, logic, and shift instructions

❖ Data Transfer

 Load and store instructions that access memory

 Data movement and conversions

❖ Jump and Branch

 Flow-control instructions that alter the sequential sequence

❖ Floating Point Arithmetic

 Instructions that operate on floating-point registers

❖Miscellaneous

 Instructions that transfer control to/from exception handlers

 Memory management instructions

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

R-Type Instruction Format

❖ Op: operation code (opcode)

 Specifies the operation of the instruction

 Also specifies the format of the instruction

❖ funct: function code – extends the opcode

 Up to 26 = 64 functions can be defined for the same opcode

 MIPS uses opcode 0 to define many R-type instructions

❖ Three Register Operands (common to many instructions)

 Rs, Rt: first and second source operands

 Rd: destination operand

 sa: the shift amount used by shift instructions

Op6 Rs5 Rt5 Rd5 funct6sa5

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

R-Type Integer Add and Subtract

Instruction Meaning Op Rs Rt Rd sa func

add $t1, $t2, $t3 $t1 = $t2 + $t3 0 $t2 $t3 $t1 0 0x20

addu $t1, $t2, $t3 $t1 = $t2 + $t3 0 $t2 $t3 $t1 0 0x21

sub $t1, $t2, $t3 $t1 = $t2 – $t3 0 $t2 $t3 $t1 0 0x22

subu $t1, $t2, $t3 $t1 = $t2 – $t3 0 $t2 $t3 $t1 0 0x23

❖ add, sub: arithmetic overflow causes an exception

 In case of overflow, result is not written to destination register

❖ addu, subu: arithmetic overflow is ignored

❖ addu, subu: compute the same result as add, sub

❖Many programming languages ignore overflow

 The + operator is translated into addu

 The – operator is translated into subu

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Using Add / Subtract Instructions

❖ Consider the translation of: f = (g+h)–(i+j)

❖ Programmer / Compiler allocates registers to variables

❖ Given that: $t0=f, $t1=g, $t2=h, $t3=i, and $t4=j

❖ Called temporary registers: $t0=$8, $t1=$9, …

❖ Translation of: f = (g+h)–(i+j)

addu $t5, $t1, $t2 # $t5 = g + h

addu $t6, $t3, $t4 # $t6 = i + j

subu $t0, $t5, $t6 # f = (g+h)–(i+j)

❖ Assembler translates addu $t5,$t1,$t2 into binary code

000000

Op

01001

$t1

01010

$t2

01101

$t5

00000

sa

100001

addu

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Logic Bitwise Operations

❖ Logic bitwise operations: and, or, xor, nor

❖ AND instruction is used to clear bits: x and 0 ➔ 0

❖ OR instruction is used to set bits: x or 1 ➔ 1

❖ XOR instruction is used to toggle bits: x xor 1 ➔ not x

❖ NOT instruction is not needed, why?

not $t1, $t2 is equivalent to: nor $t1, $t2, $t2

x

0

0

1

1

y

0

1

0

1

x and y

0

0

0

1

x

0

0

1

1

y

0

1

0

1

x or y

0

1

1

1

x

0

0

1

1

y

0

1

0

1

x xor y

0

1

1

0

x

0

0

1

1

y

0

1

0

1

x nor y

1

0

0

0

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Logic Bitwise Instructions

Instruction Meaning Op Rs Rt Rd sa func

and $t1, $t2, $t3 $t1 = $t2 & $t3 0 $t2 $t3 $t1 0 0x24

or $t1, $t2, $t3 $t1 = $t2 | $t3 0 $t2 $t3 $t1 0 0x25

xor $t1, $t2, $t3 $t1 = $t2 ^ $t3 0 $t2 $t3 $t1 0 0x26

nor $t1, $t2, $t3 $t1 = ~($t2|$t3) 0 $t2 $t3 $t1 0 0x27

❖ Examples:

Given: $t1 = 0xabcd1234 and $t2 = 0xffff0000

and $t0, $t1, $t2 # $t0 = 0xabcd0000

or $t0, $t1, $t2 # $t0 = 0xffff1234

xor $t0, $t1, $t2 # $t0 = 0x54321234

nor $t0, $t1, $t2 # $t0 = 0x0000edcb

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Shift Operations

❖ Shifting is to move the 32 bits of a number left or right

❖ sll means shift left logical (insert zero from the right)

❖ srl means shift right logical (insert zero from the left)

❖ sra means shift right arithmetic (insert sign-bit)

❖ The 5-bit shift amount field is used by these instructions

shift-in 0. . .shift-out

sll 32-bit value

. . .shift-in 0 shift-out

srl

. . .shift-in sign-bit shift-out

sra

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Shift Instructions

❖ sll, srl, sra: shift by a constant amount

 The shift amount (sa) field specifies a number between 0 and 31

❖ sllv, srlv, srav: shift by a variable amount

 A source register specifies the variable shift amount between 0 and 31

 Only the lower 5 bits of the source register is used as the shift amount

Instruction Meaning Op Rs Rt Rd sa func

sll $t1,$t2,10 $t1 = $t2 << 10 0 0 $t2 $t1 10 0

srl $t1,$t2,10 $t1 = $t2 >>> 10 0 0 $t2 $t1 10 2

sra $t1,$t2,10 $t1 = $t2 >> 10 0 0 $t2 $t1 10 3

sllv $t1,$t2,$t3 $t1 = $t2 << $t3 0 $t3 $t2 $t1 0 4

srlv $t1,$t2,$t3 $t1 = $t2 >>>$t3 0 $t3 $t2 $t1 0 6

srav $t1,$t2,$t3 $t1 = $t2 >> $t3 0 $t3 $t2 $t1 0 7

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

$t1 = 0x0000abcd

$t1 = 0xcd123400

Shift Instruction Examples

❖ Given that: $t2 = 0xabcd1234 and $t3 = 16

sll $t1, $t2, 8

sra $t1, $t2, 4 $t1 = 0xfabcd123

srlv $t1, $t2, $t3

Rt = $t2Op Rs = $t3 Rd = $t1 sa srlv

01010000000 01011 01001 00000 000110

srl $t1, $t2, 4 $t1 = 0x0abcd123

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Binary Multiplication

❖ Shift Left Instruction (sll) can perform multiplication

 When the multiplier is a power of 2

❖ You can factor any binary number into powers of 2

❖ Example: multiply $t0 by 36

$t0*36 = $t0*(4 + 32) = $t0*4 + $t0*32

sll $t1, $t0, 2 # $t1 = $t0 * 4

sll $t2, $t0, 5 # $t2 = $t0 * 32

addu $t3, $t1, $t2 # $t3 = $t0 * 36

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Your Turn . . .

sll $t1, $t0, 1 # $t1 = $t0 * 2

sll $t2, $t0, 3 # $t2 = $t0 * 8

sll $t3, $t0, 4 # $t3 = $t0 * 16

addu $t4, $t1, $t2 # $t4 = $t0 * 10

addu $t5, $t4, $t3 # $t5 = $t0 * 26

Multiply $t0 by 26, using shift and add instructions

Hint: 26 = 2 + 8 + 16

Multiply $t0 by 31, Hint: 31 = 32 – 1

sll $t1, $t0, 5 # $t1 = $t0 * 32

subu $t2, $t1, $t0 # $t2 = $t0 * 31

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

I-Type Instruction Format

❖ Constants are used quite frequently in programs

 The R-type shift instructions have a 5-bit shift amount constant

What about other instructions that need a constant?

❖ I-Type: Instructions with Immediate Operands

❖ 16-bit immediate constant is stored inside the instruction

Rs is the source register number

Rt is now the destination register number (for R-type it was Rd)

❖ Examples of I-Type ALU Instructions:

Add immediate: addi $t1, $t2, 5 # $t1 = $t2 + 5

OR immediate: ori $t1, $t2, 5 # $t1 = $t2 | 5

Op6 Rs5 Rt5 immediate16

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

I-Type ALU Instructions

Instruction Meaning Op Rs Rt Immediate

addi $t1, $t2, 25 $t1 = $t2 + 25 0x8 $t2 $t1 25

addiu $t1, $t2, 25 $t1 = $t2 + 25 0x9 $t2 $t1 25

andi $t1, $t2, 25 $t1 = $t2 & 25 0xc $t2 $t1 25

ori $t1, $t2, 25 $t1 = $t2 | 25 0xd $t2 $t1 25

xori $t1, $t2, 25 $t1 = $t2 ^ 25 0xe $t2 $t1 25

lui $t1, 25 $t1 = 25 << 16 0xf 0 $t1 25

❖ addi: overflow causes an arithmetic exception

 In case of overflow, result is not written to destination register

❖ addiu: same operation as addi but overflow is ignored

❖ Immediate constant for addi and addiu is signed

 No need for subi or subiu instructions

❖ Immediate constant for andi, ori, xori is unsigned
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

❖ Given that registers $t0, $t1, $t2 are used for A, B, C

Examples of I-Type ALU Instructions

Expression Equivalent MIPS Instruction

A = B + 5;

C = B – 1;

A = B & 0xf;

C = B | 0xf;

C = 5;

A = B;

addiu $t0, $t1, 5

addiu $t2, $t1, -1

andi $t0, $t1, 0xf

ori $t2, $t1, 0xf

addiu $t2, $zero, 5

addiu $t0, $t1, 0

No need for subiu, because addiu has signed immediate

Register $zero has always the value 0

Rt = $t2Op = addiu Rs = $t1 -1 = 0b1111111111111111

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

❖ I-Type instructions can have only 16-bit constants

❖What if we want to load a 32-bit constant into a register?

❖ Can’t have a 32-bit constant in I-Type instructions

 The sizes of all instructions are fixed to 32 bits

❖ Solution: use two instructions instead of one ☺

❖ Suppose we want: $t1 = 0xAC5165D9 (32-bit constant)

lui: load upper immediate

32-bit Constants

Op6 Rs5 Rt5 immediate16

lui $t1, 0xAC51

ori $t1, $t1, 0x65D9

0xAC51$t1

Upper

16 bits

0x0000

Lower

16 bits

0xAC51$t1 0x65D9

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Pseudo-Instructions

❖ Introduced by the assembler as if they were real instructions

❖ Facilitate assembly language programming

Pseudo-Instruction Equivalent MIPS Instruction

move $t1, $t2

not $t1, $t2

neg $t1, $t2

li $t1, -5

li $t1, 0xabcd1234

The MARS tool has a long list of pseudo-instructions

addu $t1, $t2, $zero

nor $t1, $t2, $zero

sub $t1, $zero, $t2

lui $t1, 0xabcd

ori $t1, $t1, 0x1234

addiu $t1, $zero, -5

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Control Flow

❖ High-level programming languages provide constructs:

 To make decisions in a program: IF-ELSE

 To repeat the execution of a sequence of instructions: LOOP

❖ The ability to make decisions and repeat a sequence of

instructions distinguishes a computer from a calculator

❖ All computer architectures provide control flow instructions

❖ Essential for making decisions and repetitions

❖ These are the conditional branch and jump instructions

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

❖ MIPS compare and branch instructions:

beq Rs, Rt, label if (Rs == Rt) branch to label

bne Rs, Rt, label if (Rs != Rt) branch to label

❖ MIPS compare to zero & branch instructions:

Compare to zero is used frequently and implemented efficiently

bltz Rs, label if (Rs < 0) branch to label

bgtz Rs, label if (Rs > 0) branch to label

blez Rs, label if (Rs <= 0) branch to label

bgez Rs, label if (Rs >= 0) branch to label

❖ beqz and bnez are defined as pseudo-instructions.

MIPS Conditional Branch Instructions

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Branch Instruction Format

❖ The branch instructions modify the PC register only

❖ PC-Relative addressing:

If (branch is taken) PC = PC + 4 + 4×offset else PC = PC+4

❖ Branch Instructions are of the I-type Format:

Op6 Rs5 Rt5 16-bit offset

Instruction I-Type Format

beq Rs, Rt, label Op = 4 Rs Rt 16-bit Offset

bne Rs, Rt, label Op = 5 Rs Rt 16-bit Offset

blez Rs, label Op = 6 Rs 0 16-bit Offset

bgtz Rs, label Op = 7 Rs 0 16-bit Offset

bltz Rs, label Op = 1 Rs 0 16-bit Offset

bgez Rs, label Op = 1 Rs 1 16-bit Offset

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Unconditional Jump Instruction

❖ The unconditional Jump instruction has the following syntax:

j label # jump to label

. . .

label:

❖ The jump instruction is always taken

❖ The Jump instruction is of the J-type format:

❖ The jump instruction modifies the program counter PC:

❖ The upper 4 bits of the PC are unchanged

Op6 = 2 26-bit address

26-bit address 00PC4

multiple

of 4

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Translating an IF Statement

❖ Consider the following IF statement:

if (a == b) c = d + e; else c = d – e;

Given that a, b, c, d, e are in $t0 … $t4 respectively

❖ How to translate the above IF statement?

bne $t0, $t1, else

addu $t2, $t3, $t4

j next

else: subu $t2, $t3, $t4

next: . . .

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Logical AND Expression

❖ Programming languages use short-circuit evaluation

❖ If first condition is false, second condition is skipped

if (($t1 > 0) && ($t2 < 0)) {$t3++;}

One Possible Translation ...

bgtz $t1, L1 # first condition

j next # skip if false

L1: bltz $t2, L2 # second condition

j next # skip if false

L2: addiu $t3, $t3, 1 # both are true

next:

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Better Translation of Logical AND

Allow the program to fall through to second condition

!($t1 > 0) is equivalent to ($t1 <= 0)

!($t2 < 0) is equivalent to ($t2 >= 0)

Number of instructions is reduced from 5 to 3

if (($t1 > 0) && ($t2 < 0)) {$t3++;}

Better Translation ...

blez $t1, next # 1st condition false?

bgez $t2, next # 2nd condition false?

addiu $t3, $t3, 1 # both are true

next:
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Logical OR Expression

❖ Short-circuit evaluation for logical OR

❖ If first condition is true, second condition is skipped

❖ Use fall-through to keep the code as short as possible

bgtz $t1, L1 # 1st condition true?

bgez $t2, next # 2nd condition false?

L1: addiu $t3, $t3, 1 # increment $t3

next:

if (($t1 > 0) || ($t2 < 0)) {$t3++;}

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Compare Instructions

❖MIPS also provides set less than instructions

slt Rd, Rs, Rt if (Rs < Rt) Rd = 1 else Rd = 0

sltu Rd, Rs, Rt unsigned <

slti Rt, Rs, imm if (Rs < imm) Rt = 1 else Rt = 0

sltiu Rt, Rs, imm unsigned <

❖ Signed / Unsigned comparisons compute different results

Given that: $t0 = 1 and $t1 = -1 = 0xffffffff

slt $t2, $t0, $t1 computes $t2 = 0

sltu $t2, $t0, $t1 computes $t2 = 1

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Compare Instruction Formats

❖ The other comparisons are defined as pseudo-instructions:

seq, sne, sgt, sgtu, sle, sleu, sge, sgeu

Instruction Meaning Format

slt Rd, Rs, Rt Rd=(Rs <s Rt)?1:0 Op=0 Rs Rt Rd 0 0x2a

sltu Rd, Rs, Rt Rd=(Rs <u Rt)?1:0 Op=0 Rs Rt Rd 0 0x2b

slti Rt, Rs, im Rt=(Rs <s im)?1:0 0xa Rs Rt 16-bit immediate

sltiu Rt, Rs, im Rt=(Rs <u im)?1:0 0xb Rs Rt 16-bit immediate

Pseudo-Instruction Equivalent MIPS Instructions

sgt $t2, $t0, $t1

seq $t2, $t0, $t1
subu $t2, $t0, $t1

sltiu $t2, $t2, 1

slt $t2, $t1, $t0

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Pseudo-Branch Instructions

❖ MIPS hardware does NOT provide the following instructions:

blt, bltu branch if less than (signed / unsigned)

ble, bleu branch if less or equal (signed / unsigned)

bgt, bgtu branch if greater than (signed / unsigned)

bge, bgeu branch if greater or equal (signed / unsigned)

❖MIPS assembler defines them as pseudo-instructions:

Pseudo-Instruction Equivalent MIPS Instructions

blt $t0, $t1, label

ble $t0, $t1, label

$at ($1) is the assembler temporary register

slt $at, $t0, $t1
bne $at, $zero, label

slt $at, $t1, $t0
beq $at, $zero, label

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Using Pseudo-Branch Instructions

❖ Translate the IF statement to assembly language

❖ $t1 and $t2 values are unsigned

❖ $t3, $t4, and $t5 values are signed

bgtu $t1, $t2, L1

move $t3, $t4

L1:

if($t1 <= $t2) {

$t3 = $t4;

}

if (($t3 <= $t4) &&

($t4 >= $t5)) {

$t3 = $t4 + $t5;

}

bgt $t3, $t4, L1

blt $t4, $t5, L1

addu $t3, $t4, $t5

L1:

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Conditional Move Instructions

❖ Conditional move can eliminate branch & jump instructions

Instruction Meaning R-Type Format

movz Rd, Rs, Rt if (Rt==0) Rd=Rs Op=0 Rs Rt Rd 0 0xa

movn Rd, Rs, Rt if (Rt!=0) Rd=Rs Op=0 Rs Rt Rd 0 0xb

if ($t0 == 0) {$t1=$t2+$t3;} else {$t1=$t2-$t3;}

bne $t0, $0, L1

addu $t1, $t2, $t3

j L2

L1: subu $t1, $t2, $t3

L2: . . .

addu $t1, $t2, $t3

subu $t4, $t2, $t3

movn $t1, $t4, $t0

. . .

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Arrays

❖ In a high-level programming language, an array is a

homogeneous data structure with the following properties:

 All array elements are of the same type and size

 Once an array is allocated, its size cannot be modified

 The base address is the address of the first array element

 The array elements can be indexed

 The address of any array element can be computed

❖ In assembly language, an array is just a block of memory

❖ In fact, all objects are simply blocks of memory

❖ The memory block can be allocated statically or dynamically

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Static Array Allocation

❖ An array can be allocated statically in the data segment

❖ A data definition statement allocates static memory:

label: .type value0 [, value1 ...]

label: is the name of the array

.type directive specifies the size of each array element

value0, value1 ... specify a list of initial values

❖ Examples of static array definitions:

arr1: .half 20, -1 # array of 2 half words

arr2: .word 1:5 # array of 5 words (value=1)

arr3: .space 20 # array of 20 bytes

str1: .asciiz "Null-terminated string"
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Watching Values in the Data Segment

❖ The labels window is the symbol table

 Shows labels and corresponding addresses

❖ The la pseudo-instruction loads the address

of any label into a register

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dynamic Memory Allocation

❖ One of the functions of the OS is to manage memory

❖ A program can allocate memory on the heap at runtime

❖ The heap is part of the data segment that can grow at runtime

❖ The program makes a system call ($v0=9) to allocate memory

.text

. . .

li $a0, 100 # $a0 = number of bytes to allocate

li $v0, 9 # system call 9

syscall # allocate 100 bytes on the heap

move $t0, $v0 # $t0 = address of allocated block

. . .

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Allocating Dynamic Memory on the Heap

Stack Segment

Heap Area

Static Area

Data Segment

0x00000000
Reserved

0x10000000

Text Segment

0x7fffffff

0x00400000

0x10040000

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Computing the Addresses of Elements

❖ In a high-level programming language, an array is indexed

array[0] is the first element in the array

array[i] is the element at index i

&array[i] is the address of the element at index i

&array[i] = &array + i × element_size

❖ For a 2D array, the array is stored linearly in memory

matrix[Rows][Cols] has (Rows × Cols) elements

&matrix[i][j] = &matrix + (i×Cols + j) × element_size

❖ For example, to allocate a matrix[10][20] of integers:

matrix: .word 0:200 # 200 words (initialized to 0)

&matrix[1][5] = &matrix + (1×20 + 5)×4 = &matrix + 100
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Element Addresses in a 2D Array

&matrix[i][j] = &matrix + (i×COLS + j) × Element_size

0

1

…

i

…

ROWS-1

0 1 … j … COLS-1

COLS

R
O
W
S

Address calculation is essential when programming in assembly

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Load and Store Instructions

❖ Instructions that transfer data between memory & registers

❖ Programs include variables such as arrays and objects

❖ These variables are stored in memory

❖ Load Instruction:

 Transfers data from memory to a register

❖ Store Instruction:

 Transfers data from a register to memory

❖ Memory address must be specified by load and store

MemoryRegisters

load

store

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

❖ Load Word Instruction (Word = 4 bytes in MIPS)

lw Rt, imm(Rs) # Rt MEMORY[Rs+imm]

❖ Store Word Instruction

sw Rt, imm(Rs) # Rt ➔ MEMORY[Rs+imm]

❖ Base / Displacement addressing is used

Memory Address = Rs (base) + Immediate (displacement)

 Immediate16 is sign-extended to have a signed displacement

Load and Store Word

Op6 Rs5 Rt5 immediate16

Base or Displacement Addressing

Memory Word

Base address

+

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Example on Load & Store
❖ Translate: A[1] = A[2] + 5 (A is an array of words)

❖ Given that the address of array A is stored in register $t0

lw $t1, 8($t0) # $t1 = A[2]

addiu $t2, $t1, 5 # $t2 = A[2] + 5

sw $t2, 4($t0) # A[1] = $t2

❖ Index of A[2] and A[1] should be multiplied by 4. Why?

Registers

sw

lw

Memory

A[2]

A[1]

A[3]

. . .

. . .

&A + 12

&A + 8

&A + 4

&A

$t0

$t1

$t2

&A

A[2]

A[2] + 5

. . .

. . . A[0]

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

0 0

s s s

s s

0 0

s

bu

b

h

hu

sign – extend

zero – extend

sign – extend

zero – extend

32-bit Register

❖ The MIPS processor supports the following data formats:

Byte = 8 bits, Half word = 16 bits, Word = 32 bits

❖ Load & store instructions for bytes and half words

 lb = load byte, lbu = load byte unsigned, sb = store byte

 lh = load half, lhu = load half unsigned, sh = store halfword

❖ Load expands a memory value to fit into a 32-bit register

❖ Store reduces a 32-bit register value to fit in memory

Load and Store Byte and Halfword

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Load and Store Instructions

Instruction Meaning I-Type Format

lb Rt, imm(Rs) Rt 1 MEM[Rs+imm] 0x20 Rs Rt 16-bit immediate

lh Rt, imm(Rs) Rt 2 MEM[Rs+imm] 0x21 Rs Rt 16-bit immediate

lw Rt, imm(Rs) Rt 4 MEM[Rs+imm] 0x23 Rs Rt 16-bit immediate

lbu Rt, imm(Rs) Rt 1 MEM[Rs+imm] 0x24 Rs Rt 16-bit immediate

lhu Rt, imm(Rs) Rt 2 MEM[Rs+imm] 0x25 Rs Rt 16-bit immediate

sb Rt, imm(Rs) Rt ➔1 MEM[Rs+imm] 0x28 Rs Rt 16-bit immediate

sh Rt, imm(Rs) Rt ➔2 MEM[Rs+imm] 0x29 Rs Rt 16-bit immediate

sw Rt, imm(Rs) Rt ➔4 MEM[Rs+imm] 0x2b Rs Rt 16-bit immediate

❖ Base / Displacement Addressing is used

 Memory Address = Rs (Base) + Immediate (displacement)

 If Rs is $zero then Address = Immediate (absolute)

 If Immediate is 0 then Address = Rs (register indirect)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Translating a WHILE Loop

❖ Consider the following WHILE loop:

i = 0; while (A[i] != value && i<n) i++;

Where A is an array of integers (4 bytes per element)

❖ Translate WHILE loop: $a0 = &A, $a1 = n, and $a2 = value

&A[i] = &A + i*4 = &A[i-1] + 4

li $t0, 0 # $t0 = i = 0

loop: lw $t1, 0($a0) # $t1 = A[i]

beq $t1, $a2, done # (A[i] == value)?

beq $t0, $a1, done # (i == n)?

addiu $t0, $t0, 1 # i++

addiu $a0, $a0, 4 # $a0 = &A[i]

j loop # jump backwards to loop

done: . . .
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Copying a String

loop:

lb $t0, 0($a1) # load byte: $t0 = source[i]

sb $t0, 0($a0) # store byte: target[i]= $t0

addiu $a0, $a0, 1 # $a0 = &target[i]

addiu $a1, $a1, 1 # $a1 = &source[i]

bnez $t0, loop # loop until NULL char

A string in C is an array of chars terminated with null char

i = 0;

do { ch = source[i]; target[i] = ch; i++; }

while (ch != '\0');

Given that: $a0 = &target and $a1 = &source

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Initializing a Column of a Matrix

M = new int[10][5]; // allocate M on the heap

int i;

for (i=0; i<10; i++) { M[i][3] = i; }

&M[i][3] = &M + (i*5 + 3) * 4 = &M + i*20 + 12

li $a0, 200 # $a0 = 10*5*4 = 200 bytes

li $v0, 9 # system call 9

syscall # allocate 200 bytes

move $t0, $v0 # $t0 = &M

li $t1, 0 # $t1 = i = 0

li $t2, 10 # $t2 = 10

L: sw $t1, 12($t0) # store M[i][3] = i

addiu $t1, $t1, 1 # i++

addiu $t0, $t0, 20 # $t0 = &M[i][3]

bne $t1, $t2, L # if (i != 10) loop back
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Jump and Branch Limits

❖ Jump Address Boundary = 226 instructions = 256 MB

 Jump cannot reach outside its 256 MB segment boundary

 Upper 4 bits of PC are unchanged

❖ Branch Address Boundary

 Branch instructions use I-Type format (16-bit Offset)

 PC-relative addressing:

Branch Target address = PC + 4 × (1 + Offset)

Count the number of instructions to skip starting at next instruction

Positive offset ➔ Forward branch, Negative offset➔ Backward branch

Most branches are near : At most ±215 instructions can be skipped

26-bit address PC4 00Jump Target Address

PC30 + Offset16 + 1 00

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Integer Multiplication in MIPS

❖ Multiply instructions

 mult Rs, Rt Signed multiplication

 multu Rs, Rt Unsigned multiplication

❖ 32-bit multiplication produces a 64-bit Product

❖ Separate pair of 32-bit registers

 HI = high-order 32-bit of product

 LO = low-order 32-bit of product

❖ MIPS also has a special mul instruction

 mul Rd, Rs, Rt Rd = Rs × Rt

 Copy LO into destination register Rd

 Useful when the product is small (32 bits) and HI is not needed

Multiply

Divide

$0

HI LO

$1

.

.

$31

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Integer Division in MIPS

❖ Divide instructions

 div Rs, Rt Signed division

 divu Rs, Rt Unsigned division

❖ Division produces quotient and remainder

❖ Separate pair of 32-bit registers

 HI = 32-bit remainder

 LO = 32-bit quotient

 If divisor is 0 then result is unpredictable

❖ Moving data from HI, LO to MIPS registers

 mfhi Rd (Rd = HI)

 mflo Rd (Rd = LO)

Multiply

Divide

$0

HI LO

$1

.

.

$31

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Integer Multiply and Divide Instructions

Instruction Meaning Format

mult Rs, Rt HI, LO = Rs ×s Rt Op = 0 Rs Rt 0 0 0x18

multu Rs, Rt HI, LO = Rs ×u Rt Op = 0 Rs Rt 0 0 0x19

mul Rd, Rs, Rt Rd = Rs ×s Rt 0x1c Rs Rt Rd 0 2

div Rs, Rt HI, LO = Rs /s Rt Op = 0 Rs Rt 0 0 0x1a

divu Rs, Rt HI, LO = Rs /u Rt Op = 0 Rs Rt 0 0 0x1b

mfhi Rd Rd = HI Op = 0 0 0 Rd 0 0x10

mflo Rd Rd = LO Op = 0 0 0 Rd 0 0x12

mthi Rs HI = Rs Op = 0 Rs 0 0 0 0x11

mtlo Rs LO = Rs Op = 0 Rs 0 0 0 0x13

×s = Signed multiplication, ×u = Unsigned multiplication

/s = Signed division, /u = Unsigned division

NO arithmetic exception can occur
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

String to Integer Conversion

❖ Consider the conversion of string "91052" into an integer

❖ How to convert the string into an integer?

❖ Initialize: sum = 0

❖ Load each character of the string into a register

 Check if the character is in the range: '0' to '9'

 Convert the character into a digit in the range: 0 to 9

 Compute: sum = sum * 10 + digit

 Repeat until end of string or a non-digit character is encountered

❖ To convert "91052", initialize sum to 0 then …

 sum = 9, then 91, then 910, then 9105, then 91052

'9' '1' '0' '5' '2'

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

String to Integer Conversion Function
#---

str2int: Convert a string of digits into unsigned integer

Input: $a0 = address of null terminated string

Output: $v0 = unsigned integer value

#---

str2int:

li $v0, 0 # Initialize: $v0 = sum = 0

li $t0, 10 # Initialize: $t0 = 10

L1: lb $t1, 0($a0) # load $t1 = str[i]

blt $t1, '0', done # exit loop if ($t1 < '0')

bgt $t1, '9', done # exit loop if ($t1 > '9')

addiu $t1, $t1, -48 # Convert character to digit

mul $v0, $v0, $t0 # $v0 = sum * 10

addu $v0, $v0, $t1 # $v0 = sum * 10 + digit

addiu $a0, $a0, 1 # $a0 = address of next char

j L1 # loop back

done: jr $ra # return to caller
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Integer to String Conversion

❖ Convert an unsigned 32-bit integer into a string

❖ How to obtain the decimal digits of the number?

 Divide the number by 10, Remainder = decimal digit (0 to 9)

 Convert decimal digit into its ASCII representation ('0' to '9')

 Repeat the division until the quotient becomes zero

 Digits are computed backwards from least to most significant

❖ Example: convert 2037 to a string

 Divide 2037/10 quotient = 203 remainder = 7 char = '7'

 Divide 203/10 quotient = 20 remainder = 3 char = '3'

 Divide 20/10 quotient = 2 remainder = 0 char = '0'

 Divide 2/10 quotient = 0 remainder = 2 char = '2'

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Integer to String Conversion Function
#--

int2str: Converts an unsigned integer into a string

Input: $a0 = value, $a1 = buffer address (12 bytes)

Output: $v0 = address of converted string in buffer

#--

int2str:

li $t0, 10 # $t0 = divisor = 10

addiu $v0, $a1, 11 # start at end of buffer

sb $zero, 0($v0) # store a NULL character

L2: divu $a0, $t0 # LO = value/10, HI = value%10

mflo $a0 # $a0 = value/10

mfhi $t1 # $t1 = value%10

addiu $t1, $t1, 48 # convert digit into ASCII

addiu $v0, $v0, -1 # point to previous byte

sb $t1, 0($v0) # store character in memory

bnez $a0, L2 # loop if value is not 0

jr $ra # return to caller
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Function Call and Return

❖ To execution a function, the caller does the following:

 Puts the parameters in a place that can be accessed by the callee

 Transfer control to the callee function

❖ To return from a function, the callee does the following:

 Puts the results in a place that can be accessed by the caller

 Return control to the caller, next to where the function call was made

❖ Registers are the fastest place to pass parameters and return

results. The MIPS architecture uses the following:

 $a0-$a3: four argument registers in which to pass parameters

 $v0-$v1: two value registers in which to pass function results

 $ra: return address register to return back to the caller

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Function Call and Return Instructions

❖ JAL (Jump-and-Link) is used to call a function

 Save return address in $31 = PC+4 and jump to function

 Register $31 ($ra) is used by JAL as the return address

❖ JR (Jump Register) is used to return from a function

 Jump to instruction whose address is in register Rs (PC = Rs)

❖ JALR (Jump-and-Link Register)

 Save return address in Rd = PC+4, and

 Call function whose address is in register Rs (PC = Rs)

 Used to call functions whose addresses are known at runtime

Instruction Meaning Format

jal label $31 = PC+4, j Label Op=3 26-bit address

jr Rs PC = Rs Op=0 Rs 0 0 0 8

jalr Rd, Rs Rd = PC+4, PC = Rs Op=0 Rs 0 Rd 0 9

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Parameters:

$a0 = Address of v[]

$a1 = k, and

Return address is in $ra

❖ Consider the following swap function (written in C)

❖ Translate this function to MIPS assembly language

void swap(int v[], int k)

{ int temp;

temp = v[k]

v[k] = v[k+1];

v[k+1] = temp;
}

swap:

sll $t0,$a1,2 # $t0=k*4

add $t0,$t0,$a0 # $t0=v+k*4

lw $t1,0($t0) # $t1=v[k]

lw $t2,4($t0) # $t2=v[k+1]

sw $t2,0($t0) # v[k]=$t2

sw $t1,4($t0) # v[k+1]=$t1

jr $ra # return

Example

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Call / Return Sequence

❖ Suppose we call function swap as: swap(a,10)

 Pass address of array a and 10 as arguments

 Call the function swap saving return address in $31 = $ra

 Execute function swap

 Return control to the point of origin (return address)

swap:

sll $t0,$a1,2

add $t0,$t0,$a0

lw $t1,0($t0)

lw $t2,4($t0)

sw $t2,0($t0)

sw $t1,4($t0)

jr $ra

la $a0, a

li $a1, 10

jal swap

return here

. . .

Caller

addr a$a0=$4

10$a1=$5

ret addr$ra=$31

. . .

. . .

Registers

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Register $31
is the return

address register

Details of JAL and JR

Address Instructions Assembly Language

00400020 lui $1, 0x1001 la $a0, a

00400024 ori $4, $1, 0

00400028 ori $5, $0, 10 ori $a1,$0,10

0040002C jal 0x10000f jal swap

00400030 . . . # return here

swap:

0040003C sll $8, $5, 2 sll $t0, $a1, 2

00400040 add $8, $8, $4 add $t0, $t0, $a0

00400044 lw $9, 0($8) lw $t1, 0($t0)

00400048 lw $10,4($8) lw $t2, 4($t0)

0040004C sw $10,0($8) sw $t2, 0($t0)

00400050 sw $9, 4($8) sw $t1, 4($t0)

00400054 jr $31 jr $ra

Pseudo-Direct

Addressing

PC = imm26<<2

0x10000f << 2

= 0x0040003C

0x00400030$31

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Second Example

❖ Function tolower converts a

capital letter to lowercase

❖ If parameter ch is not a capital

letter then return ch

char tolower(char ch) {

if (ch>='A' && ch<='Z')

return (ch + 'a' - 'A');

else

return ch;

}

tolower: # $a0 = parameter ch

blt $a0, 'A', else # branch if $a0 < 'A'

bgt $a0, 'Z', else # branch if $a0 > 'Z'

addi $v0, $a0, 32 # 'a' – 'A' == 32

jr $ra # return to caller

else:

move $v0, $a0 # $v0 = ch

jr $ra # return to caller

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

The Stack Segment

❖ Every program has 3 segments

when loaded into memory:

 Text segment: stores machine

instructions

 Data segment: area used for static

and dynamic variables

 Stack segment: area that can be

allocated and freed by functions

❖ The program uses only logical

(virtual) addresses

❖ The actual (physical) addresses

are managed by the OS

Stack Segment

Heap Area

Static Area

0x00000000
Reserved

0x10000000

Text Segment

0x7fffffff

0x00400000

0x10040000

Stack Grows
Downwards

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

The Stack Segment (cont'd)

❖ The stack segment is used by functions for:

 Passing parameters that cannot fit in registers

 Allocating space for local variables

 Saving registers across function calls

 Implement recursive functions

❖ The stack segment is implemented via software:

 The Stack Pointer $sp = $29 (points to the top of stack)

 The Frame Pointer $fp = $30 (points to a stack frame)

❖ The stack pointer $sp is initialized to the base address of the

stack segment, just before a program starts execution

❖ The MARS tool initializes register $sp to 0x7fffeffc
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Stack Frame

❖ Stack frame is an area of the stack containing …

 Saved arguments, registers, local arrays and variables (if any)

❖ Called also the activation frame

❖ Frames are pushed and popped by adjusting …

 Stack pointer $sp = $29 (and sometimes frame pointer $fp = $30)

 Decrement $sp to allocate stack frame, and increment to free

Frame f()

Stack

↓

stack grows

downwards

$fp

$sp
Frame f()

Stack

allocate stack

frame

Frame g()
$fp

$sp

f
c

a
ll

s
 g

g
re

tu
rn

s
Frame f()

Stack

↑

free stack

frame

$fp

$sp

Args for

nested calls

Saved

registers

Local

stack

variables

$sp

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Leaf Function

❖ A leaf function does its work without calling any function

❖ Example of leaf functions are: swap and tolower

❖ A leaf function can freely modify some registers:

 Argument registers: $a0 - $a3

 Result registers: $v0 - $v1

 Temporary registers: $t0 - $t9

 These registers can be modified without saving their old values

❖ A leaf function does not need a stack frame if …

 Its variables can fit in temporary registers

❖ A leaf function allocates a stack frame only if …

 It requires additional space for its local variables

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Non-Leaf Function

❖ A non-leaf function is a function that calls other functions

❖ A non-leaf function must allocate a stack frame

❖ Stack frame size is computed by the programmer (compiler)

❖ To allocate a stack frame of N bytes …

 Decrement $sp by N bytes: $sp = $sp – N

 N must be multiple of 4 bytes to have registers aligned in memory

 In our examples, only register $sp will be used ($fp is not needed)

❖Must save register $ra before making a function call

 Must save $s0-$s7 if their values are going to be modified

 Other registers can also be preserved (if needed)

 Additional space for local variables can be allocated (if needed)
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Steps for Function Call and Return

❖ To make a function call …

 Make sure that register $ra is saved before making a function call

 Pass arguments in registers $a0 thru $a3

 Pass additional arguments on the stack (if needed)

 Use the JAL instruction to make a function call (JAL modifies $ra)

❖ To return from a function …

 Place the function results in $v0 and $v1 (if any)

 Restore all registers that were saved upon function entry

▪ Load the register values that were saved on the stack (if any)

 Free the stack frame: $sp = $sp + N (stack frame = N bytes)

 Jump to the return address: jr $ra (return to caller)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Preserving Registers

❖ The MIPS software specifies which registers must be preserved

across a function call, and which ones are not

Must be Preserved Not preserved

Return address: $ra Argument registers: $a0 to $a3

Stack pointer: $sp Value registers: $v0 and $v1

Saved registers: $s0 to $s7 and $fp Temporary registers: $t0 to $t9

Stack above the stack pointer Stack below the stack pointer

❖ Caller saves register $ra before making a function call

❖ A callee function must preserve $sp, $s0 to $s7, and $fp.

❖ If needed, the caller can save argument registers $a0 to $a3.

However, the callee function is free to modify them.
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Example on Preserving Register

❖ A function f calls g twice as shown below. We don't know what g

does, or which registers are used in g.

❖We only know that function g receives two integer arguments

and returns one integer result. Translate f:

int f(int a, int b) {

int d = g(b, g(a, b));

return a + d;

}

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Translating Function f

int f(int a, int b) {

int d = g(b, g(a, b)); return a + d;

}

f: addiu $sp, $sp, -12 # allocate frame = 12 bytes

sw $ra, 0($sp) # save $ra

sw $a0, 4($sp) # save a (caller-saved)

sw $a1, 8($sp) # save b (caller-saved)

jal g # call g(a,b)

lw $a0, 8($sp) # $a0 = b

move $a1, $v0 # $a1 = result of g(a,b)

jal g # call g(b, g(a,b))

lw $a0, 4($sp) # $a0 = a

addu $v0, $a0, $v0 # $v0 = a + d

lw $ra, 0($sp) # restore $ra

addiu $sp, $sp, 12 # free stack frame

jr $ra # return to caller

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Allocating a Local Array on the Stack

❖ In some languages, an array can be

allocated on the stack

❖ The programmer (or compiler) must

allocate a stack frame with sufficient

space for the local array

void foo (int n) {

// allocate on the stack

int array[n];

// generate random array

random (array, n);

// print array

print (array, n);

}

Stack Frame

of Parent
$sp

Stack Frame

of Child
$sp

Saved $a0

Saved $ra

int array[n]

n × 4 bytes

Parent spsp

S
ta

c
k
 F

ra
m

e
 o

f
f
o
o

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Translating Function foo
foo: # $a0 = n

sll $t0, $a0, 2 # $t0 = n*4 bytes

addiu $t0, $t0, 12 # $t0 = n*4 + 12 bytes

move $t1, $sp # $t1 = parent $sp

subu $sp, $sp, $t0 # allocate stack frame

sw $t1, 0($sp) # save parent $sp

sw $ra, 4($sp) # save $ra

sw $a0, 8($sp) # save n

move $a1, $a0 # $a1 = n

addiu $a0, $sp, 12 # $a0 = $sp + 12 = &array

jal random # call function random

addiu $a0, $sp, 12 # $a0 = $sp + 12 = &array

lw $a1, 8($sp) # $a1 = n

jal print # call function print

lw $ra, 4($sp) # restore $ra

lw $sp, 0($sp) # restore parent $sp

jr $ra # return to caller
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Remarks on Function foo

❖ Function starts by computing its frame size: $t0 = n×4 + 12 bytes

 Local array is n×4 bytes and the saved registers are 12 bytes

❖ Allocates its own stack frame: $sp = $sp - $t0

 Address of local stack array becomes: $sp + 12

❖ Saves parent $sp and registers $ra and $a0 on the stack

❖ Function foo makes two calls to functions random and print

 Address of the stack array is passed in $a0 and n is passed in $a1

❖ Just before returning:

 Function foo restores the saved registers: parent $sp and $ra

 Stack frame is freed by restoring $sp: lw $sp, 0($sp)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Bubble Sort (Leaf Function)
void bubbleSort (int A[], int n) {

int swapped, i, temp;

do {

n = n-1;

swapped = 0; // false

for (i=0; i<n; i++) {

if (A[i] > A[i+1]) {

temp = A[i]; // swap A[i]

A[i] = A[i+1]; // with A[i+1]

A[i+1] = temp;

swapped = 1; // true

}

}

} while (swapped);

}

Worst case Performance O(n2)

Best case Performance O(n)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Translating Function Bubble Sort
bubbleSort: # $a0 = &A, $a1 = n

do: addiu $a1, $a1, -1 # n = n-1

blez $a1, L2 # branch if (n <= 0)

move $t0, $a0 # $t0 = &A

li $t1, 0 # $t1 = swapped = 0

li $t2, 0 # $t2 = i = 0

for: lw $t3, 0($t0) # $t3 = A[i]

lw $t4, 4($t0) # $t4 = A[i+1]

ble $t3, $t4, L1 # branch if (A[i] <= A[i+1])

sw $t4, 0($t0) # A[i] = $t4

sw $t3, 4($t0) # A[i+1] = $t3

li $t1, 1 # swapped = 1

L1: addiu $t2, $t2, 1 # i++

addiu $t0, $t0, 4 # $t0 = &A[i]

bne $t2, $a1, for # branch if (i != n)

bnez $t1, do # branch if (swapped)

L2: jr $ra # return to caller
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Example of a Recursive Function

❖ Two recursive calls

 First call computes the sum of the first half of the array elements

 Second call computes the sum of the 2nd half of the array elements

❖ How to translate a recursive function into assembly?

int recursive_sum (int A[], int n) {

if (n == 0) return 0;

if (n == 1) return A[0];

int sum1 = recursive_sum (&A[0], n/2);

int sum2 = recursive_sum (&A[n/2], n – n/2);

return sum1 + sum2;

}

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Translating a Recursive Function

recursive_sum: # $a0 = &A, $a1 = n

bnez $a1, L1 # branch if (n != 0)

li $v0, 0

jr $ra # return 0

L1: bne $a1, 1, L2 # branch if (n != 1)

lw $v0, 0($a0) # $v0 = A[0]

jr $ra # return A[0]

L2: addiu $sp, $sp, -12 # allocate frame = 12 bytes

sw $ra, 0($sp) # save $ra

sw $s0, 4($sp) # save $s0

sw $s1, 8($sp) # save $s1

move $s0, $a0 # $s0 = &A (preserved)

move $s1, $a1 # $s1 = n (preserved)

srl $a1, $a1, 1 # $a1 = n/2

jal recursive_sum # first recursive call

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Translating a Recursive Function (cont'd)

❖ $ra, $s0, and $s1 are preserved across recursive calls

srl $t0, $s1, 1 # $t0 = n/2

sll $t1, $t0, 2 # $t1 = (n/2) * 4

addu $a0, $s0, $t1 # $a0 = &A[n/2]

subu $a1, $s1, $t0 # $a1 = n – n/2

move $s0, $v0 # $s0 = sum1 (preserved)

jal recursive_sum # second recursive call

addu $v0, $s0, $v0 # $v0 = sum1 + sum2

lw $ra, 0($sp) # restore $ra

lw $s0, 4($sp) # restore $s0

lw $s1, 8($sp) # restore $s1

addiu $sp, $sp, 12 # free stack frame

jr $ra # return to caller

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Illustrating Recursive Calls

recursive_sum:
$a0 = &A[0], $a1 = 6

recursive_sum:
$a0 = &A[0]
$a1 = 1

recursive_sum:
$a0 = &A[1]
$a1 = 2

A[1]+A[2]A[0]

recursive_sum:
$a0 = &A[3]
$a1 = 1

recursive_sum:
$a0 = &A[4]
$a1 = 2

A[4]+A[5]A[3]

recursive_sum:
$a0 = &A[4]
$a1 = 1

recursive_sum:
$a0 = &A[5]
$a1 = 1

A[5]A[4]

recursive_sum:
$a0 = &A[1]
$a1 = 1

recursive_sum:
$a0 = &A[2]
$a1 = 1

A[2]A[1]

recursive_sum:
$a0 = &A[0], $a1 = 3

recursive_sum:
$a0 = &A[3], $a1 = 3

A[3]+A[4]+A[5]A[0]+A[1]+A[2]

$v0 = A[0]+A[1]+A[2]+A[3]+A[4]+A[5]

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

❖ Called Coprocessor 1 or the Floating Point Unit (FPU)

❖ 32 separate floating point registers: $f0, $f1, …, $f31

❖ FP registers are 32 bits for single precision numbers

❖ Even-odd register pair form a double precision register

❖ Use the even number for double precision registers

 $f0, $f2, $f4, …, $f30 are used for double precision

❖ Separate FP instructions for single/double precision

Single precision: add.s, sub.s, mul.s, div.s (.s extension)

Double precision: add.d, sub.d, mul.d, div.d (.d extension)

❖ FP instructions are more complex than the integer ones

 Take more cycles to execute

MIPS Floating Point Coprocessor

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Floating-Point Arithmetic Instructions

Instruction Meaning Op6 fmt5 ft5 fs5 fd5 func6

add.s $f5,$f3,$f4 $f5 = $f3 + $f4 0x11 0x10 $f4 $f3 $f5 0

sub.s $f5,$f3,$f4 $f5 = $f3 – $f4 0x11 0x10 $f4 $f3 $f5 1

mul.s $f5,$f3,$f4 $f5 = $f3 × $f4 0x11 0x10 $f4 $f3 $f5 2

div.s $f5,$f3,$f4 $f5 = $f3 / $f4 0x11 0x10 $f4 $f3 $f5 3

sqrt.s $f5,$f3 $f5 = sqrt($f3) 0x11 0x10 0 $f3 $f5 4

abs.s $f5,$f3 $f5 = abs($f3) 0x11 0x10 0 $f3 $f5 5

neg.s $f5,$f3 $f5 = –($f3) 0x11 0x10 0 $f3 $f5 7

add.d $f6,$f2,$f4 $f6,7 = $f2,3 + $f4,5 0x11 0x11 $f4 $f2 $f6 0

sub.d $f6,$f2,$f4 $f6,7 = $f2,3 – $f4,5 0x11 0x11 $f4 $f2 $f6 1

mul.d $f6,$f2,$f4 $f6,7 = $f2,3 × $f4,5 0x11 0x11 $f4 $f2 $f6 2

div.d $f6,$f2,$f4 $f6,7 = $f2,3 / $f4,5 0x11 0x11 $f4 $f2 $f6 3

sqrt.d $f6,$f2 $f6,7 = sqrt($f2,3) 0x11 0x11 0 $f2 $f6 4

abs.d $f6,$f2 $f6,7 = abs($f2,3) 0x11 0x11 0 $f2 $f6 5

neg.d $f6,$f2 $f6,7 = –($f2,3) 0x11 0x11 0 $f2 $f6 7

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Floating-Point Load and Store

❖ Separate floating-point load and store instructions

 lwc1: load word coprocessor 1

 ldc1: load double coprocessor 1

 swc1: store word coprocessor 1

 sdc1: store double coprocessor 1

General purpose

register is used as the

address register

Instruction Meaning Op6 rs5 ft5 Immediate16

lwc1 $f2, 8($t0) $f24 Mem[$t0+8] 0x31 $t0 $f2 8

swc1 $f2, 8($t0) $f2➔4 Mem[$t0+8] 0x39 $t0 $f2 8

ldc1 $f2, 8($t0) $f2,38 Mem[$t0+8] 0x35 $t0 $f2 8

sdc1 $f2, 8($t0) $f2,3➔8 Mem[$t0+8] 0x3d $t0 $f2 8

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Data Movement Instructions

❖ Moving data between general purpose and FP registers

 mfc1: move from coprocessor 1 (to a general purpose register)

 mtc1: move to coprocessor 1 (from a general purpose register)

❖ Moving data between FP registers

 mov.s:move single precision float

 mov.d:move double precision float = even/odd pair of registers

Instruction Meaning Op6 fmt5 rt5 fs5 fd5 func

mfc1 $t0, $f2 $t0 = $f2 0x11 0 $t0 $f2 0 0

mtc1 $t0, $f2 $f2 = $t0 0x11 4 $t0 $f2 0 0

mov.s $f4, $f2 $f4 = $f2 0x11 0x10 0 $f2 $f4 6

mov.d $f4, $f2 $f4,5 = $f2,3 0x11 0x11 0 $f2 $f4 6

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Convert Instructions

❖ Convert instruction: cvt.x.y

 Convert the source format y into destination format x

❖ Supported Formats:

 Single-precision float = .s

 Double-precision float = .d

 Signed integer word = .w (in a floating-point register)

Instruction Meaning Op6 fmt5 fs5 fd5 func

cvt.s.w $f2,$f4 $f2 = W2S($f4) 0x11 0x14 0 $f4 $f2 0x20

cvt.s.d $f2,$f4 $f2 = D2P($f4,5) 0x11 0x11 0 $f4 $f2 0x20

cvt.d.w $f2,$f4 $f2,3 = W2D($f4) 0x11 0x14 0 $f4 $f2 0x21

cvt.d.s $f2,$f4 $f2,3 = S2D($f4) 0x11 0x10 0 $f4 $f2 0x21

cvt.w.s $f2,$f4 $f2 = S2W($f4) 0x11 0x10 0 $f4 $f2 0x24

cvt.w.d $f2,$f4 $f2 = D2W($f4,5) 0x11 0x11 0 $f4 $f2 0x24

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Floating-Point Compare and Branch

❖ Floating-Point unit has eight condition code cc flags

 Set to 0 (false) or 1 (true) by any comparison instruction

❖ Three comparisons: eq (equal), lt (less than), le (less or equal)

❖ Two branch instructions based on the condition flag

Instruction Meaning Op6 fmt5 ft5 fs5 func

c.eq.s cc $f2,$f4 cc = ($f2 == $f4) 0x11 0x10 $f4 $f2 cc 0x32

c.eq.d cc $f2,$f4 cc = ($f2,3 == $f4,5) 0x11 0x11 $f4 $f2 cc 0x32

c.lt.s cc $f2,$f4 cc = ($f2 < $f4) 0x11 0x10 $f4 $f2 cc 0x3c

c.lt.d cc $f2,$f4 cc = ($f2,3 < $f4,5) 0x11 0x11 $f4 $f2 cc 0x3c

c.le.s cc $f2,$f4 cc = ($f2 <= $f4) 0x11 0x10 $f4 $f2 cc 0x3e

c.le.d cc $f2,$f4 cc = ($f2,3 <= $f4,5) 0x11 0x11 $f4 $f2 cc 0x3e

bc1f cc Label branch if (cc == 0) 0x11 8 cc,0 16-bit Offset

bc1t cc Label branch if (cc == 1) 0x11 8 cc,1 16-bit Offset

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Example 1: Area of a Circle

.data

pi: .double 3.1415926535897924

msg: .asciiz "Circle Area = "

.text

main:

ldc1 $f2, pi # $f2,3 = pi

li $v0, 7 # read double (radius)

syscall # $f0,1 = radius

mul.d $f12, $f0, $f0 # $f12,13 = radius*radius

mul.d $f12, $f2, $f12 # $f12,13 = area

la $a0, msg

li $v0, 4 # print string (msg)

syscall

li $v0, 3 # print double (area)

syscall # print $f12,13

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Example 2: Matrix Multiplication
void mm (int n, float X[n][n], Y[n][n], Z[n][n]) {

for (int i=0; i!=n; i=i+1) {

for (int j=0; j!=n; j=j+1) {

float sum = 0.0;

for (int k=0; k!=n; k=k+1) {

sum = sum + Y[i][k] * Z[k][j];

}

X[i][j] = sum;
}

}
}

❖Matrix size is passed in $a0 = n

❖Matrix addresses in $a1 = &X, $a2 = &Y, and $a3 = &Z

❖What is the MIPS assembly code for the procedure?

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Access Pattern for Matrix Multiply

×=

X[i][j] Y[i][k] Z[k][j]

Matrix X is accessed

by row.

Matrix Y is accessed

by row.

Matrix Z accessed by

column.

&X[i][j] = &X + (i*n + j)*4 = &X[i][j-1] + 4

&Y[i][k] = &Y + (i*n + k)*4 = &Y[i][k-1] + 4

&Z[k][j] = &Z + (k*n + j)*4 = &Z[k-1][j] + 4*n

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Matrix Multiplication Procedure (1 of 3)

arguments $a0=n, $a1=&X, $a2=&Y, $a3=&Z

mm: sll $t0, $a0, 2 # $t0 = n*4 (row size)

li $t1, 0 # $t1 = i = 0

Outer for (i = . . .) loop starts here

L1: li $t2, 0 # $t2 = j = 0

Middle for (j = . . .) loop starts here

L2: li $t3, 0 # $t3 = k = 0

move $t4, $a2 # $t4 = &Y[i][0]

sll $t5, $t2, 2 # $t5 = j*4

addu $t5, $a3, $t5 # $t5 = &Z[0][j]

mtc1 $zero, $f0 # $f0 = sum = 0.0

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Matrix Multiplication Procedure (2 of 3)

Inner for (k = . . .) loop starts here

$t3 = k, $t4 = &Y[i][k], $t5 = &Z[k][j]

L3: lwc1 $f1, 0($t4) # load $f1 = Y[i][k]

lwc1 $f2, 0($t5) # load $f2 = Z[k][j]

mul.s $f3, $f1, $f2 # $f3 = Y[i][k]*Z[k][j]

add.s $f0, $f0, $f3 # sum = sum + $f3

addiu $t3, $t3, 1 # k = k + 1

addiu $t4, $t4, 4 # $t4 = &Y[i][k]

addu $t5, $t5, $t0 # $t5 = &Z[k][j]

bne $t3, $a0, L3 # loop back if (k != n)

End of inner for loop
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Matrix Multiplication Procedure (3 of 3)

swc1 $f0, 0($a1) # store X[i][j] = sum

addiu $a1, $a1, 4 # $a1 = &X[i][j]

addiu $t2, $t2, 1 # j = j + 1

bne $t2, $a0, L2 # loop L2 if (j != n)

End of middle for loop

addu $a2, $a2, $t0 # $a2 = &Y[i][0]

addiu $t1, $t1, 1 # i = i + 1

bne $t1, $a0, L1 # loop L1 if (i != n)

End of outer for loop

jr $ra # return to caller

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

