

Faculty of Engineering and Technology Department of Electrical and Computer Engineering

Course title/code	Artificial Intelligence ENCS3340		
Semester/Year	Second Semester 2023 - 2024		
Compulsory/Elective	Compulsory		
Prerequisites	COMP233, (COMP142 or COMP230)		

Instructors	Office Location	Office Hours	Email	Section, Class Time, and Venue
Dr. Yazan	Masri517	See Ritaj	yabufarah@birzeit.edu	Sect: 1, SMW, 9:00 – 9:50, Masri110 Sect: 4, SMW, 12:00 – 12: 50, Masri404
Dr. Ismail	Masri517		ikhater@birzeit.edu	Sect: 2, SMW, 10:00 – 10: 50, Masri110
Dr. Aziz	Masi219		aqaroush@birzeit.edu	Sect: 3, TR, 12:30 – 13:50, Masri306

Course Description	A study of what is required to produce intelligent, human-like behavior in a computer
	system. Fundamental issues in intelligent systems. Search and optimization methods.
	Knowledge representation and reasoning. Learning. Agents. Multi-agent systems. Game
	theory and auctions.

Course Objectives	 The primary objective of this course is to introduce the basic principles and applications of Artificial Intelligence. The emphasis of the course is on teaching the fundamentals, and not on providing a mastery of specific commercially available software tools or programming environments. In short, this is course is about the design and implementation of intelligent agentssoftware entities that perform useful tasks with some degree of autonomy.
	 Opon successful completion of the course, students will have an understanding of the basic areas of artificial intelligence including problem solving, knowledge representation, reasoning, decision making, perception and action, and learning and their applications (e.g., data mining, information retrieval).
	• Students will also be able to design, implement key components of intelligent agents of moderate complexity in Java and/or Python, and evaluate their performance.
Student Outcomes	C: Ability to design a system, component, or process to meet desired needs within realistic
(SOs)	constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
	E: Ability to identify, formulate, and solve engineering problems.
	H: The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context

	Course contents	SO1	SO2	SO3
1	Intelligent agents		*	
2	Search: Informed and uninformed search algorithms, Adversarial search, and	*	*	*
	Constraint satisfaction problems			

STUDENTS-HUB.com

3	Learning from observations		*	*
4	Introduction to Reasoning Under Uncertainty	*	*	

	•	Textbook: Russel and Norvig, Artificial Intelligence: A modern approach 4 th edition.
Textbook and References		Pearson, 2021
	٠	Reference: Artificial Intelligence: A Guide to Intelligent Systems 3 rd edition

Assessment Criteria	Midterm Exam	25%
	3-4 Quizzes	10%
	Final Exam	40%
	Two Projects	25%

Topics				
Introduction	Introduction			
	Problem Formulation and Solving by Search			
	 Uninformed Search [DFS, BFS, IDDFS, Uniform Cost Search] 			
	Heuristic (Informed) Search [Basics, Greedy search, A* search, IDA*]			
Solving Problems by Searching	 Local Search for Optimization Problems [Hill Climbing, Simulated Annealing, Genetic Algorithms] 			
	Constraint Satisfaction Problems			
	Adversarial Search and Games			
	Introduction and Basic Concepts			
	Supervised Learning			
	✓ K-Nearest Neighbors			
	✓ Decision Trees			
	✓ Naïve Bayes			
	✓ Neural Networks			
Machine Learning	 Model Evaluation and Assessment 			
	 Underfitting and Overfitting 			
	Unsupervised Learning			
	✓ Basic Concepts			
	✓ K-Means			
	✓ Model Evaluation			
	Reinforcement Learning			
Probabilistic Possoning	Reasoning Under Uncertainty			
Probabilistic Reasoning	 Bayesian Network [Representation, Inference, and Learning] 			

Additional Notes		
Assignments	No late assignments	
Exams	Comprehensive exams	
Makeup Exams	No makeup exam	
Attendance	Your attendances are very important	
Key to a good grade	Reading the TEXTBOOK and HANDOUT + DOING the PROJECTS	