
GENERAL PURPOSE
INPUT OUTPUT
(GPIO)
Shadi Daana

STUDENTS-HUB.com

https://students-hub.com

STM32F4

• In this course, we will be using the
STM32F4 microcontrollers as our
reference platform

• STM32F4 series is based on RM®
Cortex®-M4 Core

• Why STMF4?
• because it offers a powerful,

versatile, and well-documented
architecture, making it suitable for a
wide range of embedded systems
applications.

STUDENTS-HUB.com

https://students-hub.com

Ports and Pins in MCU

• The microcontroller needs a medium to transfer data to and from the
outside world. This is done by using the ports of the microcontroller.

• A port is a collection of pins grouped together.

• The pins are what stick out of an IC, and connect electrically to the
outside world

• Ports are represented by registers inside the microcontroller and
allow the program (firmware) to control the state of the pins, or
conversely, read the state of the pins if they are configured as
inputs.

STUDENTS-HUB.com

https://students-hub.com

IC Packages

• Pins can take many
styles depending on the
type of IC package

STUDENTS-HUB.com

https://students-hub.com

What is a general-purpose input/output (GPIO)?

STUDENTS-HUB.com

https://students-hub.com

What is a general-purpose input/output (GPIO)?

• The STM32F4 microcontroller has a number of input and output
ports assigned with initials (Port A, Port B, Port C, Port D, etc.)

• Each port has a specific number of pins (most ports have 16 pins
each)

• Each pin can be used for both Input and Output operations. Besides,
a pin can be used for Analog or Alternate Functions.

• In the Alternate Function, the pins can be used by the other
peripherals within the microcontroller

• Hence, the pins of the STM32F4 microcontroller are called general-
purpose input and output (GPIO).

STUDENTS-HUB.com

https://students-hub.com

GPIO Structures

• Several GPIO structures are available across the
range of STM32 devices. Each structure is
associated with a list of options

STUDENTS-HUB.com

https://students-hub.com

What’s inside a port?

STUDENTS-HUB.com

https://students-hub.com

Configuring GPIO Pins

• Pin Mode: Each port bit of the general-purpose
I/O (GPIO) ports can be individually configured
by software in several modes:
• Digital input or output
• Analog
• Alternate function (AF).

• Pin characteristics :
• Input: no pull-up and no pull-down or pull-

up or pull-down
• Output: push-pull or open-drain with pull-

up or pull-down capability
• Alternate function: push-pull or open-drain

with pull-up or pull-down capability.

STUDENTS-HUB.com

https://students-hub.com

GPIO Registers

• In microcontroller programming, General-Purpose Input/Output
(GPIO) registers are hardware registers that control the behavior of
individual GPIO pins.

• These registers are used to configure, read from, and write to GPIO
pins. GPIO registers vary from one microcontroller to another, but
they typically include the following types of registers:
• Mode Register (MODER) • Input Data Register (IDR)

• Output Type Register (OTYPER) • Output Data Register (ODR)

• Output Speed Register (OSPEEDR) • Bit Set/Reset Register (BSRR)

• Pull-up/Pull-down Register (PUPDR) • Lock Register (LCKR)

• Alternate Function Register (AFR)

STUDENTS-HUB.com

https://students-hub.com

GPIO Registers

• Mode Register (MODER): This register is used to specify the mode of the GPIO
pins, whether they should function as inputs, outputs, or alternate function pins.
Each pin is typically represented by 2 bits in this register. Common mode values
include:
• 00: Input mode.

• 01: Output mode.

• 10: Alternate function mode.

• 11: Analog mode.

• Output Type Register (OTYPER): This register determines the output type of the
GPIO pins when configured as outputs. It specifies whether the pin should be
open-drain or push-pull. Common values include:
• 0: Push-pull output.

• 1: Open-drain output.

STUDENTS-HUB.com

https://students-hub.com

GPIO Registers

• Pull-up/Pull-down Register (PUPDR): This register configures the pull-up and
pull-down resistors for the GPIO pins when they are configured as inputs. It can
be used to enable or disable pull-up or pull-down resistors. Common values
include:

• 00: No pull-up, no pull-down.

• 01: Pull-up.

• 10: Pull-down.

• Input Data Register (IDR): This register holds the current state of the input pins.
You can read from this register to determine whether a pin is high (1) or low (0).

• Output Data Register (ODR): This register holds the data to be written to output
pins. Writing to this register sets the state of output pins as high or low.

STUDENTS-HUB.com

https://students-hub.com

.

GPIO Registers

• Output Speed Register (OSPEEDR): This register sets the output speed of the
GPIO pins when configured as outputs. It allows you to choose between various
speed options, such as low, medium, or high speed.

• Bit Set/Reset Register (BSRR): This register is used to set or reset individual bits
in the ODR. It is a quick way to change the state of specific pins without affecting
the others.

• Lock Register (LCKR): The lock register can be used to lock or unlock the GPIO
configuration, preventing accidental changes to pin configuration.

• Alternate Function Register (AFR): It is an important register in microcontrollers,
particularly in STM32 microcontrollers, which use the Alternate Function to
extend the capabilities of GPIO pins. These alternate functions can include
communication interfaces (UART, SPI, I2C), timers, PWM, and more.

STUDENTS-HUB.com

https://students-hub.com

GPIO modes description

Input mode configuration

STUDENTS-HUB.com

https://students-hub.com

GPIO modes description

Programmed as input, an I/O port exhibits the following characteri
stics:

• The output buffer is disabled

• The Schmitt trigger input is activated

• The pull-up or pull-down resistors are activated depending on the value
in the GPIOx_PUPDR register

• The data present on the I/O pin is sampled into the input data register
at each AHB clock cycle

• The I/O state is obtained by reading the GPIOx_IDR input data register

STUDENTS-HUB.com

https://students-hub.com

GPIO modes description

Input mode configuration

• When a STM32 device I/O pin is configured as input, one of three
options must be selected:
• Input with internal pull-up

• Input with internal pull-down

• Floating input: signal level follows the external signal. When no external
signal is present, the Schmitt trigger randomly toggles between the logical
levels induced by the external noise.

• Note: It is important to note that it is not possible to activate pull-up and pull-
down at the same time on the same I/O pin.

to ensure a well-defined logical level in case of
floating input signal
External pull-up/pull-down can be used instead

STUDENTS-HUB.com

https://students-hub.com

GPIO modes description

• A Schmitt trigger is a voltage comparator
that turns ON only when the input voltage
exceeds a certain threshold, and turns OFF
when the input voltage falls below the lower
threshold

• Schmitt trigger increases the noise immunity
compared to the circuit with only a single
input threshold.

STUDENTS-HUB.com

https://students-hub.com

GPIO modes description

Output mode configuration

STUDENTS-HUB.com

https://students-hub.com

GPIO modes description

Programmed as output, an I/O port exhibits the following
characteristics:

• The output buffer can be configured in open-drain or push-pull mode

• The Schmitt trigger input is activated

• The internal pull-up and pull-down resistors are activated depending on
the value in the GPIOx_PUPDR register.

• The written value into the output data register GPIOx_ODR sets the I/O
pin state

• The written data on GPIOx_ODR can be read from GPIOx_IDR register
that is updated every AHB clock cycle

STUDENTS-HUB.com

https://students-hub.com

GPIO modes description

Output mode configuration

• When a STM32 device I/O pin is configured as output, one of
two options must be selected:
• Push-pull output mode: it uses two transistors, one PMOS and one

NMOS. Each transistor is ON to drive the output to the appropriate
level

• Open-drain output mode: it does not use the PMOS transistor.

• The control of the two transistors is done through the GPIO port
output type register (GPIOx_OTYPER)

STUDENTS-HUB.com

https://students-hub.com

GPIO modes description

STUDENTS-HUB.com

https://students-hub.com

GPIO modes description

STUDENTS-HUB.com

https://students-hub.com

GPIO modes description

Alternate functions
• On some STM32 GPIO pins, the user has the possibility to select alternate

functions inputs / outputs.
• Each pin is multiplexed with up to sixteen peripheral functions such as

communication interfaces (SPI, UART, I2C, USB, CAN, LCD and others),
timers, debug interface, and others.

• The alternate function of the selected pin is configured through two
registers:
• GPIOx_AFRL (for pin 0 to 7)
• GPIOx_AFRH (for pin 8 to 15)

• To know which functions are multiplexed on each GPIO pin, refer to the
device datasheet.

STUDENTS-HUB.com

https://students-hub.com

GPIO modes description

• When the I/O port is programmed as alternate function mode:
• The output buffer can be configured in open-drain or push-pull mode
• The output buffer is driven by the signals coming from the peripheral (transmitter

enable and data)
• The Schmitt trigger input is activated
• The pull-up and pull-down resistors activations depend on the value in the register

GPIOx_PUPDR

• The data present on the I/O pin are sampled into the input data register at
each AHB clock cycle.

• A read access to the input data register provides the I/O state.

• Alternate functions

STUDENTS-HUB.com

https://students-hub.com

GPIO modes description

STUDENTS-HUB.com

https://students-hub.com

GPIO modes description

Analog configuration

• Few STM32 GPIO pins can be configured in analog mode which allows
the use of ADC, DAC, OPAMP, and COMP internal peripherals. To use a
GPIO pin in analog mode, the following register are considered:

• GPIOx_MODER to select the mode (Input, Output, Alternate, Analog)

• GPIOx_ASCR to select the required function ADC, DAC, OPAMP, or
COMP

STUDENTS-HUB.com

https://students-hub.com

GPIO modes description

When the I/O port is programmed in an analog configuration:
• The output buffer is disabled

• The Schmitt trigger input is deactivated, providing zero consumption for
every analog value of the I/O pin. The output of the Schmitt trigger is
forced to a constant value (0).

• The pull-up and pull-down resistors are disabled by hardware

• Read access to the input data register gets the value 0.

• Note: Fore STM32F40XX MCUs, in the analog configuration, the I/O
pins cannot be 5 Volt tolerant.

STUDENTS-HUB.com

https://students-hub.com

Tips and Best Practices- Digital I/O

Switch Debouncing

• Switches and push-buttons are mechanical
devices that have two or more sets of
electrical contacts

• The most common way of input interfacing a
switch (or push button) to an electronic
circuit is via a pull-up resistor to the supply
voltage as shown

• mechanical switches have a common
problem called “contact bounce”

STUDENTS-HUB.com

https://students-hub.com

Tips and Best Practices- Digital I/O

Switch Debouncing

• To solve this issue there is two way:
• Hardware

• Software

• The usual hardware way is to build a low
pass filter. Sometimes you will find
a Schmitt-trigger after the RC filter, to avoid
hysteresis.

STUDENTS-HUB.com

https://students-hub.com

Tips and Best Practices- Digital I/O

Driving LEDs

• A simple method for driving a low-power
LED can be wired directly to a GPIO

• A white LED needs a typical ~20 mA current
under a typical 3.3 V supply

• As STM32 devices maximum sink current is 25
mA, there is not enough margin to directly drive
a LED

• Usually, you need to use a transistor and to
place a resistor in series with the LED to set the
forward current

STUDENTS-HUB.com

https://students-hub.com

Tips and Best Practices- Digital I/O

Optocouplers
• Optocouplers (or optoisolator) create a safe

connection between high-voltage equipment and
microcontrollers with a means of complete electrical
insulation.

• An Optocoupler is an electronic component with an
LED and photo-sensitive device, such as a
photodiode or phototransistor encased in the same
package

• The advantage here is that the optical switch can be
used for input interfacing harmful voltage levels
onto the input pins of microcontrollers

STUDENTS-HUB.com

https://students-hub.com

Reset and Clock Control (RCC) in STM32

A module inside
manages the
system clock

STUDENTS-HUB.com

https://students-hub.com

Reset and Clock Control (RCC) in STM32

• The RCC block in STM32 microcontrollers manages the system clock and reset
operations.

• Provides the main clock sources and distributes clocks to various peripherals.

• Clock Sources:
▪ HSI (High-Speed Internal) – internal RC oscillator.

▪ HSE (High-Speed External) – external crystal oscillator.

▪ LSI (Low-Speed Internal) – low-power internal oscillator for low-speed operations.

▪ LSE (Low-Speed External) – external crystal for Real-Time Clock (RTC).

▪ PLL (Phase-Locked Loop) – generates higher frequencies by multiplying input clock.

STUDENTS-HUB.com

https://students-hub.com

Reset and Clock Control (RCC) in STM32

Clock Trees:
▪ AHB (Advanced High-Performance Bus): for

core and high-speed peripherals.

▪ APB1 / APB2 (Advanced Peripheral Bus):
for general-purpose peripherals and low-
speed peripherals.

• Important Note!!

• In STM32 microcontrollers, peripheral clocks,
including those for GPIO ports, are disabled by
default to save power.

• To use a peripheral like a GPIO port, you must
explicitly enable its clock in the RCC before
configuring or using it.

STUDENTS-HUB.com

https://students-hub.com

Reset and Clock Control (RCC) in STM32

STUDENTS-HUB.com

https://students-hub.com

GPIO Configuration Example

For a better understanding of how microcontrollers function through programming, it’s crucial
to explore different programming approaches.

• Bare-metal programming (register-based)
• You need to carefully review the datasheet and reference manual in order to fully understand all the

different hardware configurations and how they operate in this step.

• Using CMSIS library
• Cortex Microcontroller Software Interface Standard (CMSIS) library can be used at this step

• Using Low-level library
• When you want to work at a relatively low level but with a more organized and manufacturer-specific

API.
• Low-level libraries, sometimes provided by the microcontroller manufacturer, offer a set of functions

and macros to configure and control the microcontroller's hardware.

• Using High-level Library (HAL)
• HAL is a higher-level library that abstracts the microcontroller's hardware, providing a more user-

friendly API for developers

STUDENTS-HUB.com

https://students-hub.com

GPIO Configuration Example

• The following slides will show an example of implementing the
previous approaches to blink a LED using STM32F4DISCOVERY
kit. However, you can use any STM32 board.

STUDENTS-HUB.com

https://students-hub.com

GPIO Configuration Example

• Required documents:
• STM32F407 datasheet

• STM32F407 reference manual

• STM32F4DISCOVERY Discovery kit user manual

• STM32F4DISCOVERY Discovery kit schematic diagram

• Required IDE:
• STM32CubeIDE

STUDENTS-HUB.com

https://students-hub.com

GPIO Configuration Example

• STM32F4DISCOVERY has LEDs and a User-Button to demonstrate
the digital I/O features and configurations

STUDENTS-HUB.com

https://students-hub.com

GPIO Configuration Example

• Bare-metal programming (register-based)

1. Locate registers
• Check the Memory Map to know the address of Peripherals:

• So, define the base addresses:

#define RCC_BASE 0x40023800UL
#define GPIOD_BASE 0x40020C00UL

STUDENTS-HUB.com

https://students-hub.com

GPIO Configuration Example

2. Configure Clock
• Check the Memory Map to know the address of Peripherals:

• HSION is enabled by default. HSI is 16 MHz.

• HSI oscillator is used as the system clock, no divider activated. System is clocked at 16 MHz (equal
to HSI’s Frequency)

STUDENTS-HUB.com

https://students-hub.com

GPIO Configuration Example

• The GPIOD is on AHB1 bus, therefore, check the clock on AHB Bus:

• GPIO Clock is disabled by default. Need to enable GPIODEN bit:

#define RCC_AHB1ENR RCC_BASE + 0x30
*(uint32_t *)(RCC_AHB1ENR) |= (1 << 3);

STUDENTS-HUB.com

https://students-hub.com

GPIO Configuration Example

3. Configure GPIO Port and Pin

• Do the same reading and understanding as we do with
Clock registers, here are what we have to do:

• Set Pin 15 on Port D to Output mode on bit [31:30] of
the GPIOA_MODER register

• To output HIGH value, set bit 15 of the GPIOA_BSRR register

• To output LOW value, set bit 31 of the GPIOA_BSRR register

#define GPIOA_MODER GPIOD_BASE + 0x00
#define GPIOA_BSRR GPIOD_BASE + 0x18

*(uint32_t *)(GPIOD_MODER) &= ~(1 << 31);
*(uint32_t *)(GPIOD_MODER) |= (1 << 30);
*(uint32_t *)(GPIOD_BSRR) |= (1 << (15));
*(uint32_t *)(GPIOD_BSRR) |= (1 <<
(15+16));

STUDENTS-HUB.com

https://students-hub.com

GPIO Configuration Example

4. Delay
• Since we know that the MCU is operating at 16 MHz (HSI), For a delay of 50 ms, suppose that

every loop requires 10 instruction cycles, the total number of iterations is

#define DELAY_MAX 80000;
for(uint32_t i=DELAY_MAX; i--;);

STUDENTS-HUB.com

https://students-hub.com

GPIO Configuration Example

4. The complete program
• To wrap up all the previous slides, the code will be:

#include <stdint.h>

/* Register Addresses*/
/* Clock */

#define RCC_BASE 0x40023800UL
#define RCC_AHB1ENR RCC_BASE + 0x30

/* GPIO */
#define GPIOD_BASE 0x40020C00UL
#define GPIOD_MODER GPIOD_BASE + 0x00
#define GPIOD_BSRR GPIOD_BASE + 0x18

/* delay counter */
#define DELAY_MAX 80000

int main(void){
 /* turn on clock on GPIOD */
 *(uint32_t *)(RCC_AHB1ENR) |= (1 << 3);

 /* set PD15 to output mode */
 *(uint32_t *)(GPIOD_MODER) &= ~(1 << 31);
 *(uint32_t *)(GPIOD_MODER) |= (1 << 30);

 while(1) {
 /* set HIGH value on pin PD15 */
 *(uint32_t *)(GPIOD_BSRR) |= (1 << 15);
 for(uint32_t i=DELAY_MAX; i--;);

 /* set LOW value on pin PD15 */
 *(uint32_t *)(GPIOD_BSRR) |= (1 <<(15+16));
 for(uint32_t i=DELAY_MAX; i--;);
 }

}

STUDENTS-HUB.com

https://students-hub.com

GPIO Configuration Example

• CMSIS Code Example

1. Integrate the CMSIS library
• We need to attach the required libraries (provided by ARM) to our project

• Download CMSIS Core, the latest version is CMSIS 5.9.0 (Link)

• Copy the header files in ARM.CMSIS.5.9.0.pack/CMSIS/Core/Include to your project

• Download CMSIS-Pack for the target MCU from (Link)

• Copy the header files in the following folder to your project file:

Keil.STM32F4xx_DFP.2.17.1\Drivers\CMSIS\Device\ST\STM32F4xx\Include

• Add the following header paths to the project path and symbols

CMSIS/Core/Include and CMSIS/Device/ST/STM32F4xx/Include

STUDENTS-HUB.com

https://github.com/ARM-software/CMSIS_5/releases/tag/5.9.0
https://developer.arm.com/embedded/cmsis/cmsis-packs/devices/
https://students-hub.com

GPIO Configuration Example

1. Configure Clock
• Use the RCC peripheral, set the bit RCC_AHB1ENR_GPIOAEN in the AHB1ENR register to

enable clock for GPIOA

2. Configure GPIO Port and Pin

RCC->AHB1ENR |= RCC_AHB1ENR_GPIODEN;

GPIOD->MODER &= ~GPIO_MODER_MODER15_1;
GPIOD->MODER |= GPIO_MODER_MODER15_0;
GPIOD->BSRR |= GPIO_BSRR_BS_15;
GPIOD->BSRR |= GPIO_BSRR_BR_15;

STUDENTS-HUB.com

https://students-hub.com

GPIO Configuration Example

3. The complete program #include <stdint.h>
#include <stm32f4xx.h>
/* delay counter */
#define DELAY_MAX 50000

int main(void){
 /* turn on clock on GPIOD */
 RCC->AHB1ENR |= RCC_AHB1ENR_GPIODEN;

 /* set PD15 to output mode */
 GPIOD->MODER &= ~GPIO_MODER_MODE15_1;
 GPIOD->MODER |= GPIO_MODER_MODE15_0;

 while(1) {
 /* set HIGH value on pin PD15 */
 GPIOD->BSRR |= GPIO_BSRR_BS_15;
 for(uint32_t i=DELAY_MAX; i--;);

 /* set LOW value on pin PD15 */
 GPIOD->BSRR |= GPIO_BSRR_BR_15;
 for(uint32_t i=DELAY_MAX; i--;);
 }

}

STUDENTS-HUB.com

https://students-hub.com

GPIO Configuration Example

• Low-Level Generated Code Example

1. Configure the GPIO using the GUI tool
provided by CubeIDE

2. Make sure the Driver Selector is set to LL

3. Write the program using LL APIs

int main(void)
{
 /* Initialization begin */
 /*.*/
 /*.*/
 /* Initialization end */

 /* Infinite loop */
 /* USER CODE BEGIN WHILE */

 while (1)
 {
 /* USER CODE END WHILE */

 /* USER CODE BEGIN 3 */
 LL_GPIO_SetOutputPin(LED_GPIO_Port, LED_Pin);
 LL_mDelay(DELAY_MAX);
 LL_GPIO_ResetOutputPin(LED_GPIO_Port, LED_Pin);
 LL_mDelay(DELAY_MAX);
 }
 /* USER CODE END 3 */

}

STUDENTS-HUB.com

https://students-hub.com

GPIO Configuration Example

• HAL Generated Code Example

1. Configure the GPIO using the GUI tool
provided by CubeIDE

2. Make sure the Driver Selector is set to
HAL

3. Write the program using HAL APIs

int main(void)
{
 /* Initialization begin */
 /*.*/
 /*.*/
 /* Initialization end */

 /* Infinite loop */
 /* USER CODE BEGIN WHILE */

 while (1)
 {
 /* USER CODE END WHILE */

 /* USER CODE BEGIN 3 */
 HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin,SET);
 HAL_Delay(50);
 HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin,RESET);
 HAL_Delay(50);

 }
 /* USER CODE END 3 */

}

STUDENTS-HUB.com

https://students-hub.com

Questions?

STUDENTS-HUB.com

https://students-hub.com

	Slide 1: General Purpose input output (GPIO)
	Slide 2: STM32F4
	Slide 3: Ports and Pins in MCU
	Slide 4: IC Packages
	Slide 5: What is a general-purpose input/output (GPIO)?
	Slide 6: What is a general-purpose input/output (GPIO)?
	Slide 7: GPIO Structures
	Slide 8: What’s inside a port?
	Slide 9: Configuring GPIO Pins
	Slide 10: GPIO Registers
	Slide 11: GPIO Registers
	Slide 12: GPIO Registers
	Slide 13: GPIO Registers
	Slide 14: GPIO modes description
	Slide 15: GPIO modes description
	Slide 16: GPIO modes description
	Slide 17: GPIO modes description
	Slide 18: GPIO modes description
	Slide 19: GPIO modes description
	Slide 20: GPIO modes description
	Slide 21: GPIO modes description
	Slide 22: GPIO modes description
	Slide 23: GPIO modes description
	Slide 24: GPIO modes description
	Slide 25: GPIO modes description
	Slide 26: GPIO modes description
	Slide 27: GPIO modes description
	Slide 28: Tips and Best Practices- Digital I/O
	Slide 29: Tips and Best Practices- Digital I/O
	Slide 30: Tips and Best Practices- Digital I/O
	Slide 31: Tips and Best Practices- Digital I/O
	Slide 32: Reset and Clock Control (RCC) in STM32
	Slide 33: Reset and Clock Control (RCC) in STM32
	Slide 34: Reset and Clock Control (RCC) in STM32
	Slide 35: Reset and Clock Control (RCC) in STM32
	Slide 36: GPIO Configuration Example
	Slide 37: GPIO Configuration Example
	Slide 38: GPIO Configuration Example
	Slide 39: GPIO Configuration Example
	Slide 40: GPIO Configuration Example
	Slide 41: GPIO Configuration Example
	Slide 42: GPIO Configuration Example
	Slide 43: GPIO Configuration Example
	Slide 44: GPIO Configuration Example
	Slide 45: GPIO Configuration Example
	Slide 46: GPIO Configuration Example
	Slide 47: GPIO Configuration Example
	Slide 48: GPIO Configuration Example
	Slide 49: GPIO Configuration Example
	Slide 50: GPIO Configuration Example
	Slide 51: Questions?

