55y oo
Py M -

BIRZEIT UNIVERSITY

GENERAL PURPOSE
INPUT OUTPUT
(GPIO)

Shadi Daana

https://students-hub.com

STM32F4

* In this course, we will be using the
STM32F4 microcontrollers as our
reference platform

e STM32F4 series is based on RM®
Cortex®-M4 Core

 Why STMF4?

* because it offers a powerful,
versatile, and well-documented
architecture, making it suitable for a
wide range of embedded systems
applications.

STUDENTS-HUB.com

https://students-hub.com

Ports and Pins in MCU

* The microcontroller needs a medium to transfer data to and from the
outside world. This is done by using the ports of the microcontroller.

* A port is a collection of pins grouped together.

* The pins are what stick out of an IC, and connect electrically to the
outside world

* Ports are represented by registers inside the microcontroller and
allow the program (firmware) to control the state of the pins, or
conversely, read the state of the pins if they are configured as

Inputs.

STUDENTS-HUB.com

https://students-hub.com

|C Packages

* Pins can take many
styles depending on the
type of IC package

STUDENTS-HUB.com

SO0T23 S0T223

https://students-hub.com

What is a general-purpose input/output (GPIO)?

Eeteral Ty |
T -
SRAM, PEAAM, MO Fae,
£ Can) (ATAL MAND Fign

isl] ™
B3R e
:g B | = NG

;jz M s e el | T
.\.P\n&'?.'.‘ﬁ:] E oTews b = :f}f:: EIL R ¢:|e

L T C: L

GPIO PORTA

GPIO PORTB

GPIO PORT C

s wemas

Ly [:»1

GPIO PORTF =
GPIO PORT G s

GPIOPORTH
GPIO PORT |

METEDOVA

STUDENTS-HUB.com

https://students-hub.com

What is a general-purpose input/output (GPIO)?

* The STM32F4 microcontroller has a number of input and output
ports assigned with initials (Port A, Port B, Port C, Port D, etc.)

e Each port has a specific number of pins (most ports have 16 pins
each)

* Each pin can be used for both Input and Output operations. Besides,
a pin can be used for Analog or Alternate Functions.

* In the Alternate Function, the pins can be used by the other
peripherals within the microcontroller

* Hence, the pins of the STM32F4 microcontroller are called general-
purpose input and output (GPIO).

STUDENTS-HUB.com

https://students-hub.com

GPIO Structures

* Several GPIO structures are available across the
range of STM32 devices. Each structure is
associated with a list of options

List of GPIO structures

Name Abbreviation Definition
S Supply pin
Pin Type | Input only pin

e} Input / output pin

Frin Five-volt tolerant 1/O pin

T Three-volt tolerant 1/O pin

1/0 structure TC Three-volt capable /O pin (Standard 3.3 V /O)
Dedicated boot pin
RST Bidirectional reset pin with embedded weak pull-up resistor

Pin functions

Alternate functions

Functions selected through GPIOX_AFR registers

Additional functions

Functions directly selected and enabled through peripheral registers

1. FTand TT I/Os have options depending on the device. The user must refer to the datasheet for their definitions.

STUDENTS-HUB.com

PE20]
PE3O
PE4L]
PESO
PEGO
VBATO
PC13 O
PC14 O
PC15 O
VS5 O
vDbD O
PHO O
PH1 O
NRSTO
PCOO
PC10
PC20
PC30
VDD O
VSSAQ
VREF+[
VDDA
PAD O
PA1Q
PA2[

[fale R e I BN LT N

1000 VDD
99 O VSS
94 [7 BOOTO

93 O PB7
91 O PBS

90 O PB4
87 O PD6

86 [0 PDS5
85 O PD4

98 [0 PE1
97 O PEO
96 [0 PBY9
95 [0 PB8
92 0 PB6
89 O PB3
88 O PD7
84 OO0 PD3
83 gPD2
82 o PD1
81 o PDO

~ o~~~
MW s

-~

LQFP100

DD DD A
NMWwbd~N®ROOo

@

Gt a @
MbOd~NGoo
OO0 00000000000 0000 0DoOO0OoOoOoOQg

(3]

1 042
2 43
3 D44
4 45
5 46
0 47
1 48

49

PA3 O26
V8s O27
PAS O30
PAB 31
PA7 O32
PC4 33

PE10 41

PE

PE

PE

PE

PE

PB

PB

VCAP_1

PA4 29

PC5 34
PBO O35
PB1 36
PB2 37
PE7 38
PE8 39
PE9 40

VDD 28
vDD ds0

VDD
VsS
VCAP_2
PA13
PA12
PA 11
PA10
PAQ
PA8
PC9
PC8
PC7
PC6
PD15
PD14
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
PB13
PB12

ai18485¢c

https://students-hub.com

What'’s inside a port?

STUDENTS-HUB.com

Figure 25. Basic structure of a five-volt tolerant I/O port bit

r—— - - - - — — — — —/ 1
To on-chip Analog | |
peripheral] |
i\llernate function input
. | on/off |
Read % | |
a’ 1 L
< o | 1 Voo
1]
" T | TTL Schmitt |
o] o trigger on/off
- 3
g s |
. L - Input driver
Write - & L —_— = — — — — — — — -4
i B j
= EJ’ |Oulput driver Voo anoffl
0] 1]
= m
o o —Ci P-MOS
E- |] Output | Vss
= control
Read/write O= | —| N-MOS |
From on-chip) Vss Push-pull
peripheral Alternate function outpuf open-grailn or |
.o - - - _ __ _dlsa_b'led_ _ Anabg

Protection
diode

1/O pin

Protection
diode

ai15939b

1.

Vpp et is a potential specific to five-volt tolerant 1/Os and different from V.

https://students-hub.com

Configuring GPIO Pins

* Pin Mode: Each port bit of the general-purpose
|/O (GPIO) ports can be individually configured
by software in several modes:

Pull down

¢ _ y Input —» Floating
Digital input or output input o
* Analog |
. Output Open drain —— Pull down/ Pull up
* Alternate function (AF). E“jﬁ L s pushpu
* Pin characteristics : Analog
* Input: no pull-up and no pull-down or pull-

L& Alternate function ——® Open drain

up or pull-down " push pul

* Output: push-pull or open-drain with pull-
up or pull-down capability

 Alternate function: push-pull or open-drain
with pull-up or pull-down capability.

STUDENTS-HUB.com

https://students-hub.com

GPIO Registers

* In microcontroller programming, General-Purpose Input/Output
(GPIO) registers are hardware registers that control the behavior of
individual GPIO pins.

* These registers are used to configure, read from, and write to GPIO
pins. GPIO registers vary from one microcontroller to another, but
they typically include the following types of registers:

STUDENTS-HUB.com

Mode Register (MODER)

Output Type Register (OTYPER)
Output Speed Register (OSPEEDR)
Pull-up/Pull-down Register (PUPDR)
Alternate Function Register (AFR)

Input Data Register (IDR)
Output Data Register (ODR)
Bit Set/Reset Register (BSRR)
Lock Register (LCKR)

https://students-hub.com

GPIO Registers

 Mode Register (MODER): This register is used to specify the mode of the GPIO

pins, whether they should function as inputs, outputs, or alternate function pins.
Each pin is typically represented by 2 bits in this register. Common mode values
include:

* 00: Input mode.

e 01: Output mode.

e 10: Alternate function mode.

* 11: Analog mode.

e Output Type Register (OTYPER): This register determines the output type of the
GPIO pins when configured as outputs. It specifies whether the pin should be
open-drain or push-pull. Common values include:

* 0: Push-pull output.
e 1: Open-drain output.

STUDENTS-HUB.com

https://students-hub.com

GPIO Registers

* Pull-up/Pull-down Register (PUPDR): This register configures the pull-up and
pull-down resistors for the GPIO pins when they are configured as inputs. It can
be used to enable or disable pull-up or pull-down resistors. Common values
include:

* 00: No pull-up, no pull-down.
e 01: Pull-up.
e 10: Pull-down.

* Input Data Register (IDR): This register holds the current state of the input pins.
You can read from this register to determine whether a pin is high (1) or low (0).

* Output Data Register (ODR): This register holds the data to be written to output
pins. Writing to this register sets the state of output pins as high or low.

STUDENTS-HUB.com

https://students-hub.com

GPIO Registers

e Output Speed Register (OSPEEDR): This register sets the output speed of the
GPIO pins when configured as outputs. It allows you to choose between various
speed options, such as low, medium, or high speed.

 Bit Set/Reset Register (BSRR): This register is used to set or reset individual bits
in the ODR. It is a quick way to change the state of specific pins without affecting
the others.

* Lock Register (LCKR): The lock register can be used to lock or unlock the GPIO
configuration, preventing accidental changes to pin configuration.

 Alternate Function Register (AFR): It is an important register in microcontrollers,
particularly in STM32 microcontrollers, which use the Alternate Function to
extend the capabilities of GPIO pins. These alternate functions can include
communication interfaces (UART, SPI, 12C), timers, PWM, and more.

STUDENTS-HUB.com

https://students-hub.com

GPIO modes description

Input mode configuration

Figure 28. Input floating/pull up/pull down configurations

I
k7 I
L]
PR i |
= |
Lo]
g =
: il
Wrile g | |
—M 7§ & Linpud driver
@ ™
= x r -
] A ol pud driver
2|3 |
Si |
Readiwrile |
. i

STUDENTS-HUB.com

https://students-hub.com

GPIO modes description

Programmed as input, an I/O port exhibits the following characteri
stics:

* The output buffer is disabled

* The Schmitt trigger input is activated

* The pull-up or pull-down resistors are activated depending on the value
in the GPIOXx_PUPDR register

* The data present on the I/O pin is sampled into the input data register
at each AHB clock cycle

* The I/O state is obtained by reading the GPIOx_IDR input data register

STUDENTS-HUB.com

https://students-hub.com

GPIO modes description

Input mode configuration

* When a STM32 device I/O pin is configured as input, one of three

options must be selected: | | |
o to ensure a well-defined logical level in case of
¢ |nput with internal pu"-up f|oating input Signa|

* Input with internal pull-down External pull-up/pull-down can be used instead

* Floating input: signal level follows the external signal. When no external
signal is present, the Schmitt trigger randomly toggles between the logical
levels induced by the external noise.

* Note: It is important to note that it is not possible to activate pull-up and pull-
down at the same time on the same 1/0 pin.

STUDENTS-HUB.com

https://students-hub.com

GPIO modes description

e A Schmitt trigger is a voltage comparator
that turns ON only when the input voltage
exceeds a certain threshold, and turns OFF

when the input voltage falls below the lower
threshold

e Schmitt trigger increases the noise immunity | 1
compared to the circuit with only a single
input threshold. : :

Normal Input buffer Schmitt triggered Input buffer

STUDENTS-HUB.com

https://students-hub.com

GPIO modes description

Output mode configuration

Figure 29. Output configuration

r— - - - - - — — 1
- [Fead % | "’J‘ﬁi_"' |
| T~ |
g I TTL Scomit I Vpp YOO
§ E trigger on/oft i
Writa | - I | pratecton
— * % X Unputdriver 3 _l pull | diede
= lp
ml| 2 e, —_—— e e e e e — e — e —
§ 2 'T::luipuim Voo L anfoft D VO pin
A | |
= E | —C| F-MOS | _l paull pratection
Readiwrite a | E:.L:puitl | Vig e
——[memos Ves
| y Push-pull of

ai159d1b

STUDENTS-HUB.com

https://students-hub.com

GPIO modes description

Programmed as output, an |/O port exhibits the following
characteristics:
e The output buffer can be configured in open-drain or push-pull mode
e The Schmitt trigger input is activated

e The internal pull-up and pull-down resistors are activated depending on
the value in the GPIOx_PUPDR register.

e The written value into the output data register GPIOx_ODR sets the /0
pin state

e The written data on GPIOx_ODR can be read from GPIOx_IDR register
that is updated every AHB clock cycle

STUDENTS-HUB.com

https://students-hub.com

GPIO modes description

Output mode configuration

* When a STM32 device I/O pin is configured as output, one of
two options must be selected:

* Push-pull output mode: it uses two transistors, one PMOS and one
NMOS. Each transistor is ON to drive the output to the appropriate
level

* Open-drain output mode: it does not use the PMOS transistor.

* The control of the two transistors is done through the GPIO port
output type register (GPIOx_OTYPER)

STUDENTS-HUB.com

https://students-hub.com

GPIO modes description

Push-Pull
I—Ougutﬁver_ _____ \ED I
| O‘N |
1 | 44 P-MOS I
Output
| control OFF |
—| N-MOS
| |
V
b e e e e e e e e Si e e e v
Open Drain

control

|
| Output
|
|

STUDENTS-HUB.com

https://students-hub.com

GPIO modes description

STUDENTS-HUB.com

Figure 30. Alternate function configuration

-—_———— =
To on-chip Alternate function input |
peripheral
8 | on
o |
Read
< 4 | e
=
8 | TTL Schmitt
& 2 trigner
B = |
, Y Input driver
Write = - L IMRLRCmver
e o
ul [T _—— — — —
2 o Moutput driver
T = |
n 5
5| %3
= _| ,l Output
= | control
3
o

Readwrite
«

From on-chip
peripheral

Alternate function autput

—[nMos

push-pull or
Ves open-drain

protection
dinde

11O pin

protection
diode

ai15842b

https://students-hub.com

GPIO modes description

Alternate functions

* On some STM32 GPIO pins, the user has the possibility to select alternate
functions inputs / outputs.

* Each pin is multiplexed with up to sixteen peripheral functions such as
communication interfaces (SPl, UART, 12C, USB, CAN, LCD and others),

timers, debug interface, and others.

* The alternate function of the selected pin is configured through two
registers:
* GPIOx_AFRL (for pin 0 to 7)
 GPIOx_AFRH (for pin 8 to 15)

* To know which functions are multiplexed on each GPIO pin, refer to the
device datasheet.

STUDENTS-HUB.com

https://students-hub.com

GPIO modes description

* When the |/O port is programmed as alternate function mode:
* The output buffer can be configured in open-drain or push-pull mode

* The output buffer is driven by the signals coming from the peripheral (transmitter
enable and data)

* The Schmitt trigger input is activated

* The pull-up and pull-down resistors activations depend on the value in the register
GPIOx_PUPDR

* The data present on the I/O pin are sampled into the input data register at
each AHB clock cycle.

* A read access to the input data register provides the I/0O state.
 Alternate functions

STUDENTS-HUB.com

https://students-hub.com

GPIO modes description

STUDENTS-HUB.com

Figure 31. High impedance-analog configuration

r—— - - - - - - - — T
To on-chip ‘Analog | |
peripheral | |
‘i l off l
< Read o | |
= 0
" © | I Voo
2 § | TTL Schmitt |
GE; - | trigger | protection
Write - = diode
— @ g (Input driver r
= =2 I/O pin
& £ r T
= =
“ g l l protection
2 diode
o
E | . |]
Read/write O | | ss
| |
From on-chip Analog L - - - - — — — — — | = — J

peripheral

ai15843

https://students-hub.com

GPIO modes description

Analog configuration

* Few STM32 GPIO pins can be configured in analog mode which allows
the use of ADC, DAC, OPAMP, and COMP internal peripherals. To use a
GPIO pin in analog mode, the following register are considered:

 GPIOX_MODER to select the mode (Input, Output, Alternate, Analog)

* GPIOXx_ASCR to select the required function ADC, DAC, OPAMP, or
COMP

STUDENTS-HUB.com

https://students-hub.com

GPIO modes description

When the I/O port is programmed in an analog configuration:
e The output buffer is disabled

e The Schmitt trigger input is deactivated, providing zero consumption for
every analog value of the I/O pin. The output of the Schmitt trigger is
forced to a constant value (0).

e The pull-up and pull-down resistors are disabled by hardware
* Read access to the input data register gets the value 0.

* Note: Fore STM32F40XX MCUs, in the analog configuration, the /0
pins cannot be 5 Volt tolerant.

STUDENTS-HUB.com

https://students-hub.com

Tips and Best Practices- Digital I/0

Switch Debouncing

* Switches and push-buttons are mechanical
devices that have two or more sets of
electrical contacts

—_— b Cl0OSEC

* The most common way of input interfacing a ¢, \= open--sv. HaHorLogc
switch (or push button) to an electronic \i Closed = Ov. LOW or Logic 0°
circuit is via a pull-up resistor to the supply "
voltage as shown vo

— open

* mechanical switches have a common
problem called “contact bounce” Ve

Gnd

STUDENTS-HUB.com

https://students-hub.com

Tips and Best Practices- Digital I/0

Switch Debouncing

* To solve this issue there is two way:
* Hardware
* Software

4.7 k ohm 74HC14
470 k ohm

* The usual hardware way is to build a low
pass filter. Sometimes you will find

a Schmitt-trigger after the RC filter, to avoid - o
hysteresis.

STUDENTS-HUB.com

https://students-hub.com

Tips and Best Practices- Digital I/0

Driving LEDS thre HIGH hcti:e5$DW
* A simple method for driving a low-power I i 1
LED can be wired directly to a GPIO S\ESD
* A white LED needs a typical ~20 mA current VAR \”R?
under a typical 3.3 V supply N 330R
* As STM32 devices maximum sink current is 25 o
mA, there is not enough margin to directly drive
a LED

e Usually, you need to use a transistor and to

place a resistor in series with the LED to set the
forward current

STUDENTS-HUB.com

https://students-hub.com

Tips and Best Practices- Digital I/0

Optocouplers

* Optocouplers (or optoisolator) create a safe
connection between high-voltage equipment and

microcontrollers with a means of complete electrical
insulation.

MCU

R1

Optocoupler

* An Optocoupler is an electronic component with an
LED and photo-sensitive device, such as a

|
I
photodiode or phototransistor encased in the same i
package <

* The advantage here is that the optical switch can be
used for input interfacing harmful voltage levels
onto the input pins of microcontrollers

STUDENTS-HUB.com

D2
_____________ 1
r N?143 RLY1
|

s e — — — — — — —— — —— — —

https://students-hub.com

Reset and Clock Control (RCC) in STM32

Design by
Tt Dabic ntwitace SFMicroelectronics
9 Flash SRAM <« Clock ..
<G | ARM® Cortex® - M4 Core (Instructions) (Data) Generation A module inside
3 (with DSP extension) ; l > < mana ges the
Designed by ARM® _I_ /_\ & system clock
5 2 i | Clock Signal
o o 2 |
@ % = |
Designed by STMicroelectronics ’ [|
(Based on ARM®AMPA) _5, ‘ Multilayer Advance High Performance Bus (AHB) Matrix ’ AHBBritggI:PB 1
L —
y N
A e
<A ‘
< Advanced Peripheral Bus
DAC | |PWM| |Timer 12C UART RTC| |ADC| |GPIO SP1

-
Vo ol T

STUDENTS-HUB.com

https://students-hub.com

Reset and Clock Control (RCC) in STM32

 The RCC block in STM32 microcontrollers manages the system clock and reset
operations.

* Provides the main clock sources and distributes clocks to various peripherals.

* Clock Sources:

HSI (High-Speed Internal) — internal RC oscillator.

HSE (High-Speed External) — external crystal oscillator.

LSI (Low-Speed Internal) — low-power internal oscillator for low-speed operations.
LSE (Low-Speed External) — external crystal for Real-Time Clock (RTC).

PLL (Phase-Locked Loop) — generates higher frequencies by multiplying input clock.

STUDENTS-HUB.com

https://students-hub.com

Reset and Clock Control (RCC) in STM32

Clock Trees: ‘ o [[i —
= AHB (Advanced High-Performance Bus): for ST,
core and high-speed peripherals. | Sy s
i "B{150] PIO PORT B . L rces | me|| PORFDR
= APB1 / APB2 (Advanced Peripheral Bus): ‘ ” . %
. POj150] __GPIO PORT C .
for general-purpose peripherals and low- s A amororo | oo oo
Speed peripherals- [150] GPIOPORTE B L.. IWDGﬂ =
Frsal GPIOPORTF e
* Important Note!! | (1T | [Pl o 1{
5 3 d S—
: : . I H ' S .
* In STM32 microcontrollers, peripheral clocks, _, | i
including those for GPIO ports, are disabled by s ==
{8} Settings
=
default to save power. | | H e

* To use a peripheral like a GPIO port, you must
explicitly enable its clock in the RCC before

configuring or using it.

STUDENTS-HUB.com

https://students-hub.com

Reset and Clock Control (RCC) in STM32

7.3.10 RCC AHB1 peripheral clock enable register (RCC_AHB1ENR)
Address offset: 0x30
Reset value: 0x0010 0000
Access: no wait state, word, half-word and byte access.
k1| 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
OTGH
s OTGH :g;'.:.dp ﬁE{;rFT:'E .»EC.I-':'-I)":'E ETHMA DMAZE | DMA1E | CCMDAT Res BKPSR
Reser- | ULPIE | SEN |"C M N CEN Reserved N N | ARAMEN * | AMEN | Reserved
ved M
nw w w w v L n i) w
15 14 13 12 1 10 9 8 T & 5 4 3 2 1 0
CRCE GPIOIE | GPIOH | GPIOG | GPIOFE GPIOEEN GPIOD | GPIOC | GPIO | GPIO
Reserved N Reserved N EN EN N EN EN | BEN | AEN
w w w nw W w mw w nw w

Bit2 GPIOCEN: |O port C clock enable
Set and cleared by software.
0: 1O port C clock disabled
1: 10 port C clock enabled

Bit 1 GPIOBEN: IO port B clock enable
Set and cleared by software.

0: 10 port B clock disabled
1: 10 port B clock enabled

Bit 0 GPIOAEN: |O port A clock enable
Set and cleared by software.

0: 10 port A clock disabled
1: 10 port A clock enabled

STUDENTS-HUB.com

https://students-hub.com

GPIO Configuration Example

For a better understanding of how microcontrollers function through programming, it’s crucial
to explore different programming approaches.

e Bare-metal programming (register-based)

* You need to carefully review the datasheet and reference manual in order to fully understand all the
different hardware configurations and how they operate in this step.

* Using CMSIS library

* Cortex Microcontroller Software Interface Standard (CMSIS) library can be used at this step

* Using Low-level library

 When you want to work at a relatively low level but with a more organized and manufacturer-specific
API.

* Low-level libraries, sometimes provided by the microcontroller manufacturer, offer a set of functions
and macros to configure and control the microcontroller's hardware.

* Using High-level Library (HAL)

* HAL is a higher-level library that abstracts the microcontroller's hardware, providing a more user-
friendly API for developers

STUDENTS-HUB.com

https://students-hub.com

GPIO Configuration Example

* The following slides will show an example of implementing the
previous approaches to blink a LED using STM32F4DISCOVERY

kit. However, you can use any STM32 board.

g

7961

/W0 IS MMM

=
=1

2
SRE%
SR
S
5

wn
-
3
w
2
£
B
3
()
(]
<
1]
-
~<

—

STUDENTS-HUB.com

https://students-hub.com

GPIO Configuration Example

* Required documents:
* STM32F407 datasheet
* STM32F407 reference manual
 STM32F4DISCOVERY Discovery kit user manual
* STM32F4DISCOVERY Discovery kit schematic diagram

* Required IDE:
e STM32CubelDE

STUDENTS-HUB.com

https://students-hub.com

GPIO Configuration Example

e STM32F4DISCOVERY has LEDs and a User-Button to demonstrate
the digital I/0 features and configurations

VDD

R38 LD4
Not Fitted 100 < || Green /}'f

- p12 R40
LED4 [PDI2 PDI12 A l

o
C38

-TT

SW-PUSH-CMS’
B1
-
o
L

._IO O
b AR A
-

100nF | 36 Orange 4
-3 ¥ 20]
PAO R3S e LEDS b >R =
CPAD D>————C o —— W b
SB20 310 ' DS P
R39 Red Vol
220K LED5 oE pD14 R4l 1 N 2
680
— LD6 P
= Blue 4
USER & WAKE-UP Button LED6 —pp3 PDI5 R4Z 1 N 2
680 _T_

STUDENTS-HUB.com

https://students-hub.com

GPIO Configuration Example

* Bare-metal programming (register-based)

1. Locate registers
* Check the Memory Map to know the address of Peripherals:

Bus____ |Boundary Address

AHB1 0x4002 3800 - 0x4002 3BFF RCC (Clock)
AHB1 0x4002 0COO0 - 0x4002 OFFF GPIOD (I/0)

* So, define the base addresses:

#define RCC_BASE 0x40023800UL
#define GPIOD_BASE 0x40020CO0UL

STUDENTS-HUB.com

https://students-hub.com

GPIO Configuration Example

2. Configure Clock

* Check the Memory Map to know the address of Peripherals:
RCC clock control register (RCC_CR)

Address offset: 0x00
Reset value: Ox0000 XX83 where X is undefined.

* HSION is enabled by default. HSI is 16 MHz.

RCC clock configuration register (RCC_CFGR)

Address offset: 0x08
Reset value: 0x0000 0000

» HSI oscillator is used as the system clock, no divider activated. System is clocked at 16 MHz (equal
to HSI’s Frequency)

STUDENTS-HUB.com

https://students-hub.com

GPIO Configuration Example

 The GPIOD is on AHB1 bus, therefore, check the clock on AHB Bus:

RCC AHB1 peripheral clock enable register (RCC_AHB1ENR)

Address offset: Ox30
Reset value: 0x0010 0000

* GPIO Clock is disabled by default. Need to enable GPIODEN bit:

#define RCC_AHB1ENR RCC_BASE + 0x30
*(uint32_t *)(RCC_AHB1ENR) |= (1 << 3);

STUDENTS-HUB.com

https://students-hub.com

GPIO Configuration Example

3. Configure GPIO Port and Pin

GPIO port mode register (GPIOx_MODER) (x = A..INJ/K)
Address offset. 0x00

Reset values:

« 0OxAB00 0000 for port A

. 0X0000 0280 for port B #tdefine GPIOA_ MODER GPIOD BASE + 0x00
. 00000 0000 for ofher ports #define GPIOA BSRR GPIOD BASE + 0x18
GPIO port bit set/reset register (GPIOx_BSRR) (x = A..IIJ/K)
| *(uint32_t *)(GPIOD_MODER = (1 << 30);
Resetvalue. 0x0000 6000 _ _ *(uint32_t *)(GPIOD_BSRR) |= (1 << (15));
* Do the same reading and understanding as we do with *(uint32_t *)(GPIOD BSRR) |[= (1 <«
Clock registers, here are what we have to do: (15+16));

e Set Pin 15 on Port D to Output mode on bit [31:30] of
the GPIOA_MODER register

e To output HIGH value, set bit 15 of the GPIOA_BSRR register
e To output LOW value, set bit 31 of the GPIOA_BSRR register

STUDENTS-HUB.com

https://students-hub.com

GPIO Configuration Example

4. Delay

* Since we know that the MICU is operating at 16 MHz (HSI), For a delay of 50 ms, suppose that
every loop requires 10 instruction cycles, the total number of iterations is

0.05 x16, 000,000
10

#define DELAY_MAX 80000;
for(uint32_t i=DELAY_MAX; i--;);

STUDENTS-HUB.com

https://students-hub.com

GPIO Configuration Example

STUDENTS-HUB.com

4. The complete program

* To wrap up all the previous slides, the code will be:

#tinclude <stdint.h>

/* Register Addresses*/
/* Clock */

#define RCC_BASE
#define RCC_AHB1ENR

/* GPIO */

#define GPIOD_BASE
#define GPIOD_MODER
#define GPIOD_BSRR

/* delay counter */
#define DELAY_MAX

0x40023800UL
RCC_BASE + 0x30

0x40020C00UL
GPIOD_BASE + 0x00
GPIOD BASE + 0x18

80000

int main(void){
/* turn on clock on GPIOD */
*(uint32_t *)(RCC_AHB1ENR) |= (1 << 3);

/* set PD15 to output mode */
*(uint32_t *)(GPIOD_MODER) &= ~(1 << 31);

*(uint32_t *)(GPIOD_MODER) |= (1 << 30);
while(1) {
/* set HIGH value on pin PD15 */
*(uint32_t *)(GPIOD BSRR) |= (1 << 15);

for(uint32_t i=DELAY_MAX; i--;);

/* set LOW value on pin PD15 */
*(uint32_t *)(GPIOD_BSRR) |= (1 <<(15+16));
for(uint32_t i=DELAY_MAX; i--;);

https://students-hub.com

GPIO Configuration Example

* CMSIS Code Example

1. Integrate the CMSIS library
* We need to attach the required libraries (provided by ARM) to our project
* Download CMSIS Core, the latest version is CMSIS 5.9.0 (Link)
* Copy the header filesin ARM.CMSIS.5.9.0.pack/CMSIS/Core/Include to your project
* Download CMSIS-Pack for the target MCU from (Link)
* Copy the header files in the following folder to your project file:
Keil.STM32F4xx DFP.2.17.1\Drivers\CMSIS\Device\ST\STM32F4xx\Include
* Add the following header paths to the project path and symbols
CMSIS/Core/Include and CMSIS/Device/ST/STM32F4xx/Include

STUDENTS-HUB.com

https://github.com/ARM-software/CMSIS_5/releases/tag/5.9.0
https://developer.arm.com/embedded/cmsis/cmsis-packs/devices/
https://students-hub.com

GPIO Configuration Example

1. Configure Clock

* Use the RCC peripheral, set the bit RCC_AHB1ENR_GPIOAEN in the AHB1ENR register to
enable clock for GPIOA

RCC->AHB1ENR |= RCC_AHB1ENR_GPIODEN;

2. Configure GPIO Port and Pin

GPIOD->MODER &= ~GPIO MODER_MODER15_1;
GPIOD->MODER |= GPIO_MODER_MODER15_9;
GPIOD->BSRR |= GPIO_BSRR_BS_15;
GPIOD->BSRR |= GPIO BSRR_BR_15;

STUDENTS-HUB.com

https://students-hub.com

GPIO Configuration Example

3. The Complete program #include <stdint.h>

#include <stm32f4xx.h>
/* delay counter */
#define DELAY_MAX 50000

int main(void){
/* turn on clock on GPIOD */
RCC->AHB1ENR |= RCC_AHB1ENR_GPIODEN;

/* set PD15 to output mode */
GPIOD->MODER &= ~GPIO_MODER_MODE15 1;
GPIOD->MODER |= GPIO MODER _MODE15 ©;

while(1) {
/* set HIGH value on pin PD15 */
GPIOD->BSRR |= GPIO_BSRR_BS 15;
for(uint32_t i=DELAY_MAX; i--;);

/* set LOW value on pin PD15 */
GPIOD->BSRR |= GPIO_BSRR_BR_15;
for(uint32_t i=DELAY_MAX; i--;);

STUDENTS-HUB.com

https://students-hub.com

GPIO Configuration Example

* Low-Level Generated Code Example

1. Configure the GPIO using the GUI tool
provided by CubelDE

2. Make sure the Driver Selector is set to LL
3. Write the program using LL APIs

STUDENTS-HUB.com

int main(void)

{

/* Initialization begin */
/*.*/
/*. %/

/¥ Initialization end */

/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */
LL_GPIO_SetOutputPin(LED_GPIO Port, LED Pin);
LL_mDelay(DELAY_MAX);
LL_GPIO ResetOutputPin(LED_GPIO Port, LED Pin);
LL_mDelay(DELAY_MAX);

}
/* USER CODE END 3 */

https://students-hub.com

GPIO Configuration Example

int main(void)

 HAL Generated Code Example {
/* Initialization begin */
1. Configure the GPIO using the GUI tool N

/*.*

prOVided by CUbelDE /* Initialization end */
2. Make sure the Driver Selector is set to R R

/* USER CODE BEGIN WHILE */

HAL while (1)
{
/* USER CODE END WHILE */

3. Write the program using HAL APIs

/* USER CODE BEGIN 3 */

HAL_GPIO WritePin(LED_GPIO Port, LED Pin,SET);
HAL Delay(59);

HAL GPIO WritePin(LED_GPIO_Port, LED Pin,RESET);
HAL Delay(50);

}
/* USER CODE END 3 */

STUDENTS-HUB.com

https://students-hub.com

Questions?

https://students-hub.com

	Slide 1: General Purpose input output (GPIO)
	Slide 2: STM32F4
	Slide 3: Ports and Pins in MCU
	Slide 4: IC Packages
	Slide 5: What is a general-purpose input/output (GPIO)?
	Slide 6: What is a general-purpose input/output (GPIO)?
	Slide 7: GPIO Structures
	Slide 8: What’s inside a port?
	Slide 9: Configuring GPIO Pins
	Slide 10: GPIO Registers
	Slide 11: GPIO Registers
	Slide 12: GPIO Registers
	Slide 13: GPIO Registers
	Slide 14: GPIO modes description
	Slide 15: GPIO modes description
	Slide 16: GPIO modes description
	Slide 17: GPIO modes description
	Slide 18: GPIO modes description
	Slide 19: GPIO modes description
	Slide 20: GPIO modes description
	Slide 21: GPIO modes description
	Slide 22: GPIO modes description
	Slide 23: GPIO modes description
	Slide 24: GPIO modes description
	Slide 25: GPIO modes description
	Slide 26: GPIO modes description
	Slide 27: GPIO modes description
	Slide 28: Tips and Best Practices- Digital I/O
	Slide 29: Tips and Best Practices- Digital I/O
	Slide 30: Tips and Best Practices- Digital I/O
	Slide 31: Tips and Best Practices- Digital I/O
	Slide 32: Reset and Clock Control (RCC) in STM32
	Slide 33: Reset and Clock Control (RCC) in STM32
	Slide 34: Reset and Clock Control (RCC) in STM32
	Slide 35: Reset and Clock Control (RCC) in STM32
	Slide 36: GPIO Configuration Example
	Slide 37: GPIO Configuration Example
	Slide 38: GPIO Configuration Example
	Slide 39: GPIO Configuration Example
	Slide 40: GPIO Configuration Example
	Slide 41: GPIO Configuration Example
	Slide 42: GPIO Configuration Example
	Slide 43: GPIO Configuration Example
	Slide 44: GPIO Configuration Example
	Slide 45: GPIO Configuration Example
	Slide 46: GPIO Configuration Example
	Slide 47: GPIO Configuration Example
	Slide 48: GPIO Configuration Example
	Slide 49: GPIO Configuration Example
	Slide 50: GPIO Configuration Example
	Slide 51: Questions?

