GENOME STRUCTURE

Course: Molecular Biology (BIOL 333)

Instructor: Dr. Mahmoud A. Srour

Textbook:

Watson J, et al. (2014). Molecular Biology of the Gene,

7th ed. Chapter 8

Introduction

- Inside the cell (prokaryote or eukaryote) each DNA molecule and its associated protein is called a chromosome.
- ☐ Half of the molecular mass of an eukaryotic chromosome is protein.
- □ In eukaryotic cells, a given region of DNA with its associated proteins is called chromatin,
- □ Chromatin = DNA + proteins (histone and non-histone proteins)

- Packaging of DNA into chromosomes achieves several functions including"
 - The chromosome is a compact form of DNA that fits inside cells
 - Protects the DNA from damage
 - Only DNA packaged into a chromosome can be transmitted efficiently to both daughter cells when a cell divides.
 - The chromosome confers an overall organization to each molecule of DNA

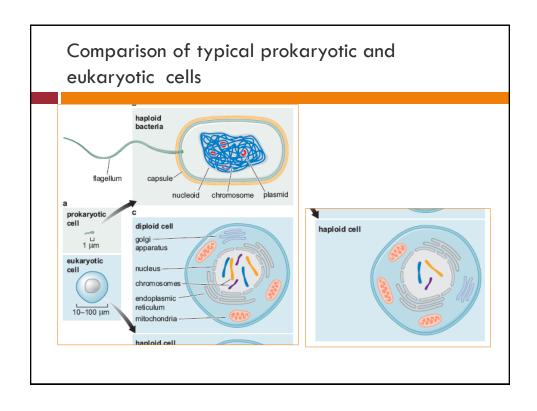
How large is the human genome?

- □ Human haploid genome is ~3X10⁹ bp
- □ The average thickness of each bp is 0.34 nm.
- \Box If the DNA molecules in a haploid set of chromosomes were laid out end to end, the total length of DNA would be 10^9 nm, or 1 m!
- □ For a diploid cell (as human cells typically are), this length is doubled to 2 m.
- □ The diameter of a typical human cell nucleus is only 10-15 um, thus it is obvious that the DNA must be compacted by many orders of magnitude to fit in such a small space.
- □ How is this achieved?

Nucleus vs. a tennis ball??

- □ If the 2m DNA is transformed to 2 km thread (or 4 km when we consider it as a duplex), and the diameter of nucleus is transformed from 10 um to 10 cm>
- □ Can you fit this 2 km duplex thread into a tennis ball???

Chromosome diversity: linear vs. circular


Species	Number of Chromosomes	Chromosome Copy Number	Form of Chromosome(s)	Genome Size (Mb)
Prokaryotes				
Mycoplasma genitalium	1	1	Circular	0.58
Escherichia coli K-12	1	1	Circular	4.6
Agrobacterium tumefaciens	4	1	3 circular, 1 linear	5.67
Sinorhizobium meliloti	3	1	Circular	6.7
Eukaryotes				
Saccharomyces cerevisiae (budding yeast)	16	1 or 2	Linear	12.1
Schizosaccharomyces pombe (fission yeast)	3	1 or 2	Linear	12.5
Caenorhabditis elegans (roundworm)	6	2	Linear	97
Arabidopsis thaliana (weed)	5	2	Linear	125
Drosophila melanogaster (fruit fly)	4	2	Linear	180
Tetrahymena thermophilus (protozoa)				
Micronucleus	5	2	Linear	125
Macronucleus	225	10-10,000	Linear	
Fugu rubripes (fish)	22	2	Linear	393
Mus musculus (mouse)	19+ X and Y	2	Linear	2600
Homo sapiens	22+ X and Y	2	Linear	3200

Every cell maintains a characteristic number of chromosome

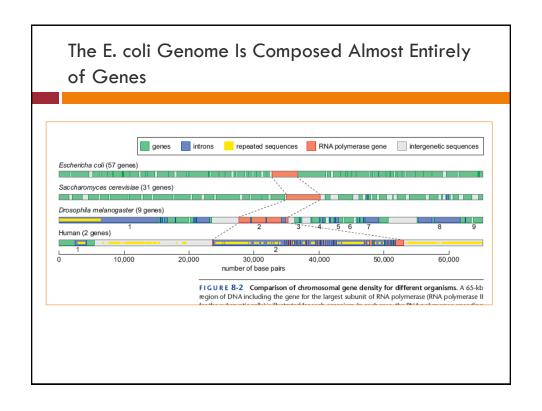
- Prokaryotic cells typically have only one complete copy of their chromosome(s) that is packaged into a structure called the nucleoid
- unlike chromosomal DNA, plasmids are often present in many complete copies per cell
- ☐ The majority of eukaryotic cells are diploid; that is, they contain two copies of each chromosome.
- □ The two copies of a given chromosome are called homologs—one being derived from each parent

Every cell maintains a characteristic number of chromosome

- A subset of eukaryotic cells are either haploid or polyploid
- □ In extreme cases, there can be hundreds or even thousands of copies of each chromosome
- For example, megakaryocytes are specialized polyploid cells (about 28 copies of each chromosome) that produce thousands of platelets,

enome size is relat	ed to the co	mplexity of	the organ
TABLE 8-2 Comparison of the Gene Density in Different Organisms' Genomes			
Species	Genome Size (Mb)	Approximate Number of Genes	Gene Density (genes/Mb)
Prokaryotes (bacteria)			
Mycoplasma genitalium	0.58	500	860
Streptococcus pneumoniae	2.2	2300	1060
Escherichia coli K-12	4.6	4400	950
Agrobacterium tumefaciens	5.7	5400	960
Sinorhizobium meliloti	6.7	6200	930
Eukaryotes (animals)			
Fungi			
Saccharomyces cerevisiae	12	5800	480
Schizosaccharomyces pombe	12	4900	410
Protozoa			
Tetrahymena thermophila	125	27,000	220
Invertebrates			
Caenorhabditis elegans	103	20,000	190
Drosophila melanogaster	180	14,700	82
Ciona intestinalis	160	16,000	100
Locusta migratoria	5000	nd	nd

Table 8-2/cont'd


TABLE 8-2 Comparison of the Gene Density in Different Organisms' Genomes

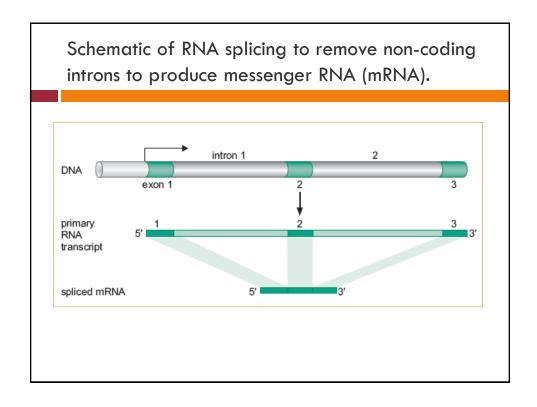
Species	Genome Size (Mb)	Approximate Number of Genes	Gene Density (genes/Mb)
Vertebrates	****	116	114
Fugu rubripes (pufferfish)	393	22,000	56
Homo sapiens	3200	20,000	6.25
Mus musculus (mouse)	2600	22,000	8.5
Plants			
Arabidopsis thaliana	120	26,500	220
Oryza sativa (rice)	430	~45,000	~100
Zea mays (corn)	2200	>45,000	>20
Triticum aestivum (wheat)	16,000	nd	nd
Fritillaria assyriaca (tulip)	~120,000	nd	nd

nd, Not determined.

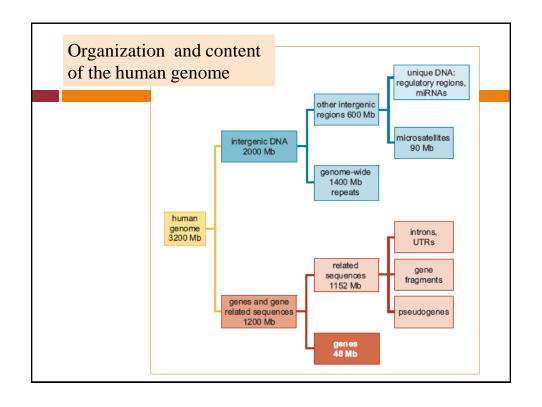
Genome size and biological complexity

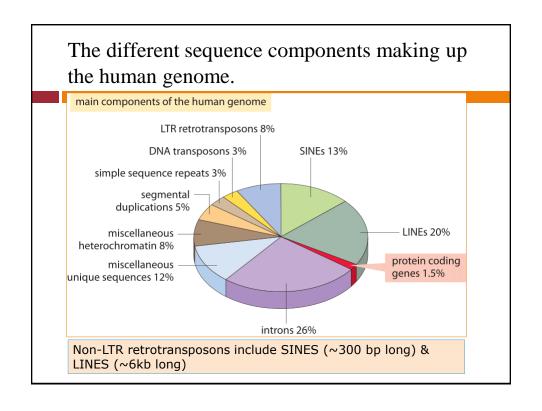
- □ Although there is a rough correlation between genome size and organism complexity, this relationship is far from perfect.
- □ For example: the rice genome is about 40 times smaller than that of wheat examples point out that the number of genes, rather than genome size, is more closely related to organism complexity.

More Complex Organisms Have Decreased Gene Density


- What explains the dramatically different genome sizes of organisms of apparently similar complexity (such as the fruit fly and locust)?
- □ The differences are largely related to gene density
- There is a roughly inverse correlation between organism complexity and gene density—the less complex the organism, the higher the gene density
- For example, the highest gene densities are found for viruses that, in some instances, use both strands of the DNA to encode overlapping genes.

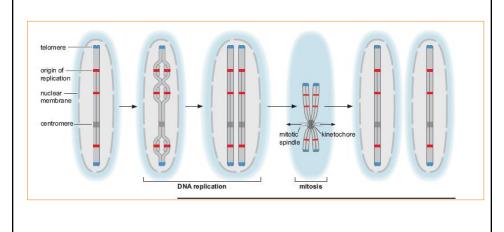
Fruit fly vs. Locust




Genes Make Up Only a Small Proportion of the Eukaryotic Chromosomal DNA

- Two factors contribute to the decreased gene density observed in eukaryotic cells:
 - increases in gene size and increases in the DNA between genes, called intergenic sequences
 - protein-encoding genes in eukaryotes frequently have discontinuous protein-coding regions
- □ For example, the average transcribed region of a human gene is 27 kb (this should not be confused with the gene density), whereas the average protein-coding region of a human gene is 1.3 kb.

ADEL OF CONTRIBUTION	8-3 Contribution of Introns and Repeated Sequences to Different Genomes			
Species	Gene Density (genes/Mb)	Average Number of Introns per Gene	% of Repetitive DNA	
Prokaryotes (bacteria)				
Escherichia coli K-12	950	0	<1	
Eukaryotes (animals)				
Fungi				
Saccharomyces cerevisiae	480	0.04	3.4	
Invertebrates				
Caenorhabditis elegans	190	5	6.3	
Drosophila melanogaster	82	3	12	
Vertebrates				
Fugu rubripes	56	5	2.7	
Homo sapiens	6.25	6	46	
Plants				
Arabidopsis thaliana	220	3	nd	
Oryza sativa (rice)	~100	nd	42	


Processed pseudogenes arise from integration of reverse-transcribed messenger RNAs.

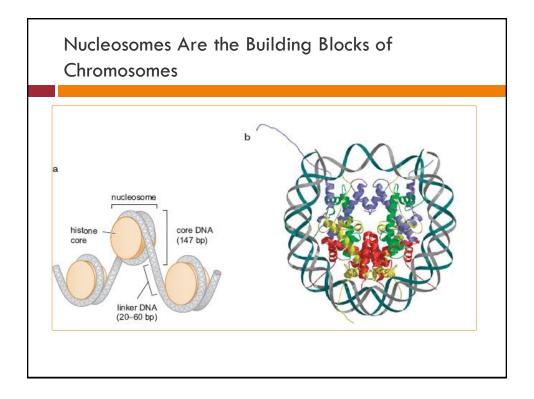
The Majority of Human Intergenic Sequences Are Composed of Repetitive DNA

- Almost half of the human genome is composed of DNA sequences that are repeated many times in the genome.
 There are two general classes of repeated DNA:
 - Microsatellite DNA is composed of very short (<13 bp), tandemly repeated sequences. The most common are dinucleotide repeats (e.g., CACACACACACACA) & represent nearly 3% of the human genome.
 - □ Genome-wide repeats (transposable elements) are much larger than their microsatellite counterparts. Each genome-wide repeat unit is >100 bp in length and many are >1 kb.

Eukaryotic Chromosomes Require Centromeres, Telomeres, and Origins of Replication to Be Maintained during Cell Division

Chromosome elements

- Origins of replication are the sites at which the DNA replication machinery assembles and replication is initiated.
 - □ Eukaryotic chromosomes, have ori's every 30–40 kb
 - Prokaryotic chromosomes typically have only a single ori
 - Ori's are found in non-coding regions
- □ **Centromeres** are required for the correct segregation of the chromosomes after DNA replication


Chromosome elements (cont'd)

- □ Telomeres are located at the two ends of a linear chromosome, they perform 2 functions:
 - Telomeric proteins distinguish the natural ends of the chromosome from sites of chromosome breakage and other DNA breaks in the cell
 - Telomeres act as specialized origins of replication that allow the cell to replicate the ends of the chromosomes

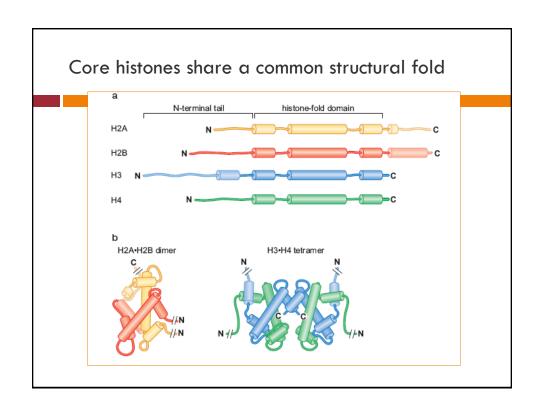
Nucleosomes Are the Building Blocks of Chromosomes

- The majority of the DNA in eukaryotic cells is packaged into nucleosomes. Each nucleosome is composed of a core of eight histone proteins and the DNA wrapped around them
- □ the core DNA, is wound about 1.65 times around the histone octamer
- □ The core DNA is 147-bp long. The length of core is the same in all eukaryotic cells. In contrast, the length of the linker DNA between nucleosomes is variable. Typically, this distance is 20–60 bp, and each eukaryote has a characteristic average linker DNA length

□ In any cell, there are stretches of DNA that are not packaged into nucleosomes. Typically, these are regions of DNA engaged in gene expression, replication, or recombination

A B L E O-4 Average Length	s of Linker DNA in Various Organ	131113
Species	Nucleosome Repeat Length (bp)	Average Linker DNA Length (bp)
Saccharomyces cerevisiae	160-165	13-18
Sea urchin (sperm)	~260	~110
Drosophila melanogaster	~180	~33
Human	185-200	38-53

Histones Are Small, Positively Charged Proteins

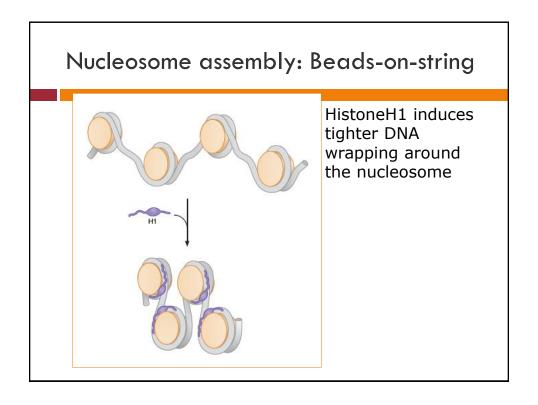

TABLE 8-5 General Properties of the Histones

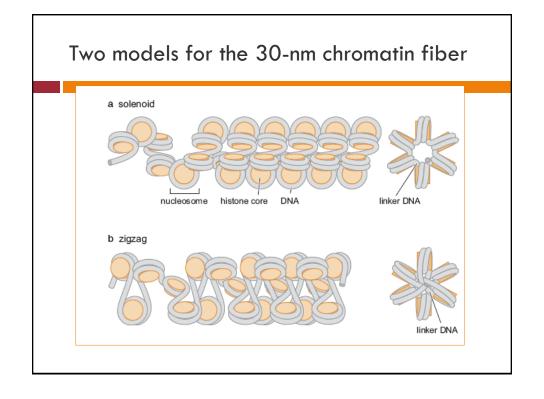
Histone Type	Histone	Molecular Weight (M _r)	Lysine and Arginine (%)
Core histones	H2A	14,000	20
	H2B	13,900	22
	H3	15,400	23
	H4	11,400	24
Linker histone	H1	20,800	32

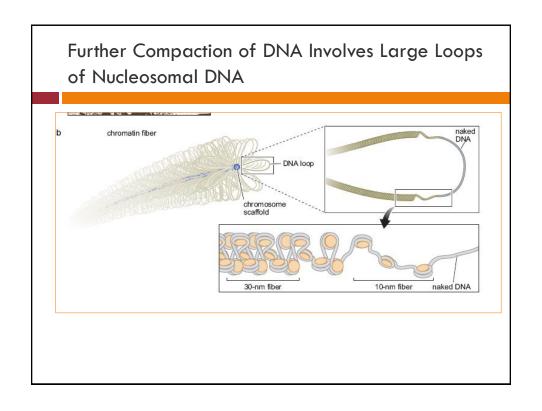
Histones have a high content of positively charged amino acids. At least 20% of the residues in each histone are either lysine or arginine.

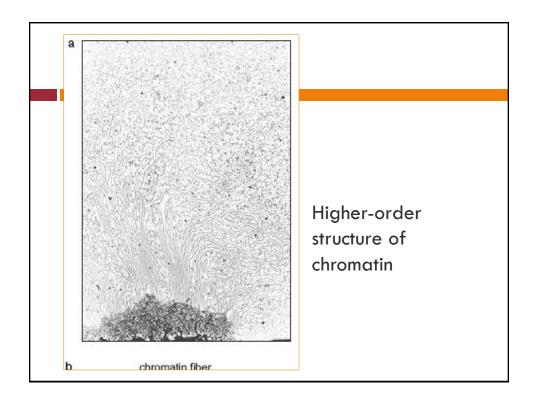
Histone proteins

- A conserved region found in every core histone, called the histone-fold domain, mediates the assembly of these histone-only intermediates
- ☐ The core histones each have an amino-terminal extension, called a **tail** because it lacks a defined structure and is accessible within the intact nucleosome.
- □ Tails are the sites of extensive posttranslational modifications that alter the function of individual nucleosomes. These modifications include phosphorylation, acetylation, and methylation on serine, lysine, and arginine residues

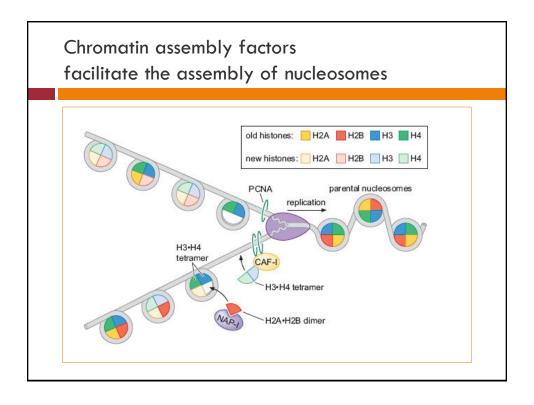


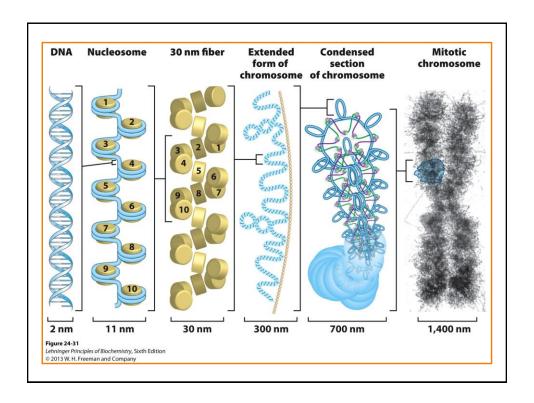

Many DNA Sequence–Independent Contacts Mediate the Interaction between the Core Histones and DNA


 The association of DNA with the nucleosome is mediated by a large number (about 40) of hydrogen bonds between the histones and the DNA


Higher-order chromatin structure

- □ Heterochromatin and Euchromatin:
- □ Heterochromatic regions of chrom had very limited gene expression
- □ Euchromatic regions showed higher levels of gene expression





Nucleosome assembly

 Nucleosomes Are Assembled Immediately after DNA Replication

