

Birzeit University

Chemistry Department CHEM 141

Prpared by: Dr. H	apters 7, 8, 9 and 1 Iijazi Abu Ali roved by Dr. Saleh	1 st Sem. 2024-2025 iab Qadah				
Please read ead	ch question careful	ly before you answei	r, and choose th	e best fit answer		
1. An element wi in which elem	_	n configuration for its	outermost electro	ns of ns ² np ¹ would		
A) 2A	B) 3A	C) 4A	D) 5A	E) 8A		
	nd group of the perio [Kr]5s²4d¹⁰5p²?	dic table would you fin	d the element witl	n the electron		
A) row 4, D) row 5,		B) row 4, group 5A E) none of the above	C) row 5, group 4A			
A) the p	n atomic orbital is asso- principal quantum num	aber(n).				
	angular momentum q nagnetic quantum num					
D) the s	spin quantum number ((m_s) .				
E) the r	nagnetic and spin quar	ntum numbers, together.				
4. How many elec	ctrons are in the 4p or	rbitals of selenium (Se)	?			
A) 0	B) 2	C) 4	D) 5	E) 6		
	ect set of quantum nu cation for strontium,	imbers (n, l, m_l, m_s) for $Sr.$	the first electron	removed in the		
		$\frac{1}{2}$ C) 5, 0, 1, $\frac{1}{2}$	D) 5, 1, 1, $\frac{1}{2}$	E) 5, 0, 0, $-\frac{1}{2}$		
6. Which two electrons properties?	ctron configurations 1	represent elements that	would have simil	ar chemical		
$(1) 1s^2 2s^2 2$	$2p^4$ (2) $1s^2 2s^2 2p^5$	$(3) [Ar] 4s^2 3d^5$	$(4) [Ar] 4s^2 3d^{10} 4p^5$			
A) (1) and	d (2) B) (1) and (3)	3) C) (2) and (3)	D) (2) and (4)	E) (3) and (4)		

be

E) N	None of the a	above.			,		·	
8. The elec	tron configu	ıration of a	copper(I) ic	on is				
A)	$[Ar]4s^23d^8$	B) [A1	²]4s ¹ 3d ⁹	C) [A	r]3d ¹⁰	D) [Ar]4	$s^2 3d^6 4p^2$	E) [Kr]
9. Which o	f the atoms	listed below	has the sm	allest ra	dius?			
A)	Al :	B) P	C) As		D) Te	2	E) Na	
10. Which	of the follov	wing reactio	ns represen	ts the se	cond ioni	zation ener	rgy of nitro	gen?
B)	$N^{2+}(g) \rightarrow$ $N^{2+}(g) + e$ $N(g) \rightarrow N$	$e^- \rightarrow N^+(g)$		D) E)	$N^-(g) + N^+(g) \rightarrow$	$e^- \rightarrow N^{2-}(g)$ $\rightarrow N^{2+}(g) + \epsilon$	r) e=	
$IE_3=2$	750 kJ/mol	$I, IE_4 = 11,$	_	and IE				T ₂ = 1820 kJ/mol, rn of ionization
A)	K	B) Al		C) Cl		D) S	e	E) Kr
12. The ele	ctron affini	ty of fluorin	e is essentia	ally equa	l to			
A) B) C) D) E)	the ionizathe ioniza	ation energy we of the ion tion energy l	ization ener	gy F ⁻ .				
13. Which incorre		ollowing sta	tements abo	out atom	ic structu	re and qua	antum num	bers is
B) The : C) For : D) For	number of o $n = 4$, the lar $n = 4$, the lar	rbitals in a g gest possible a rgest possil	m number of iven f subship value of l in the property of the numbers for the number of the n	ell is 7. s 3. m _l is 2.				ber $n = 3$, is 18. = 1, $m_l = -2$.
14. The Le	wis dot sym	bol for the	calcium ion	is				
A)	: Ca : ²⁺	В) —	Ca—	C) :	Ca : 2+	D) C	a^{2+}	E) Ca

C) F and Cl⁻

D) Cl⁻ and Ca²⁺

7. Which of the following make an isoelectronic pair: Cl^- , O^{2-} , F, Ca^{2+} , Fe^{3+} ?

B) O²⁻ and F

A) Ca²⁺ and Fe³⁺

2

15. Which of the atoms listed below is the *most* electronegative?

- A) Li
- B) Cs
- **C**) **P**
- D) As
- E) Ge

16. The electron dot formula for O₂ shows

- A) a single covalent bond
- B) a double covalent bond
- C) an ionic bond

- D) a total of $8 \times 2 = 16$ electron dots
- E) a total of 32 electron dots

17. Which one of these polar covalent bonds would have the greatest percent ionic character?

- A) H—Br
- B) H—Cl
- C) H-F
- D) H—I

18. A radio wave has a frequency of 8.6×10^8 Hz. What is the energy of one photon of this radiation?

A) $7.7 \times 10^{-43} \,\text{J}$

D) $1.7 \times 10^{-16} \,\mathrm{J}$

B) $2.3 \times 10^{-34} \text{ J}$

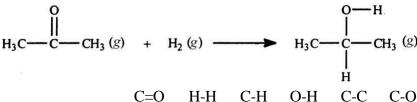
E) $> 10^{-15} \text{ J}$

C) $5.7 \times 10^{-25} \text{ J}$

19. The number of lone electron pairs in the NO₂⁻ ion is .

- A) 4
- B) 5
- **C**) 6
- D) 7
- E) 8

20. The number of resonance structures for the sulfur dioxide molecule that satisfy the octet rule is


- A) 1
- B) 2
- C) 3
- D) 4
- E) None of these

21. The electron group shape of BrCl₃ is

- A) Tetrahedral
- B) Trigonal bipyramidal
- C) T-shape
- D) Sea-saw

E) Distorted trigonal bipyramidal

22. Calculate (in kJ) the standard enthalpy change ΔH° for the reaction written below, using the bond energies given.

Bond: Bond energy(kJ/mol):

H-H 436 C-H 414 O-H C-C 464 347

- A) -484 kJ
- B) -366 kJ
- C) -48 kJ
- D) +48 kJ
- E) +366 kJ

23. What is the wavelength of light having a frequency of 4.8 x 10^{14} s⁻¹ (c=3.0 x 10^8 m/s)?

745

- A) 0.0016 nm
- B) 1600 m
- C) 630 nm
- D) 1600 nm
- E) $6.3 \times 10^{-7} \text{ nm}$

351

- 24. Select the arrangement of electromagnetic radiation which starts with the lowest energy and increases to greatest energy.
 - A) radio, infrared, ultraviolet, gamma rays
 - B) radio, ultraviolet, infrared, gamma rays
 - C) gamma rays, infrared, radio, ultraviolet
 - D) gamma rays, ultraviolet, infrared, radio
 - E) infrared, ultraviolet, radio, gamma rays
- 25. According to VSEPR theory, a molecule with the general formula AX_2E_3 will have a molecular shape.

A)	bent I	3) linear	C) trigonal	planar	D) 1	T-shaped	E)	trigonal	pyramid	al
----	---------------	-----------	-------------	--------	------	----------	----	----------	---------	----