
ENCS3340 - Artificial Intelligence

Artificial Neural Network

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Outline

• Introduction and Motivation

• Neural Network Architecture
• The Perceptron
• MLPs
• Multi-class Perceptron

• Training MLPs

• Choosing Network Structure
• Depth vs Width
• Expressive Power of MLPs

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Artificial Neural Networks

• A neural network can be defined as a model of reasoning based on the
human brain.

• The brain consists of a densely interconnected set of nerve cells, or
basic information-processing units, called neurons.

• The human brain incorporates nearly 10 billion neurons and 60 trillion
connections, synapses, between them.

• By using multiple neurons simultaneously, the brain can perform its
functions much faster than the fastest computers in existence today.

• Each neuron has a very simple structure, but an army of such elements
constitutes a tremendous processing power.

• A neuron consists of a cell body, soma, a number of fibers called
dendrites, and a single long fiber called the axon.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Artificial Neural Networks

• An artificial neural network consists of a number of very
simple processors, also called neurons, which are analogous to
the biological neurons in the brain.

• The neurons are connected by weighted links passing signals
from one neuron to another.

• The output signal is transmitted through the neuron’s outgoing
connection.

• The outgoing connection splits into a number of branches that
transmit the same signal.

• The outgoing branches terminate at the incoming connections
of other neurons in the network.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Artificial Neural Networks
• ANNs can learn from training data and generalize to new

situations and have high expressive power.
• Neural networks have become one of the major thrust areas

recently in various AI tasks including pattern recognition,
prediction, and analysis problems.

• In many problems they have established the state of the art,
often exceeding previous benchmarks by large margins.

• An ANN is usually characterized by
• The way the neuruons are connected to each other.
• The method that is used for the determinations of the connection

strengths or weights.
• The activation function.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Brain vs Computer
• There are approximately 10 billion neurons in the human cortex,

compared with 10’s of thousands of processors in the most
powerful parallel computers

• Each biological neuron is connected to several thousands of other
neurons, similar to the connectivity in powerful parallel
computers

• The typical operating speeds of biological neurons is measured in
milliseconds (10-3 s), while a silicon chip can operate in
nanoseconds (10-9 s)

• The human brain is extremely energy efficient, using
approximately 10-16 joules per operation per second, whereas
the best computers today use around 10-6 joules per operation
per second

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Brain vs Computer
• Tasks that are easy for brains are not easy for computers and vice

versa
• Brains

• Recognizing faces
• Retrieving information based on partial descriptions
• Organizing information (the more information the better the brain

operates)
• Computers

• Arithmetic
• Deductive logic
• Retrieving information based on arbitrary features

• Brains must operate very differently from conventional
computers

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Feedforward Neural Networks (FNNs)
• Feedforward neural networks (FNNs), also known as Multi-Layer Perceptrons

(MLPs), are a type of artificial neural network that consists of multiple layers
of neurons interconnected in a feedforward manner.

• Information flows in one direction, from the input layer through one or more
hidden layers to the output layer.

• The neurons are organized into layers, where each neuron in a layer connects
to every neuron in the next layer.

• Each connection is associated with a weight, and each neuron has an
associated bias.

• The weights of the network are adjusted during training to minimize the error
between the predicted output and the desired output. This is done using a
variety of algorithms, such as backpropagation.

• FNNs are a very versatile type of neural network and can be used for a wide
variety of tasks, including: Classification, Regression, Universal Function
Approximators, Feature Learning,…

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

FNNs General Architecture

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Main Components of FNNs
• Input Layer: The input layer consists of neurons that receive input

features.
• The number of neurons in this layer corresponds to the number of input features.
• Each neuron in the input layer represents a specific feature of the input data.

• Hidden Layers: Hidden layers are intermediary layers between the
input and output layers.
• Each hidden layer consists of multiple neurons that process the information from the

previous layer and pass it on to the next layer.
• The number of hidden layers and the number of neurons in each layer are

hyperparameters that you can adjust based on the complexity of the problem and the
dataset.

• Hidden layers allow FNNs to learn complex hierarchical features and patterns in the
data.

• Neurons (Nodes): Each neuron in a hidden layer or the output layer
receives inputs from the previous layer's neurons, applies weights to
these inputs, and passes the result through an activation function.
• Neurons in the hidden layers often use non-linear activation functions (e.g., ReLU,

sigmoid, tanh) to introduce non-linearity to the model, enabling it to capture complex
relationships in the data.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Main Components of FNNs
• Weights and Biases: Each connection between neurons has an

associated weight that determines the strength of the connection.
• These weights are learned during training.
• Each neuron also has a bias term that influences its output. Biases are also learned

during training.

• Output Layer: The output layer produces the final predictions or
classifications based on the information processed in the hidden layers.
• The number of neurons in the output layer depends on the type of task you're solving.
• For binary classification, you may have a single neuron with output ranging from 0 to 1.
• For multi-class classification, you'd have a neuron for each class, outputting the

probability of that class.

• Activation Functions: Activation functions introduce non-linearity to
the network, enabling it to model complex relationships in the data.
• Common activation functions include ReLU (Rectified Linear Unit), sigmoid, tanh, and

softmax (for multi-class classification).

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

FNNs Architecture
• FNNs can be categorized as Perceptrons and Multi-Layer Perceptrons (MLPs).

• A perceptron is a simple FNN that can be used to solve linearly separable problems.

• An MLP is a more complex ANN that can be used to solve both linearly separable
and non-linearly separable problems.

• Choosing the right architecture for a FNN is a critical step in the machine learning
process.

• The main factors to consider when choosing an FNN architecture are:
• The complexity of the task: The more complex the task, the more layers and

hidden neurons will need.
• The size of the training data: The larger the training data, the more layers and

neurons the network will need.
• The computational resources available: The number of layers and neurons in an

FNN will also depend on the computational resources that are available. A network
with a large number of layers and neurons will require more computing power to
train.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

The Perceptron
 The perceptron is the simplest form of a neural network.
• The primary purpose of a perceptron is to make binary decisions, such as

classifying input data into two categories (e.g., yes/no, 1/0).
• It is made up of a single layer of neurons, each of which computes a

weighted sum of its inputs and applies a linear/non-linear activation
function to the result.

• Single perceptron is limited in its capabilities and can only solve linearly
separable problems.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

The Perceptron
• A threshold unit “Fires” if the weighted sum of inputs (linear

transform) exceeds a threshold T
• A threshold unit “Fires” if the weighted sum of inputs and the

bias T (affine transform) is positive

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

The “Soft” Perceptron
• A non-linear activation function is used at the output which

normalizes the output to a range of values and helps the network
learn complex data.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Performance of Perceptron

x1

x2

1

(a) AND (x1 Ç x2)

1

x1

x2

1

1

(b) OR (x1 È x2)

x1

x2

1

1

(c) Exclusive-OR
(x1 Å x2)

00 0

A perceptron can learn the operations AND and OR,
but not Exclusive-OR.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

A Multi-Layer Perceptron's (MLPs)
• MLPs is a type of artificial neural network that consists of multiple layers of

interconnected nodes (artificial neurons) arranged in a feedforward fashion.

• The neurons in the hidden layers of an MLP can learn non-linear relationships
between the inputs and outputs of the network, which allows it to solve
problems that a perceptron cannot.

• Their performance often depends on factors such as the architecture (number
of layers and neurons), choice of activation functions, and the amount and
quality of training data.

Input
layer

First
hidden
layer

Second
hidden
layer

Output
layer

O
u

t p
 u

 t
 S

 i
g

n
a

l s

I n
 p

 u
 t

 S
 i

g
n

a
l s

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

19

How A Multi-Layer Neural Network Works?

• The inputs to the network correspond to the attributes measured for
each training tuple

• Inputs are fed simultaneously into the units making up the input layer

• They are then weighted and fed simultaneously to a hidden layer

• The number of hidden layers is arbitrary, although usually only one

• The weighted outputs of the last hidden layer are input to units making
up the output layer, which emits the network's prediction

• The network is feed-forward in that none of the weights cycles back to
an input unit or to an output unit of a previous layer

• From a statistical point of view, networks perform nonlinear regression:
Given enough hidden units and enough training samples, they can
closely approximate any function

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multi-Class MLPs

• A multi-class MLPs, is an extension of the MlP model to handle multiple
classes.

• A multi-class MLPs, the number of neurons in the output layer
corresponds to the number of classes in the classification problem.

• Each neuron in the output layer uses the softmax activation function to
transform the weighted sum of inputs into a probability distribution
over the classes.

• The softmax function is used in the output layer of a multi-class
perceptron because it ensures that the output probabilities sum to 1.

• The cross-entropy loss function is commonly used for training multi-
class perceptron's, where the goal is to minimize the difference
between the predicted probabilities and the true class labels.

• In multi-class MLPs, input labels are often represented in one-hot
encoded format, where each class corresponds to a unique index in the
one-hot vector.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multi-Class MLPs

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Outline

• Introduction and Motivation

• Neural Network Architecture
• The Perceptron
• MLPs
• Multi-class Perceptron

• Training MLPs

• Choosing Network Structure
• Depth vs Width
• Expressive Power of MLPs

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Training ANNs – Main Idea
• Objective:

• The primary goal of training an MLP is to minimize the difference between the
predicted outputs (obtained from the network) and the actual target values
(ground truth) for a given dataset.

• ANNs learn by adjusting the weights and biases of their connections based on
observed data.

• The learning process involves:
• Forward propagation: calculating outputs for a given input
• and backward propagation: adjusting weights using gradient descent and

the backpropagation algorithm.
• Gradient Descent: Gradient descent is the optimization algorithm used to

update the model's parameters. It involves iteratively adjusting the weights
and biases in small steps (controlled by a learning rate) to minimize the loss
function.

• Backpropagation: Backpropagation calculates the gradient of the loss
function with respect to the network's weights and biases. It essentially
measures how a small change in a weight or bias would affect the loss.

• This iterative process aims to minimize a loss function that quantifies
the difference between predicted and actual outcomes.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Is this a good decision boundary?

t>if 0 else ,1 then == outputoutput÷
ø

ö
ç
è

æå
=

i

M

i
iwx

1

Training ANNs – Main Idea

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

w1 = 2.1

w2 = 0.2

t = 0.05

t>if 0 else ,1 then == outputoutput÷
ø

ö
ç
è

æå
=

i

M

i
iwx

1

Training ANNs – Main Idea

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

w1 = 1.9

w2 = 0.02

t = 0.05

t>if 0 else ,1 then == outputoutput÷
ø

ö
ç
è

æå
=

i

M

i
iwx

1

Training ANNs – Main Idea

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Ø Changing the weights/threshold makes the decision boundary move.
Ø Pointless / impossible to do it by hand – only ok for simple 2-D case.
Ø We need an algorithm….

w1 = -0.8

w2 = 0.03

t = 0.05

Training ANNs – Main Idea

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Trained Perceptron – An Example

• W1 = 0.1, W2 = 0.1, Threshold = 0.2, Step Activation
Function à AND Gate

• W1 = 0.1, W2 = 0.1, Threshold = 0.1, Step Activation
Function à OR Gate

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

MLPs Training Algorithm
1. Preparing Network Architecture:

q The architecture includes the number of layers, the number of
neurons in each layer, the activation functions, and the loss
function.

2. Initializations: the initialization includes the following:
q Weights and biases: common techniques include random

initialization and using smart techniques like Xavier/Glorot
initialization.

q Hyperparameters: like learning rate, batch size, and number of
epochs.

3. Choose Optimization Algorithm: select optimization algorithm to
update the network's parameters. Gradient Descent as an
example.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

MLPs Training Algorithm
4. Gradient Descent with Backpropagation Training Loop:

A. Present a training example: A training example is presented to the
perceptron.
Ø The training example consists of a set of inputs and a desired output.

B. Forward Pass: During the forward pass, the input data is fed through the
network layer by layer, and the activations are calculated at each layer.

1. Input Layer: Initialize the input activations with the training data.
2. Hidden Layers: For each hidden layer, calculate the weighted sum of the

input activations and the layer's weights
3. Apply the activation function to the weighted sum to compute the

output activations.
4. Output Layer: for the output layer, calculate the weighted sum and

apply an appropriate activation function (e.g., sigmoid, softmax).

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

MLPs Training Algorithm
C. Backward Pass (Backpropagation): During the backward pass, gradients of the loss

with respect to each parameter are calculated and propagated backward through
the layers.

1. Calculate the error at the output layer. This is the difference between the desired

output and the predicted output.
2. Compute Output Layer Gradient: the gradient of the loss function with respect to

the output layer weights (dloss/dWoutput). This is done using the chain rule.
3. Use the gradient to update the output layer weights.

4. Propagate the error to the hidden layers. This is done by multiplying the error at
the output layer by the weights connecting the output layer to the hidden layer.

5. Calculate the gradient of the loss function with respect to the hidden layer
weights. This is done using the chain rule.

6. Use the gradient to update the hidden layer weights.
7. Repeat steps 1 to 6 until updating parameters in the input layer.

5. Repeat steps a to c for a predefined number of iterations (epochs) or error is
minimized.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

How Does Gradient Descent Work?
• Gradient Descent is an Iterative Solver.

• The Iterative solver does not give the exact solution.
• The iterative solvers are used to get the approximate solution as the

purpose is to minimize the objective function.

• The algorithm starts with an initial set of parameters and updates them
in small steps to minimize the cost function.

• In each iteration of the algorithm, the gradient of the cost function with
respect to each parameter is computed.

• The gradient tells us the direction of the steepest ascent, and by
moving in the opposite direction, we can find the direction of the
steepest descent.

• The size of the step is controlled by the learning rate, which determines
how quickly the algorithm moves towards the minimum.

• The process is repeated until the cost function converges to a
minimum, indicating that the model has reached the optimal set of
parameters.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

How Does Gradient Descent Work?
• The goal of the gradient descent algorithm is to minimize the cost function. To

achieve this goal, it performs two steps iteratively:
1. Compute the gradient (slope), the first order derivative of the cost function at

that point
2. Make a step (move) in the direction opposite to the gradient, opposite direction

of slope increase from the current point by alpha times the gradient at that point

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Gradient Descent Update Rules
MSE cost function is
equivalent to Y = f(x) = X2

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

The Learning Rate
• We have the direction we want to move in, now we must decide the

size of the step we must take.
• The learning rate defined as the step size taken to reach the minima or

lowest point.
• Smaller learning rate: the model will take too much time before it

reaches minima might even exhaust the max iterations specified.
• Large (Big learning rate): the steps taken will be large and we can even

miss the minima the algorithm may not converge to the optimal point.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Activation Functions
• The activation function decides whether a neuron should be activated or not

by calculating the weighted sum and further adding bias to it.
• The purpose of the activation function is to introduce non-linearity into the

output of a neuron.
• The activation function enables the MLP to capture more complex patterns

and makes it capable of learning and approximating a wide variety of
functions.

• Activation functions have distinct impacts on the training convergence speed,
dealing with noise and outliers, handling vanishing and exploding gradient
problems, and computational efficiency.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Well-Known Activation Functions
• Sigmoid, tanh, and ReLU are the most popular activation functions.
• Sigmoid and tanh

• Suffer from the vanishing gradient problem, which can slow down training in
deep networks.

• Sensitive to outliers.
• They are less commonly used in hidden layers of deep networks today.

• ReLU
• Faster convergence, mitigation of the vanishing gradient problem for

positive inputs.
• Computational efficient
• More robust to noise, outliers
• Become the default choice for most hidden layers in deep networks
• However, ReLU requires careful initialization and regularization techniques.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Loss Function
• A loss function, also known as a cost function or objective function, is a crucial

component in training ANNs and other machine learning models.

• It is used during training to evaluate the performance of the neural network and to
update its weights in order to minimize the loss.

• Its primary purpose is to measure how well the model's predictions match the
actual target values (ground truth) during the training process.
• The goal is to find a set of weights and biases that minimizes the cost.

• Key properties of Loss Function:
• Accuracy: The loss function should be able to accurately measure the difference between the

predicted output of the model and the desired output.
• Differentiability: The loss function should be differentiable, so that the gradient of the loss

function with respect to the model parameters can be calculated.
• Convexity: The loss function should be convex, so that there is a single global minimum. This

ensures that the optimization algorithm will converge to the best possible solution.
• Computational efficiency: The loss function should be computationally efficient to evaluate,

so that it can be used to train large and complex models in a reasonable amount of time.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Loss Function
• Here are some examples of loss functions that satisfy these key

properties:
• Mean squared error (MSE): MSE is a simple and efficient loss function

that is often used for regression tasks. It is differentiable and convex,
and it is robust to outliers.

• Cross-entropy loss: Cross-entropy loss is a common loss function for
classification tasks. It is differentiable and convex, but it is not as
robust to outliers as MSE.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Gradient Descent - Mathematics
• Forward Pass – Assume sigmoid activation function

Outputpredicted = Sigmoid(S)
Where:

S = ∑wi*xi + bias
Sigmoid = 1/(1 + e-x)

• Backward Pass
• Calculate Error – Assume MSE loss
MSE Loss = ½ (Outputdesired - Outputpredicted)2

• Calculate Gradients
By chain rule,

dLoss/dWi = [(dE/dpredicted)*(dpredicted/ds)*(ds/dWi)]
dE/dpredicted = Outputpredicted - Outputdesired

dpredicted/ds = [(1/(1 + e-s))(1-(1/ (1 + e-s))]
ds/dWi = Xi

dLoss/dWi = (Outputpredicted - Outputdesired)*[(1/(1 + e-s))(1-(1/ (1 + e-s))]*Xi

• Update
Winew = Wiold - (larning_rate * dLoss/dWi)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Case study - Perceptron Training: Step-by-
step
• Training of a two-input perceptron using stochastic gradient

descent with backpropagation, sigmoid activation function, and
Mean Squared Error (MSE) loss function.

• Step 1: Initialize Weights and Bias
• Initialize the weights (w1 and w2) and bias (b) with small random

values.
w1 = random_initialization
w2 = random_initialization
b = random_initialization

• Step 2: Forward Pass
• Calculate the weighted sum of the inputs and add the bias to get

the linear combination (z):
z = w1*x1 + w2*x2 + b

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Perceptron training – Case study: step-by-
step
• Step 3: Apply Sigmoid Activation Function

• Pass the linear combination (z) through the sigmoid activation function to
obtain the predicted probability of class 1 (y_pred):
y_pred = 1 / (1 + exp(-z))

• Step 4: Calculate Error (MSE)
• Compute the Mean Squared Error (MSE) between the predicted output

(y_pred) and the actual target (y_true):
MSE = (1/2) * (y_true - y_pred)^2

• Step 5: Calculate Gradients
• Calculate the gradients of the MSE with respect to the weights (w1 and

w2) and bias (b) using backpropagation.
• Gradients with respect to weights:

∂MSE/∂w1 = -(y_true - y_pred) * y_pred * (1 - y_pred) * x1
∂MSE/∂w2 = -(y_true - y_pred) * y_pred * (1 - y_pred) * x2
• Gradient with respect to bias:

∂MSE/∂b = -(y_true - y_pred) * y_pred * (1 - y_pred)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Perceptron training – Case study: step-by-
step
• Step 6: Update Weights and Bias

• Update the weights and bias using the calculated gradients and a learning
rate (α):

w1 = w1 - α * ∂MSE/∂w1
w2 = w2 - α * ∂MSE/∂w2
b = b - α * ∂MSE/∂b

• Step 7: Repeat
• Repeat Steps 2 to 6 for each data point in the training dataset or for a

mini-batch of data points.
• Repeat this process for a fixed number of epochs or until convergence.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Training Perceptron – Numerical Example

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Forward Pass

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Backward Pass

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Backward Pass

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Backward Pass

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Backward Pass

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Backward Pass

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Backward Pass

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Backward Pass

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Weights Update

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Weights Update

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Training MLPs with One Hidden Layer

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Training MLPs with One Hidden Layer

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Training MLPs with One Hidden Layer

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Forward Pass

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Forward Pass

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Forward Pass

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Forward Pass

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Backward Pass

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Backward Pass

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Backward Pass

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Backward Pass

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Backward Pass

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Backward Pass

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Backward Pass

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Backward Pass

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Backward Pass

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Backward Pass

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Backward Pass

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Backward Pass

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Backward Pass

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Backward Pass

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Backward Pass

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Backward Pass

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Backward Pass

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Backward Pass

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Backward Pass

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Backward Pass

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Backward Pass

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Backward Pass

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Backward Pass

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Backward Pass

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Backward Pass

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Backward Pass

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Backward Pass

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Backward Pass

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Backward Pass

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Backward Pass

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Backward Pass

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Weights Update

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Outline

• Introduction and Motivation

• Neural Network Architecture
• The Perceptron
• MLPs
• Multi-class Perceptron

• Training MLPs

• Choosing Network Structure
• Depth vs Width
• Expressive Power of MLPs

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

MLPs Network Structure
• The number of hidden neurons and the number of layers in MLP have a

significant impact on the network's ability to handle different levels of
problem complexity, as well as its susceptibility to overfitting and underfitting.

• In complex problems, determining whether to increase the number of hidden
neurons (width) or the number of layers (depth) in a neural network depends
on various factors.

• Width vs. Depth
• Increasing the number of hidden neurons in a layer allows the network to capture or

learn more complex representations or patterns in the data.
• Learning more complex representations means capturing non-linear relationships, fine-

grained patterns, and subtle variations in the input data.
• Increasing the number of layers enables the network to capture hierarchical features

and abstractions.
• This means that the network's ability to learn and represent information at multiple levels of

abstraction. In many real-world problems, data can be organized in a hierarchical manner,
where high-level features are built upon lower-level features.

• There is no one-size-fits-all answer, and often a combination of both approaches may
yield the best results.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Number of Neurons in the Hidden Layer

• Larger Neural Networks can represent more complicated functions.
The data are shown as circles colored by their class, and the
decision regions by a trained neural network are shown
underneath.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Number of Hidden Layer

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

