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Artificial Neural Networks

- A neural network can be defined as a model of reasoning based on the
human brain.

- The brain consists of a densely interconnected set of nerve cells, or
basic information-processing units, called neurons.

« The human brain incorporates nearly 10 billion neurons and 60 trillion
connections, synapses, between them.

- By using multiple neurons simultaneously, the brain can perform its
functions much faster than the fastest computers in existence today.

- Each neuron has a very simple structure, but an army of such elements
constitutes a tremendous processing power.

- A neuron consists of a cell body, soma, a number of fibers called
dendrites, and a single long fiber called the axon.
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- An artificial neural network consists of a number of very
simple processors, also called neurons, which are analogous to
the biological neurons in the brain.

- The neurons are connected by weighted links passing signals
from one neuron to another.

- The output signal is transmitted through the neuron’s outgoing
connection.

- The outgoing connection splits into a number of branches that
transmit the same signal.

- The outgoing branches terminate at the incoming connections
of other neurons in the network.
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Artificial Neural Networks

« ANNs can learn from training data and generalize to new
situations and have high expressive power.

- Neural networks have become one of the major thrust areas
recently in various Al tasks including pattern recognition,
prediction, and analysis problems.

- In many problems they have established the state of the art,
often exceeding previous benchmarks by large margins.

- An ANN is usually characterized by

« The way the neuruons are connected to each other.

« The method that is used for the determinations of the connection
strengths or weights.

« The activation function.
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Brain vs Computer

- There are approximately 10 billion neurons in the human cortex,
compared with 10’s of thousands of processors in the most
powerful parallel computers

- Each biological neuron is connected to several thousands of other
neurons, similar to the connectivity in powerful parallel
computers

- The typical operating speeds of biological neurons is measured in
milliseconds (10-3 s), while a silicon chip can operate in
nanoseconds (10-9 s)

- The human brain is extremely energy efficient, using
approximately 10-16 joules per operation per second, whereas
the best computers today use around 10-6 joules per operation
per second
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Brain vs Computer

- Tasks that are easy for brains are not easy for computers and vice
Versa
- Brains
« Recognizing faces
« Retrieving information based on partial descriptions

« Organizing information (the more information the better the brain
operates)

- Computers
« Arithmetic
* Deductive logic
« Retrieving information based on arbitrary features

- Brains must operate very differently from conventional
computers
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Feedforward Neural Networks (FNNs)

« Feedforward neural networks (FNNs), also known as Multi-Layer Perceptrons
(MLPs), are a type of artificial neural network that consists of multiple layers
of neurons interconnected in a feedforward manner.

« Information flows in one direction, from the input layer through one or more
hidden layers to the output layer.

 The neurons are organized into layers, where each neuron in a layer connects
to every neuron in the next layer.

« Each connection is associated with a weight, and each neuron has an
associated bias.

* The weights of the network are adjusted during training to minimize the error
between the predicted output and the desired output. This is done using a
variety of algorithms, such as backpropagation.

 FNNs are a very versatile type of neural network and can be used for a wide
variety of tasks, including: Classification, Regression, Universal Function
Approximators, Feature Learning,...
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FNNs General Architecture
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Main Components of FNNs

- Input Layer: The input layer consists of neurons that receive input
features.
* The number of neurons in this layer corresponds to the number of input features.
* Each neuron in the input layer represents a specific feature of the input data.

- Hidden Layers: Hidden layers are intermediary layers between the
input and output layers.

* Each hidden layer consists of multiple neurons that process the information from the
previous layer and pass it on to the next layer.

* The number of hidden layers and the number of neurons in each layer are
hyperparameters that you can adjust based on the complexity of the problem and the
dataset.

* Hidden layers allow FNNs to learn complex hierarchical features and patterns in the
data.

« Neurons (Nodes): Each neuron in a hidden layer or the output layer
receives inputs from the previous layer's neurons, applies weights to
these inputs, and passes the result through an activation function.

* Neurons in the hidden layers often use non-linear activation functions (e.g., RelLU,
sigmoid, tanh) to introduce non-linearity to the model, enabling it to capture complex
relationships in the data.
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Main Components of FNNs

-  Weights and Biases: Each connection between neurons has an
associated weight that determines the strength of the connection.
* These weights are learned during training.
* Each neuron also has a bias term that influences its output. Biases are also learned
during training.
« Output Layer: The output layer produces the final predictions or
classifications based on the information processed in the hidden layers.
* The number of neurons in the output layer depends on the type of task you're solving.
* For binary classification, you may have a single neuron with output ranging from 0 to 1.

*  For multi-class classification, you'd have a neuron for each class, outputting the
probability of that class.

- Activation Functions: Activation functions introduce non-linearity to
the network, enabling it to model complex relationships in the data.

* Common activation functions include ReLU (Rectified Linear Unit), sigmoid, tanh, and
softmax (for multi-class classification).
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FNNs Architecture

* FNNs can be categorized as Perceptrons and Multi-Layer Perceptrons (MLPs).
* A perceptron is a simple FNN that can be used to solve linearly separable problems.

* An MLP is a more complex ANN that can be used to solve both linearly separable
and non-linearly separable problems.
» Choosing the right architecture for a FNN is a critical step in the machine learning
process.
 The main factors to consider when choosing an FNN architecture are:
* The complexity of the task: The more complex the task, the more layers and
hidden neurons will need.
* The size of the training data: The larger the training data, the more layers and

neurons the network will need.
* The computational resources available: The number of layers and neurons in an

FNN will also depend on the computational resources that are available. A network
with a large number of layers and neurons will require more computing power to
train.
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The Perceptron

B The perceptron is the simplest form of a neural network.

The primary purpose of a perceptron is to make binary decisions, such as
classifying input data into two categories (e.g., yes/no, 1/0).

It is made up of a single layer of neurons, each of which computes a
weighted sum of its inputs and applies a linear/non-linear activation
function to the result.

Single perceptron is limited in its capabilities and can only solve linearly
separable problems.
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The Perceptron

- A threshold unit “Fires” if the weighted sum of inputs (linear
transform) exceeds a threshold T

- Athreshold unit “Fires” if the weighted sum of inputs and the
bias T (affine transform) is positive
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The “Soft” Perceptron

- A non-linear activation function is used at the output which
normalizes the output to a range of values and helps the network
learn complex data.

sigmoid tanh

tanh(z)
1+ exp(—2z) , . i
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A perceptron can learn the operations AND and OR,
but not Exclusive-OR.
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A Multi-Layer Perceptron's (MLPs)

 MLPs is a type of artificial neural network that consists of multiple layers of
interconnected nodes (artificial neurons) arranged in a feedforward fashion.

« The neurons in the hidden layers of an MLP can learn non-linear relationships
between the inputs and outputs of the network, which allows it to solve
problems that a perceptron cannot.

« Their performance often depends on factors such as the architecture (number
of layers and neurons), choice of activation functions, and the amount and
guality of training data.

Input Signals
OQutput Signals

Second
Input hidden hidden Output
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How A Multi-Layer Neural Network Works?

The inputs to the network correspond to the attributes measured for
each training tuple

Inputs are fed simultaneously into the units making up the input layer
They are then weighted and fed simultaneously to a hidden layer
The number of hidden layers is arbitrary, although usually only one

The weighted outputs of the last hidden layer are input to units making
up the output layer, which emits the network's prediction

The network is feed-forward in that none of the weights cycles back to
an input unit or to an output unit of a previous layer

From a statistical point of view, networks perform nonlinear regression:
Given enough hidden units and enough training samples, they can
closely approximate any function
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Multi-Class MLPs

« A multi-class MLPs, is an extension of the MIP model to handle multiple
classes.

« A multi-class MLPs, the number of neurons in the output layer
corresponds to the number of classes in the classification problem.

- Each neuron in the output layer uses the softmax activation function to
transform the weighted sum of inputs into a probability distribution
over the classes.

- The softmax function is used in the output layer of a multi-class
perceptron because it ensures that the output probabilities sum to 1.

- The cross-entropy loss function is commonly used for training multi-
class perceptron's, where the goal is to minimize the difference
between the predicted probabilities and the true class labels.

« In multi-class MLPs, input labels are often represented in one-hot
encoded format, where each class corresponds to a unique index in the
one-hot vector.
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Multi-Class MLPs
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Training ANNs — Main ldea

- Objective:
* The primary goal of training an MLP is to minimize the difference between the

predicted outputs (obtained from the network) and the actual target values
(ground truth) for a given dataset.
* ANNs learn by adjusting the weights and biases of their connections based on
observed data.
« The learning process involves:
« Forward propagation: calculating outputs for a given input
« and backward propagation: adjusting weights using gradient descent and
the backpropagation algorithm.
Gradient Descent: Gradient descent is the optimization algorithm used to
update the model's parameters. It involves iteratively adjusting the weights
and biases in small steps (controlled by a learning rate) to minimize the loss
function.
 Backpropagation: Backpropagation calculates the gradient of the loss

function with respect to the network's weights and biases. It essentially
measures how a small change in a weight or bias would affect the loss.

- This iterative process aims to minimize a loss function that quantifies
the difference between predicted and actual outcomes.
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Training ANNs — Main ldea

v

Is this a good decision boundary?

M
if (Z xl.wl.j > then output =1, else output =0
i=1
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Training ANNs — Main ldea

w, =2.1
® w,=0.2
t=0.05

v

M
if (Z xl.wij > 1 then output =1, else output =0
i=1
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Training ANNs — Main ldea

w,=1.9
w, = 0.02
t=0.05

M
if [Z xl.wij > then output =1, else output =0
i=1
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Training ANNs — Main ldea
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» Changing the weights/threshold makes the decision boundary move.
» Pointless / impossible to do it by hand — only ok for simple 2-D case.
» We need an algorithm....
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Trained Perceptron — An Example

__->;‘y

- W1=0.1, W2 =0.1, Threshold = 0.2, Step Activation
Function =2 AND Gate

- W1=0.1, W2 =0.1, Threshold = 0.1, Step Activation
Function =2 OR Gate
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MLPs Training Algorithm

1. Preparing Network Architecture:

Q The architecture includes the number of layers, the number of
neurons in each layer, the activation functions, and the loss
function.

2. Initializations: the initialization includes the following:

O Weights and biases: common techniques include random
initialization and using smart techniques like Xavier/Glorot
initialization.

O Hyperparameters: like learning rate, batch size, and number of
epochs.

3. Choose Optimization Algorithm: select optimization algorithm to
update the network's parameters. Gradient Descent as an

example.
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MLPs Training Algorithm

4. Gradient Descent with Backpropagation Training Loop:
A. Present a training example: A training example is presented to the

perceptron.
» The training example consists of a set of inputs and a desired output.

B. Forward Pass: During the forward pass, the input data is fed through the
network layer by layer, and the activations are calculated at each layer.

1. Input Layer: Initialize the input activations with the training data.

2. Hidden Layers: For each hidden layer, calculate the weighted sum of the
input activations and the layer's weights

3. Apply the activation function to the weighted sum to compute the
output activations.

4. Output Layer: for the output layer, calculate the weighted sum and
apply an appropriate activation function (e.g., sigmoid, softmax).
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MLPs Training Algorithm

C. Backward Pass (Backpropagation): During the backward pass, gradients of the loss
with respect to each parameter are calculated and propagated backward through
the layers.

1. Calculate the error at the output layer. This is the difference between the desired
output and the predicted output.

2. Compute Output Layer Gradient: the gradient of the loss function with respect to
the output layer weights (dloss/dW,,.t). This is done using the chain rule.

3. Use the gradient to update the output layer weights.
Propagate the error to the hidden layers. This is done by multiplying the error at
the output layer by the weights connecting the output layer to the hidden layer.

5. Calculate the gradient of the loss function with respect to the hidden layer
weights. This is done using the chain rule.

6. Use the gradient to update the hidden layer weights.

7. Repeat steps 1 to 6 until updating parameters in the input layer.

5. Repeat steps a to c for a predefined number of iterations (epochs) or error is

minimized.
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How Does Gradient Descent Work?

- Gradient Descent is an Iterative Solver.
« The Iterative solver does not give the exact solution.
« The iterative solvers are used to get the approximate solution as the
purpose is to minimize the objective function.

- The algorithm starts with an initial set of parameters and updates them
in small steps to minimize the cost function.

- In each iteration of the algorithm, the gradient of the cost function with
respect to each parameter is computed.

- The gradient tells us the direction of the steepest ascent, and by
moving in the opposite direction, we can find the direction of the
steepest descent.

- The size of the step is controlled by the learning rate, which determines
how quickly the algorithm moves towards the minimum.

- The process is repeated until the cost function converges to a
minimum, indicating that the model has reached the optimal set of
parameters.
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How Does Gradient Descent Work?

« The goal of the gradient descent algorithm is to minimize the cost function. To
achieve this goal, it performs two steps iteratively:

1.
that point

Compute the gradient (slope), the first order derivative of the cost function at

Make a step (move) in the direction opposite to the gradient, opposite direction

of slope increase from the current point by alpha times the gradient at that point

Cost

The Step Size will be Very
Close to 0 when the Slope
is very close to 0.

Step Size H Slope x Learning Rate
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Gradient Descent Update Rules

MSE cost function is
equivalent to Y = f(x) = X2

IGradient of the
fangent at R is -4

QR4 Gradient of the
fangentat Q is 4

Derivative Magnitude

Increasing/decreasing weight by P
increases/decreases error by MAG*P.

o gradient at
next position ellnaciinn curre;*nt position
\\ \\ /
4 X <
X, =X, — aVf(x,)
I+ l l
- >
4 \
e / ‘
current position step size (learning rate)
Derivative Sign
ing/d [ i Positive
Positive In.creasmg/ ecreasing weight :
increases/decreases error. Sign
2 Increasing/d ing weight Negative
Negative e/ ?Creasmg = g
decreases/increases error. Sign
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Increasing/decreasing weight by P
decreases/increases error by MAG*P.
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The Learning Rate

« We have the direction we want to move in, now we must decide the
size of the step we must take.

- The learning rate defined as the step size taken to reach the minima or
lowest point.

« Smaller learning rate: the model will take too much time before it
reaches minima might even exhaust the max iterations specified.

« Large (Big learning rate): the steps taken will be large and we can even
miss the minima the algorithm may not converge to the optimal point.

Learning rate: 0.1 Learning rate: 0.3 Learning rate: 0.8 Learning rate: 0.9
iterations: 24 iterations: 8 iterations: 15 iterations: 33
- result-2.0413 result-:2.0115 result-2.0055 result-2.0055
40 .
30 .
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Activation Functions

« The activation function decides whether a neuron should be activated or not
by calculating the weighted sum and further adding bias to it.

« The purpose of the activation function is to introduce non-linearity into the
output of a neuron.

« The activation function enables the MLP to capture more complex patterns
and makes it capable of learning and approximating a wide variety of
functions.

« Activation functions have distinct impacts on the training convergence speed,
dealing with noise and outliers, handling vanishing and exploding gradient
problems, and computational efficiency.
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Well-Known Activation Functions

- Sigmoid, tanh, and ReLU are the most popular activation functions.

- Sigmoid and tanh

« Suffer from the vanishing gradient problem, which can slow down training in
deep networks.

« Sensitive to outliers.
« They are less commonly used in hidden layers of deep networks today.

- RelU

« Faster convergence, mitigation of the vanishing gradient problem for
positive inputs.

« Computational efficient

« More robust to noise, outliers

« Become the default choice for most hidden layers in deep networks

« However, ReLU requires careful initialization and regularization techniques.
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Loss Function

* Aloss function, also known as a cost function or objective function, is a crucial
component in training ANNs and other machine learning models.

* |tis used during training to evaluate the performance of the neural network and to
update its weights in order to minimize the loss.

* |ts primary purpose is to measure how well the model's predictions match the
actual target values (ground truth) during the training process.

* The goalis to find a set of weights and biases that minimizes the cost.

» Key properties of Loss Function:

* Accuracy: The loss function should be able to accurately measure the difference between the
predicted output of the model and the desired output.

* Differentiability: The loss function should be differentiable, so that the gradient of the loss
function with respect to the model parameters can be calculated.

* Convexity: The loss function should be convex, so that there is a single global minimum. This
ensures that the optimization algorithm will converge to the best possible solution.

* Computational efficiency: The loss function should be computationally efficient to evaluate,
so that it can be used to train large and complex models in a reasonable amount of time.
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Loss Function

- Here are some examples of loss functions that satisfy these key
properties:
« Mean squared error (MSE): MSE is a simple and efficient loss function
that is often used for regression tasks. It is differentiable and convex,

and it is robust to ou Mean 5
quared

1 « A
MSE:g;(Yi—Yi

- Cross-entropy loss: Cross-entropy loss is a common loss function for
classification tasks. It is differentiable and convex, but it is not as
robust to outliers as MSE.

True probability distribution

/ (one-hot)

H(p,q) Z plx)logq(x)
reclasses \

Your model’s predicted
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Gradient Descent - Mathematics

Forward Pass — Assume sigmoid activation function

C)UtpUtpredicted = SlngId(S)
Where:
S = >w;*x; + bias
Sigmoid =1/(1 + e¥)

Backward Pass

* (Calculate Error — Assume MSE loss
MSE Loss = 7% (OUtpUtdesired - Outpl*ltpredicted)z

* (Calculate Gradients
By chain rule,

Weight update
rror «————
8 =o' -y Backpropagation
X1 Optimization such as
U Gradient Descent
X2 / Calculation of
cost function
n .
et =3 wx, N~
= 0=0c (net) l+e™
; - Output
Net input Activation
function function
Xn
input

dLoss/dW, = [(dE/dpredicted)*(dpredicted/ds)*(ds/dWi)]

dE/dpredicted = Output, egicted - OUtPUL gesired
dpredicted/ds = [(1/(1 + e%))(1-(1/ (1 + e))]
dS/dWI = Xi

dLOSS/dWi = (OUtpUtpredicted - OUtpUtdesired)*[(l/(l + E's))(l-(l/ (1 + e_s))]*xi

* Update
Wi ew = Wiy q - (larning_rate * dLoss/dWi)
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Case study - Perceptron Training: Step-by-
step

Training of a two-input perceptron using stochastic gradient

descent with backpropagation, sigmoid activation function, and
Mean Squared Error (MSE) loss function.

Step 1: Initialize Weights and Bias

Initialize the weights (w1 and w2) and bias (b) with small random
values.

w1l =random_initialization
w2 = random_initialization
b = random_initialization

Step 2: Forward Pass

Calculate the weighted sum of the inputs and add the bias to get
the linear combination (z):

z=wW1*x1+w2*x2+b
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Perceptron training — Case study: step-by-
step

- Step 3: Apply Sigmoid Activation Function

« Pass the linear combination (z) through the sigmoid activation function to
obtain the predicted probability of class 1 (y_pred):

y_pred=1/(1+exp(-z))

. Step 4: Calculate Error (MSE)

« Compute the Mean Squared Error (MSE) between the predicted output
(y_pred) and the actual target (y_true):

MSE =(1/2) * (y_true -y_pred)"2

- Step 5: Calculate Gradients

« Calculate the gradients of the MSE with respect to the weights (w1 and
w2) and bias (b) using backpropagation.

« Gradients with respect to weights:
OMSE/owl =-(y_true-y pred) *y pred * (1-y pred) * x1
OMSE/Oow2 =-(y_true-y pred) *y pred * (1-y pred) * x2
« Gradient with respect to bias:
OMSE/db =-(y_true-y_pred) *y pred * (1-y_pred)

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



Perceptron training — Case study: step-by-
step

- Step 6: Update Weights and Bias

« Update the weights and bias using the calculated gradients and a learning
rate (a):
wl=wl-a* dMSE/owl
w2 =w2-ao * OMSE/0w2
b=b-a*0MSE/db
- Step 7: Repeat

* Repeat Steps 2 to 6 for each data point in the training dataset or for a
mini-batch of data points.

* Repeat this process for a fixed number of epochs or until convergence.

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



Training Perceptron — Numerical Example

Training Data |

X4

X, Output

0.1 0.3 0.03

Initial Weights \
W, | W, b
0.5 | 0.2 1.83

STUDENTS-HUB.com

Uploaded By: Jibreel Bornat



Forward Pass

* In this example, the sigmoid activation
function is used.
1

f(s):1+e‘s

* Based on the sop calculated previously,
the output is as follows:

1 1
[8) =1 e19 = 110144 1.144
f(s) =0.874
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Multivariate Chain Rule

Prediction Predicted 2
| — e sop fr— We|ghts
Error Output
E= %(dcsired — predicted)? f(x) = T o s=Xy= Wit Xz=W2 +b Wi W,
JdE OE — JdE dPredicted ds Os
FYYrE 0 . x x AW
aw, aw, dPredicted ds oW, aw,
JE JE dPredicted as
—. * *
0W, O0Predicted ds oW
J0E JE dPredicted ds
= * *
oW, O0dPredicted ds aw,

Let’s calculate these individual partial derivatives.
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J0E
dPredicted

) Partial Derivative

1
E=— (deSlred predicted)?

Error-Predicted (

OE d
dPredicted 6Predlcted

=2 (desired — predicted)* 1« (0 — 1)
= (desired — predicted) * (—1)
= predicted — desired

(— (deszred predicted)?)

Substitution
o8 = dicted — desired = 0.874 — 0.03
3Predicted — predicte esired = 0. .
s = (0.844
dPredicted
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Predicted-sop (

dPredicted

) Partial Derivative

ds
Predicted = Tre
dPredicted 8 1 €
as "~ ds (1 + e"S)
dPredicted B 1 a )
Substitution ds 1+e5 1+es
dPredicted B 1 - B 1 {
ds 1+4es ( 1+ e‘s) 1+ e 194 ( 1k e—1.94)
1 1
“1+0142 1 " 110 142
1 1
= 1142 T 1142 :
-144 . 144 dPredicted
=0.874(1 - 0.874) ds =0.11

STUDENTS-HUB.com

= 0.874(0.126)
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d

S : "
Sop-W; ( e ) Partial Derivative
. " s=X,* W, + X, *W,+b
S
awl =6W1(X1* W1+ Xz*W2+b)
=1+ X+ W)P D+ 0+0
=Xy x (W
= X1(1)
ds —x
ow, 1
Substitution s .y
ow, 1
ds 01
ow,
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Sop-W, ( aaufz) Partial Derivative

s=X,*W,+ X, xW, +b
ds

J
awz =aW2(X1* W1+ XZ*WZ +b)

=0+1+xX,* (W) D 40

Substitution
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Error-W; (

) Partial Derivative

» After calculating each individual derivative, we can multiply all of
them to get the desired relationship between the prediction error

and each weight.

Calculated Derivatives

9E = (0.844
oPredicted
dPredicted

=0.11
ds

das =01

ow,

STUDENTS-HUB.com

dPredicted das

- dPredicted i

E
=0.844+x0.11x0.1

E
=0.01

*
as 6W1
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OE . L
Error-W, (W) Partial Derivative
2

Calculated Derivatives

i = (.844
dPredicted
dPredicted

=0.11
ds

as T

ow,

STUDENTS-HUB.com

i) J0E J0Predicted Os
aW, _ dPredicted as oW,
E —
aw, = 0-844:0.11:0.3
E
aw, = 0-03
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oE

— =0.03
oW, 0.01 aw,

Interpreting Derivatives

* There are two useful pieces of information from the derivatives
calculated previously.

Derivative Sign Derivative Magnitude

Positi Increasing/decreasing weight Positive Increasing/decreasing weight by P
Omne increases/decreases error. Sign increases/decreases error by MAG*P.

Neoathe Increasing/decreasing weight Negative || Increasing/decreasing weight by P
& decreases/increases error. Sign decreases/increases error by MAG*P.
In our example, because both — and W are positive, then we would

2
like to decrease the weights in order to decrease the prediction error.
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Updating Weights

* Each weight will be updated based on its derivative according to this

equation:
i W (i)
E — . —_— *
inew iold n awi
Updating W4 Updating W
oE W W oFE
14 =W; —nx — — Nk
1new 1 n awl 2new 2 n awz
=0.5-001+x0.01 =0.2-0.01x0.028
Winew = 0.49991 Winew = 0.1997

Continue updating weights according to derivatives and re-train the
network until reaching an acceptable error.
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Training MLPs with One Hidden Layer

ANN with Hidden Layer

Training Data

out

X4 X, Output
0.1 | 0.3 0.03
Initial Weights
Wl Wz W3 W4, Ws W6 b1 bz b3
0.5 | 0.1 [0.62] 0.2 |-0.2]| 03 | 0.4 |—0.1]1.83

STUDENTS-HUB.com
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Training MLPs with One Hidden Layer

ANN with Hidden Layer

Initial
Weights

b; = 1.83

Training

23 [out]

STUDENTS-HUB.com

Prediction
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Training MLPs with One Hidden Layer

ANN with Hidden Layer . ﬁ?ﬁm @=1_83

xJout]

%

Initial —
Weights - Training

N

Update h Backpropagation
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Forward Pass

Forward Pass — Hidden Layer Neurons

h

- ®,
hiin = X1 * Wi+ Xy W3 + by b; = 1.83
In | =0.1+ 0.5+ 0.3%x0.1+0.4 2% Jout
hlin = 0.48 Out
1
Rhiout = 1 + e hin
Out 1
14 048
hiput =0.618
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Forward Pass

Forward Pass — Hidden Layer Neurons

h,

hZin:XI* W3+ XZ *W4,+b2
In |=0.1%0.62+ 0.3%x0.2—-0.1
Ry, = 0.022

1
hzout = 1 + e-hzin
Out 1

~ 1 + g-0022
h20ut = 0. 506
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Forward Pass

Forward Pass — Output Layer Neuron

out
®,
outip = hygye * Ws + haoue * We + b3 b; =1.83
In | =0.618+ —0.2+ 0.506 0.3 + 1.83 - 2¥_ [out
out;, = 1.858 o
1
OUout = 1 1 goutin
1
Out ~ 1+ e 1858
out,,; = 0.865
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Forward Pass

Forward Pass — Prediction Error

desired = 0.03 Predicted = out,,; = 0.865

E = > (desired — out,,;)*

1
= - (0.03 ~ 0.865)?

E =0.349

0E O0E O0E O0E O0E OE
ow4’ ow,’ aws3’ aw,’ aws’ awg
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Backward Pass

Partial Derivatives Calculation
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Backward Pass

E—Wx (aa_vi) Parial Derivative

(i) () dout,,; Oout;,
= * *
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Backward Pass

E— W5( )Parlal Derivative

J0E O0E dout,,; OJout;,
—. * *
oWy Odout,,, OJdout;, oWs

OE a 1
° . - — . 2
Partial Derivative | 55ur.— =~ our,., (2 (desired = outouw)”)

1
=2 > (desired — out )* 1+ (0 — 1)

= desired — outyy * (—1)

J0E .
Sout = 0Ulyy — desired
out
. . JE _
Substitution Fout.— = out,, — desired = 0.865 — 0.03
= (0.835
doutyy,
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Backward Pass

E—W; (aa_ui) Parial Derivative

J0E 0E dout,,; Oout;,
— ES Xk
6W5 60utout aoutin 6W5

doutyy, 0 1

Partial Derivative douty, _ douty 1+ e-owtw)
dout,,, 1 .

dout;,, 1+ e“’"’in)( _

)

1+ e oulin

dout
= —1858) (1 — —1858)
dout;, 1+e 1+e

Substitution LN LY
1.56 1.56
= (0.641)(1 — 0.641) = (0.641)(0.359)

dout
out = 0 23

dout;,
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Backward Pass

E— W5( )Parlal Derivative

0E B 0E . dout,,; ) dout;,
oWw: Odout,,, OJout;, oW
dout;, d
Partial Derivative ows ~ awg Mo * Ws+ haoue * We + bs)
=1*hygue* Ws)'"1+0+0
60ut,—n
W = M1out
e . aout,-n
Substitution = hgut
AW
dout;, T
W
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Backward Pass

E—Wx (aa—ui) Parial Derivative

i) () dout,,; Oout;,
= % %
oWy OJdout,,; OJout;, oWs
%  _o.835 PoMont _ o 23 Ioutin _ o 618
dout gy dout;, ' oW

OF  0.835+0.23  0.618
— = U. * U. * .
AW

E 0119
ow:
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Backward Pass

E-W, (aa_vi) Parial Derivative

(i) () dout,,; Oout;,
= * *

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



Backward Pass

E-W, (aa_vf@) Parial Derivative

OE oFE dout,,; OJout;,
= * *
= 0.835 dout oy ~0.23
dout gy dout;, .
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Backward Pass

E-W, (aa_ui) Parial Derivative

0E () dout,,; Oout;,
p— *
oWz Odout,,; oW,
dout;, d
(R1out * Ws + hagye * We + b3)

Partial Derivative W W,
=0+ 1% hyour * (We)' 140

dout;,
W

%
dout;,

= N2out

dout;,

Substitution ow, ~ Nzou
dout;,
= 0.506

W,

Uploaded By: Jibreel Bornat
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Backward Pass

E-W, (aa_ufﬁ) Parial Derivative

0E () dout,,; Oout;,
= * *
oW, OJdout,,; OJout;, oW,

OE
W, 0.835x0.23 x 0.506

= 0.097
W,
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Backward Pass

E— Wl( )Parlal Derivative

oE o0E dout,,, Odout;, Odhl,,,
— ES * * *
ow, oJdout,, OJdout;, 0ohl,, OJdhl,,
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Backward Pass

E— Wl( )Parlal Derivative

0E oE dout,,, Oout;, Ohl,,
— *x *k ES *
ow, Odout,, dout, 0dhl,,, Jdhl,,
dout
= 0.835 ... A
dout dout;, 48
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Backward Pass

E— Wl( )Parlal Derivative

0E oE dout,,, Oout;,, Odhl,,
= * % * %
ow, dout,,, Odout;,, 0Johl,,, OJ0hl,,

dout;, d B W+ h W+ b
Mg gy ttout™ W5t Raou *We +bs)

= (hyou)V1* W5+ 0+0

Partial Derivative

dout;, =
athllt i ’
dout;,, W
Substitution dhigy  °
dout;,
= —0.2
ahloul‘
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Backward Pass

E— Wl( )Parlal Derivative

0E i) aoutout dout;, Ohl,,
— * *
ow, aoutout dout;, amout dohl,,

. . . dh1l d 1
Partial Derivative out;.
€ ahlin ahl,-n (1 + e_hli")
Ohlgy 1 .
ahl, 1+ el T TP
Ohl,, 1 "
Substitution T Pl ¢ prap v G g vy
= G701~ T —0a8)
ahZOut
= (0.236
ahZin
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Backward Pass

E-W, ( ) Parial Derivative
dout;,, Ohl,,;
dhl,,. 0Ohl,

dout,,, )

OE OE
— *
ow, Jdout,, OJdout;,

. . . dh1; 9
Partial Derivative aw:n =S (X1 * Wi+ X2 *Wy + by)
=X;* W1+ 0+0
dhly,
aw, 1!
oh1,,
Substitution aw, ‘1
ahlin - 0.1
aw,

Uploaded By: Jibreel Bornat
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Backward Pass

E— Wl( )Parlal Derivative

OE OE dout,,, Oout;, Jdhl
— * * * *
ow, oJdout,, OJdout;, ohl,,, 0ohl, W,

JE — 0.835 aoutout ~ 0.23 dout;, B Ohy0y _ dh1;, -

= 0. - =
aoutout aoutin ahlout ahZIH awl

OF
oW,

=0.835%0.23—-0.2%0.236+0.1

= —0.001
oW
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Backward Pass

E-W, (:TEZ) Parial Derivative:

— % * * *
Jow, oJdout,,, Odout;, 0hl,, O0hl;, W,
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Backward Pass

E— Wz( )Parlal Derivative:

0E aE dout,,; OJout;, amout ohl,;,
= £ S %
ow, Odout,,, OJout;, 6h10ut ohl,;, 6W2

0E — 0.835 dout,,, ~0.23 dout;, _— Ohyy
aoutou[ aoutl‘n . ahlo,,, - ah'Zin

= 0.236
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Backward Pass

E— WZ( )Parlal Derivative:

aoutm ahlout ahlin

dout,,;
ahlm ow,

0E aE
et * *
dout;, amout

oW, Odout,,

. . . dh1; d
Partial Derivative aw;" T (X1* Wi+ Xp* W, + by)
=0+ X, *x (Wy)1"1+0
ahlin o
aw, 2
oh1;,
Substitution aw, 2
dh1;,
=0.3
oW,
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Backward Pass

E— Wz( )Parlal Derivative:

0E aE dout,,; OJout;, amout ohl,;,
- * *
BWZ aoutout aout‘n ahlout ahlm aWZ

= (.835 aoutout = 0.23 aoutin - <82 6h’20ut —0.236 6h1,~n

doutyy, dout;, o ohl,, e Ohyin oW,

E
oW, =0.835%x0.23%—-0.2%x0.236*0.3

OE
oW,

=—.003
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Backward Pass

E—-W;, (:TES) Parial Derivative:

0E ) dout,,, Odout;, Oh2,,,;
— * * E 3 %
ow; OJdout,,, Odout;, 0h2,,, O0h2;,
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Backward Pass

E—W; (aa—ui) Parial Derivative:

OE dE  dout,, dout, oh2,, Oh2,
* *

awW. dout,, Oout, oh2,., OhZ,

= 0.835 M:

aoutout aoutin

STUDENTS-HUB.com

aWw;

0.23
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Backward Pass

E-W, (:TEg) Parial Derivative:

0E OE dout,,, Odout;, Oh2,,, Oh2,,
o b S * b S %
ow; oJdout,,, Odout;, 0oh2,,, Oh2;, JIW;

Partial Derivati T~

artial verivative dh2,, 0h2,y

=0+ (hyow) ™ 1* Wg+0
dout;,

ahzout -

(Riout * Ws + hagye * We + b3)

6

aoutm _
Oh2,y
dout;,
ahzout

Substitution 2
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Backward Pass

E-W, (:TEg) Parial Derivative:

0E () dout,,, Oout;, Oh2,,, Oh2,,
o b S * * %
ow; dout,,, Odout;, 0h2,,, 0h2;, JIW;
: S 0h2y, 0 1
Partial Derivative 92y, _ Ohpm 1+ e T
6h20ut . 1
o0h2; "1+ etz 1 T T e Paw)
T Oh2ou 1
Substitution Ty P i v € v

=G n —o0z2) (17 n o—0022)

6h20ut

= .25
ahZin
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Backward Pass

E-W, (:TES) Parial Derivative:

0E _ OE ) dout,,, ) dout;, ) oh2,,, ) 0h2,;,
ow; oJdout,,, OJdout;, 0h2,,, O0h2;, JIW;
. . . ahzin
Partial Derivative W oW, AT Wyt X Wit hy)

=X1* W3+X2*W4+b2
=X) 1 W3+0+0

oh2;,
aw; 3
. dh2;,
Substitution aw, — W3
oh2;, e
ows
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Backward Pass

E-W, (:TES) Parial Derivative:

0E _ OE ) dout,,, ) dout;, ) oh2,,, ) d0h2,;,
— 0.835 dout,,, ~0.23 dout;, - Ohyoue . ah2,,
doutyy, dout;, ' k2. e aw =0.62

i)
6—W3=0.835*0.23*0.3*0.25*0.62

= 0.009

oW,
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Backward Pass

E-W, (aa_ui) Parial Derivative:

0E i) dout,,; Odout;, 0h2,,, Oh2;,
= * * * *
6W4 60utout aout,-n ahzout ahZ,-n 6W4
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Backward Pass

E-W, ( ) Parial Derivative:

BE OE dout,,; Oout;, ahzout oh2;,
— 3 *

= 0.835 Qoulout _ o 5q  0uty _ LT

60utout . aout,-n ahzout . ahZin -
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Backward Pass

E-W, ( ) Parial Derivative:

OE _ OE aoutout dout;, ahzout oh2;,
aw, dout,, odout, 0Oh2,. 0OhZ, oW,

. S oh2; P
Partial Derivative aw;" e (X1 * Wa+ XoxWy+ by)
=X1* W3+ Xz*W4+b2
=0+ (X))« Wy +0
oh2;,
aw, *
. dh2;
Substitution " —-w,
ow,
dh2;,
ow, =92
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Backward Pass

E-W, ( ) Parial Derivative:

OE _ OE Boutout dout;, ahzout ahz,-,,
aw, dout,, odout, 0h2,. 0OhZ, oW,

— 0.835 aoutout —0.23 dout;, -~ Ohyout - dh2;, -
dout,,, dout;, oh2,, dho, -

E
W, =0.835%0.23x0.3x0.25%0.2

=0.003

oW,
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Backward Pass

All Error-Weights Partial Derivatives

E
= —0.001 =
oW, ow,
- 0.009 =0.003
ow, ow,
=0.119 = 0.097
oW oW,
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Weights Update

Updated Weights
d

E
Winew = Wy —n * =0.5—-0.01+—0.001 = 0.50001

oW,

E
aw, 0.1-0.01%x—-0.003 =0.10003

Wanew = W2 —n

E
W, =0.62—-0.01+0.009 =0.61991

Winew = W3 — n

E
=0.2-0.01+0.003 = 0.1997
oW,

O
oW

Wanew = Wy —n

Wsnew = Ws —n * =—-0.2-0.01%0.618 = —0.20618

E
W, =0.3-0.01%x0.097 =0.29903

Wenew = We — n *

Continue updating weights according to derivatives and re-train the
network until reaching an acceptable error.
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Outline

Introduction and Motivation

Neural Network Architecture
 The Perceptron

« MLPs

« Multi-class Perceptron

Training MLPs

Choosing Network Structure
« Depth vs Width
« Expressive Power of MLPs
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MLPs Network Structure

 The number of hidden neurons and the number of layers in MLP have a
significant impact on the network's ability to handle different levels of
problem complexity, as well as its susceptibility to overfitting and underfitting.

* In complex problems, determining whether to increase the number of hidden
neurons (width) or the number of layers (depth) in a neural network depends
on various factors.

* Width vs. Depth
* Increasing the number of hidden neurons in a layer allows the network to capture or
learn more complex representations or patterns in the data.

* Learning more complex representations means capturing non-linear relationships, fine-
grained patterns, and subtle variations in the input data.
* Increasing the number of layers enables the network to capture hierarchical features
and abstractions.

* This means that the network's ability to learn and represent information at multiple levels of
abstraction. In many real-world problems, data can be organized in a hierarchical manner,
where high-level features are built upon lower-level features.

* There is no one-size-fits-all answer, and often a combination of both approaches may
yield the best results.
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Number of Neurons in the Hidden Layer

- Larger Neural Networks can represent more complicated functions.
The data are shown as circles colored by their class, and the
decision regions by a trained neural network are shown
underneath.

3 hidden neurons © hidden neurons 20 hidden neurons
® b g A it "
@ ® [6) :‘
o ® ® | [¢) ® ®
Q@ e 6] ]
© (@) ® |
e © e © \\ e ©
E ® o L &)
[&] %) (] © ? © ® f
© ® | © i @
@ @ @
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Number of Hidden Layer

Network
structure

Type of
decision region

Solution to
exclusive-OR
problem

Classes with
meshed regions

Most general
decision surface
shapes

Single layer

D4

Single
/\ hyperplane
Two layers
Open or
closed @ @
convex
regions @ @
Three layers
Arbitrary G
(complexity @ @
limited by the
number of
nodes) @ @
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