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Natural Language Processing:
Word Sense Disambiguation
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Lexical Ambiguity

« Many words in natural languages have multiple
possible meanings.
— “pen” (noun)
« The dog is in the pen.
« The ink is in the pen.

— “take” (verb)

 Take one pill every morning.
 Take the first right past the stoplight.

« Context greatly helps disambiguation
 Syntax helps distinguish meanings for different
parts of speech of an ambiguous word.

— “conduct” (noun or verb)
» John’s conduct in class is unacceptable.
» John will conduct the orchestra on Thursday.
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Motivation for
Word Sense Disambiguation (WSD)

« Many tasks in natural language processing require
disambiguation of ambiguous words.
— Question Answering
— Information Retrieval
— Machine Translation
— Text Mining
— Phone Help Systems

 Understanding how people disambiguate words iIs
an interesting problem that can provide insight in
psycholinguistics.
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Sense Inventory

« What is a “sense” of a word?

— Homonyms (disconnected meanings)
* bank: financial institution

* bank: sloping land next to a river

— Polysemes (related meanings with joint etymology)
« bank: financial institution as corporation
» bank: a building housing such an institution

 Sources of sense inventories
— Dictionaries
— Lexical databases (WordNet)
Entity/concept disambiguation in Wikipedia!
Gloss. concise description of word sense (Human)
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WordNet-English and Arabic

A detailed database of semantic relationships
between words (English/Arabic).

» Developed by famous cognitive psychologist
George Miller and a team at Princeton University.

» About 155,287/23481 English/Arabic words
(11/19/2017).

» Nouns, adjectives, verbs, and adverbs grouped Into
about 117,659/11,269 synonym sets called synsets.

 Each expressing a distinct concept.

 Synsets are interlinked by means of conceptual-
semantic and lexical relations
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WordNet Synset Relationships

« Antonym: front — back

 Altribute: benevolence — good (noun to adjective)
 Pertainym: alphabetical — alphabet (adjective to noun)
 Similar: unguestioning — absolute

» Cause: kill - die

» Entailment: breathe — Inhale

» Holonym: chapter — text (part to whole)

« Meronym: computer — cpu (whole to part)

« Hyponym: plant — tree (specialization)

* Hypernym: apple — fruit (generalization)
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WordNet Senses

WordNets senses (like many dictionary senses) tend to be
very fine-grained.

“play” as a verb has 35 senses, including

— play a role or part: “Gielgud played Hamlet”

— pretend to have certain qualities or state of mind: “John played
dead.”

Difficult to disambiguate to this level for people and
computers. Only expert lexicographers are perhaps able to
reliably differentiate senses.

Not clear such fine-grained senses are useful for NLP.

Several proposals for grouping senses into coarser, easier
to identify senses (e.g. homonyms only).
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WDS from WNet

Noun

{pipe, tobacco pipe} (a tube with a small bowl at one end; used for smoking
tobacco)

{pipe, pipage, piping} (a long tube made of metal or plastic that is used to
carry water or oil or gas etc.)

{pipe, tube} (a hollow cylindrical shape)
{pipe} (a tubular wind instrument)
{organ pipe, pipe, pipework} (the flues and stops on a pipe organ)

Verb

STUDENTS-HUB.com

{shriek, shrill, pipe up, pipe} (utter a shrill cry)
{pipe} (transport by pipeline) “pipe oil, water, and gas into the desert”

{pipe} (play on a pipe) “pipe a tune”
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* Noun

« {5} (Generosity)
« {~.5} (Grapevine)
 {¢5} (Masculine name)

 \Verb

« {+_S} (Honor)
{5} (Made an act of generosity)
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Senses Based on Needs of Translation

 Only distinguish senses that are translate to
different words in some other language.
— play: “as s Vs, el
— bank 4exa vs, s yas
— leave: Ll vs &l
— take: 23Lwvs, 3
— <3 gold vs past of Go
— e Left vs traitorous

« May still require overly fine-grained senses

— river In French Is either:
e fleuve: flows into the ocean
e riviere: does not flow into the ocean
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How big Is the problem?

« Most words in English have only one sense

— 62% In Longman’s Dictionary of Contemporary
English (LDOCE)

— 79% in WordNet
 But the others tend to have several senses
— Average of 3.83 In LDOCE
— Average of 2.96 in WordNet
- Ambiguous words are more frequently used

— In the British National Corpus, 84% of instances
have more than one sense

e Some senses are more frequent than others

STUDENTS: -HUB.co
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Baseline + Upper Bound

 Baseline: most frequent sense
— Equivalent to “take first sense” in WordNet

— !30@5 5urpri5ing|y welll 62% accuracy in this case!
[ Freq"g Synset Gloss
\ 338 [ plant', works, industrial plant buildings for carrying on industrial labor
\\29]/ plallt2 , flora, plant life a living organism lacking the power of locomotion
2 plallt3 something planted secretly for discovery by another
0 pla11t4 an actor situated in the audience whose acting is rehearsed

but seems spontaneous to the audience

 Upper nouna:
— Fine-grained WordNet sense: 75-80% human agreement

— Coarser-grained inventories: 90% human agreement
possible

* \What does this mean?
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WSD Approaches

» Depending on use of manually created
knowledge sources

— Knowledge-lean
— Knowledge-rich

» Depending on use of labeled data
— Supervised
— Semi- or minimally supervised
— Unsupervised
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Lesk’s Algorithm

Intuition: note word overlap between
context and dictionary entries (glosses)
— Unsupervised, but knowledge rich
bank can guarantegT €§5§iTQWiII eventually cover future tuition costs
because it invests in adjustable-rate’mortgage securities.
bank* Gloss: a financial institution that accepts({lgﬁgs;fs:talld channels the
money into lending activities . R
Examples: “he cashed a check at the bank”, “that bank holds the(ﬁlortgage:;
on my home” TT/77
bank- Gloss: sloping land (especially the slope beside a body of water)
Examples: “they pulled the canoe up on the bank”, “he sat on the bank of

the river and watched the currents”™
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Lesk’s Algorithm

« Simplest implementation:

— Count overlapping content words between glosses
and context

* Lots of variants:
— Include the examples in dictionary definitions
— Include hypernyms and hyponyms
— Give more weight to larger overlaps (e.g., bigrams)

— Give extra weight to infrequent words (e.g., /af
weighting)

* Works reasonably well!
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Supervised WSD: NLP meets ML

» WSD as a supervised classification task
— Train a separate classifier for each word

» Three components of a machine learning
problem:
— Training data (corpora)
— Representations (features)
— Learning method (algorithm, model)
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Supervised Classification

Training ! Testing

unlabeled
document

training data

label, label, label; label,

— _/
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Representation Function
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Classifier

v
supervised machine )
learning algorithm
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Care with Machine Learning

 Thou shalt not mingle training data with test
data

 Have user annotated data: careful with your
own

* Be objective!
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Features

» Possible features
— POS (Part Of Speech) and surface form of the word itself
— Surrounding words and POS tag
— Positional information of surrounding words and POS tags
— Same as above, but with 7-grams
— Grammatical information

 Richness of the features?
— Richer features = ML algorithm does less of the work

— More impoverished features = ML algorithm does more of
the work
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Classifiers

» Once we cast the WSD problem as
supervised classification, many learning
techniques are possible:

— Naive Bayes (the thing to try first)
— Decision trees

— MaxEnt

— Support vector machines

— Nearest neighbor methods
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Classifiers Tradeoffs

« Which classifier should | use?

* |t depends:
— Number of features
— Types of features
— Number of possible values for a feature
— Noise,.....

* General advice:
— Start with Naive Bayes

— Use decision trees/lists if you want to understand what
the classifier is doing

SSSSSSSS = S\VVMS 0ften give state of the art performance
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Learning for WSD

 Assume part-of-speech (POS), e.g. houn, verb,

adjective, for the target word Is determined:
<42 being a verb may solve the WSD problem!

 Treat as a classification problem with the

appropriate potential senses for the target word,
given its POS as the categories.

» Encode context using a set of features to be used

for disambiguation.

 Train a classifier on labeled data encoded using

these features.

 Use the trained classifier to disambiguate future

Instances of the target word given their contextual
features (same as do while testing).

SSSSSSSSSSSSSSSS
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Baseline + Upper Bound

 Baseline: most frequent sense
— Equivalent to “take first sense” in WordNet

—qes surprisingly well!

/ \
| 1
\ Freq/ Synset Gloss
\\é}&' plant’, works, industrial plant buildings for carrying on industrial labor
207 plallt2 , flora, plant life a living organism lacking the power of locomotion
2 plant3 something planted secretly for discovery by another
0 plant4 an actor situated in the audience whose acting is rehearsed

but seems spontaneous to the audience

62%0 accuracy in this case!

 Upper bound.:
— Fine-grained WordNet sense: 75-80% human agreement

— Coarser-grained inventories: 90% human agreement
possible
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Feature Engineering

 The success of machine learning requires
Instances to be represented using an effective set
of features that are correlated with the categories
of interest.

* Feature engineering can be a laborious process
that requires substantial human expertise and
knowledge of the domain.

 In NLP it iIs common to extract many (even
thousands of) potential features and use a learning
algorithm that works well with many relevant and
Irrelevant features.

SSSSSSSSSSSSSSSS
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Contextual Features

Surrounding bag of words.
POS of neighboring words
Local collocations
Syntactic relations

Experimental evaluations indicate that all of

these features are useful; and the best results

comes from integrating all of these cues In the
disambiguation process.

This i1s for English. What about Arabic?

25
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Surrounding Bag of Words

SSSSSSSSSSSSSSSS

Unordered individual words near the ambiguous
word. E.qg.

May include words In the previous sentence or
surrounding paragraph ( ).

Gives general topical cues of the context.

May use feature selection to determine a smaller set
of words that help discriminate possible senses.

May just remove common “‘stop words” such as
articles, prepositions, etc.

26
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POS of Neighboring Words

» Use part-of-speech of immediately
neighboring words.

 Provides evidence of local syntactic context.

 Pis the POS of the word /7 positions to the
left of the target word.

* P;is the POS of the word 7 positions to the
right of the target word.

 Typical to include features for:
/D-31 /0_21 /D_]_, Pl’ /D2, /D3

27
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|_ocal Collocations

 Specific lexical context immediately adjacent to the word.

» For example, to determine if “Interest” as a noun refers to
“readiness to give attention” or “money paid for the use of
money”, the following collocations are useful:

— “In the interest of”
— “an interest in”

— “Interest rate”

— ““accrued interest”

* C;;1s afeature of the sequence of words from local position /to
/ ‘rélative to the target word.

— C,, for “in the interest of” is “ ” [2 before to 1 after, No word]

» Typical to include:

— Single word context. C., ,, Ci 4, C, ., G,
— Two word context: C, 4, C,,,C; 5
— Three word context: C; 4, Cyq, Cq5, Ci 5

28
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Syntactic Relations
(Ambiguous Verbs)

 For an ambiguous verb [have POS!], it is very useful to
know Its direct object [play: mstrument/game?]

— “played the game”

— “played the guitar”

— “played the risky and long-lasting card game”

— “played the beautiful and expensive guitar”

— “played the big brass tuba at the football game”

— “played the game listening to the drums and the tubas”

» May also be useful to know its subject:
— “The game was played while the band played.”
— “The game that included a drum and a tuba was played on

SSSSSSSSSSSSSSSS

Friday.”
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Syntactic Relations
(Ambiguous Nouns)

 For an ambiguous noun, it is useful to know
what verb It Is an object of:

— “played the piano and the horn”
— “wounded by the rhinoceros’ horn”
« May also be useful to know what verb it is
the subject of:
— “the bank near the river loaned him $100”

— “the bank Is eroding and the bank has given the
city the money to repair it”

SSSSSSSSSSSSSSSS
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Syntactic Relations
(Ambiguous Adjectives)

 For an ambiguous adjective, it useful to
know the noun it i1s modifying.
— “a brilliant young man”
— “a brilliant yellow light”
— “awooden writing desk”
— “awooden acting performance”

31
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Using Syntax in WSD

 Produce a parse tree for a sentence using a syntactic

parser.
AN
NP VP\
PropéN V/ NP

John played DET N

the  piano

 For ambiguous verbs, use the head word of its direct
object and of its subject as features.

» For ambiguous nouns, use verbs for which it is the
object and the subject as features.

 For ambiguous adjectives, use the head word (noun)
of its NP as a feature.

SSSSSSSSSSSSSSSS
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Evaluation of WSD

e “In vitro™:

— Corpus developed in which one or more ambiguous words
are labeled with explicit sense tags according to some sense
Inventory.

— Corpus used for training and testing WSD and evaluated
using accuracy (percentage of labeled words correctly
disambiguated).

« Use most common sense selection as a baseline.
e “In vivo™:
— Incorporate WSD system into some larger application

system, such as machine translation, information retrieval, or
gquestion answering.

— Evaluate relative contribution of different WSD methods by
measuring performance impact on the overall system on final
task (accuracy of MT, IR, or QA results).

33
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Lexical Sample vs. All Word Tagging

* Lexical sample:

— Choose one or more ambiguous words each with a
sense inventory.

— From a larger corpus, assemble sample occurrences of
these words.

— Have humans mark each occurrence with a sense tag.
 All words:

— Select a corpus of sentences.

— For each ambiguous word in the corpus, have humans
mark it with a sense tag from an broad-coverage lexical
database (e.g. WordNet).

SSSSSSSSSSSSSSSS
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SenseEval

- Standardized international “competition” on WSD.

 Organized by the Association for Computational
Linguistics (ACL) Special Interest Group on the Lexicon
(SIGLEX).

 After 2007, evolved in broader “SemEval” competition:
semantics/meaning.

- Started with word senses, now to semantic role,
coreference, smenatic relations and sentiment analysis

 Arabic appeared in Semeval2016

(https://en.wikipedia.org/wiki/SemEval)

35
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Senseval 1: 1998

« Datasets for
— English
— French
— [talian

 Lexical sample in English

— Noun: accident, behavior, bet, disability, excess, float, giant, knee,
onion, promise, rabbit, sack, scrap, shirt, steering

— Verb: amaze, bet, bother, bury, calculate, consumer, derive, float,
Invade, promise, sack, scrap, sieze

— Adjective: brilliant, deaf, floating, generous, giant, modest, slight,
wooden

— Indeterminate: band, bitter, hurdle, sanction, shake
 Total number of ambiguous English words tagged: 8,448

36
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Senseval 1 English Sense Inventory

» Senses from the HECTOR lexicography
project.

« Multiple levels of granularity
— Coarse grained (avg. 7.2 senses per word)
— Fine grained (avg. 10.4 senses per word)

SSSSSSSSSSSSSSSS
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Senseval Metrics

* Fixed training and test sets, same for each system.

» System can decline to provide a sense tag for a
word If it is sufficiently uncertain.

« Measured guantities:
— A: number of words assigned senses
— C: number of words assigned correct senses
— T: total number of test words
e Metrics:
— Precision = C/A
— Recall =C/T

SSSSSSSSSSSSSSSS
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Senseval 1 Overall English Results

Fine grained
precision (recall)

Course grained
precision (recall)

Human 97% (96%) 97% (97%)
Lexicographer

Agreement

Most common 57% (50%) 63% (56%)
sense baseline

Best system 77% (77%) 81% (81%)
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Senseval 2: 2001

» More languages: Chinese, Danish, Dutch, Czech,
Basque, Estonian, Italian, Korean, Spanish,
Swedish, Japanese, English

* Includes an “all-words” task as well as lexical
sample.

» Includes a “translation” task for Japanese, where
senses correspond to distinct translations of a
word into another language.

35 teams competed with over 90 systems entered.

SSSSSSSSSSSSSSSS
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Senseval 2 Results
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Senseval 2 Results

English All Words
(coarse-grained scoring)

E Frecision
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Senseval 2 Results

Spanish Lexical Sample
(fine-grained scoring)
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Issues 1n WSD

« What is the right granularity of a sense inventory?
* Integrating WSD with other NLP tasks

— Syntactic parsing
— Semantic role labeling
— Semantic parsing

» Does WSD actually improve performance on

SSSSSSSSSSSSSSSS

some real end-user task?
— Information retrieval

— Information extraction

— Machine translation

— Question answering
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