Chapter 3. Processes

operititFlenr BB £9M oen Egition UploagsdByMahammed,saadas

= Process Concept

= Process Scheduling

= QOperations on Processes

= |nterprocess Communication

= |PC in Shared-Memory Systems

= |PC in Message-Passing Systems

= Examples of IPC Systems

= Communication in Client-Server Systems

IRENT SR UBERRL 10m Edition 22 Uploggded By, Mahammed.Saasla

v & Objectives

= |dentify the separate components of a process and illustrate how they
are represented and scheduled in an operating system.

= Describe how processes are created and terminated in an operating
system, including developing programs using the appropriate system
calls that perform these operations.

= Describe and contrast interprocess communication using shared
memory and message passing.

= Design programs that uses pipes and POSIX shared memory to
perform interprocess communication.

= Describe client-server communication using sockets and remote
procedure calls.

= Design kernel modules that interact with the Linux operating system.

D

Je RN Sk WEEBI_ 100 Edition - Uploagled By; Mahamme: gn§@ ?ﬂé

<557 Process Concept

= An operating system executes a variety of programs that run as a
process.

= Process — a program in execution; process execution must progress

in sequential fashion. No parallel execution of instructions of a single
process

= Multiple parts
* The program code, also called text section

* Current activity including program counter, processor registers
* Stack containing temporary data

» Function parameters, return addresses, local variables
* Data section containing global variables

* Heap containing memory dynamically allocated during run time

£
Pa.
Je RN Sk WEEBI_ 100 Edition 3.4 Up'o%%.%cﬁé{'z,'}é'&mm&'b%@n%?ﬂ@

(T
o Process Concept (Cont.)

= Program is passive entity stored on disk (executable file);
process is active

* Program becomes process when an executable file is
loaded into memory

= Execution of program started via GUI mouse clicks, command
line entry of its name, etc.

= One program can be several processes
* Consider multiple users executing the same program

e —

HRENTSEHUBSRRL 10m Edition 25 Uplogded By, Mahammed.Saada

S5 Process in Memory

max
stack

heap

data

text

S,
=N |
<
A,

deleRONdy st 5B 100 Edition 3.6 Uploggled Ry MahRmmed = aads

7 Memory Layout of a C Program

#include <stdio.h>

high include <stdlib.h
g argc, agrv frinclude <stdlib.h>
memory
stack int x;
___l____ ((inty=15;
int main(int argc, char *argv[])
{
L L — — L I:int *values;
heap - } int 4
—
uninitialized [, , I
data values = (int *)malloc (sizeof (int) *5) ;
initialized for(i = 0; 1 < 5; i++)
data values[i] = 1i;
low text return 0;
memory }

e
deleRONdy st 5B 100 Edition 37 Uploggled Ry MahRmmed = aads

AW\

(o]
g Process State

= As a process executes, it changes state
* New: The process is being created
* Running: Instructions are being executed
* Waiting: The process is waiting for some event to occur
* Ready: The process is waiting to be assigned to a processor
* Terminated: The process has finished execution

e —

A JE{’
pehln DN e BB 10m Edition 3.8 Uploggled Ry MahRmmed = aads

admitted interrupt terminated

scheduler dispatch

I/O or event completion I/O or event wait

IRENTSeHYB O 10 eaiton . Uploaged By, Mahammed. Saads

=
= n’;'-“?-l

uv Process Control Block (PCB)

Information associated with each process(also called task
control block)

= Process state — running, waiting, etc.

= Program counter — location of instruction to next process state

execute process number
= CPU registers — contents of all process-centric program counter
registers
registers

= CPU scheduling information- priorities, scheduling
gueue pointers

memory limits

= Memory-management information — memory

list of open files
allocated to the process P

= Accounting information — CPU used, clock time c oo
elapsed since start, time limits

= |/O status information — I/O devices allocated to
process, list of open files

fa.
Je RN Sk WEEBI_ 100 Edition 3.10 U plo@i%@%cﬁéﬁ, M&?ﬁf’f‘%‘&@é@?ﬂ@

ot Threads

= So far, process has a single thread of execution
= Consider having multiple program counters per process
* Multiple locations can execute at once
» Multiple threads of control -> threads

= Must then have storage for thread details, multiple program
counters in PCB

= Explore in detail in Chapter 4

e —

peh b\ stehl EH&EBII- 10 Edition 311 Uplogged Ry, Mahrmmeg.saasts

o
Y,

Py, oy
‘\T‘\%,r/
L \e =

Process Representation in Linux

Represented by the C structure task struct

pid t pid; /* process identifier */
long state; /* state of the process */
unsigned int time slice /* scheduling information */

this process’ s parent */
this process’s children */
list of open files */
address space of this

struct task struct *parent;/*
struct list head children; /*
struct files struct *files;/*
struct mm struct *mm; /*
process */

7N

NN

struct task_struct
process information
L]

struct task_struct

process information
L]

SN Sk B GBI 100 Edition

S

f

current

struct task_struct

process information
L]

K A & _#

(currently executing proccess)

3.12

Process Scheduling

= Process scheduler selects among available processes
for next execution on CPU core

= Goal -- Maximize CPU use, quickly switch processes onto
CPU core

= Maintains scheduling queues of processes

* Ready queue — set of all processes residing in main
memory, ready and waiting to execute

* Wait queues — set of processes waiting for an event
(i.e., 1/O)

* Processes migrate among the various queues

peh b\ stehl EH&EBII- 10 Edition 313 Uplogged Ry, Mahrmmeg.saasts

e —

| ﬂ_j% _
o Ready and Wait Queues

L8 s

queue header PCB , PCB ,
ready head » > N =
queue tail \\registers/ registers
PCB, PCB,, PCB,

wait head 4
queue tail

IRENTSeHYB O 10 eaiton - Uploaged By, Mahammed. Saads

‘ _ =
>

e

Representation of Process Scheduling

ready queue

Y

I/0 wait queue

> CPU j

A

A

I/0 request

child
terminates

interrupt
occurs

K

SN Sk B GBI 100 Edition

child
termination
wait queue

time slice i
expired

interrupt
wait queue

A

create child L
process

3.15

wait for an
interrupt

A

Ve
Uploaged By Mahammed. saasla

N\ H\\

‘\fﬁf»—{ CPU Switch From Process to Process

A context switch occurs when the CPU switches from
one process to another.

process P, operating system process P,

interrupt or system call

executing U /
\ 4
T <)

save state into PCB,

> idle

reload state from PCB; 1
-idle interrupt or system call executing

4

save state into PCB,

. " idle

reload state from PCB, J

executing U¥

0@

Pl RO\ skl GBI 10 Edition 316 Uplogfigd Ry '}é'é?mmm%@n%?ﬂ

S5 Context Switch

= When CPU switches to another process, the system must
save the state of the old process and load the saved state
for the new process via a context switch

= Context of a process represented in the PCB

= Context-switch time is pure overhead; the system does no
useful work while switching

* The more complex the OS and the PCB = the longer
the context switch

= Time dependent on hardware support

* Some hardware provides multiple sets of registers per
CPU =>» multiple contexts loaded at once

£33
Pa.
Je RN Sk WEEBI_ 100 Edition 3.17 Up'o%%.%cﬁé{'z,'}é'&mm&'b%@n%?ﬂ@

-\‘-&5

«g% Multitasking in Mobile Systems

= Some mobile systems (e.g., early version of iOS) allow only one
process to run, others suspended

= Due to screen real estate, user interface limits I0OS provides for a
* Single foreground process- controlled via user interface

* Multiple background processes— in memory, running, but not
on the display, and with limits

* Limits include single, short task, receiving notification of events,
specific long-running tasks like audio playback

= Android runs foreground and background, with fewer limits
* Background process uses a service to perform tasks

* Service can keep running even if background process is
suspended

* Service has no user interface, small memory use

1\

&Qﬁmétﬂ ‘é&&.@{@- 10th Edition 3.18 Uplog%ggCﬁ%zMQ\nﬁmg&gn§@§ﬂé

: ﬂqu"i‘ _
‘*‘”{) { OperatlonS on Processes

L8 s "

= System must provide mechanisms for:
°* Process creation
* Process termination

PR]
.Q.

- PR
deleRONdy st 5B 100 Edition 3.19 Uploggled Ry MahRmmed = aads

Y
o

.

GF7 Process Creation

& 7

= Parent process create children processes, which, in turn
create other processes, forming a tree of processes

= Generally, process identified and managed via a process
identifier (pid)

= Resource sharing options
* Parent and children share all resources
* Children share subset of parent’ s resources
* Parent and child share no resources
= Execution options
* Parent and children execute concurrently
* Parent waits until children terminate

e —

Je RN Sk WEEBI_ 100 Edition 3.20 UP'O%%QC%{'ZMQ\W@QHQL%%%MQ

ot Process Creation (Cont.)

= Address space

* Child duplicate of parent

* Child has a program loaded into it
= UNIX examples

° fork () system call creates new process

* exec () system call used after a fork () to replace the process’
memory space with a new program

* Parent process calls wait () waiting for the child to terminate

parent (pid > 0)

parent resumes

parent

child (pid = 0)

e —

peh b\ stehl EH&EBII- 10 Edition 321 Uplogged Ry, Mahrmmeg.saasts

7 A Tree of Processes in Linux

systemd
pid=1

python
pid = 2808

bash
pid = 8416

vim
pid = 9204

sshd
pid =3610

tcsh
pid = 4005

PR]
.Q.

- PR
deleRONdy st 5B 100 Edition 3.22 Uploggled Ry MahRmmed = aads

Y
o

‘*f%)—’ C Program Forking Separate Process

#include <sys/types.h>
#include <stdio.h=>
#include <unistd.h>

int main()

{

pid t pid;

/* fork a child process */
pid = fork();

if (pid < 0) { /* error occurred */
fprintf(stderr, "Fork Failed");
return 1;

}

else if (pid == 0) { /* child process */
execlp("/bin/1s","1s" ,NULL);

else { /* parent process */
/* parent will wait for the child to complete */
wait (NULL);
printf("Child Complete");

}

return 0;

] .
RO, stehl EHGBI- 100 Edition 3.23 Up'Oéﬁ%@éﬁé{é,M&?@ﬁ&ﬂ&ﬂ%ﬁﬁ@?ﬂg

=
* Creating a Separate Process via Windows AP

il ’

A

'S
3

#include <stdio.h>
#include <windows.h>

int main(VOID)

{

STARTUPINFO si;
PROCESS_INFORMATION pi;

/* allocate memory */
ZeroMemory (ksi, sizeof(si));
si.cb = sizeof(si);
ZeroMemory (&pi, sizeof(pi));

/* create child process */
if (!CreateProcess(NULL, /#* use command line */
"C:\\WINDOWS\\system32\\mspaint.exe", /* command */
NULL, /* don’t inherit process handle */
NULL, /* don’t inherit thread handle */
FALSE, /* disable handle inheritance */
0, /* no creation flags */
NULL, /* use parent’s environment block */
NULL, /* use parent’s existing directory */
Esi,

&pi))
{

fprintf (stderr, "Create Process Failed");
return -1;
}
/* parent will wait for the child to complete */
WaitForSingleObject(pi.hProcess, INFINITE);
printf("Child Complete");

/* close handles */
CloseHandle(pi.hProcess);
CloseHandle(pi.hThread);

la
SN Sk B GBI 100 Edition 3.04 Uploggled By: Mahammed saada

-

<57 Process Termination

"

= Process executes last statement and then asks the operating
system to delete it using the exit () system call.

* Returns status data from child to parent (via wait ())

* Process’ resources are deallocated by operating system

= Parent may terminate the execution of children processes using
the abort () system call. Some reasons for doing so:

* Child has exceeded allocated resources
* Task assigned to child is no longer required

* The parent is exiting, and the operating systems does not
allow a child to continue if its parent terminates

1\

&Qﬁmétﬂ ‘é&&.@{@- 10th Edition 3.25 Uplog%ggCﬁ%zMQ\nﬁmg&gn§@§ﬂé

Sy Process Termination

= Some operating systems do not allow child to exists if its parent
has terminated. If a process terminates, then all its children
must also be terminated.

* cascading termination. All children, grandchildren, etc.,
are terminated.

* The termination is initiated by the operating system.

= The parent process may wait for termination of a child process
by using the wait () system call. The call returns status
information and the pid of the terminated process

pid = wait(&status);

= |f no parent waiting (did not invoke wait ()) process is a
zombie

= |f parent terminated without invoking wait (), process is an
orphan

1\

&Qﬁmétﬂ ‘é&&.@{@- 10th Edition 3.26 Uplog%ggCﬁ%zMQ\nﬁmg&gn§@§ﬂé

«g% Android Process Importance Hierarchy

y

= Mobile operating systems often have to terminate processes to reclaim
system resources such as memory. From most to least important:

* Foreground process
* Visible process
* Service process
* Background process
* Empty process
= Android will begin terminating processes that are least important.

e —

A JE{’
pehln DN e BB 10m Edition 3.27 Uploggled Ry MahRmmed = aads

Ex

g—-—f Multiprocess Architecture — Chrome Browser

= Many web browsers ran as single process (some still do)
* If one web site causes trouble, entire browser can hang or crash

= Google Chrome Browser is multiprocess with 3 different types of
processes:

* Browser process manages user interface, disk and network 1/O

* Renderer process renders web pages, deals with HTML,
Javascript. A new renderer created for each website opened

» Runs in sandbox restricting disk and network /O, minimizing
effect of security exploits

* Plug-in process for each type of plug-in

G Chrome Browser 0S-BOOK.COM X .wl ey: Operating System (X sos BBC - Homepage

C & https://w oogle.com/chrome/bro: r/desktop/
c chrome DOWNLOAD ~ SETUP ~

Each tab represents a separate process.

CHROMECAST ~

e —

Je RN Sk WEEBI_ 100 Edition 3.28 UP'O%%QC%{'ZMQ\W@QHQL%%%MQ

¥
1,

)

GF Interprocess Communication

s l ‘ A
: 3
N)

= Processes within a system may be independent or cooperating

= Cooperating process can affect or be affected by other processes,
including sharing data

= Reasons for cooperating processes:

* Information sharing

* Computation speedup

* Modularity

* Convenience
= Cooperating processes need interprocess communication (IPC)
= Two models of IPC

* Shared memory

* Message passing

e —

A JE{’
pehln DN e BB 10m Edition 3.29 Uploggled Ry MahRmmed = aads

&a-—/ Communications Models

(a) Shared memory.

I: process A
shared memory

process B

kernel

(a)

SN Sk B GBI 100 Edition

3.30

(b) Message passing.

process A

process B

message queue

Mo

mj

m2 m3 cee mn<_

kernel

(b)

Uplo%@gcﬁxz,'}égmmmgéé

A\ L
P

3l

=

A"“m‘\ \
~%»/ Producer-Consumer Problem

= Paradigm for cooperating processes:

* producer process produces information that is consumed
by a consumer process

= Two variations:

* unbounded-buffer places no practical limit on the size of
the buffer:

» Producer never waits
» Consumer waits if there is no buffer to consume
* bounded-buffer assumes that there is a fixed buffer size
» Producer must wait if all buffers are full
» Consumer waits if there is no buffer to consume

e —

HRENTSEHUBSRRL 10m Edition 2o Uplogded By, Mahammed.Saada

.

Sy IPC — Shared Memory

& 7

= An area of memory shared among the processes that wish to
communicate

= The communication is under the control of the users processes
not the operating system.

= Major issues is to provide mechanism that will allow the user

processes to synchronize their actions when they access shared
memory.

= Synchronization is discussed in great details in Chapters 6 & 7.

e —

Je RN Sk WEEBI_ 100 Edition 3.32 UP'O%%QC%{'ZMQ\W@QHQL%%%MQ

=

gg‘;ﬁ ‘Bounded-Buffer - Shared-Memory Solution

= Shared data
#define BUFFER _ SIZE 10

typedef struct {

} item;

item buffer[BUFFER SIZE];
int in = 0;

int out = 0;

= Solution is correct, but can only use BUFFER _SIZE-1 elements

A\ L
P

RENGSeH B G 100 edition Uplogded By; Mahammed, Saadl

L N

\ ,,‘(ml‘\\
Wy{ Producer Process — Shared Memory

item next_produced;

while (true) {
/* produce an item in next produced */
while (((in + 1) % BUFFER SIZE) == out)
; /* do nothing */
buffer[in] = next produced;

in = (in + 1) % BUFFER SIZE;

\ _\\l\ N
7
LG
- ‘ \,‘?(
PAY

¥
o

RENGSeH B G 100 edition \as Uploggded By; Mahrmmed Saasda

o
7,

S
4%’ Consumer Process — Shared Memory

item next_consumed;

while (true) {
while (in == out)

; /* do nothing */
next_consumed = buffer|[out];

out = (out + 1) % BUFFER SIZE;

/* consume the item in next consumed */

\
ALY
AL

P e
=W
e ,\,‘\<‘

\ Y
PN

RENGSeH B G 100 edition . Uploggded By; Mahrmmed Saasda

(™
(cm

%77 What about Filling all the Buffers?

y

= Suppose that we wanted to provide a solution to the consumer-
producer problem that fills all the buffers.

= We can do so by having an integer counter that keeps track
of the number of full buffers.

= [|nitially, counter is setto 0.

= The integer counter is incremented by the producer after it
produces a new buffer.

= The integer counter is and is decremented by the consumer
after it consumes a buffer.

e —

Je RN Sk WEEBI_ 100 Edition 3.36 Uplo@i%@%cﬁ%é,%&?\nﬁmg&gé@?ﬂg

Wr’ Producer

while (true) {
/* produce an item in next produced */

while (counter == BUFFER SIZE)
; /* do nothing */

buffer[in] = next produced;
in = (in + 1) % BUFFER_SIZE;
counter++;

-
Ve
SN Sk B GBI 100 Edition 3.37 Uploé’iq)ggcﬁé{z M&?\nﬁmmgn%ﬂ%

| ﬂ_j%
&«:»r Consumer

L8 s

while (true) {
while (counter == 0)

; /* do nothing */
next consumed = buffer[out];
out = (out + 1) % BUFFER SIZE;
counter—--;

/* consume the item 1n next consumed */

IRENTSeHYB O 10 eaiton - Uploaged By, Mahammed. Saads

¢GWJ .
m,,.—/ Race Condition

" counter++ could be implemented as

registerl = counter
registerl = registerl + 1
counter = registerl

" counter-- could be implemented as

register2 = counter
register2 = register2 -1
counter = register2

= Consider this execution interleaving with “count = 5” initially:

SO: producer execute registerl = counter {registerl = 5}
S1: producer execute registerl = registerl + 1 {registerl = 6}
S2: consumer execute register2 = counter {register2 = 5}
S3: consumer execute register2 = register2 - 1 {register2 =4}
S4: producer execute counter = registerl {counter =6}
S5: consumer execute counter = register2 {counter = 4}

FHQ[E&EI;@@H @51&9@— 10th Edition 3.39 U plog%‘é}lcﬁg{zl}ég\nﬁmg&géé%g

| f«‘(wv»i . .
v:,,w Race Condition (Cont.)

" Question - why was there no race condition
in the first solution (where at most N - 1)
buffers can be filled?

" More in Chapter 6.

RENGSeH B G 100 edition \a0 Uploggded By; Mahrmmed Saasda

S IPC — Message Passing

= Processes communicate with each other without
resorting to shared variables

= |PC facility provides two operations:
* send(message)
* receive(message)

= The message size is either fixed or variable

A\ L
P

RENGSeH B G 100 edition Uplogded By; Mahammed, Saadl

r o Message Passing (Cont.)

= |f processes P and Q wish to communicate, they need to:
* Establish a communication link between them
* Exchange messages via send/receive
= |mplementation issues:
* How are links established?
* Can alink be associated with more than two processes?

* How many links can there be between every pair of
communicating processes?

* What is the capacity of a link?

* Is the size of a message that the link can accommodate
fixed or variable?

* |Is a link unidirectional or bi-directional?

fa.
Je RN Sk WEEBI_ 100 Edition 3.42 U plo@i%@%cﬁéﬁ, M&?ﬁf’f‘%‘&@é@?ﬂ@

)

g%’ Implementation of Communication Link

= Physical:
* Shared memory
* Hardware bus
* Network
= Logical:
* Direct or indirect

* Synchronous or asynchronous
* Automatic or explicit buffering

SN Sk B GBI 100 Edition

S
> =50 =..\
7 WS

Uploaged Ry Mahammed.Seada

S5 Direct Communication

= Processes must name each other explicitly:
* send (P, message) — send a message to process P
* receive(Q, message) — receive a message from process Q

= Properties of communication link
* Links are established automatically

* Alink is associated with exactly one pair of communicating
processes

* Between each pair there exists exactly one link
* The link may be unidirectional, but is usually bi-directional

Je RN Sk WEEBI_ 100 Edition 3.44 U plo@i%@%cﬁéﬁ, ngnﬁm%gé@?ﬂg

e —

:\%
M,&

T Indirect Communication

= Messages are directed and received from mailboxes (also referred
to as ports)

* Each mailbox has a unique id
* Processes can communicate only if they share a mailbox
= Properties of communication link
* Link established only if processes share a common mailbox
* Alink may be associated with many processes
* Each pair of processes may share several communication links
* Link may be unidirectional or bi-directional

e —

Je RN Sk WEEBI_ 100 Edition 3.45 U plo@i%@%cﬁéﬁ, ngnﬁm%gé@?ﬂg

4
Y,

g Indirect Communication (Cont.)

o

= Operations
* Create a new mailbox (port)
* Send and receive messages through mailbox
* Delete a mailbox
= Primitives are defined as:
* send(A, message) — send a message to mailbox A
* receive(A, message) — receive a message from mailbox A

e —

A
A JE(A
de RS Steh EBEBR 10 Edition 3.46 Uploggled By: Mahammed saada

m,;::i Indirect Communication (Cont.)

y

= Mailbox sharing
* P,, P,, and P; share mailbox A
* P, sends; P, and P, receive
* Who gets the message?
= Solutions
* Allow a link to be associated with at most two processes

* Allow only one process at a time to execute a receive
operation

* Allow the system to select arbitrarily the receiver.
Sender is notified who the receiver was.

e —

peh b\ stehl EH&EBII- 10 Edition 3.47 Uplogged Ry, Mahrmmeg.saasts

=

-

P Synchronization

Message passing may be either blocking or non-blocking

= Blocking is considered synchronous

* Blocking send -- the sender is blocked until the message is
received

* Blocking receive -- the receiver is blocked until a message is
available

= Non-blocking is considered asynchronous

* Non-blocking send -- the sender sends the message and
continue

* Non-blocking receive -- the receiver receives:
» A valid message, or
» Null message
= Different combinations possible
* If both send and receive are blocking, we have a rendezvous _ SN
e
deR RN SteH YRGB 10 Edition 3.48 Uploggded By, Mahammed eaass

&;’;‘i Producer-Consumer: Message Passing

= Producer
message next produced;
while (true) {
/* produce an item in next produced * /

send (next produced) ;
}

= Consumer
message next consumed;
while (true) {
receive (next consumed)

/* consume the item in next consumed */

}

e —

peh b\ stehl EH&EBII- 10 Edition 3.49 Uplogged Ry, Mahrmmeg.saasts

v o Buffering

= Queue of messages attached to the link.
= |mplemented in one of three ways

1. Zero capacity — no messages are queued on a link.
Sender must wait for receiver (rendezvous)

2. Bounded capacity — finite length of n messages
Sender must wait if link full

3. Unbounded capacity — infinite length
Sender never waits

JR NS Sk WBERI 10t Edition 3.50

e —

Uploggded By, Mahammed.Saadla

S Pipes

= Acts as a conduit allowing two processes to communicate
= |ssues:
* Is communication unidirectional or bidirectional?
* In the case of two-way communication, is it half or full-duplex?

* Must there exist a relationship (i.e., parent-child) between the
communicating processes?

* Can the pipes be used over a network?

= Ordinary pipes — cannot be accessed from outside the process that
created it. Typically, a parent process creates a pipe and uses it to
communicate with a child process that it created.

= Named pipes — can be accessed without a parent-child relationship.

1\

&Qﬁmétﬂ ‘é&&.@{@- 10th Edition 3.51 Uplog%ggCﬁ%zMQ\nﬁmg&gn§@§ﬂé

g5 Ordinary Pipes

= QOrdinary Pipes allow communication in standard producer-consumer
style

= Producer writes to one end (the write-end of the pipe)

= Consumer reads from the other end (the read-end of the pipe)

= QOrdinary pipes are therefore unidirectional

= Require parent-child relationship between communicating processes

Parent Child

fd [0] fd [0]
fd [1] ? , fd [1] i
i pipe >

= Windows calls these anonymous pipes

e —

peh b\ stehl EH&EBII- 10 Edition 352 Uplogged Ry, Mahrmmeg.saasts

S Named Pipes

= Named Pipes are more powerful than ordinary pipes
= Communication is bidirectional

= No parent-child relationship is necessary between the communicating
processes

= Several processes can use the named pipe for communication
= Provided on both UNIX and Windows systems

e —

peh b\ stehl EH&EBII- 10 Edition 353 Uplogged Ry, Mahrmmeg.saasts

|
gv ,A,.«;;m..\
o

=" The following slides are for
reference only.

JHRENT S WB -SRI 10 Edition 254 Uploggled By: Mahammed.Saada

~%»/ Examples of IPC Systems - POSIX

= POSIX Shared Memory

* Process first creates shared memory segment
shm fd = shm open(name, O CREAT | O RDWR, 0666) ;

* Also used to open an existing segment
* Set the size of the object
ftruncate(shm fd, 4096) ;

* Usemmap () to memory-map a file pointer to the shared memory
object

* Reading and writing to shared memory is done by using the
pointer returned by mmap () .

e —

Je RN Sk WEEBI_ 100 Edition 3.55 U plo@i%@%cﬁéﬁ, ngnﬁm%gé@?ﬂg

“§F7 IPC POSIX Producer

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main()

/* the size (in bytes) of shared memory object */
const int SIZE = 4096;

/* name of the shared memory object */

const char *pname = "0S";

/* strings written to shared memory */

const char *message.0 "Hello";

const char *message 1 "World!";

/* shared memory file descriptor */
int shm fd;
/* pointer to shared memory obect */
void *ptr;

/* create the shared memory object */
shm fd = shm open(name, O_CREAT | ORDWR, 0666);

/* configure the size of the shared memory object */
ftruncate(shm fd, SIZE);

/* memory map the shared memory object */
ptr = mmap(0, SIZE, PROT_WRITE, MAP_SHARED, shm fd, 0);

/* write to the shared memory object */
sprintf (ptr,"%s",message 0);

ptr += strlen(message 0);

sprintf (ptr,"%s",message 1) ;

ptr += strlen(message 1);

return 0;

delriNd st UGG BRI- 100 Ediiion 3.56 Uploaged Ry, Mgmmmgn%?ﬂ@

7 IPC POSIX Consumer

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main()

{

/* the size (in bytes) of shared memory object */
const int SIZE = 4096;

/* name of the shared memory object */

const char #*name = "0S";

/* shared memory file descriptor */

int shm fd;

/* pointer to shared memory obect */

void *ptr;

/* open the shared memory object */
shm fd = shm open(name, O0.RDONLY, 0666);

/¥ memory map the shared memory object */
ptr = mmap(0, SIZE, PROT READ, MAP SHARED, shm fd, 0);

/* read from the shared memory object */
printf("%s", (char *)ptr);

/* remove the shared memory object */
shm unlink(name) ;

return 0;

SN Sk B GBI 100 Edition 357 Uploggled By: Mahammed saada

=

-

<% Examples of IPC Systems - Mach

= Mach communication is message based
* Even system calls are messages
* Each task gets two ports at creation - Kernel and Notify
* Messages are sent and received using the mach_msg () function
* Ports needed for communication, created via
mach port allocate()

* Send and receive are flexible; for example four options if mailbox
full:

» Wait indefinitely

» Wait at most n milliseconds

» Return immediately

» Temporarily cache a message

£33
Pa.
Je RN Sk WEEBI_ 100 Edition 3.58 Up'o%%.%cﬁé{'z,'}é'&mm&'b%@n%?ﬂ@

S
g Mach Messages

#include<mach/mach.h>

struct message {
mach msg header t header;
int data;

Y7

mach port t client;
mach port t server;

RENGSeH B G 100 edition - Uploggded By; Mahrmmed Saasda

: ﬁwj% _ :
~“$»’ Mach Message Passing - Client

L8 s

/* Client Code */
struct message message;

// construct the header
message.header.msgh size = sizeof (message);
message .header.msgh remote _port = server;
message.header.msgh local port = client;

// send the message

mach msg(&message .header, // message header
MACH_SEND_MSG, // sending a message
sizeof (message), // size of message sent
0, // maximum size of received message - unnecessary
MACH PORT NULL, // name of receive port - unnecessary
MACH_MSG_TIMEOUT_NONE, // no time outs
MACH_PORT NULL // no notify port

IRENTSeHYB O 10 eaiton o0 Uploaged By, Mahammed. Saads

: ﬂ_j’t _
“$»/ Mach Message Passing - Server

L8 s

/* Server Code */
struct message message;

// receive the message

mach msg(&message .header, // message header
MACH RCV_MSG, // sending a message
0, // size of message sent
sizeof (message), // maximum size of received message
server, // name of receive port
MACHMSG_TIMEQOUT NONE, // no time outs
MACH PORT NULL // no notify port

NS
=
<

A !§ p
deleRONdy st 5B 100 Edition 361 Uploggled Ry MahRmmed = aads

f -
~4%7 Examples of IPC Systems — Windows

= Message-passing centric via advanced local procedure call
(LPC) facility

* Only works between processes on the same system

* Uses ports (like mailboxes) to establish and maintain
communication channels

* Communication works as follows:

» The client opens a handle to the subsystem’s
connection port object.

» The client sends a connection request.

» The server creates two private communication ports
and returns the handle to one of them to the client.

» The client and server use the corresponding port handle
to send messages or callbacks and to listen for replies.

e —

Je RN Sk WEEBI_ 100 Edition 3.62 Uplo@i%@%cﬁ%é,%&?\nﬁmg&gé@?ﬂg

o
7,

f‘m‘\ 1 I
~%7/ Local Procedure Calls in Windows

Client Server
Connection
request o Connection Handle
Port
Handle Client
(_

Communication Port

!

Server Handle
Communication Port

Shared
«— > Section Object [€———>
(> 256 bytes)

SN Sk B GBI 100 Edition 3.63

| «.«'"4%
“$%7 Communications in Client-Server Systems

\ i
L\,

= Sockets
= Remote Procedure Calls

e
<

o A ‘EJ’;*
PR RO Stk EEEBR- 10 Edition 3.64 Uploaged By; Mahammed =aaia

= A socket is defined as an endpoint for communication

= Concatenation of IP address and port — a number included at start of
message packet to differentiate network services on a host

"= The socket 161.25.19.8:1625 refers to port 1625 on host 161.25.19.8
= Communication consists between a pair of sockets
= All ports below 1024 are well known, used for standard services

= Special IP address 127.0.0.1 (loopback) to refer to system on which
process is running

£33
Pa.
Je RN Sk WEEBI_ 100 Edition 3.65 Up'o%%.%cﬁé{'z,'}é'&mm&'b%@n%?ﬂ@

: ﬂmj . .
o Socket Communication
host X
(146.86.5.20)

socket
(146.86.5.20:1625)

web server
(161.25.19.8)

socket
(161.25.19.8:80)

A T ﬁ:‘
delR D Stk EEhEBRI- 10 Edition 3.66 Uploggigd Ry Malirmmed = aaa

o
Y,

Sockets In Java

= Three types of sockets

e Connection-oriented
(TCP)

* Connectionless (UDP)

* MulticastSocket
class— data can be sent
to multiple recipients

= Consider this “Date” server
in Java:

SN Sk B GBI 100 Edition

import java.net.x*;
import java.io.x*;

public class DateServer
{

public static void main(String[] args) {

try {
ServerSocket sock = new ServerSocket(6013);

/* now listen for connections */
while (true) {
Socket client = sock.accept();

PrintWriter pout = new
PrintWriter(client.getOutputStream(), true);

/* write the Date to the socket */
pout.println(new java.util.Date().toString());

/* close the socket and resume */
/* listening for connections */
client.close();

}

catch (IOException ioe) {
System.err.println(ioe);

}
}
§

vor Uploggled By; Mahrmmed. Saasla

o Sockets in Java

The equivalent Date client

import java.net.*;
import java.io.*;

public class DateClient

{

public static void main(String[] args) {
try {
/* make connection to server socket */
Socket sock = new Socket("127.0.0.1",6013);

InputStream in = sock.getInputStream();
BufferedReader bin = new
BufferedReader (new InputStreamReader(in));

/* read the date from the socket */

String line;

while ((line = bin.readLine()) != null)
System.out.println(line);

/* close the socket connection*/
sock.close();

catch (IOException ioe) {
System.err.println(ioe);
}

}

}

LA
- /"%W

A

deleRONdy st 5B 100 Edition 3.68 Up'°§1%§%§¥é,@£ﬂﬁ£ﬂ5‘lﬁgn§éﬁﬂé

<
PANY

S5 Remote Procedure Calls

= Remote procedure call (RPC) abstracts procedure calls between
processes on networked systems

* Again uses ports for service differentiation
= Stubs - client-side proxy for the actual procedure on the server
= The client-side stub locates the server and marshalls the parameters

= The server-side stub receives this message, unpacks the marshalled
parameters, and performs the procedure on the server

= On Windows, stub code compile from specification written in
Microsoft Interface Definition Language (MIDL)

e —

Je RN Sk WEEBI_ 100 Edition 3.69 Uplo@i%@%cﬁ%é,%&?\nﬁmg&gé@?ﬂg

¥
1,

5P
g Remote Procedure Calls (Cont.)

= Data representation handled via External Data Representation
(XDL) format to account for different architectures

* Big-endian and little-endian
= Remote communication has more failure scenarios than local

* Messages can be delivered exactly once rather than at most
once

= OS typically provides a rendezvous (or matchmaker) service to
connect client and server

-'[2

V
pehlr i ekl EEGBI 10 dition 3.70 Uploggled Ry MahRmmed = aads

e —

-7 Execution of RPC

client messages server

user calls kernel
to send RPC
message to
procedure X

kernel sends F_l{_grr;.ecrl\lg:t matchmaker
message to Port: rﬁatchmaker receives
matchmaker to Re: address message, looks
find port number fo.r RPC X up answer
y
From: server
kernel places To: client matchmaker
port P in user Port: kernel replies to client
RPC message Re: RPC X with port P
Port: P
From: client daemon
kernel sends To: server listening to
RPC Port: port P port P receives
<contents> message
A
From: RPC daemon
kernel receives Port: P processes
reply, passes To: client request and
it to user Port: kernel processes send
<output> output

IRENTSeHYB O 10 eaiton . Uploaged By, Mahammed. Saads

End of Chapter 3

operititFlenr BB £9M oen Egition UploagsdByMahammed,saadas

