
Vector Processors Architecutre

ENCS5331: Advanced Computer Architecture

Fall 2024/2025

Instructor: Dr. Ayman Hroub

Special thanks to Prof. Onur Mutlu (ETHZ) for part of the
slides

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Flynn’s Taxonomy of Computers

Mike Flynn, “Very High-Speed Computing Systems,” Proc.

of IEEE, 1966

 SISD: Single instruction operates on single data element

 SIMD: Single instruction operates on multiple data

elements

 Array processor

 Vector processor

MISD: Multiple instructions operate on single data element

 Closest form: systolic array processor, streaming processor

MIMD: Multiple instructions operate on multiple data

elements (multiple instruction streams)

 Multiprocessor and Multithreaded processor

2

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Data Parallelism

 Concurrency arises from performing the same operation on different pieces of

data

 Single instruction multiple data (SIMD)

 E.g., dot product of two vectors

 Contrast with data flow

 Concurrency arises from executing different operations in parallel (in a data driven manner)

 Contrast with thread (“control”) parallelism

 Concurrency arises from executing different threads of control in parallel

 SIMD exploits operation-level parallelism on different data

 Same operation concurrently applied to different pieces of data

 A form of ILP where instruction happens to be the same across data

3

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Loading/Storing Vectors from/to Memory

 Requires loading/storing multiple elements

 Elements separated from each other by a constant distance

(stride)

 Assume stride = 1 for now

 Elements can be loaded in consecutive cycles if we can

start the load of one element per cycle

 Can sustain a throughput of one element per cycle

 Question: How do we achieve this with a memory that takes

more than 1 cycle to access?

 Answer: Bank the memory; interleave the elements across

banks

4

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Three Variations of SIMD

 Vector Processors

 Graphics Processing Units (GPUs)

Multimedia SIMD instruction set extensions

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Vector Processors (I)
 A vector is a one-dimensional array of numbers

 Many scientific/commercial programs use vectors

for (i = 0; i<=49; i++)

C[i] = (A[i] + B[i]) / 2

 A vector processor is one whose instructions operate on vectors rather than scalar (single

data) values

 A single instruction operates on multiple data elements in consecutive time steps using the

same space (PE)

 Basic requirements

 Need to load/store vectors vector registers (contain vectors)

 Need to operate on vectors of different lengths vector length register (VLEN)

 Elements of a vector might be stored apart from each other in memory vector stride

register (VSTR)

 Stride: distance in memory between two elements of a vector

6

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 A and B matrices, both stored in memory in row-major order

 Load A’s row 0 (A0 through A5) into vector register V1

 Each time, increment address by 1 to access the next column

 Accesses have a stride of 1

 Load B’s column 0 (B0 through B50) into vector register V2

 Each time, increment address by 10 to access the next row

 Accesses have a stride of 10

Vector Stride Example: Matrix Multiply

A4x6 B6x10 → C4x10

Dot product of each row vector of

A with each column vector of B

A

Linear Memory

B

0

1

2

3

4

5

6

0

1

2

3

4

5

6

7

8

9

10Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Vector Processors (II)

 A vector instruction performs an operation on each element

in consecutive cycles

 Vector functional units are pipelined

 Each pipeline stage operates on a different data element

 Vector instructions allow deeper pipelines

 No intra-vector dependencies no hardware interlocking needed

within a vector

 No control flow within a vector

8

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Vector Architecture Basic Strucutre
9

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Storing Multiple Data Elements: Vector
Registers

 Each vector data register holds N M-bit values

 Each register stores a vector

 Not a (single) scalar value as we saw before

10

V0,0
V0,1

V0,N-1

V1,0
V1,1

V1,N-1

V0

M-bit wide

V1 V2

M-bit wide

PE

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Vector Processor Advantages

+ No dependencies within a vector

 Pipelining & parallelization work really well

 Can have very deep pipelines (without the penalty of deep pipelines)

+ Each instruction generates a lot of work (i.e., operations)

 Reduces instruction fetch bandwidth requirements

 Amortizes instruction fetch and control overhead over many data

--> Leads to high energy efficiency per operation

+ No need to explicitly code loops

 Fewer branches in the instruction sequence

+ Highly regular memory access pattern

11

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Vector Processor Disadvantages

-- Works (only) if parallelism is regular (data/SIMD parallelism)

++ Vector operations

-- Very inefficient if parallelism is irregular

-- How about searching for a key in a linked list?

-- Memory (bandwidth) can easily become a bottleneck,

especially if

1. compute/memory operation balance is not maintained

2. data is not mapped appropriately to memory banks

12

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Vector Registers

 Each vector data register holds N M-bit values

 Vector control registers: VLEN, VSTR, VMASK

Maximum VLEN can be N

 Maximum number of elements stored in a vector register

 Vector Mask Register (VMASK)

 Indicates which elements of vector to operate on

 Set by vector test instructions

13

V0,0
V0,1

V0,N-1

V1,0
V1,1

V1,N-1

M-bit wide M-bit wide

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Vector Functional Units

 Use a deep pipeline to execute

element operations

 fast clock cycle

 Control of deep pipeline is

simple because elements in

vector are independent

14

Six stage multiply pipeline

Slide credit: Krste Asanovic Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Memory Banking
 Memory is divided into banks that can be accessed independently; banks

share address and data buses (to reduce memory chip pins)

 Can start and complete one bank access per cycle

 Can sustain N concurrent accesses if all N go to different banks

15

Bank

0

Bank

1

MDR MAR

Bank

2

Bank

15

MDR MAR MDR MAR MDR MAR

Data bus

Address bus

CPU

Picture credit: Derek Chiou Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Vector Memory System

 Next address = Previous address + Stride

 If (stride == 1) && (consecutive elements interleaved across

banks) && (number of banks >= bank latency), then

 we can sustain 1 element/cycle throughput

16

Picture credit: Krste Asanovic Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Scalar Code Example: Element-Wise Avg.
 for i = 0 to 49

 C[i] = (A[i] + B[i]) / 2

 Scalar code (instruction and its latency in clock cycles)

MOVI R0 = 50 1

MOVA R1 = A 1

MOVA R2 = B 1

MOVA R3 = C 1

X: LD R4 = MEM[R1++] 11 ;autoincrement addressing

LD R5 = MEM[R2++] 11

ADD R6 = R4 + R5 4

SHFR R7 = R6 >> 1 1

ST MEM[R3++] = R7 11

DECBNZ R0, X 2 ;decrement and branch if NZ

17

304 dynamic instructions

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Scalar Code Execution Time (In Order)
18

 Scalar execution time on an in-order processor with 1 bank

 First two loads in the loop cannot be pipelined: 2*11 cycles

 4 + 50*40 = 2004 cycles

 Scalar execution time on an in-order processor with 1 bank

with 2 memory ports (two different memory accesses can

be serviced concurrently) OR 2 banks (where arrays A and

B are stored in different banks)

 First two loads in the loop can be pipelined: 1 + 11 cycles

 4 + 50*30 = 1504 cycles

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Vectorizable Loops

 A loop is vectorizable if each iteration is independent of any other

 For i = 0 to 49

 C[i] = (A[i] + B[i]) / 2

 Vectorized loop (each instruction and its latency):

MOVI VLEN = 50 1

MOVI VSTR = 1 1

VLD V0 = A 11 + VLEN – 1

VLD V1 = B 11 + VLEN – 1

VADD V2 = V0 + V1 4 + VLEN – 1

VSHFR V3 = V2 >> 1 1 + VLEN – 1

VST C = V3 11 + VLEN – 1

19

7 dynamic instructions

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Basic Vector Code Performance (I)

 Assume no chaining (no vector data forwarding)

 i.e., output of a vector functional unit cannot be used as the direct

input of another

 The entire vector register needs to be ready before any element of it

can be used as part of another operation

 1 memory port (one address generator) per bank

 16 memory banks (word-interleaved: consecutive elements

of an array are stored in consecutive banks)

 285 cycles

20

1 1 11 49 11 49 4 49 1 49 11 49

V0 = A[0..49] V1 = B[0..49] ADD SHIFT STORE

VLD V0=A VLD V1=B VADD V2=V0+V1 VSHFR V3=V2>>1 VST C=V3

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Basic Vector Code Performance (II)

Why 16 banks?

 11-cycle memory access latency

 Having 16 (>11) banks ensures there are enough banks to overlap

enough memory operations to cover memory latency

 The above assumes a unit stride (i.e., stride = 1)

 Correct for our example program

What if stride > 1?

 How do you ensure we can access 1 element per cycle when

memory latency is 11 cycles?

21

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Vector Chaining

 Vector chaining: Data forwarding from one vector functional

unit to another

22

Slide credit: Krste Asanovic Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Vector Code Performance - Chaining

 Vector chaining: Data forwarding from one vector functional

unit to another

 182 cycles

23

1 1 11 49 11 49

4 49

1 49

11 49

These two VLDs cannot be

pipelined. WHY?

VLD and VST cannot be

pipelined. WHY?

Strict assumption:

Each memory bank

has a single port

(memory bandwidth

bottleneck)

VLD V0=A VLD V1=B

VADD V2=V0+V1

VSHFR V3=V2>>1

VST C=V3

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Vector Code Performance – Multiple
Memory Ports

 Chaining and 2 load ports, 1 store port in each bank

 79 cycles

 19X perf. improvement!

24

1 1 11 49

4 49

1 49

11 49

11 491

VLD V0=A

VLD V1=B

VADD V2=V0+V1

VSHFR V3=V2>>1

VST C=V3

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Questions (I)

What if # data elements > # elements in a vector register?

 Idea: Break loops so that each iteration operates on # elements in a

vector register

 E.g., 527 data elements, 64-element VREGs

 8 iterations where VLEN = 64

 1 iteration where VLEN = 15 (need to change value of VLEN)

 Called vector stripmining

25

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Questions (II)

What if vector data is not stored in a strided fashion in

memory? (irregular memory access to a vector)

 Idea: Use indirection to combine/pack elements into vector registers

 Called scatter/gather operations

 Doing so also helps with avoiding useless computation on sparse

vectors (i.e., vectors where many elements are 0)

26

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Gather/Scatter Operations
27

Want to vectorize loops with indirect accesses:

for (i=0; i<N; i++)

A[i] = B[i] + C[D[i]]

Indexed load instruction (Gather)

LV vD, rD # Load indices in D vector

LVI vC, rC, vD # Load indirect from rC base

LV vB, rB # Load B vector

ADDV.D vA,vB,vC # Do add

SV vA, rA # Store result

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Gather/Scatter Operations

 Gather/scatter operations often implemented in hardware to

handle sparse vectors (matrices) or indirect indexing

 Vector loads and stores use an index vector which is added

to the base register to generate the addresses

 Scatter example

28

Index Vector Data Vector (to Store) Stored Vector (in Memory)

0 3.14 Base+0 3.14

2 6.5 Base+1 X

6 71.2 Base+2 6.5

7 2.71 Base+3 X

Base+4 X

Base+5 X

Base+6 71.2

Base+7 2.71 Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Conditional Operations in a Loop

What if some operations should not be executed on a vector

(based on a dynamically-determined condition)?

for (i=0; i<N; i++)

if (a[i] != 0) then b[i]=a[i]*b[i]

 Idea: Masked operations

 VMASK register is a bit mask determining which data element should not

be acted upon

VLD V0 = A

VLD V1 = B

VMASK = (V0 != 0)

VMUL V1 = V0 * V1

VST B = V1

 This is predicated execution. Execution is predicated on mask bit.

29

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Another Example with Masking
30

for (i = 0; i < 64; ++i)

if (a[i] >= b[i])

c[i] = a[i]

else

c[i] = b[i]

A B VMASK

1 2 0

2 2 1

3 2 1

4 10 0

-5 -4 0

0 -3 1

6 5 1

-7 -8 1

Steps to execute the loop in SIMD code

1. Compare A, B to get

VMASK

2. Masked store of A into C

3. Complement VMASK

4. Masked store of B into C

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Masked Vector Instructions
31

Simple Implementation

– execute all N operations, turn off
result writeback according to mask

Density-Time Implementation

– scan mask vector and only execute
elements with non-zero masks

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Some Issues

 Stride and bank count

 As long as stride and bank count are relatively prime to each other

and there are enough banks to cover bank access latency, we can

sustain 1 element/cycle throughput

 Storage format of a matrix

 Row major: Consecutive elements in a row are laid out

consecutively in memory

 Column major: Consecutive elements in a column are laid out

consecutively in memory

 You need to change the stride when accessing a row versus column

32

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 A and B matrices, both stored in memory in row-major order

 Load A’s row 0 into vector register V1

 Each time, increment address by 1 to access the next column

 Accesses have a stride of 1

 Load B’s column 0 into vector register V2

 Each time, increment address by 10

 Accesses have a stride of 10

Bank Conflicts in Matrix Multiplication
33

A4x6 B6x10 → C4x10

Dot product of each row vector of

A with each column vector of B

Different strides can lead

to bank conflicts

How do we minimize them?

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Minimizing Bank Conflicts

More banks

More ports in each bank

 Better data layout to match the access pattern

 Is this always possible?

 Better mapping of address to bank

 E.g., randomized mapping

34

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Vector Instruction Execution
35

VADD A,B C

Slide credit: Krste Asanovic

Execution using
one pipelined
functional unit

Execution using
four pipelined
functional units

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Vector Unit Structure

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Vector Instruction Level Parallelism

Can overlap execution of multiple vector instructions

 Example machine has 32 elements per vector register and 8 lanes

 Example with 24 operations/cycle (steady state) while issuing 1 vector instruction/cycle

37

load

load
mul

mul

add

add

Load Unit Multiply Unit Add Unit

time

Instruction
issue

Slide credit: Krste Asanovic Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Automatic Code Vectorization
38

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Vectorization is a compile-time reordering of
operation sequencing
 requires extensive loop dependence analysis

Vector Instruction

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Vectorized Code

T
im

e

Slide credit: Krste AsanovicUploaded By: Jibreel BornatSTUDENTS-HUB.com

Vector/SIMD Processing Summary

 Vector/SIMD machines are good at exploiting regular data-

level parallelism

 Same operation performed on many data elements

 Improve performance, simplify design (no intra-vector dependencies)

 Performance improvement limited by vectorizability of code

 Scalar operations limit vector machine performance

 Remember Amdahl’s Law

Many existing ISAs include (vector-like) SIMD operations

 Intel MMX/SSEn/AVX, PowerPC AltiVec, ARM Advanced SIMD, RISC

V V (RVV)

39

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

